CUCS-179-85

A PRIVATE INTERACTIVE TEST OF A BOOLEAN PREDICATE

AND MINIMUM-KNOWLEDGE PUBLIC-KEY CRYPTOSYSTEMS-

EXTENDED ABSTRACT.

7Zvi Galil, Stuart Haber & Moti Yung

A Private Interactive Test of a Boolean Predicate and
Minimum-Knowledge Public-Key Cryptosystems

Extended Abstract

Zvi Galil. 2.3

Stuart Haber!.3

Moti Yung!. 3.4

! Department of Computer Science, Columbia University
? Department of Computer Science, Tel Aviv University

Summary of Resuits
We introduce 3 new two-party protocol with the following
properties:

1. The protocol gives s proof of the value, 0 or 1, of s
particular Boolean predicate which is (assumed to be)
hard to compute. This extends the ‘interactive proofl
systems' of [7], which are only used to prove thst a
certain predicate has value 1.

2. The protocol is provably minimum-knowledge in the
sense that it communicates no additional knowledge
(besides the value of the predicate) that might be used,
for example, to compromise the private key of a user of a
public-key cryptosystem.

3. The protocol is result-indistinguishable: an
eavesdropper, overhearing an execution of the protocol,
does not know the valye of the predicate that was
proved. This bit is cryptographically secure. The protocol
achieves this without the use of encryption functions, all
messages being sent in the clear.

These properties enable us to define 2 minimum-knowledge
eryptosystem, in which cach user recaives exactly the knowledge he
is supposed to receivs and nothing more. In particular, the system is
provably secure against both chosen-message and chosen-ciphertext
attack. Moreover, extending the DifTie-Heilman model, it allows s
user to encode messages to other users with his own public key.

This enables a symmeterle use of public-key encryption.

1. Introduction

Transfer and exchange of knowledge is the basie Lﬁk of any
communication system. Recently, much attention has been given to
the process of knowiedge axchange in the context of distributed

systems and cryptosystems.

In [7] Goldwasser, Micali, and Rackoll Jeveloped a computational-

complexity approach to the theory of knowledge; a message is said to

3 Supported in part by N.S.F. Grant DCR-83-03139.
4 Supported in part by an IBM graduate fellowship.

_L‘/W

convey knowledge if it contains information which is the result of a
computation that is intractable for the receiver. They introduce the
notion of an interactive proof system for a language L. This is a
protocol for two interacting (probabilistic) Turing machines, whereby
one of them, the prover, proves to the other, the validator, Lthat aa
input string z is in fact an element of L. The validator is limited to
tractable (i.e. probabilistic polynomial-time) computations. We do
not limit the computational power of the prover; ia the cryptographic
context, the prover may possess some secret information — [for
example, the factorization of a certain integer N. (This is analogous
to the following model of a *‘proofl system™ for a language L in NP:
given an instance z € L, an NP prover computes a string y and seads
it to a deterministic polynomial-time validator, which uses y to chec-k
that indeed z € L.)

An interactive proof system which releases no additional knowledge
- that is, nothing more than the one bit of knowiedge given by the
assertion that z € L --- is called minimum-knowledge. Naturally,
such interactive protocols are of particular intersst in 3 cryptographic
setting where distrustful users with unequal computing power

communicate with each other.

In this paper we extend the ability of interactive proof-system
protocols from validation that a given string z is in a language L to
verification whether £ € L or £ € L. That is, we give the first (non-
trivial) example of a language L so that both L and its complement
have minimum-knowledge interactive proof systems for validating
membership, whers both the proof of membership in L and the prool

of non-membership in L are by means of the same protocol.

Furthermore, by following the protocol. the prover demonstrates to
the verificr either that z € L or that z € L. in such a way that the
two cases are indistinguishable to an eavesdropping third party. In
fact, the protocol releases no knowledge at all to an eavesdropper.
As usual, we assume that the eavesdropper knows both the prover’s
and the verifier’'s algorithms and that his computational resources are
poiynomially bounded, and we allow him access to all messages

passed during an execution of the protocol. In spite of the fact that

1985~

o appur 4 [FOCS 4.4

0

e —————

LS SAORE S

R

.o
v

.

1

our protocol makes no use of encryption [(unctions, the
eavesdropper receives no knowledge about whether he has just
witnessed an interactive proof of the assertion that z € L or of the
assertion that zg@ L. We call this property of our protocal

result-indistinguishability.

The assertion that our protocol is minimum-knowledge both with
respect to the verifier and with respect to the eavesdropper relies on
no unproved assumptions about the complexity of a nymber-theoretic

problem.

If membership or non-membership in L is an intractable
computation, then, after an »xecution of our protocol, the string z
can serve as s cryptographically secure encoding - shared only by
the prover and the verifier - of the membership-bit (z € L). The use
of z as an encoding of the membership-bit exemplifies what we may
call cryptography. it is a
encryption with the property that neither its specification (i.e. the

minimum-knowledge probabilistic
interactive prool of the valye encoded by z) nor its further use in
communication can possibly release any compromising knowledge,
either to the verifier or to an eavesdropper. The minimum-
knowledge requirement is a property which ensures that each party
receives exactly the knowledge he is supposed to receive and nothing
more. A cryptosystem whose protocols are minimum-knowledge has
the strongest security against passive attack that we could hope to
prove; in particular, it is secure against both chosen-message and

chosen-ciphertext attack.

Moreover, we show how to extend the use of public keys in
encryption systems. As introduced by Diffie and Hellman aad
studied fyrther by many authors, public-key encryption would seem
to be inherently assymmetric: messages sent to user A are encrypted
using A's public key. (See, e.g.. [4,9].) When interaction is added to
the model, it becomes possible to perform symmetric public-key
encryption. (See also [S].)
probabilistic minimum-knowledge public-key cryptosystem, in which

Using our protocol, we specily a

A's public key is used to encode messages that are sent to A as well
as to encode messages that A sends to others. In some applications, it
is useful that only one of a group possess an encryption key which

can be used for all communications.

It is by serially composing several minimum-knowledge sub-
protocols that we formulate the more complex minimum-knowledge
proof-system that we introduce in this paper. We remark that this
demonstrates the importance of the minimum-knowledge property for

modular design of complex protocols.

The predicate that our protocol tests is that of being a quadratic
residue or non-residue mod N for a certain number N (whose

factorization may be the prover’s secret information). We note that

the language for which we show membership and non-membership is
in NP N :0-NP.

languages uses the factorization of ,V, while in the interactive proof

A conventional membership proof for these

system presented below no extra knowledge (about the factorization
or about anything else) is given either to the verifier or to an

eavesdropper.

An important motivation in our work on this protocol comes from
If the
integer /N is the prover's public key in a public-key cryptosystem,

our desire to guarantee the security of cryptographic keys,

then Vis not compromised by (polynomially many) executions of our
protocol; a polynomially bounded opponent knows no more alter
witnessing or participating in these executions than he knew before
the key was used at all. More precisely, the probability that the
opponent’s computation succeeds in compromising NV is essentially
the same, whether or not his computation is allowed to see the texts

of the messages passed during the executions of the protocol.

2. Interactive Proof Systems

We specifly the model for which we will describe our protocol; this is
an extension of the model used in [7}. Two probabilistic Turing
machines A and B form an intersctive pair of Turing mackines if
they share a read-only input tape and a pair of communication tapes;
one of the communication tapes is read-only for A and write-only for

B, while the other is read-only for B and write-only for A: The two
machines take turns being "active”. While it is active, a machine

can read the appropriate tapes, perform computation using its own
work tape, and send a message to the other machine by writing the
message on its write-only communication tape. In addition, B has a
private output tape; whatever is written on this tape when A and B

halt will be the result of their computation.

In what follows. B will be limited to random polynomial time, while
we make no limiting assumption about A's computational resources.
{For cryptographic applications, A will possess some trapdoor
information). Their messages to each other will be in cleartext
{though these messages wiil depend on their private coin flips, which
remain hidden).

will Our scenario will also include a third

probabilistic Turing machine C, limited to polynomial-time

computation, which can read the communication tapes of A and B
and knows their algorithms. A will be the prover, B will be the

verifier, and C will be the eavesdropper.

In the setting of complexity theory, what do we mean by

knowledge! Informally, a message conveys knowledge if it

communicates the result of an intractable computation. A message
that consists of the result of a computation that we cap easily carry
out by ourselves does not convey knowledge. In particular, a string
of random bits — or a striog of bits that is “indistinguishable’ from

a random string (see below) — does not convey knowledge, since we

"F

X3

1YL

4

can flip coins by ourselves. Our formal definitions follow.

2.1. Interactive Proof Systems
Suppose that (A, B) is an interactive pair of Turing machines, and
let £/ C {0,1}" denote the set of legai inputs to the computations of
A and B. Suppose also that L C [is a language, for which A is able
to compute the predicate (z € L). Suppose in addition that their
total communication time is polynomial in the length of the input
and in 1/8, where their computation is correct with probability 1-4
(i.e., “with high probability”). Following the authors of {7], we will
say that (A, B)is a validsting interactive proof-system for L if:
1.For any z €L given as input to (A, B), with high
probability B halts and accepts .

2. For any Turing machine A* which can interact with B,
and for any string z @ L given as input to (A*, B), with
high probability B halts and rejects z.

Extending the above definition, we will say that (A, B)
verifying interactive proof-system for L if:

e For any Turing machine A® which can interact with B,
and for any string z € [given as input to {A®, B), with
high probability B halts with the correct value of the
predicate (z € L).

In the first definition, we require that B correctly accept instances

of strings £ € L, and that no malevolent adversary can coavince B to
incorrectly accept strings z @ L. In the second definition, we require

that, given any string z, B correctly verify whether z€ Lorz ¢ L.

2.2, Ensembles of Strings

In order to speak precisely of the “knowledge™ transmitted by
communicated messages, we will need the foilowin; definitions (7, 10).
Let 1C {0,1}* be an infinite set of strings, and let ¢ be a positive
constant; for each z €17 of length n, let x, be a probability
distribution oan the set of ncbit strings. We will call
IT={x,:2€[} an ensemble of strings (usually suppressing any

mention of [and ¢).

For example, if M is 2 probabilistic Turing machine, then any input
string z defines a probability distribution, according to the coin
tosses of M's computation, on the set M[z] of possible outputs of M
on input z. Thus, for any I, { M[z] : = € 7'} is an ensemble.

As another example, suppose that (A, B) is an interactive pair of
Turing machines. For any string =, let (A, B)[z| denote the set of
possible ordered sequences of messages written on the communication
tapes of A and B during their computation on input z. This set has a
natural probability distribution according to the coin tosses of A and
B. Thus, { (A, B)[z] : £ € I } is an ensemble of strings.

A distinguisher is s probabilistic polynomial-time Turing machine

that, given a siring as input, outputs a bit. Suppose that
M={x,:z€l}and [T={x':2€ [} are ensembles of strings,
and that D is a distinguisher. Let pp(z) be the probability that D
outputs a 1 when it is given as input a string of length |z|¢, randomly
selected according to probability distribution x_: and let py'(z),
depending on the distribution x./, be defined simiiarly. We will call
the two ensembles (polynomial-time) indistinguishabdle il for any
distinguisher D, for all k and sufficiently long z, '
lpplz) - pD'(le < |zt

2.3. Minimum Knowledge
Suppose that (A, B) is a validating interactive proof-system for a
language L, taking inputs (rom the set /. Following the definition in
{7]. we will say that the system (A, B) is minimum-knowledge if,
given any probabilistic polynomial-time Turing machine B®, there
exists another probabilistic polynomial-time Turing machine M such
that:
1. M can use B® as a subroutine, in the strong sense

described below,

2. The ensembles { M[z] : €L} and {(A, B*)z}:z€L}
are indistinguishable.

M's output. on input z € L, is a simulation of the communications
that A and B® would have on the same input. Note that, in this
definition, we do not care about inputs not belonging to L. Ad
eavesdropper who overhears a successful execution of the protocol
(A, B) with input z learns that (with high probability) z € L;

however, he gains no more knowledge thaa this.

M can use B® as a subroutige in the following way. We model the
probabilistic nature of B* by providing it with a random rud—cfnly
tape. In the course of (simulating A and) communicating with B*, M
is allowed Lo back up a few steps in the simulated protocol, re-setting
B*'s random read-head to where it had been earlier, and then to

proceed with the protocol.

We now show how to extend this definition so as to be able to say
when a more general sort of protocol should be called “minimum-
knowledge'”. The computations of any interactive pair of Turing
machines (A, B) define 3 partial function f, g as follows. Given a
string z as input, suppose that A and B use a total of at most k
random bits during the course of their probabilistic computations (k
polynomial in |z]). For any k-bit string r, let [, gz, r) denote the
result of the computation of A and B (i.e., what is left on B's output

tape) on input z, when the sequence of their coin flips is given by ».

In this paper, [, g(z.7) will only take on Boolean values, For
example, if (A, B) is a proof-system for the Ianggage L. then
[aplz.r)is (with very high probability, i.e. for most r) equal to the
membership-bit (z € L).

A e

e

We will say that the interactive system (A, B) is
minimum-knowledge if, given apy probabilistic polysomial-time
Turing machine B®, there exists another probabilistic polynomial-
time Turing machine M such that:

1. Given any input z, M has one-time sccess to an oracle
which returns the value [, g(z. r) for a random

re {0, 1}~
2, M can use B® as a subroutine, as described above.
3. The snsembles { M[z]:z €/} and {(A. B*)z|:z€T}
are indistinguishable.
Note that, in this definition, the simulation M[z| is defined for any
z€l

In ordar to motivate this definition, we recall that we are trying to
formalize the notion of the amount of knowledge transmitted by a
sequence of messages. Speaking informally, one gains no knowledge
from s message which is the result of a leasible computation that one
could just as well have carried out by oneself. For us, “feasible”

means probabilistic polynomial-time.

If the purpose of a protocol followed by two interacting parties A
and B is that A transmit to B a value [, g(z.7), we would like to be
able Lo say exactly when the protocol transmits no more knowledge

than this value. We might also demand that the protocol accomplish

this even il B somehow tries to cheat — that is, even if the Turing

machine B is replaced by another (polynomiak-time, but poesibly
cheating) machine B*. The simple transmission of the value
Ja.p(z. r) can be modelled by 3 single oracle query (with input z). It
the provision of this oracle query makes it possible, by means of &
polynomial-time computation, to simulate the entire *“conversation”
that A and B® wouid have had on input 2z, then it seems reasonable
to say that when A and B*® actually have a conversation (i.e. follow
the protocol) with input =z, there is no additional knowledge

transmitted to B®,

When a2 user performs A's role ina minimum-knowledge protocol,
relying on the security guaranteed by the minimum-knowledge
property, it is the user’s responsibility not to cheat (i.e. to carry out
A's instructions exactly), since the guarantee of security may not

hold if A is replaced by a cheating A®.

Note that if f, g is computable in probabilistic polynomial time,
then the /A_B-oracle adds no power to the machine M. In this case M
{or. for that matter, B) can compute [, g without the assistance of
A. (The protocols that we present in this paper are all minimum-
knowledge; however, they may be only trivially so if it turns out that

integer factorization, for example, is a tractable problem.}

Suppose that we are given two protocols: the (irst, taking inputs

from I, is a validating interactive proof-system for L,, and the

second, taking inputs from /,, is a validating interactive proof-system
for L,. Suppose in addition that L, CJ,. We will use in what follows
the simple observation that the concatenation of the two protocols is
then a validating interactive proof-system for L,, taking inputs from
I,. I the two given protocols are minimum-knowledge, then so is

their concatenation.

2.4. Result Indistinguishability
We will call an (A, B)

indistinguishable if an eavesdropper (as described above) who has

interactive proof-system resuit-
access to the communications of A and B on input z gains no
More B) is

result-indistinguishable il there exists a probabilistic polynomial-

knowledge. formally, the system (A,
time Turing machine M such that the ensembles { M[z] : z€ [} and

{ (4, B®)|z] : 2 € I} are indistinguishable.

Observe that unlike the machine M in the definition of the
minimum-knowledge property, this machine M does not have aceess
to an oracle for fapi in other words, M can simulate the
communications of A and B on input z, regardless of the value
Saglz ?) (even if caleulating Jo g is an intractable computation).
Since this simulation is by means of a leasible computation that an
esvesdropping adversary could carry out for himsell, the adversary
gains no knowledge if he is given the text of a ‘“conversation™
belonging to the communications ensemble (A, B)z].

3. Specification of the Language

3.1. Preliminaries

We assume that the reader is familiar with the following notions
from elementary number theory. We will be working in the
multiplicative group Zs" of integers relatively prime to N. Any
clement : € Z* is called a quadratic residue if it is 3 square mod N
(i.e. if the equation 22 = z mod V has a solution); otherwise, z is a

quadratic nonresidue mod N. Given N and z€ Zp*, the quantity

called the Jacobi symbol of z with respect to N, denoted (#), can be

efficiently computed (in time polynomial in log V) and takes oa the

2

values +1 and -1. If (‘—v-)a—l, then z must be a quadratic

nonresidue mod N. On the other hand, if (T:") = 41, then z may be

either a residue or a nonresidue. Determining which is the case,
without knowing the factorization of [V, appears to be an intractable
problem, namely the quadratic residuosity problem. (However, given
the prime factorization of [V, it is easy to determine whether or not z
is 8 quadratic residue.) Several cryptographic schemes have been
proposed which base their security on the assumed difficulty of
distinguishing between residues and nonresidues modalo a hard-to-

factor integer NV [6, 1, 8}.

The protocol introduced in {7] is a minimum-knowledge validating

AW TTRTTI

-

RO T

%

interactive proof-system for the language

{ (¥, 2) : £ € Z,*, -3 nonresidue mod N }.
The protocol that we present below is a verifying interactive proof-
both

indistinguishable, for a language based on the same problem.

system, which is minimum-knowledge and result-

We will use the notation i{;V) to represent the number of distinct

prime factors of an integer N,

Our protocol will be concerned with igtegers of a special form,
namely integers with prime factorization N == n:_l p;¢7 such that
for some 1, p,% = 3 mod 4. Let BL (for Blum, who pointed out their
usefulness in cryptographic protocols) denote the set of such integers.
There are two alternate (equivalent) formulations of membership in
BL:
half its square roots (mod) have Jacobi symbol +1 and half its

{1) .V € BL il and only if for any quadratic residue mod N,

square roots have Jacobi symbol —1. (2) N € BL iff there exists a
quadratic residue mod NV which has two square roots with different

Jacobi symbois. [2}

The special integers that we require form a subset of BL, namely
Na { N:NEBL Nmimod4, AN) == 2 }.

[t is not hard to see that this set may equivalently be defined as
Nm {pg:pgkgprime,i,j2 1, p=¢ =3mod4}.

Finally, we define the languages

I={(N3: Ne N.ZGZN',(%)-.‘H}

and L = { [V, 2) € [: za quadratic residue mod N }.
Taking [as the set of inputs, this paper gives a verifying interactive

proofl-system for L.

3.2. Outline of the Protocol

Throughout the description of our protocol, we will be speaking of
picking elements of a set “at random™. Unless otherwise specified,
this will mean that the siement in question should be chosen at

random according to the uniform prostbility distribution on the set.

Our prov.oc.ol has two parts. The first part is a validating

interactive proof-system for [. If the first part is completed
successfully (i.e. if A proves to B that the input string isin [), then A

and B perform the second part of the protocol. The second past,

taking inputs from the set [, is s verifying interactive proof-system

for the language L: A proves to B either that the input string isin L
or that it is not in L. Both parts are minimum-knowledge, and the
(Thus, an

eavesdropper who overhears a successful execution of the protocol

second part is result-indistinguishable as well.

learns that, with high probability, N € ¥. But he gains no more
knowledge than this — in particular, he does not learn RESp{:).)

_The first part, the validation that an input string (NN, z) belongs to

I. in turn requires three stages, which are carried out in the following

order; each stage validates a property of N or of :.

LN Imods, UMD L, € Z,% and (ﬁ:q»[,

2. NeBL.
UM<

While proving that our protocol has the properties that we desire,
we will make no limiting assumption about the computational power
of Turing machine A. However, we remark that the protocol can be
performed by a probabilistic polynomial-time Turing machine A
which is given the factorization of the relevant integers N. (In the
cryptographic applications that we discuss later, the party that
performs A's role in our protocol will have chosea N along with its

prime factorization.)

We now give the details of our protocol: the validating first part in

section 4, and-the verilying second part in section 5.

4. Validation of the Input
In each of the protocols that we describe, we will use the notation

“A — B: ..." toindicate the transmission of a-message {rom A to
B.

1.1. Blum's Coin-Flip Protocol
Our validation protocol will require that A and B jointly generate s
sequence of unbiased random bits. They will do this by following a

protocol due to Blum [2].
An integer N€ BL, N = | mod 4, is given.

A and B generate a random bit &

1. B chooses u € Z,* at random, computes v = 42 mod V;

B — A v

2. A chooses ¢ = +1 or —1 at random, his guess for (7::),
A—-B g

3B —~ A u

1. 1[0—(%) then b= | else b:m O

If factoring V is an intractable problem, then the first alternate
characterization of BL implies that this protocol generates random
bits. In fact, as long as at least one of A and B does not cheat — i.e.
as long as either A picks ¢ at random or B picks u at random -— b is

a random bit.

This protocol is also minimum-knowledge. To prove this, we fix a
{possibly cheating) Turing machine B* that interacts with A. We

have to specify the (polynomial-time) computation of a Turing

v,

ol et ey

s,

machine M whose output, on input N (satisfying N € BL and
N = 1 mod4), is a simulation of the communications ensemble
(A. B*){ N|, namely a tripie (v, o, u) as specified above. M can use
B® as a subroutine, and has access to an oracle that returns the

intended result of this protocol, namely a random bit.

M begins by consulting the oracle. Having received the random bit
b, M executes the protocol with B® (letting B* “send” v, simulating
A's choice of ¢ in step 2 by Nipping s coin, and then letting B®
“send” u). If the bit generated by this execution is 4, then M outputs
the triple (v, o, u). Otherwise, M re-sets B*'s random read-head, goes
back to step 2, “sends' —o instead of o to B®, and lets B* send"” u;
now M outputs the triple (v, —a. u’). In either case, the output triple
corresponds to th.e bit 4, and the distribution of its possible values is
indistinguishable from (A, B*)[V]. (Note that if B® does not follow
the protocol exactly as specified, it may happen that the numbers u
and u' are not the same; but they must have the same Jacobi symbal
mod NV, because the ability to compute two square roots (mod N) of

v with opposite Jacobi symbols would =2nable B® to factor V.)

4.2. The Validation Protocol

This is a minimum-knowledge validating interactive proof system
by which A proves to B that the input string (N, z) is in the language
I defined above.
takes, as legal input, a string that has been validated by the

It consists of three sub-protocols, each of which

preceding sub-protocol.

First Stage: The trivial properties of N and z

This stage involves no communications between A and B. B checks

that V= 1 mod 4, that N is not a prime power, that z€ Z,°, snd

that (ﬁ)-ﬂ. Each of these is easily sccomplished in time

polynomial in log N. If any one of these conditions does not hold,

then B rejects the input and halts the protocol.

Second Stage: NV belongs to BL

The following protocol is also due to Blum [2|. Its correctness
depends on the alternate characterizations of membership in BL. In
order to guarantee that the protocol is correct with probability at

least 14, the parameter k should be chosen so that k > log 1/6.

This stage does not concern itsell with z at all. N must satisfy

N == 1 mod 4; this r-ondition will hold if the first stage was

successfully completed,
Repeat k times:
1. A chooses a quadratic residue r € Z,* at random;

A =B r

2. B chooses ¢ = +1 or -1 at random;
B— Ao

3. A computes ¢ such that s° = r mod N and (.7) =g;

A — B s
4. B checks to make sure that s satisfies the sbove

conditions; if not, then B rejects the input aad halts the
protocol.

Third Stage: .V has two prime factors
This stage also does not concern itsell with z.

Let us use Zp"(x1) to denote the set of elements of Zy* with
Jacobi symbol &1 (respectively). This protocol relies on the fact that
it N has exactly i prime factors (i.e. :{.NV) = i), then exactly 12!
of the elements of Zy*(+1) are quadratic residues. A and B jointly
pick random elements of Z*(+1). If A can show that about half of
them are residues (e.g. by producing their square roots mod N), then
B should be convinced that AN) < 2. If N is not a prime power,
then {V) must be equal to 2.

In order to pick a list of random elements of Zn*(+1), A and B
follow which that
Ne€BLand N= 1 mod 4. These conditions will hold if the second

Blum's coin-flip protocol, requires

stage was successfully completed.

In order to guarantee that the protocol is correct with probability
at least 1—4, the parameter ¥’ should (according to the weak law of
large numbers) be chosen so that ¥ > 16/

1. A and B use Blum's coin-flip protocol to generate ¥
random: elements r|,...,ry € Zy*(+1). Elements of
Z." are generated bit by bit, and those with Jacobi
symbol —1 are thrown away.

2. For each i=s1,...,F such that r; is 3 quadratic
residue, A computes #; such that r; = a;’ mod .V;
A — B: s,

3. B checks that at least 3/8 of the r; are quadratic residues;
if so he ac~epts the input, and otherwise he rejects it and
halts the protocol.

Theorem: This protocol is a3 minimum-knowiedge validating

interactive proof system for the language [.

Proof: We will treat each of the three sub-protocol stages
separately. [t will then foilow immediately that the concatenation of

the three has the required properties.

The frst stage is, trivially, a validating proof system for the
language

L={((N2:N=1mod4, YN} > L.z € Nt (#)=+l }
because each of these conditions can be validated by B without

interacting with A at all.

PR TR IIATC RGBT L T

Given an integer N = I mod 4 (in particular, given input that has
been validated in the first stage), the second stage is 3 minimum-
knowledge validating interactive proof system for the language
I,={(N.:): NeBL)}.

If N € BL, then each quadratic residue r seat by A has at least one
square root mod NV with Jacobi symbol +1 and at least one square
root mod N with Jacobi symbol —1; no matter which sign ¢ B
chooses, A can respond with a square root of the appropriate sign.
On the other hand, if V¢ BL then no quadratic residue mod N has
two square roots with Jacobi symbols of opposite sign. With high
probability, for some i A will be unable to send an appropriate e, 30
that B will halt the protocol. The only way for a cheating A* to
convince B that N € BL {by sending the appropriate elements 8)is
by guessing beforehand the entire sign-sequence ay ... 0y such a
guess will only be correct with probability 2=%. Thus, this protocol is
indeed a validating interactive proof system for BL.

To prove the minimum-knowledge property, we fix s Turing
machine B* that interacts with A; we have to specify the
computation of a Turing machine M whose output, on input N € BL,
will be & simulation of the communications that A and B* would
bave had on input N: namely, the ensemble (A, B*)| N| which
coasists of triples (r, o, ;) satisfying the conditions implicitly
defined by the specification of the protocol. If B® departs so far from
the protocol that these triples are not produced, then A will quickly
halt the protocol; simulating the communications between A and
such a B* is easy to do. In other words, without loss of generality we

may assume that B® behaves “‘reasonably"”.

M repeats the following loop k times:

1. choose # € Z;° at random
2. ri=42mod N
3. “send™ r to B®, and receive o in return

4.0 (._'v_) 9é o0 then re-set the random read-head of B® and
g0 back to step 1; else output (r, @,)
For each iteration, the expected number of times this loop will have

to be repeated is 2, since for any value of r the probability that

(—'v-) = o i3 exactly 1/2. The triples produced by M do satisfy the
required conditions, and so the ensembles M| N| and (A, B*)] N| are

indistinguishable. This completes the proof for the second stage.

Given an integer from the set
{N: NEBL Nmimod4, UM > 1}
{(in particular, given input that has been validated in the second
stage), the thlrd stage is a minimum-knowledge validating

interactive proof system for the language Jy = { (N, 2): AN) =2 }.

Consider the experiment of choosing a random element of Zx*(+1),
where the =xperiment is 3 success if the chosen element is a quadratic
residue mod VT let FiA.V) denote the frequency of successes in ¥
independent trials. As mentioned above, the probability of success in
one trial is exactly 1/24NM—1 (Since NV is known to have at least
two prime factors, this probability is at most 1/2.) If AN) is exactly
2, then the probability that B does not accept N'is, by the weak law

of large numbers,

Prob{ FANM < 3/8} <
N - 1/9 = 16/K.
Prob{ IFANI = 1/21 2 1/8} < oo = 16/

On the other hand, if /V has more than two prime factors, the

probability of success in one trial is at most 1/4, and thus the
probability that B will incorrectly acespt Nis

Prob{ FAM 23/8} <

Prob{ |[F AN} - 1/4| 2 1/8 } < 16/F.
{Note that these estimates of probabilities are also correct for B's
interactions with another Turing machine A®, because even a
cheating A® cannot bias the bits generated by Blum's coin-flip.)

Hence this protocol is indeed a validating interactive proof system for

{N: YN)=2}.

To prove the minimum-knowledge property, we have to specifly the
computation of a simulating Turing machine M. (Once agsain, is
discussed above, we can assume that B* bebaves “reasonably™.) The
communications snsemble (A, B*)| N| that M must simulate consists
of many Blum coin-Nlips which were used to generate random
elements of Z.,". The difficuity for M is that those elements which
are quadratic residues must be randomly generated along with their

square roots.

Given .V such that {V)=2, M proceads as follows:

1.4 :mm 0; 4 :== the »mpty list

2. do until i=¥;

shoos= a random bit & {to decide the Jacobi symbol of
the next eizment gsnerated);

if b=0 then adjoin to .{ a random element of Z,,*(~1),
-else:

a. =1+l

b, choose 3, € Z,* at random

¢. choose a random bit b;;
it b,=0thenr.:=ms? (3 random residue in
Zc(+1)
else r.:= —¢° (mod V) (a random fon-residue in
Zyt(+1))

4. adjoinr; to A

3. simulate Blum’s coin-flip in order to ‘'generate’ the
sequence of bits in the resulting list .4 (as in section 4.1)

4. ignore the elements in A with Jacobi symbol -1

5. for each r; in .{ such that b,=0 output &;

M generates lists of elements of Z"* with the same distribution s
do A and B, so that the communications ensemble (A, B*)| N] and
the output ensemble M| V] ars indistinguishable. This completes the

proof for the third stage.

It is worth remarking that, with 3/8 replaced by suitable constaats,
the third stage is a minimum-knowledge interactive proof system for
the value of ¢{iV). That is, if the fraction of the r; that an honest A
shows to be quadratic residues is at least 3/8, then B should accept
that {.\) € 2 if this fraction is between, say, 3/16 and 3/8, then B
should accept that 4.V} € 3; and so on.

Finally, we see that, given any input string at all, the concatenation
of the three stages is a minimum-knowledge validating interactive

proof system for the language [, N [, N Iy=1I

5. The Minimum-Knowledge Test of Residuosity

If the validating part of our protocol has been successfully
completed, then with high probability the input string (N, z) is in the
language [. In particular, we know that i{N) == 2, that : € Zy° and

that (;V) == +1; these are the properties that are required by the

next part of the protocol.

This part is a verifying interactive proof system for L, taking inputs
from f. A pair (N, 1) which is known to belong to [either is or is not
also a member of L according to whether or not 7 is a quadratic
residue mod V. Thus, since it is also result-indistinguishable, this
part may be regarded as a private interactive test of quadratic

residuasity mod V.

To make the exposition clearer, we will preseat three successive

versions of our protocol.

Let y = —1 mod V. Everything that follows will hold for any non-
residue y€ Z.* which has Jacobi symbol +1. As long as
N€BLand N=1mod 4, we ¢an take y= —1. [f another non-
residue y is desired, A can prove to B {as an additional sub-protocol
stage) that y is a non-residue by following the minimum-knowledge

interactive proof-system of {7).

Let us fix some notation. For any z € Z* we define the predicate

1 if zis a quadratic residue mod NV,
RES \{z) = {
0 otherwise.

Recall that Z,*(+1) denotes the set of elements of Z,,* with Jacobi
symbol +1; half of these are quadratic residues mod N, and half of

them are non-residues.

Our protocol relies on the fact that if r € Z,,° is chosen at random,

then 2 mod Vis a random quadratic residue in the set Z,*(+1) aad
yr? mod V is a random quadratic non-residue in Zy*(+1); similarly,
s+ mod NV is either a random residue or a random non-residue in

Z,*(+1) according to whether or not : is a residue mod N.

In order to guarantee that the protocol is correct with probability

at least 1—§, the parameter k should be chosen so that

k= 0 (log 1/8).
Flirst version

[terate 3k times:

1. B chooses r € Z,,* at random

&)

. B chooses c € {I1, 2,3} at random: case cof:
I: z:=r2 mod N
2 z:myr? mod N
3: r:m 2 mod NV

3.B - A: 2

4. A computes b = RES{z);
A =B

5. B checks that if c== [then b= 1, if c==2 then é =0,
and if ¢=3 then b is consistent with any previous
itarations for which ¢ was = 3; if not then B halts the
protocol

If the protocol is not halted by B, then the consistent value of & for
case-3 iterations is equal to RES,\{2).

As explained above, if = is a quadratic residue then z's constructed
in case 1 are indistinguishable from z's constructed in case 3. If A
acls as specified, then when the protocol finishes B will be convinced
that z is a residue. The only way that a cheating A® can convince B
that z is not a residue is by correctly guessing, among all iterations
during which B has sent a residue z, which of these were constructed
in case 1 and which of them in case 3. The probability of successful
cheating is less than 2=C%, for a suitable constant C.- Similarly if z is
a quadratic non-residue. Hence the above version is a verifying

interactive proof-system for L.

However, this version is not result-indistinguishable. An observer of
an execution of the protocol can easily tell whether he is watching an
interactive proof that RESa{z) = 1 or a proof that RES,{z) = 0 by
keeping a tally of the bits b sent by A in step 4 of each iteration.

Second version

But 2 simple modification of the above protocol does hide the result
from an eavesdropper. At the beginning, A flips a fair coin in order
to decide whether to use R{z) == RES\{z) or R(z) ='|-RES(z) as
the bit & to be sent to B in step 4 of each iteration throughout the

protocol. R{z) can be regarded as an encoding, chosen at random, of

RES y{z).

In step 5, B checks for consistency in the obvious way: B should
receive the same bit & in all case-1 iterations and the complementary
bit in all case-2 iterations; B should receive a consistent bit & in all
case-3 iterations, and its value indicates to B whether or not z is a
quadratic residue. As before, if in step 5 of any iteration B finds that
the value of & is not consistent then B halts the protocol (detecting
cheating).

With this modification, the protocol is still --- arguing as above — 3
verifying interactive proof-system for L. Furthermore, it is result-
indistinguishable. An eavesdropper expects to overhear one bit about
2/3 of the time during step 4 of each iteration and the
complementary bit the remaining 1/3 of the time; whether the
majority bit in a particular execution of the protocol is 0 or | gives
him no knowiedge. A formal prool of result-indistinguishability of

the full protocol is presented below.

However, the version so far presented is not minimum-knowledge.
For example, a cheating B® that wanted to find out whether a
particular number —- 17, say - is a quadratic residue mod N could,
during one of the iterations, send z = 17 in step 3 instead of an
element z constructed at random according to steps ! and 2. A's
response in step 4 will convey to B® the value RES,(17), which is
something that B® could not have computed by himself.

Third version

We can make this a minimum-knowledge protocol by refining step

3 of the version just presented; the refinement consists of several

interactive sub-steps by which B proves to A that the element 3z
which he sends was constructed as specified. (The rest of the

protocol is unchanged.)

All computations are modulo N.

30B - A:
3.1 Bchooses 5, € 2" at random (i = 1,..., 4k)

3.2 B computes
Tym (ty, ...ty t; maZmod V},
P O N
Tym {topyper-olyy:t;masl),
Tom{tyup -ty t;myzs’),
T, a random . permutation of the elements of
T; §] Tg V] TJ uT,:
B—- AT

3.3 A chooses S, a random subsequence of T of size 2k;
A —-B:S

3.4 B adds to S randomly chosen elements of T—S, forming
an enlarged set S such that the 4 subsets S'NT; are the

same size;

T~ m 20 PR

foreach t,€ S, B — A: ¢o;

3.5 A verifies (for each {; € §') that {; == cither 82, ya 2, za2,
or y:a;2 mod .V, with each congruence being satisfied by
1/4 of the elements of 5% if not, then A halts the protocol

3.6 for each t; € T-S'. B computes w; according to the table
below: if z was chosen as case ¢ of step 2 and w;ET,'.
then w; 1= the table-entry in the ® row and ¢*® column;
for each t; € T-5', B — A: w;

3.7 A verifies (for each ¢;€T-5) that w? == either
(zt;). vizt;), Azt;), or yArt;)mod N, with esach
congruence being satisfied by 1/4 of the elements of
T-5"; il not, then A halts the protocol

The protocol now continues as before. A sends b = R{z) to B (step
4), and B checks b for consistency (step S); and then they continue

with step 1 of the next iteration.

Table for Step 3.6

2 -
| r ;
;= | fe=1) (c=2) (c =3)
3° € TI l rs., = yre; m= Irs. ==
I z‘n) j;i"i) J.t(z‘l)
y.,l_'.‘erz I yra - yro, = yIre,
[=ty) {zt;) vezt,)
33',2 € T; I Iry. = yIre; == ry. -
FER PrE))
y2e €T, | yre = yirs; = yers; =

The idea is that B must follow the protocol, because if he tries to
cheat A will, with overwhelming probability, detect his cheating
either in Step 3.5 or in Step 3.7. This is formalized in the following

proof.

Theorem: Given input belonging to /, this protocol is a result-
indistinguishable minimum-knowledge verifying interactive proof-

system for L.

Prooft First we prove that the protocol is s verifying proof-system

for L. Since we have already shown that this is true of the second

]

10

version presented above, it will suffice to show that the refinement of

step 3 praserves this property.

Suppose that : is a quadratic residue. The question is whether 2
cheating A" can use the numbers sent by B during step 3 to correctly
distinguish between case-1 iterations (z = ~ mod .V for a random r)
and case-3 iterations (z = 2 mod V). Since B has chosen them at
random, A® will be unable to distinguish between residues ¢; of the
form 22 and residues t; of the form z2;. The sub-table which
corresponds to these four possibilities has rows which are
permutations of each other. and thus A® will not be able to tell

whether B is using column ¢ = 1 or column ¢ = 3 of the whole table.

cmm] ce=3
F ! J(“.‘) J‘(".')

t'o -
2 f | Hzt,) (=t;)

Similarly for non-residues t; of the form ya‘: or yza.-"', A like analysis
holds if z is a non-residue mod V. Hence the protocol is indeed a

verifying proof-system for L.

{a order to prove the minimum-knowledge property, we fix a
Turi_n; machine B® that interacts with A; we must describe the
computation of a simulating machine M. As before, we assume that
B® behaves “reasonably” enough so that (with high probability) A
does not halt the protocol.

M has access 1o an oracle for the result of the protocol. M begins
by querying the oracle on the input string (&, z), and learns {with
high probability) the value of RES {z). The rest of the simulation is
quite similar to that of the proof that the protocol of [7] is minimum-
knowledge.

As its next step, M flips a coin to simulate A’s choice of whether to
compute R{z) = RES . {z} or R(z) = 1-RES(z) during the protocal.

In each iteration, M carries on the protocol through the end of (the
refinement of) step 3 in a straightforward manner: M uses B* to
perform its own version of B's role, and M easily simulates A's role,
choosing a random subsequence S in step 3.3 and checking several
congruences mod N in steps 3.5 and 3.7. The difficulty comes in
simulating A's communication in step 4, which consists of the bit
R(z); how can M quickly calculate the correct value of RES;\{z)! M
accomplishes this by saving the messages “sent” so far, re-setting the
random read-head of B*, and re-starting the iteration. The second
time through the iteration, B* “flips the same coins” and therefore
“sends"” the same number r (Step 3.0) and the same sequence of

aumbers T (Step 3.2} as the first time; bowever, M (continuing its

probabilistic computation) “flips new coins” while simulating A in

step 3.3. Thus, with high probability the simulated A chooses a

subsequence 5 which is different from the subsequence § chosen the

first time; the enlarged sets §' and §' will also be differeat. Now M

can choose an index i for which t; € 5 (so that B® sent s; in step 3.4

the first time through the iteration) and t; € 5" (so that B® sent w; io
step 3.6 the second time .lhrough the iteration). M can use s; Lo see
which row of the table B* used (i.e. which set T; contains £); thea M
can yse w; to see which column ¢ of the table B® used. The choice of
column gives M the value of RES,{z), which can now be used to
simulate M's communication of R{zr) in step 4 of the iteration. B*®

then completes the iterztion.

By construction. the output ensemble computed by this machine M
is indistinguishable from the communication ensemble generated by A

and B*®, and therefore the protocol is indeed minimum-knowledge.

In order to prove that the protoeol is result-indistinguishable, we
must specily the computation of a probabilistic Turing machine M’
which will simulate the communications ensemble (A, B)[N, .
(Recall that M’ does not have access to any oracle.) M’ begins by
Nipping a coin to decide whether to simulate the choice R(z) =0 or
the choice R(z) = 1.
specified computations of A and B, except for the following changes.

Then in each iteration M’ simulates the.

[n (simulated) step 2, M’ chooses z := zr2 mod N with probability
2/3 and z := yzr2 mod N with probability 1/3. In (simulated) step 4,
M’ outputs b= R(z) il 2= zr° and b= 1-R(z) il z == yar?. (Here
the simulation of step 4 is much simpler than in the minimum-
knowiedge proof above, since M’ *knows” how each 2z was
constructed.) In (simulated) step 3.8, M’ outputs w; computed

acecording to the following table:

I
| o2 y
4= !

3;2 | re; = yiry; ==
| Azty) Jydze)])
yo° | yars; = yary; =
| \[EE2] A=)
:.!I-: l rs, = ysry, =
f {zt;) wzt;)
yuo? | yors. = ysrs; a=

| wizt;) (zt;

The numbers r output by M’ have the same distribution as the
numbers zr output by B; the same is true of the s; and the w;. Hence,

as required, the output ensemble M.V, 7 is indistinguishable from

|

the communications ensemble (A, B)[N, 2.

As several people have pointed out, there is another modification of
the first version of our protocol which also achieves result
indistinguishability. A can always respond in step 4 with the true
valye of RES,{z) if B computes each z in step 2 according to a
random choice among four varieties: to the types r2, yr?, and
22 mod N we add the fourth type yor® mod V. If the protocol is to
be minimum-knowledge as well, we can refine step 3 as in the third
version of our protocol, adding an appropriate fourth column to the

table used to compute w,.

6. Cryptographic Applications

In all our applications, we will let N be the public key of 3 user A
who knows its factorization. Within the set N, it will be most
advantageous to A to choose :V to be of the form N = pq, with p and
q of approximately the same size. A can follow our validating

protocol in order to prove to any other user that {N) = 2.

In communicating with another user B, any element z € Zy*{+1)
can serve as an encoding of the bit RESN(:). a3 soon as A has used
our protocol to prove to B the valuye of this bit. According to need, z
can be chosen by A or by both A and B together.

Thus a sequence of random numbers 2y, 20 .., 2, Can serve as an
encryption of the bit-sequence RES,{z,), RESp{z,), RESp{z,),
which in turn can be used as 3 one-time pad, sent either from A Lo B

or from B to A.

Tastead of using the z; directly to encrypt the bits RES,(z;), we can
define 3 much more efficient scheme by using
RES,{z,), RES\{z,), ..., RES\{z,) as the random seed for s
eryptographically secure pseudom-random bit generator based on N

{e.g. [1]. [3]).

polynomially many bits and use them as a (very long) one-time pad

Sharing the seed, A and B can efficiently generate

with which to send messages back and forth. Because our protocol is
only used in order to initialize the system, this scheme has low

amortized cost.

Whether the bits RES\{2;) are used directly or to form the seed of
a2 pseudom-random bit generator, the resulting schemes have the
minimum-knowledge property with respect to B as well as with
respect to an eavesdropper C. In particular, they are provably secure

against both chosen-message and chosen-ciphertext attack.

Another characteristic of these schemes is worth noting. Unlike the
usual assymmetric use of public keys for encryption, in which only
messages sent to user A may be encrypted using A’s public key, our
scheme is symmetric; messages sent to A as well as messages that A

sends to others are encoded using A's public key. This capability is

BRI TN ° SN P S

useful in a number of situations. For example, it enables secure
communication with casual users (who are not registered in the
public key directory). It also enables A to transfer the same random
bits to a group of users, so that each member of the group will be

able to broadeast secret messages to all members. (See also [5].)

Another application of our protocol gives a new private unbiased
coin-Nip, generated jointly by A and B. The two users simply choose
: at random - for example, choosing its bits by means of Blum's
coin-flip. (Note that the bits of z are public; it is RES,{z), the result

of the coin-flip, which is private.}

In certain applications we can omit the validating proof that N is
of the required form. Suppose in fact that N has more than two
prime factors. For any z € Zy*(+1), A can carry out the verilying
protocol as before. Now, however, if y and s — both quadratic non-
residues in Zp{+1) --- have difTerent quadratic character modulo
one of the prime factors of NV, then A can distinguish numbers of the
form r from numbers of the form yr2 mod IV, and can distinguish
each of Lhese from numbers of the form z~ mod N. {This is not true
it {N) = 2; recall that for such IV any non-residue in Zy(+l)is s
non-residue modulo both prime factors of N.) Thus A can, at will,
use our verifying protocol to “prove” to B either that z is s residue
or that z is 3 nonresidue. In either case, the interactively proved
value of RESp{z) — whether or oot it is the true value — is
eryptographically secure. In fact, A can t;se the same oumber z as &
private bit-encoding with each of two different users, neither of

whom will know the value of the other’s bit.

7. Conclusions and Open Problems

Goldwasser, Micali, and Rackoff give a minimum-knowledge
protocol for proving that a number is a nonresidue mod N, where N
may be any integer at all; there is also a minimum-knowledge
protocol for proving that a number is a residue mod &, again for
general NV [7]. However, the two protocols do not have the same
form. Our protocol for proving the value of RES,{z) has the same
On the other hand, we require 8
There

remains the problem of constructing a single protocol for RESa{z)

form, whatever that valye is.

minimum-knowledge proof that vV is of a special form.

that holds for general N.

More generally, one would like to see examples of minimum-

knowledg~ interactive proof systems for other languages.

As a formalization of the notion of security for eryptosystems, the
minimum-knowledge property seems to be the strongest possible.
Therefore, its absence is easier to demonstrate than pther types of
cryptanalytic vulnerabilities. Indeed. several of the cryptographic
schemes that have been proposed are easily seen not to have the

misimum-knowledge property.

Acknowledgements

We gratefully acknowledge the friendly encouragement and pointed
criticism of Silvio Micali. We would also like to thank Shafi
Goldwasser, Paul Beame, David Lichtenstein, Gilles Brassard and

Charles RackofT for their helpful remarks and discussions.

References

1} L. Blum, M. Blum, and M. Shub.
A simple secure pseudo-random number generator.
In Crypto '52. 1982.

{2l M. Blum. .
Coin flipping by phone.
In COMPCON, pages 133-137. [EEE, February, 1982.

{3] M. Blum and 5. Goldwasser.
An efTicient probabilistic public-key encryption scheme which
hides all partial information.
In Crypto '84. 1984,

|41 W.Diffie and M.E. Hellman.
New directions in cryptography.
IEEE Tranas. on Inform. Theory IT-22:644-654, November,
1978.

[5] Z. Galil, S. Haber, and M. Yung.
Symmetric public-key encryption.
1985.
Presented at Crypto.‘85.

[6] S. Goldwasser and S. Micali.
Probabilistic encryption and how to play mental poker
keeping secret all partial information.
In Proc. 14th STOC, pages 365-377. ACM, 1982.

{7l S. Goldwasser, S. Micali, and C. Rackof.
The knowledge complexity of interactive prool systems.
In Proc. 17th STOC, pages 291-304. ACM, 1985.

[8] M. Luby, S. Micali, and C. RackofT.
How to simultaneously exchange a secret bit by flipping &
symmetrically-biased coin.
In Proc. 24th FOCS, pages 11-22. [EEE, 1983.

[9 G.J. Simmons.
Symmetric and assymmetric encryption.
Computing Surveys 11:305-330, December, 1979,

[10] Yao, Andrew C.
Theory and applications of trapdoor functions.
In Proc. 29rd FOCS, pages 80-91. [EEE, 1982.

(2

