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2 Université de Lyon, F-69000, Lyon, CNRS, UMR5558,
Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France

mbailly@biomserv.univ-lyon1.fr, alfredo.braunstein@polito.it,

riccardo.zecchina@polito.it

Abstract. Into the cell, information from the environment is mainly
propagated via signaling pathways which form a transduction network.
Here we propose a new algorithm to infer transduction networks from
heterogeneous data, using both the protein interaction network and ex-
pression datasets. We formulate the inference problem as an optimization
task, and develop a message-passing, probabilistic and distributed for-
malism to solve it. We apply our algorithm to the pheromone response
in the baker’s yeast S. cerevisiae. We are able to find the backbone of the
known structure of the MAPK cascade of pheromone response, validating
our algorithm. More importantly, we make biological predictions about
some proteins whose role could be at the interface between pheromone
response and other cellular functions.

1 Introduction

Living cells need to react to a wide spectrum of changes –physical, chemical
or biological– in their environment [1]. Conversely the cell reactions span from
the activation of small-scale processes, e.g. synthesis of precise molecular com-
ponents or excretion of others, to complex changes in the global cellular state,
such as the diauxic shift or pheromone response and mating [2] in yeast. In or-
der for the cell to survive, these changes must be tightly regulated. One type
of regulation occurs through signaling cascades, which represents how the infor-
mation propagates inside a cell, from receptor proteins to transcription factors
and other effector proteins. At the molecular level, this information transits by
activation or inactivation of specific signaling proteins. Activation mechanisms
include a variety of protein-protein interactions such as conformation changes,
or dimerization [3]; one of the most studied is the well-known phosphorylation-
dephosphorylation system provided by kinases [4]. Known signaling cascades
show desirable properties, from a system point of view: they act as low-pass fil-
ters, ensuring an adequate cell response only when external stimuli are above the
molecular noise level [5], but they also provide signal amplification [6]. Recently,
it was also shown that information could travel in both directions on signaling
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cascades, due to chemical equilibrium shifts in the cascades[7]. These properties
can be used by the cell to tune the signal propagation and therefore the response
to the environment.

The intersection of the signaling pathways forms the transduction network,
whose nodes are proteins and whose edges represent protein interactions trans-
mitting information. Due to the many interconnections between different signal-
ing cascades in the transduction network, a precise regulation of the cross-talk
between different pathways is necessary. One way to ensure pathway specificity
in answer to a given signal is the usage of scaffold proteins which will specifi-
cally bind to other members of a given signaling cascade, increasing specificity
of the response [8,9]. On the other hand, one way to diffuse signal to many path-
ways is to root them all to the same activator protein. The complexity of these
cross-interactions has allowed evolution to shape these pathways so as to be very
efficient in sensing and adjusting to the environment, but makes them very diffi-
cult to study independently and even to identify precisely. In this work we tackle
the issue of transduction network inference from proteomics and transcriptomics
data. Phosphoproteomics works have been led to reconstruct these cascades, but
are still very expensive and time consuming. At the algorithmic level, this prob-
lem has been widely studied, mainly by inference of linear cascades. In this
context Scott et al. [10] developed an algorithm based on color-coding to in-
fer linear subparts of the transduction network, and found with good accuracy
the known MAPK kinases cascades. White et al. [11] made a step forward by
looking for transduction networks as a superposition of shortest paths on the
protein interaction network (PIN). The focus of their method is to unbias the
solution tree from the high connectivity bias, as often hubs of the PIN tend to
be over-represented in the inferred networks, as a consequence of their high in-
betweenness. Other works about the inference of transduction network include
[12], who introduced a Steiner tree formalism to recover this network based on
expression data and an existing PIN. This formalism states that the transduction
network is a subtree of the global protein interaction network which contains all
proteins of a given subset, named terminals, defined by the user. This subset is
composed of proteins known to be part of the signaling network, or selected via
another criterion such as expression level. The problem is then to reconstruct
such a tree, respecting also other combinatorial constraints such as e.g small tree
size or fixed tree depth. This last approach was recently developed by [13], who
used an integer linear programming relaxation to find subnetworks involved in
signal transduction, improving the algorithmic performance.

The previously cited approaches have been effective at finding already known
signaling cascades, but made few predictions, mainly because of the time con-
straints of the available techniques in the field of combinatorial inference problems.
Indeed the Steiner tree problem [14] is NP-hard and classical algorithms allowing
to solve it at the probabilistic level are slow. Here we provide a new method from
the class of message-passing algorithms to infer a Steiner tree from a weighted
graph, which directly applies to infer transduction networks from a PIN and ex-
pression data. From a numerical point of view, message-passing algorithms are
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probabilistic and distributed, allowing for a very fast resolution of inference prob-
lems [15], even for large networks. Moreover, our algorithm does not need a priori
selected terminals (i.e proteins of interest), and compute the transduction network
as a whole, instead of a sum of linear subparts, as was done in previous works. This
results in a high exploratory power of combinatorial effects that could uncover bi-
ologically meaningful cross-talk. We apply it to the pheromone response in S. cere-
visiae; results show that we are able to reconstruct accurately known pathways,
to infer how the signal propagates in other signaling cascades of the cell, and to
make functional predictions about a new group of genes implied in the pheromone
response.

2 Material and Methods

The rationale of our model is that the transduction network is a subtree of the
PIN, which should be composed with links of the PIN corresponding to real
protein interactions, and proteins being of biological relevance for the biological
process under study. Indeed, protein-protein interactions detected in proteomic
assays contain a high fraction of false positives [16], creating the need to take
into account in our model the statistical confidence we have for each link of
the PIN. As proteomics data are still scarce, whether expression data are nowa-
days available in huge quantities, we hypothesized, as was previously done by
[13,17,18,10,12], that genes being differentially expressed during the activation
of the signaling pathway encode proteins being necessary for the signaling re-
sponse itself, and employed expression data to measure the relative importance
of each protein in a given environmental context. Therefore we could model the
transduction network inference as an optimization problem, given weights for
every edge of the PIN, to represent the propensity of the edge to be a false posi-
tive, and prizes for the nodes, proportional to the level of differential expression
of the corresponding genes in the expression data relative to the phenomenon
under study.

2.1 Inference of the Transduction Network

In general terms, we are interested in finding a “minimal” sub-network that is
connected to a given protein node, known as the root. We will model this problem
as a Prize-Collecting Steiner Tree on Graphs problem (see e.g. [19,20]). Given
a network G = (V,E) with positive (real) weights {wl : l ∈ E} on edges and
{wn : n ∈ V } on vertices, we are interested in finding the connected sub-network
that minimizes the following quantity:

C =
∑

links

wl − λ
∑

nodes

wn (1)

It is easy to see that such network must be a tree (links closing cycles can be
removed, lowering C). λ is a parameter regulating the balance between opti-
mization of the two terms of the sum.
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This problem is known to be NP-Hard, implying that is unlikely that an
algorithm that can efficiently solve any instance of the problem exists. To solve
it we will use a small variation of an extremely efficient heuristics based on
belief propagation developed on [14] that is known to be exact on many classes
of random networks [14,21]. The algorithm iterates the following set of equations
for the quantities {ψij}(ij)∈E (called ”messages”) to a fixed point:

ψt+1
ji (dj , pj) = −cjpj +

∑

(kj)∈E\(ij)
max

f(dk,pk,dj,pj) �=0
ψt

kj(dk, pk) (2)

where di ∈ D = {0, ..., D−1}, pi ∈ V (i)∪{∅}, ψji : D×V (i)∪{∅} → R and fij is
a characteristic function that ensures the condition pi = j ⇒ pj �= ∅, dj = di − 1
defined as follows:

fij = gijgji

gij = (1 − δpj ,i(1 − δdi,dj−1))(1 − δpj ,iδpi,∅)

On a fixed point, the following quantities (”field”) are computed:

ψj(dj , pj) =
∑

(kj)∈E

max
f(dk,pk,dj,pj) �=0

ψt
kj(dk, pk)

Then a tree T ∗ is built from the parenthood relations defined as follows: define
d∗j , p

∗
j = argmaxdj,pj ψj(dj , pj). Then if p∗j �= ∅, define the parent of j as pj . Oth-

erwise, j does not belong to T ∗. With a minimal non-degeneracy assumption on
the initial fields, it is relatively straightforward to verify that with variables d∗j , p

∗
j ,

fij = 1 ∀(ij) ∈ E and this implies that T ∗ is indeed a tree. It can be proved in
some limit cases that the algorithm is optimal, and verified experimentally that it
generally gives an excellent approximation to the optimal. Formore details see [21].

2.2 Data Source and Definition of the Weights

The yeast protein interaction network (PIN) was built by combining data from
two databases : DIP [22] and MIPS [23]. The combined network has 5217 nodes
and 22637 edges. To define their weights, edges were divided in two categories: a
high confidence one, containing links extracted from small-scale experiments or
found many times; and a low confidence one, containing links found only once
in a large-scale experiment. We defined the two corresponding weights so as to
maximize the correlation of our weight set and the one of [24], giving a weight
wl = 1 for high confidence edges (24.9% of the PIN) and a weight wl = 1.74
for low confidence edges. The choice of this weight set as a reference is based on
the observation that it is one of the most reliable [25], and does not derive the
weights from expression data.

We analyzed 56 expressiondatasets from [26]. We computed node prizes for each
dataset in a classical way by taking wn = − log(pn), where pn is the p-value of
differential expression of node n in the corresponding microarray. Though, a high
prize was attributed to genes having a significant p-value in the expression data.
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The 56 datasets were analyzed independently with values of λ ranging from
0.05 to 0.9. The chosen root was the receptor protein STE2 in datasets compar-
ing cells submitted or not to pheromone α action. In datasets with an artificially
overexpressed gene under GAL4 promoter control, this gene was chosen as the
root. If the strain used contained deletions, the corresponding genes were re-
moved from the PIN prior to inference. In datasets comparing deleted strains to
wild type strains without exposition to pheromone, deleted genes were selected
as roots.

2.3 Statistical Analyses

Functional homogeneity of the trees inferred for each expression microarray and
each value of λ was assessed by comparing the number of GO Slim annotations
[27] shared by interacting proteins in the inferred Steiner trees, and random trees
with same root and size, with edges probabilistically weighted as in the real data
or not. Random trees were generated 50 times and results were averaged.

Steiner proteins were defined as proteins present in the Steiner tree with
wn < 1

λ : such proteins have a local cost to be added in the tree, which has
to be compensated. Enrichment of the inferred trees in proteins of interest was
estimated by comparison with random trees generated with permuted expression
data, for λ = 0.2 (30 iterations).

3 Results

Our algorithm infers an organism transduction network, using as a support the
PIN and expression data to find a Steiner tree maximizing the level of differen-
tial expression of its nodes (genes) and built preferentially with edges of high
confidence. The free parameter λ (see Mat. Meth.) regulates the balance between
optimization on the edges and on the nodes, and therefore regulates the tree size.
For each microarray given as input, the Steiner tree found is a representation of
the transduction network activated in the corresponding condition. The Steiner
trees representing transduction networks were inferred in 56 expression datasets
from a study about pheromone response [26], with 7 different values of λ. A
statistical description of the trees found is provided in Table 1. As expected,
both the frequency of high-cost links selected and the average tree size increase
with λ.

As an integrity check we analyzed the correlation between the tree size and
the average prize wn of the nodes in the datasets, which is a direct measure of the
numbers of genes differentially expressed on the microarray (Fig 1). As expected,
the average tree size increases both with λ and average node prize; indeed, this
second dependence even seems linear, a property that could be interesting to
detect anomalies in the inferred trees.

An averaged representation of the trees found for λ = 0.2 is given in Fig 2. Pro-
teins usually found as members of the pheromone response pathway are present,
such as FUS3, GPA1 or SST2; some missing intermediates appear for higher
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Table 1. Statistical properties of the trees inferred. One can see the evolution of the
average tree properties with increasing values of the parameter λ, notably the increase
in average tree size and decrease in the fraction of Steiner proteins found. The global
fraction of high-cost links in the PIN is 75.1%, notably higher than the fraction present
in the inferred trees.

λ Tree size Fraction of Fraction of
(# prot) high-cost edges Steiner proteins

0.05 1.5±1.1 0.034 0.471
0.1 9.7±15.8 0.058 0.295
0.2 85.0±123.1 0.273 0.248
0.3 173.2±222.8 0.345 0.233
0.5 337.3±363.7 0.389 0.213
0.7 478.5±450.6 0.404 0.198
0.9 612.7±516.2 0.407 0.188
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Fig. 1. This figure shows the strong correlation between the average node prize in each
dataset (x-axis) and the number of proteins found in the inferred tree (y-axis). Different
types of points correspond to different values of λ: vertical crosses λ = 0.05, diagonal
crosses λ = 0.1, stars λ = 0.2, empty boxes λ = 0.3, filled boxes λ = 0.5, empty circles
λ = 0.7, filled circles λ = 0.9. Note the linearity of the relation for each given value of λ.

values of λ. To assess the quality of the trees found, we computed the average
number of shared GO Slim annotations between neighbors, and compared it to
random trees, either weighted or not (Fig 3). the average number of common
annotations is higher for low values of λ (Fig 3), showing a clear functional en-
richment of the Steiner trees. Topology and PIN weights only account for a part
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Fig. 2. This tree is formed by the superposition of all 56 Steiner trees found for λ = 0.2.
Link intensity is proportional to the number of times the link was found, either in
one sense or another; in case of links inferred in different directions, the orientation
represented is the one mostly found. Links found in less than 30% of the trees are not
shown for clarity. Grey nodes represent the proteins involved in the known pheromone
pathway.

of this enrichment, shown by the simulations with random weighted trees, the
rest being a combined consequence of both the proteins and the paths selected
in the tree, which can thus be considered to represent biologically meaningful
transduction networks. For high values of λ, this enrichment is not visible, and
we will therefore focus on results at low λ.

Previous to analyses, a technical bias has to be accounted for. Due to differ-
ences in in-betweenness – or connectivity, see [11] –, certain proteins occur more
or less often in the Steiner trees. Indeed, proteins with a high in-betweenness in
the PIN tend to be frequently present in the Steiner trees, even if they are at-
tributed a low prize. From a probabilistic point of view, including these proteins
in the Steiner tree allows to gain access to proteins with a positive contribution to
the global tree cost, enough to compensate for their own relative costs. One can
see this trend in Fig 4: proteins selected more often have a high in-betweenness.
Still, this correlation is only partial (R2 = 0.37), and let ample space for other
factors to explain presence of certain proteins in the final trees.
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Fig. 3. Histogram of the average number of shared GO Slim annotations per link, on
average on all 56 inferred trees at a given value of λ. First histogram represents the
real values, second random weighted trees, and third random unweighted trees (See
Mat. Meth.). Note the high differences for low values of λ.

Table 2. Properties of the 11 putative Steiner proteins found the most frequently in
λ = 0.2 datasets. k stands for connectivity and ”In-bet.” for in-betweenness.

Gene name Protein name Frac. found Frac. found Ratio k In-bet. (x105)
(real data) (random data)

YBR160W CDC28 0.66 0.57 1.2 227 15
YDR388W RVS167 0.52 0.31 1.7 121 4.9
YHL048W COS8 0.45 0.09 5.0 46 0.63
YFL039C ACT1 0.45 0.17 2.7 47 1.1
YER118C SHO1 0.43 0.06 7.0 42 1.5
YJR091C JSN1 0.43 0.44 1.0 293 25
YCL040W GLK1 0.43 0.003 144 6 0.25
YBR159W IFA38 0.41 0.09 4.8 101 1.9
YGL181W GTS1 0.41 0.09 4.5 43 1.5
YPL181W CTI6 0.41 0.02 20.3 26 0.26
YMR059W SEN15 0.34 0.007 47.5 57 1.4
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Fig. 4. Number of times a protein appears as Steiner (in all trees inferred) vs in-
betweenness of the protein in the PIN. Note the correlation between them.

An interesting feature of our formalism is the definition of Steiner proteins, i.e
proteins present in the Steiner trees without being highly differentially
expressed. These proteins form bridges between groups of proteins with a posi-
tive contribution to the optimization criterion, and they could not be discovered
by analyzing only the expression levels in the microarray, as they do not differ
significantly from the background. Is is the combination of information from the
PIN structure and expression data that unveil them. In the following analyses
we focus on the Steiner proteins that appear at low values of λ, i.e those less
distinguishable from the background expression.

In order to quantitatively measure the significance of Steiner proteins, we did
a bootstrap experiment by generating Steiner trees for random expression data,
obtained by permutations of the real datasets. Then, we compared the frequency
of occurrence of proteins found very often as Steiner proteins in the real data to
their frequency of occurrence in this randomized data; the ratio of these quantities
was then used to assess the biological significance of the putative Steiner proteins
(see Table 2), a high ratio meaning biologically meaningful inference and a low
one typical of an artifact due to PIN topology and high in-betweenness bias.

Proteins with such a high ratio have an average in-betweenness (see Table 2).
Using this table, one can easily see that the proteins CDC28, JSN1 and RVS167
should not be accounted as Steiner proteins, based on the ratio value and their
very high in-betweenness. To get better insights about these proteins and their
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Fig. 5. Main first-order interactions of the proteins identified as Steiner proteins, λ =
0.2. Steiner proteins are shown in grey. Link intensity is proportional to the number of
times the link is found when protein is considered as Steiner. Only links found in more
than 50% runs are shown.

implication in the pheromone response as Steiner proteins, we looked which
partners they interact with. The partners found in more than half of the trees
are represented in Fig 5. Many interactants are membrane proteins, in particular
PRM proteins [28]. One interesting feature is that the Steiner proteins COS8 and
SHO1 seem to be strongly interacting, as ACT1 and GLK1 do either. We detail
these two cases in the following paragraphs.

GLK1 give access to the FIG1 protein, a membrane protein which has already
been implicated in the pheromone response and in particular in cell fusion [29].
Another protein implicated in the glucose metabolism, GTS1, is inferred as a
Steiner protein. As both these proteins are interacting with the actin protein
ACT1, one could hypothesize a cross-talk between pheromone response, glucose
metabolism and cytoskeleton structure. If role of the cytoskeleton in mating is
quite well-known, implication of the glucose metabolism is not, but could be a
sign of a global regulation of the cellular state previous to mating, as GTS1 is
also a known regulator of transcription.

COS8 is found at the end of the SST2-SHO1 cascade. SST2 is the regula-
tor of desensitization of the pheromone pathway, while SHO1 is the main cell
osmosensor and initiates various signaling pathways. The subtree found behind
COS8 is composed of membrane proteins and the fatty-acid elongase ELO1.
Moreover, COS8 interacts often with proteins involved in sphingolipid synthesis,
such as LAC1 and AUR1 (not shown in Fig 5 because they occur less than 50%
of the time). Finally, the main cascade leading to IFA38, a beta-keto reductase
implicated in fatty acid metabolism and also found as Steiner protein, is indeed
passing by COS8. The multiple interactions of COS8 with these proteins, ei-
ther membrane-spanning or located in the ER, allows to hypothesize that COS8
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plays a role in the secretory pathway – probably in relation with sphingolipid
synthesis– during pheromone response. Interestingly, COS8 is one but a member
of a very conserved gene family [30], and finding the function of COS8 could
help to understand the role of the entire family.

4 Discussion

In this work we presented an efficient strategy to infer structure relations from
sparse gene expression information and protein-protein interaction probabilities.
This approach is based on statistical physics principles, is scalable (completely
parallelizable) and is expected to be well-suited for large networks. The scheme
is highly efficient (the computation time scales as D|E| where |E| is the number
of edges of the protein network, and it normally suffices to take D = O(logN)
to achieve optimal values). This property allowed us to explore values of the
parameter λ and a large number of pathways very quickly, much faster than it
would have taken with complete algorithms and other available heuristics.

The main drawback of the approach resides in its input limitations, that is,
it cannot infer new interactions between proteins and must follow the structure
of the PIN given as input. This makes it difficult to apply our method to or-
ganisms where the PIN is unknown or poorly described, which is the case for
many organisms, such as human. However, this issue is becoming obsolete with
the rise of new experimental techniques in the proteomic fields. Moreover, there
are bioinformatic solutions that could be used in order not to be limited by this
problem. First, one could add in the PIN very high cost edges on a set of puta-
tive interactions. Analysis of the Steiner trees with increasing values of λ, may
allow to see, among the added edges, which are selected more frequently by the
algorithm, and thereby discriminate between them. Second, as the methods to
infer protein-protein interactions based solely on sequence become more efficient
(see e.g. [31]), it should be possible to develop an integrated framework where
protein interactions are inferred numerically before applying our methodology.

Our methodology, while using state-of-the-art computational techniques, is
able to infer quantitatively which Steiner proteins could play a role in a given
context, as represented by expression data. The network representation allows
a clear interpretation: specific interactions are predicted in defined conditions.
This type of predictions is easy to confirm experimentally by double-hybrid and
genetic experiments, making our methodology an invaluable input for wet labs.
Collaborations have indeed been started to experimentally test our predictions.
Moreover, our algorithm could be made still more efficient, by including genetic
or regulatory interactions in the base network or searching for protein com-
plexes instead of protein interactions. Developments in this sense, coupled with
experimental validations of our predictions, will finally allow the development
an integrated message-passing framework for systems biology, in direct contact
with experimental data and labs.
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