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The operations on the aircraft carrier flight deck are carried out in a time-critical and resource-constrained environment with
uncertainty, and it is of great significance to optimize the makespan and obtain a robust schedule and resource allocation plan
for a greater sortie generation capacity and better operational management of an aircraft carrier. In this paper, a proactive
robust optimization method for flight deck scheduling with stochastic operation durations is proposed. Firstly, an operation on
node-flow (OONF) network is adopted to model the precedence relationships of multi-aircraft operations, and resource
constraints categorized into personnel, support equipment, workstation space, and supply resource are taken into consideration.
On this basis, a mathematical model of the robust scheduling problem for flight deck operation (RSPFDO) is established, and
the goal is to maximize the probability of completing within the limitative makespan (PCLM) and minimize the weighted sum
of expected makespan and variance of makespan (IRM). Then, in terms of proactive planning, both serial and parallel schedule
generation schemes for baseline schedule and robust personnel allocation scheme and equipment allocation adjustment scheme
for resource allocation are designed. In terms of executing schedules, an RSPFDO-oriented preconstraint scheduling policy
(CPC) is proposed. To optimize the baseline schedule and resource allocation, a hybrid teaching-learning-based optimization
(HTLBO) algorithm is designed which integrates differential evolution operators, peak crossover operator, and learning-
automata-based adaptive variable neighborhood search strategy. Simulation results shows that the HTLBO algorithm
outperforms both some other state-of-the-art algorithms for deterministic cases and some existing algorithms for stochastic
project scheduling, and the robustness of the flight deck operations can be improved with the proposed resource allocation
schemes and CPC policy.

1. Introduction

Aircraft carrier is the largest vehicle sailing on the sea, and
the aircraft is the main weapon equipped on it. The aircraft
can turn into fight only when a certain number of them with
different types are introduced on the carrier, and the aircraft
must be well maintained before they are launched by the
catapult. In a sortie mission, a team of aircraft is required
to be launched within a short period of time. As there are
complex constraints in the flight deck operations, it is
difficult to make a satisfactory schedule under limited space,
resource, and personnel [1]. To be specific, on the flight deck,
a series of operations, such as landing, towing, inspection,
fueling, arming, oxygen filling, nitrogen charging, taxiing,

and launching, are required to be performed within one deck
cycle to keep high-intensity sortie rates [2]. Before the aircraft
finishes launching on the flight deck, the pre-flight prepara-
tion takes up the most time of the deck cycle and is the most
crucial stage as the failure and delay usually occur in this
stage [3].

Compared to the ground operations of aircraft on the
airport, more strict constraints are imposed on the opera-
tions on the flight deck of a carrier. Firstly, the narrow space
of the flight deck results in more risks during operation,
especially for the taxiing aircraft. Secondly, as the launching
and landing of aircraft are proceeded on the flight deck in a
cycling way, and the duration of a cycle is limited to 1+ 00
(1 hour and 0 minutes), 1 + 15, 1 + 30, or 1+ 45 [4], any delay
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may disturb the operating tempos under such a time-critical
scheduling. Moreover, precedence constraints and resource
constraints are more complicated in the flight deck opera-
tions of a carrier, and various kinds of aircraft make the
process of flight deck operations diverse. Besides, there are
many uncertain factors during the flight deck operations,
such as the stochastic service time of each operation, the
failure of aircraft and support equipment, and even the
change of mission. Therefore, it is imperative to make a
time-saving and robust schedule and resource allocation plan
for flight deck operations with uncertainty which satisfy the
constraints of space, resource, timing, and personnel as the
efficiency and robustness of flight deck operations are always
the bottleneck of improving the sortie generation capacity
and operational management level of an aircraft carrier.

To address the challenge of robust scheduling problem
for flight deck operation (RSPFDO), significant research
has been devoted to the methods of reactive scheduling and
stochastic scheduling, which ignore the plan of baseline
schedule and resource allocation. In practice, however, a
proactive plan of deck operations is needed in advance of
execution to take as many types of uncertainty into con-
sideration as possible. Since the scheduling problem for
flight deck operations can be regarded as a typical resource-
constrained (multi)project scheduling problem (RC(M)PSP)
[5], methods from the related domain of robust project
scheduling (RPS) [6] are referred to. Furthermore, some
adaptive adjustment can be made based on those methods
according to the practical constraints in the RSPFDO.

This paper focuses on the scheduling of flight deck oper-
ations for the pre-flight preparation stage, and the durations
of stochastic activities are regarded as the main uncertainty
which is represented by random variables with known distri-
bution functions. A more comprehensive model for RSPFDO
is established with the robust objectives of maximizing the
probability of timely completion and minimizing the
weighted sum of expectation and variance of makespan.
Besides, a two-level proactive robust optimization framework
for the RSPFDO is proposed under the consideration of the
robustness of both temporal schedule and resource alloca-
tion. In the upper level, baseline schedules are optimized
based on a hybrid teaching-learning-based optimization
(HTLBO) algorithm. While in the lower level, a robust
personnel allocation scheme and a robust equipment allo-
cation adjustment scheme for robust resource allocation
are designed corresponding to the baseline schedule of
the upper level. Besides, a novel scheduling policy is
proposed to cope with the execution of schedule with
complicated resource constraints and stochastic durations
of flight deck operations.

The main contributions of this research are as follows:

(1) The procedures, required resource, and uncertainty
in durations of pre-flight preparation for a team of
aircraft on flight deck are described in detail, and
the RSPFDO is presented and is formulated as a
mathematical programming model with the objec-
tives of maximizing the probability of timely comple-
tion and minimizing the weighted sum of expectation

and variance of makespan. The constraints of various
kinds of resource and operations precedence rela-
tionships are taken into consideration in this model.

(2) A set of robust scheduling strategies for flight deck
operations is proposed. Firstly, both serial and paral-
lel schedule generation schemes for baseline schedule
are presented. Then, a robust personnel allocation
scheme and a robust equipment allocation adjust-
ment scheme for a fixed baseline schedule are
designed. Furthermore, a novel scheduling policy
called preconstraint policy is developed to turn
baseline schedules into executed schedules under
complex constraints and stochastic durations.

(3) A proactive robust scheduling optimization algo-
rithm based on HTLBO is proposed, which is inte-
grated with the robust resource allocation schemes
and the preconstraint policy. The HTLBO algorithm
has better performance than other alternatives in
terms of makespan under deterministic durations
and robust objectives under stochastic durations.

The remainder of this paper is organized as follows.
Section 2 presents a literature review of related work. In
Section 3, a problem statement for the RSPFDO is given. A
mathematical programming model aiming at the robustness
of timely completion and makespan is formulated for the
RSPFDO in Section 4. The proactive robust scheme formula-
tion and scheduling strategy are proposed by Section 5. In
Section 6, a proactive robust scheduling optimization algo-
rithm based on HTLBO is developed. Section 7 is devoted
to the presentation of computational experiments. Finally,
this paper is concluded by Section 8.

2. Literature Review

2.1. Scheduling of Flight Deck Operations under Uncertainty.
There are several variations of the scheduling model of flight
deck operations according to different degrees of abstraction.
Dastidar and Frazzoli [7] took the key support equipment as
the path nodes and constructed a queueing network model of
the flight deck operations. Yu et al. [8] established an
extended flexible job shop scheduling model for flight deck
scheduling considering the serial and parallel precedence
relations between operations. Shi et al. [9] regarded the sup-
port groups as multistage machines, and the hybrid flow shop
scheduling model was applied. However, all of these models
simplified one or both of the two major factors. Firstly, the
precedence relations of the flight deck operations are actually
an activity on node network instead of serial relations.
Secondly, for each operation, more than one kind of resource
is required for execution. Hence, more recent research work
took it as a resource-constrained (multi)project scheduling
problem [5, 10, 11]. Apart from the schedule in RCPSP, allo-
cation of renewable resources, such as labor and equipment,
is an equally important decision-making object [12].

Researches on uncertain scheduling for flight operations
have been a focus in recent years. Considering the complex
deck operations and different distributions for activity times,
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Wu et al. [13] presented a GERT-based global sensitive
method to analyze the uncertainty of deck operations. To
reduce the influence caused by the uncertainties, methods
in the existing literatures are categorized into two groups:
reactive scheduling and stochastic scheduling. In terms of
reactive scheduling, researchers from the MIT developed
the Deck operations Course of Action Planner (DCAP)
system to achieve a high-level interaction between human
operators and automated planners during scheduling and
planning. The DCAP system can act as an aid decision-
making tool in a highly dynamic manned-unmanned envi-
ronment [14]. Based on the DCAP simulation environment,
Ryan et al. [10] proposed a conventional integer linear
program-based planning algorithm for online scheduling,
and the performance of the algorithm is inferior to that of
expert user heuristics in the majority of test scenarios. Due
to the advantage of coordinability and real-time capability,
the multiagent-based model was utilized widely for dynamic
scheduling on the flight deck in both manned [15, 16] and
manned-unmanned environments [17]. In terms of response
time, another efficient method called hierarchical task
network (HTN) planning was applied in this field [18], and
the method is based on an expert system in nature. In the
taxiing phase which can be abstracted to obstacle avoidance
and path planning problem, Wu and Qu [19] proposed a
collision detection model and a dynamic multistep optimiza-
tion algorithm to provide a real-time path under a static and
dynamic deck environment. As for stochastic scheduling,
based on the queueing network model of flight deck opera-
tions, Dastidar and Frazzoli [7] adopted a differential
evolution algorithm to optimize the policies of stochastic
scheduling in each node of the network. Michini and How
[20] cast the scheduling of aircraft carrier flight deck opera-
tion in the MDP framework and transformed the scheduling
experience of experts into a dynamic intelligent scheduling
strategy based on reverse reinforcement learning. Feng et al.
[21] built an improved direct graph to model the operation
process and constraints and designed an improved ant
colony optimization to optimize the scheduling strategy.

The main scheduling techniques to deal with uncertainty
include reactive scheduling, stochastic scheduling, and
robust scheduling. To the best of our knowledge, there is no
prior research work addressing the proactive robust schedul-
ing for flight deck operations of an aircraft carrier, while in
the area of project scheduling with uncertainty, robust
project scheduling has been a prominent direction and offers
a new method for the RSPFDO with stochastic durations.

2.2. Proactive Project Scheduling under Uncertainty. At
present, the research work of project scheduling under
uncertainty mainly focuses on duration uncertainty, since
the uncertainty of resource availability can be translated
into the uncertainty of activity duration through resource
slack [22]. According to the integrity of statistical data,
uncertain activity durations are usually modeled as stochastic
durations [23], fuzzy durations [24], and interval durations
[25]. According to the approaches to deal with these uncer-
tain durations, the proactive project scheduling under uncer-
tainty falls into four broad categories: robust scheduling [6],

stochastic project scheduling [23], fuzzy project scheduling
[24], and interval project scheduling [25]. The fuzzy project
scheduling approach and interval project scheduling
approach can be utilized when the historical data of flight
deck operations is insufficient. Therefore, only robust project
scheduling and stochastic project scheduling are applicable
for the flight deck operations with stochastic durations.

The main techniques for proactive robust project
scheduling with uncertain activity durations contain the
centralized buffer management based on critical chain [26],
scattered buffer management [27], and robust resource
allocation [28]. Pang et al. [29] proposed a unit activity
slack algorithm which combined the scattered buffer
heuristics algorithm and resource allocation algorithm to
improve the solution robustness of project scheduling.
Lamas and Demeulemeester [30] designed a new robustness
measure, i.e., confidence level, which is completely indepen-
dent of the reactive policy. They also built a new chance-
constrained formulation and developed a branch-and-cut
algorithm to solve a sample average approximation of the
RCPSP with stochastic durations. Bruni et al. [31] proposed
an adaptive robust optimization model to derive the resource
allocation decisions that minimize the worst-case makespan
under general polyhedral uncertainty sets. Ghoddousi et al.
[32] applied a two-stage multiobjective buffer allocation
approach to optimize the baseline. In the first stage, start time
and buffer allocation of each activity are optimized with
NSGA-II. In the second stage, the best schedule is selected
from the Pareto optimal solutions based on Monte-Carlo
simulation. Depending on different uncertainty characteris-
tics, Chakrabortty et al. [33] developed six different heuristics
to incorporate the uncertain duration as a deterministic
constraint in a robust optimization model, and a Coin-
Branch & Cut algorithm was adopted as the solver.

These methods offer good guidance for RPS of deck
operations, but they still have deficiencies. The insertion of
time buffers can help prevent the propagation of disruptions
as much as possible throughout the schedule, but the time
buffers are difficult to be determined, which the redundant
buffers may result in a waste of time for operation execution.
In addition, both the centralized and scattered buffer
management neglect the robustness of resource allocation.
Robust resource allocation, on the other side, pays more
attention to the improvement of the algorithm. For example,
MABO (myopic activity-based optimization) [28] combined
with robust temporal schedule optimization is neglected.

Stochastic project scheduling is another proactive tech-
nique dealing with uncertain activity durations, but it suffers
from the major drawback that no fixed baseline schedule is
generated in advance of project execution. When the sched-
uling decisions are made dynamically, scheduling policies
are usually used and act as the core mechanism, including
the earliest-start policies (CES), the preselective policies
(CPS), the linear preselective policies (CLPS), the resource-
based policies (CRB), the activity-based policies (CAB), the
preprocessor policies (CPP), and the generalized preprocessor
policies (CGP) [34]. However, most of them are based on the
minimal forbidden sets, except for CAB and CRB. As the
number of minimal forbidden sets grows exponentially with
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the increasing activities, the computational time will become
unacceptable when dealing with practical large-scale project
scheduling problems. Therefore, CAB and CRB become good
choices for our problem. Apart from the scheduling policy,
Tao et al. [35] studied the stochastic project scheduling
problem with hierarchical alternatives and proposed the
stochastic chance constraint model. To solve this problem,
an artificial algae algorithm combined with sampling average
approximation was designed. Li and Womer [36] designed
closed-loop approximate dynamic programming algorithms
based on the rollout (look-ahead) policy and lookup table
(look-back) approach.

2.3. Solving Methods for RCPSPs. Due to the NP-hardness
nature of RCPSP and its variations (RCPSPs for short), many
techniques including exact methods, heuristics, metaheuris-
tics, and hyperheuristics have been proposed. From the
perspective of practicability and performance, the exact
methods, represented by the branch-and-bound algorithm
[37], are computationally expensive for large-scale schedul-
ing problems though producing promising results. Priority
rule-based heuristic [38], on the other side, is easy to be
implemented and is computationally cheaper than exact
methods. However, it is difficult to find an efficient rule that
is well applicable for every RCPSP. As a consequence, meta-
heuristics provide the best trade-off between practicability
and performance, and many metaheuristics have attracted
the attention of researchers and shown promise in recent
years including genetic algorithm [39, 40], differential evolu-
tion algorithm [41], particle swarm optimization, estimation
of distribution algorithm [42, 43], and hybrid algorithms like
consolidated optimization algorithm [44]. It is noteworthy
that hybrid algorithms and hyperheuristics [45] which
combine and make the most of different heuristics have
attracted more attention recently.

Among these algorithms, the teaching-learning-based
optimization (TLBO) algorithm [46] is a relatively new
metaheuristic algorithm, which provides a general optimiza-
tion framework that simulates the teaching-learning process
including a teacher phase and a student phase. Thus far, the
TLBO has been applied to various scheduling optimization

problems, such as flow shop scheduling [47], job-shop
scheduling [48], hydrothermal scheduling [49], steelmaking
and continuous casting scheduling [50], and resource-
constrained project scheduling [51]. The TLBO has shown
to be more competitive than other metaheuristic algorithms.
For example, the successful applications of the TLBO in
stochastic RCPSP [52], interval RCPSP [51], and MS-
RCPSP [53] have indicated that the TLBO outperforms many
other algorithms for RCPSPs. However, to the best of our
knowledge, existing research about the TLBO-based algo-
rithm for the RCPSP is still rare, and no study is reported
for robust project scheduling.

3. Problem Description of the RSPFDO

3.1. Description of Flight Deck Operations. The conduct of
flight operations involves the intricate scheduling of aircraft,
support equipment, and personnel. The types of aircraft in a
wave of flight program include fighter aircraft, electronic
warfare aircraft, early warning aircraft, antisubmarine war-
fare aircraft, and refueling aircraft, in the form of rotorcraft
or fixed wing aircraft. The operation process complexity is
closely related to the mission requirement and varies from
different aircraft types. The typical procedure of aircraft
carrier operations is shown in Figure 1.

During the daily flight deck operations, a team of aircraft
starts with respot, which comes from either the air or the
hangar deck. To respot an aircraft, a tractor will tow it from
the temporal parking spot to the prespecified spot for pre-
flight preparation. Once chocked and chained, the aircraft
will turn to the pre-flight preparation stage, during which
inspections of each part, fueling, arming, oxygen filling,
nitrogen charging, alignment of INS (inertial navigation
system), and so forth, are completed according to the techno-
logical process, namely, the specific precedence relationships
for each aircraft. In the final stage, the aircraft will taxi to the
spots for launch or ski-jump take-off. After the aircraft leaves
the carrier, they execute specific missions in the air and will
return to the carrier for the next cycle once the missions
have been finished. It is obvious that the first and last
stages of flight deck operations concern more about the

Landing Waiting in the marshall stack Mission execution Departure
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ArmingInspections

Parking
temporarily

Respot with
tractors

Chocking and
chaining

Fueling Alignment of INS ......

Oxygen �lling Nitrogen charging Pre-�ight preparation
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Figure 1: The procedure of aircraft carrier operations.
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route planning problem, which has been intensively studied
in [19, 54]. This paper concentrates on the scheduling
problem of the pre-flight preparation stage, which is the
key stage of flight deck operations and costs the most time
and manpower.

Referring to RCMPSP, a single aircraft can be regarded as
a project, and a team of aircraft (denoted as a set I = 1, 2,
… ,N ) is considered in our study. For each aircraft i ∈ I, a
set of real operations (denoted as J i), a dummy start opera-
tion, and a dummy end operation are contained, and the
aircraft must finish those operations before it can taxi to
the launch position. Besides, a release time Eri is defined
for each aircraft, which represents the earliest start time for
the set of operations J i.

The precedence relationships of RCMPSP are usually
modeled as activity on node network (AON). In an AON,
each activity is represented by a node in a graph, and the pre-
cedence relationships between activities are denoted by the
edges. As the resource allocation is considered in RSPFDO,
an operation on node-flow (OONF) network is adopted for
a team of aircraft, as shown in Figure 2.

In Figure 2, Oij denotes the jth operation of ith aircraft,
and OS and OE are the dummy start operation and end oper-
ation of the aircraft, respectively. In the OONF network,
precedence relations of aircraft i are denoted as Di = V i,
ANi , where V i is the set of nodes presenting all the
operations belonging to J i, and ANi is the set of solid arcs
representing original precedence relations between opera-
tions. With the connection of OS, OE, and extra resource
flows, Di is integrated into D = V , AN ∪AP ∪AE ∪AS ,
where V and AN indicate the sum of V i and ANi, respec-
tively. AP, AE, and AS denote the extra precedence relations
imposed by personnel, equipment, and workstation space,
respectively, and the extra precedence relations are

represented by dashed arcs in Figure 2. A resource flow from
Oij to Oeg is generated when there are some personnel or

equipment allocated to the two operations, or the two
operations are executed in the same workstation space, and
the execution sequence is identified with the flow direction.
It should be noted that the resource flow network can be
changed according to the resource allocation plan.

As for each operation Oij, a set of different kinds of
resources are required, which will be discussed in Section

3.2. In addition, each operation Oij has a duration dij, which
is a stochastic value that follows a known probability distri-
bution, and its expectation is relevant to the mission require-
ment while its variance is closely related to the uncertain
environment (see Section 3.3).

3.2. Analysis of Support Resources. Resource constraints are
the key factors that make it more difficult to conduct
and schedule operations on the flight deck, compared to
those on the airport ground. According to the different
effects of these resources on the flight deck operations,
the resource constraints are categorized into four groups
as follows.

(1) Personnel Constraints. Personnel play a leading role in
flight deck operation. Each operation requires personnel with
specific trades which contain special equipment, machinery,
ordnance, avionics, and so forth. For example, inspections
of engines and airframe are done by machinists (i.e., person-
nel of machinery trade), while ammunition must be armed
by ordnance personnel. In real situations, personnel are usu-
ally divided into group(s) according to specific personnel
organization mode, and each group is responsible for a
certain set of aircraft.
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Aircra� In

O11 O14

O17 O18

O23O22

O24

O26O25O21Os O27 O29 OE

O28

On2
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On3

On8On1

On6

O12 O13

O15 O16 O19

Figure 2: An example of the OONF network for multi-aircraft.
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(2) Support Equipment Constraints. There are two types of
support equipments on the flight deck, i.e., stationary equip-
ments and mobile equipments. They are used to provide the
aircraft with resources such as jet fuel, electric power, oxygen,
nitrogen, and weapons. As the stationary equipments are
fixed on the flight deck, they can only support the aircraft
which are within the range of their pipelines. The mobile
equipments can be regarded as stationary equipments whose
support coverage is the whole area of the flight deck. Note
that the number of both the stationary and mobile equip-
ments on the flight deck is limited. Figure 3 shows a sketch
map of resource (personnel and equipment) flow on flight
deck of the Admiral Kuznetsov aircraft carrier.

(3) Workstation Space Constraints. This constraint is con-
sidered only for the workstations with limited space for
operations. A typical instance is presented in Section 3.1
that as the space of cockpit can only accommodate at
most one person, inspections of different trades must be
done in sequence.

(4) Supply Resource Constraints. The resources are from the
support equipments and are supplied for the aircraft.
Assume that the resources are always sufficient during
each deck cycle, and the constraint of each resource is
the maximum number of aircraft that the resource can
support concurrently. Take the jet fuel as an example,
the maximum number of aircraft which the oil stations
can support concurrently (the number is 4 on some air-
craft carrier) is limited by the permitted total fueling pres-
sure on the flight deck.

3.3. Analysis of Uncertain Durations. There are several key
factors causing uncertainties in flight deck operations. First
of all, as the personnel act as the main operators or partic-
ipants in all the flight deck operations, the subjective fac-
tors (proficiency, degree of fatigue, motivation, etc.) and
the objective factors make the durations of each operation
uncertain. Secondly, the aircraft can become partly
unavailable for a while due to mechanical or electronic
problems. This makes the corresponding operations stag-
nant before the faults are repaired, and the repairing time

is stochastic which is considered in the operation duration.
It is noted that major failures that cannot be repaired
timely are not taken into account because such cases will
cause the interruption of operations and rescheduling. It
is the same with the support equipments. As for the sup-
ply rates of resources (jet fuel, oxygen, nitrogen, etc.), they
are also unsteady, and the supply duration for a certain
quantity is stochastic. Finally, the aircraft executes different
missions in the air, which make the resource consumption
unknown. It is unnecessary to supply resources for the
aircraft in every deck cycle, and the probability can be cal-
culated by statistics. This case can be considered as n-fold
Bernoulli trials where n = 1, and thus the operation dura-
tion is assumed to be a random variable which follows
the Bernoulli distribution. In other cases of uncertainty,
however, the duration uncertainty may be represented by
random variables with different continuous general distri-
butions (i.e., truncated normal distribution, uniform and
exponential). The effect that uncertain durations exert on
the makespan of a complex operation network can only
be evaluated by simulations [55].

In general, the ultimate goal of RSPFDO is to maxi-
mize the probability of meeting the demand of the deck
cycle while minimizing the expectation and variance of
makespan, and the goal is reached by making a proactive
robust schedule of deck operations for a team of aircraft
under the complicated precedence constraints, resource
constraints, and duration uncertainty. The framework for
solving the RSPFDO can be illustrated in Figure 4.

4. Mathematical Formulation for RSPFDO

4.1. Problem Assumptions. The assumptions and conditions
of RSPFDO are summarized as follows:

(1) Each operation cannot be interrupted once
started, and the availability of personnel and sup-
port equipments remains unchanged during the
whole operation.

(2) Each personnel or support equipment can work on at
most one operation in each time period.
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A8
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A10A10A

A11

A12
A13

Coverage of station-
ary equipments and
their resource �ow

Support personnel of
di�erent trades and
their resource �ow

Figure 3: Resource flow on flight deck of the Admiral Kuznetsov aircraft carrier.
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Table 1: Parameter definition in the mathematical model.

Parameter Definition

I The set of aircraft, I = 1, 2,… ,Ni

p i Parking spot of aircraft i

J i The set of operations that are contained in the ith aircraft, J i = 1, 2,… , J i

J The set of all the operations, J = i, j ∣ i ∈ I j ∈ J i

At The set of operations which are active in period t

Ait The set of operations of aircraft i which are active in period t

Oij jth operation of ith aircraft, i ∈ I, j ∈ J i

Pij The set of direct predecessors of operation Oij in the OONF network D′ = V , AN

Kp The set of personnel trades types, Kp = 1, 2,… , Kp

Eri Release time of aircraft i

dij Duration of operation Oij used in the temporal schedule

Lpk The set of personnel with trade k k ∈ Kp , Lpk = 1, 2,… , Lpk

Ke The set of support equipments types, Ke = 1, 2,… , Ke

Lek The set of support equipments of the type k k ∈ Ke , Lek = 1, 2,… , Lek

Ks The set of workstation space types, Ks = 1, 2,… , Ks

Kw The set of supply resource types, Kw = 1, 2,… , Kw

Lwt
k The maximum number of aircraft that supply resource of the type k k ∈ Kw can support in period t

Rpkl The set of aircraft that the lth personnel with trade k k ∈ Kp can be allocated to

meklp =1 if the lth support equipment of the type k k ∈ Ke can reach the pth parking spot; =0 otherwise

Rekl The set of aircraft within the range that the lth support equipment of the type k k ∈ Ke can reach, Rekl = i ∣meklp i = 1i ∈ I

rpijk The number of personnel with trade k k ∈ Kp required for performing operation Oij

reijk =1 if support equipment of the type k k ∈ Ke is required for performing operation Oij; =0 otherwise

rsijk =1 if operation Oij is performed in workstation space of the type k k ∈ Ks

rwjk =1 if supply resource of the type k k ∈ Kw is required for operation Oij; =0 otherwise

Cmax Stochastic makespan of flight deck operations for a team of aircraft

C∗
max Limitative makespan of flight deck operations for a team of aircraft

ECmax Expectation of Cmax

VCmax Variance of Cmax
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(3) The setup times and transfer times of personnel or
support equipments between operations are short
enough and can be negligible, compared to those
of operations.

(4) The factors such as major faults of aircraft or
equipments and changes of flight missions that may
lead to the failure of origin schedule are not taken
into consideration.

(5) The probability distribution of each operation is
known by means of the historical data.

(6) The set of aircraft which each personnel is responsi-
ble for is known beforehand.

(7) All kinds of resources are available for the aircraft on
each parking spot, so the movement of the aircraft is
not considered.

4.2. Notations. The table parameters are used in our
mathematical model (Table 1). In addition, a comprehensive
description of notations and acronyms used in the paper is
shown in Tables 2–5.

The table decision variables are used (Table 6).

4.3. Mathematical Expression of RSPFDO. Flight deck opera-
tions are time-critical because the aircraft are launching and
landing in a cycling way, according to which a limitative
makespan C∗

max is decided. It is significant to maintain the
operating tempos for improving the combat effectiveness of
the aircraft. Hence, the primary objective requires that the
flight deck operations should be finished within the due
makespan, otherwise the operating tempos of multiple waves
of aircraft fleet will be broken, and the operation safety
cannot be guaranteed. Besides, although temporal schedule
is essential for flight deck operation, it is more like a refer-
ence, and we lay emphasis on the “quality robustness” instead
of “solution robustness” [6], To this point, ECmax and VCmax

are another two major criteria that the commanders concern.
The combinatorial robust objective is expressed as

min ECmax + ωVCmax ∣max Pr Cmax ≤ Cmax
∗ , 1

where ω represents the weight between ECmax and VCmax,
and the balance between aggressiveness and conservativeness
of schedule can be adjusted by this factor. ECmax + ωVCmax

represents the integrated robustness of makespan (IRM),
and Pr Cmax ≤ Cmax

∗ denotes the probability of completion
within the limitative makespan (PCLM). The two objectives
are considered in lexicographical order, where PCLM is the
primary objective, while IRM is used as a tie breaker.

Since the durations of operations are stochastic, the
criteria in the objectives are implicit functions of the five
decision variables, i.e., a probability mapping relation
between the decision variables and the objectives. To be
specific, given the values of decision variables, the base-
line schedule and resource allocation plan is constructed
under specific constraints. Then, through Monte-Carlo
simulation with multiple independent sampling of the

uncertain durations dij, the statistic values of ECmax, VCmax,

and Pr Cmax ≤ Cmax
∗ of the plan are obtained, and the

detailed process is introduced in Section 5.2.
The constraints of RSPFDO can be expressed by the

following formulas.

Si1 ≥ Eri, ∀i ∈ I, 2

Sij ≥ Sih + dih, ∀ i, h ∈ Pij, ∀i ∈ I, ∀j ∈ J i, 3

Sij + dij ≤ Seg + BM ⋅ 1 − Y ijeg , ∀i, e ∈ I, ∀j ∈ J i, ∀g ∈ Je,

4

〠
i∈I

〠
j∈At

rpijk ≤ Lpk , ∀k ∈ Kp, ∀t > 0, 5

〠
i∈I

〠
j∈At

reijk ≤ Lek , ∀k ∈ Ke, ∀t > 0, 6

〠
j∈Ait

rsijk ≤ 1, ∀i ∈ I, ∀k ∈ Ks, ∀t > 0, 7

〠
i∈I

〠
j∈At

rwijk ≤ Lwt
k, ∀k ∈ Kw, ∀t > 0, 8

〠
i∈I−Rekl

〠
j∈J i

Xeijkl + 〠
i∈I−Rp

k′l′

〠
j∈J i

Xpijk′l′ = 0,

 ∀k ∈ Ke, ∀l ∈ Lek, ∀k′ ∈ Kp, ∀l′ ∈ Lpk,

9

〠
l∈Lpk

Xpijkl = rpijk, ∀i ∈ I, ∀j ∈ J i, ∀k ∈ Kp, 10

〠
l∈Lek

Xeijkl = reijk, ∀i ∈ I, ∀j ∈ J i, ∀k ∈ Ke 11

Formulas (2), (3), and (4) correspond to temporal sched-
uling constraints, while Formulas (5), (6), (7), (8), (9), (10),
and (11) represent resource scheduling constraints. To be
specific, Constraint (2) indicates that aircraft i cannot start
its operations until it is chocked and chained at the released
time Eri; Si1 represents the start time of dummy start
operation of aircraft i and actually the start time of aircraft
i. Constraint (3) denotes the precedence relationships of
operations, and operation Oij cannot be executed earlier
than its direct predecessors. Hence, the start time of Oij is
enforced to be larger than those of operations in set Pij. Con-
straint (4) ensures that if two operations Oij and Oeg need the

same resources (personnel, equipment, and workstation
space) that Y ijeg = 1, the operation with higher priority Oeg

is processed firstly and the start time of Oeg is enforced to

be larger than that of Oij, where BM is a large number to
ensure that the inequality always holds even when Y ijeg ≠ 1.

Here, considering the duration of flight deck operations,
BM = 103 is large enough. Constraints (5) and (6) set the
limitation on the personnel with trade k k ∈ Kp and the
equipments of type k k ∈ Ke demanded by operation Oij

at time t to the available capacity, respectively. Constraint
(7) denotes that for each aircraft i, the number of active
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operations at time t that are executed in the workstation
space of the kth type is less than 1, thus ensuring that
operations that require the same kind of workstation space
cannot be in progress at the same time instant t. Con-
straint (8) states that the total number of aircraft on flight
deck that are supported by supply resource of type k k ∈
Kw concurrently at time t is less than the maximum
number limitation Lwt

k. Constraint (9) ensures that the
first and second items on the left side of the equation
are equal to zero, i.e., the decision variables of personnel

Table 2: Notation for model expression.

Parameter/
variable

Definition

I The set of aircraft, I = 1, 2,… ,Ni

p i Parking spot of aircraft i

J i
The set of operations that are contained
in the ith aircraft, J i = 1, 2,… , J i

J
The set of all the operations,

J = i, j ∣ i ∈ I j ∈ J i

Di

The precedence relations of
operations of aircraft i

D
The precedence relations of
operations of all the aircraft

V
The set of nodes in OONF network D

presenting all the operations

AN
The set of solid arcs in OONF

network D representing precedence
relations between operations

AP
The extra precedence relations

imposed by personnel

AE
The extra precedence relations

imposed by equipment

AS
The extra precedence relations
imposed by workstation space

At

The set of operations which are
active in period t

Ait
The set of operations of aircraft i

which are active in period t

Oij jth operation of ith aircraft, i ∈ I, j ∈ J i

Pij

The set of direct predecessors of operation Oij

in the OONF network D′ = V , AN

Kp
The set of personnel trades types,

Kp = 1, 2,… , Kp

Eri The released time of aircraft i

dij The stochastic duration of operation Oij

dij
Duration of operation Oij used in

the temporal schedule

Lpk
The set of personnel with trade k k ∈ Kp ,

Lpk = 1, 2,… , Lpk

Ke
The set of support equipments types,

Ke = 1, 2,… , Ke

Lek
The set of support equipments of the
type k k ∈ Ke , Lek = 1, 2,… , Lek

Ks
The set of workstation space types,

Ks = 1, 2,… , Ks

Kw
Set of supply resource types,

Kw = 1, 2,… , Kw

Lwt
k

The maximum number of aircraft that
supply resource of the type k k ∈ Kw

can support in period t

Rpkl
The set of aircraft that the lth personnel
with trade k k ∈ Kp can be allocated to

Table 2: Continued.

Parameter/
variable

Definition

meklp

=1 if the lth support equipment of
the type k k ∈ Ke can reach the
pth parking spot; =0 otherwise

Rekl

The set of aircraft within the range
that the lth support equipment of the

type k k ∈ Ke can reach,
Rekl = i ∣meklp i = 1i ∈ I

rpijk
The number of personnel with trade k k ∈ Kp

required for performing operation Oij

reijk

=1 if support equipment of the type
k k ∈ Ke is required for performing

operation Oij; =0 otherwise

rsijk
=1 if operation Oij is performed in

workstation space of the type k k ∈ Ks

rwjk
=1 if supply resource of the type k k ∈ Kw is

required for operation Oij; =0 otherwise

Cmax
Stochastic makespan of flight deck
perations for a team of aircraft

C∗
max

Limitative makespan of flight deck
operations for a team of aircraft

ECmax Expectation of Cmax

VCmax Variance of Cmax

Pr Cmax ≤ Cmax
∗ The probability of completion

within the limitative makespan

ω The weight between ECmax and VCmax

BM A large number

Sij
Starting time of operation Oij in

the temporal schedule

Eij
Completion time of operation
Oij in the temporal schedule

Xpijkl

=1 if operation Oij is allocated to

personnel l l ∈ Lpk with trade
k k ∈ Kp ; =0 otherwise

Xeijkl

=1 if operation Oij is allocated to

equipment l l ∈ Lek of the type
k k ∈ Ke ; =0 otherwise

Y ijeg

=1 if operation Oij precedes operation Oeg

when allocated to the same resources;
=0 otherwise
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allocation and equipment allocation are always equal to
zero when the aircraft are outside the range of the personnel
or equipment, thus guaranteeing that personnel and support
equipments can only be allocated to those aircraft within
their range. Constraints (10) and (11) together make sure
that the number of personnel or equipment required for
performing operation Oij is equal to the total number of
personnel or equipment allocated to it, respectively.

5. Proactive Robust Scheme Formulation and
Scheduling Policy

Scheduling and sequencing are concerned with the optimal
allocation of scarce resources to activities over time. As far
as the stochastic operation duration is concerned, some
proactive procedures and proper scheduling policies
should be taken into account. The proactive procedures
can protect the baseline schedule against time uncertainty,
and the proper scheduling policies are applied for instant
decision during operation execution. There are three key
elements that affect the performance of RSPFDO: baseline
schedule, resource allocation, and scheduling policy. In
this section, a three-stage process is proposed to cope with
duration uncertainty:

(1) Generation of a precedence-feasible and resource-
feasible baseline schedule. The baseline schedule is
very crucial for the operations of each aircraft, in
which the planned starting and finishing times are
given. Note that the baseline schedule is generated
along with an initial feasible equipment allocation
plan because the stationary equipments can work
only within a certain range and cannot be shared.
This feature makes the stationary equipments differ-
ent from the personnel which are replaceable with the
same trade in group.

(2) Allocation of personnel and support equipment.
After the baseline schedule and the equipment
allocation plan are determined, the personnel
allocation plan is generated accordingly to improve
the robustness. A resource flow network is also
formulated through the processes of resource alloca-
tion. The allocation decision is based on the simple
principle which was verified in [28]. That is, a more
stable scheme can be obtained when the number
of extra precedence relations imposed by resource
flows is reduced and the time difference between
operations is increased.

(3) Stochastic evaluation with scheduling policy. The
flight deck operations of aircraft are treated as a
multistage decision-making process, and the schedul-
ing policy acts as a rule at each decision point to
determine which operations are to be started next.
Note that the decision-making process is dynamical
and unpredictable due to the stochastic operation
durations, and a novel preconstraint policy is pro-
posed to deal with the complicated constraints of
flight deck operations.

Next, the above three-stage process will be elaborated in
the subsequent three sections respectively.

5.1. Generation of Baseline Schedule. The baseline schedule
with deterministic durations is usually generated by a serial
schedule generation scheme (SSGS) or parallel schedule
generation scheme (PSGS), in the way of either forward
scheduling or backward scheduling. The performance of
SSGS and PSGS must be evaluated in a specific problem,
but the SSGS outperforms the latter in general. Besides,
forward scheduling is usually adopted as it conforms to the
convention that activities should be begun as soon as
possible. In this paper, forward scheduling and backward
scheduling are combined to reduce the makespan [56].

5.1.1. Serial Schedule Generation Scheme. The SSGS is
operation-oriented and builds the schedule in n stages with
n operations. At each stage g, an operation is selected and
scheduled as early as possible such that precedence and
resource feasibility are given. The sequence in which opera-
tions are considered is determined by a priority value. Let
xij be the priority value of operation Oij; a smaller value of
xij means greater priority. To generate a baseline schedule
(denoted as Sij, Eij i ∈ I, j ∈ J i ), the expectation of dura-

tion dij of each operation Oij is selected as the deterministic
duration dij. As to the initial equipment allocation, the rule
called “the minimum total processing time remaining in
covering area” (MTRCA) [11] is used at every decision point
that the equipments are in demand. Specifically, let Sg be

the set of scheduled operations at stage g; the set of eligi-
ble operations within the range of the lth support equip-
ment of type k k ∈ Ke is defined as Jekl = i, j ∣ i, j
∈ Sg, reijk > 0, i ∈ Rekl , and the total operation time in

the set is represented by TRkl =∑ i,j ∈Jekl
dij. At each deci-

sion point, the equipment with the minimum TRkl is
selected by the MTRCA rule.

To design the SSGS for flight deck operations of aircraft,
some other parameters are also defined as follows.

ESij The earliest precedence-feasible starting time of
operation Oij

SPij The earliest personnel-feasible starting time of
operation Oij

SEij The earliest equipment-feasible starting time of
operation Oij

SSij The earliest space-feasible starting time of
operation Oij

SWij The earliest supply resource-feasible starting time of
operation Oij

ERSij The earliest precedence-resource-feasible starting
time of operation Oij

Uptik The number of available personnel with trade
k k ∈ Kp that can support aircraft i in period t

Uetik The set of available equipments of type
k k ∈ Ke that can reach and support
aircraft i in period t
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The overall process of the proposed SSGS for aircraft
deck operations is derived from the conventional one for
RCPSP in [57], and the difference lies in the complexity of
finding the earliest precedence-resource-feasible starting
time and selecting the initial equipment allocation for each

Table 3: Notation for scheduling and allocation scheme.

Parameter/
variable

Definition

xij The priority value of operation Oij

Sg The set of scheduled operations at stage g

Jekl
The set of eligible operations within the range of

the lth support equipment of type k

TRkl The total time of operations in the set Jekl

ESij
The earliest precedence-feasible starting

time of operation Oij

SPij
The earliest personnel-feasible starting

time of operation Oij

SEij
The earliest equipment-feasible starting time of

operation Oij

SSij
The earliest space-feasible starting time of

operation Oij

SWij
The earliest supply resource-feasible starting time

of operation Oij

ERSij
The earliest precedence-resource-feasible starting

time of operation Oij

Uptik
The number of available personnel with trade k
k ∈ Kp that can support aircraft i in period t

Uetik

The set of available equipments of the type
k k ∈ Ke that can reach and support

aircraft i in period t

Ustik
=1 if workstation space of the type k k ∈ Ks in
aircraft i in period t is occupied; =0 otherwise

Uwt
k

The remaining number of aircraft that
supply resource of the type k k ∈ Kw

can support in period t

Dg
The set of eligible operations at stage g

i∗, j∗
The index of operation with the highest priority

during each iteration

Ag
The set of operations active in period

tg of stage g

Cg
The set of completed operations at scheduling

time tg of stage g

Dg
′ tg

The set of operations which are eligible
both for precedence and resource at scheduling

time tg of stage g

SRij
The starting time of operation Oij in the

right-justified schedule

ER
ij

The completion time of operation Oij in the

right-justified schedule

ΔTL The span between left-justified schedule and
right-justified schedule

PFijeg
The pairwise float between the start of operation

Oeg and the end of Oij

Ps
eg

The set of direct predecessors of operation Oeg in

the OONF network D″ = V , AN⋃ AS

Table 3: Continued.

Parameter/
variable

Definition

Qk
The set of operation pairs which possess the same

equipment of the type k k ∈ Ke

Lelk The lth support equipment of the type k k ∈ Ke

LROn
ij

The local robustness index of operation Oij before

adjustment

PF
f
ij

The pairwise float between operation Oij and its

predecessor in the same equipment

PFbij
The pairwise float between operation Oij and its

successors in the same equipment

LREn
kl

The local robustness index before adjustment of
the Lelk which is reachable for operation Oij

LROc
ij

The local robustness index of operation Oij after

the adjustment

LREc
kl′

The local robustness index after adjustment of Lel′k
that operation Oij originally adheres to

ΔREkl
The difference of the local robustness index of Lelk

between after and before adjustment

Nk
justment

The number of adjustment in an iteration for
equipment of the type k k ∈ Ke

RCFij The free slack of operation Oij

IFijkl

The float time between operation Oij and

operations adhere to the lth personnel
with trade k k ∈ Kp

LFTkl

The completion time of Oeg corresponds to the

latest completion time of Lplk

Pse
ij

The set of direct predecessors of operation Oij in

the OONF networkD‴ = V , AN⋃ AS⋃ AE

RPijkl
Robustness index of the lth personnel with

trade k for operation Oij

Upk t, i
The set of available personnel that can support

aircraft i at decision point t

Sij
The stochastic starting time of operation Oij in

the temporal schedule

Ustik =1 if workstation space of type k k ∈ Ks in aircraft i
in period t is occupied; =0 otherwise

Uwt
k The remaining number of aircraft that supply

resource of type k k ∈ Kw can support in period t
Dg The set of eligible operations at stage g

i∗, j∗ Index of operation with the highest priority during
each iteration.

11Complexity



operation. The serial schedule generation scheme for aircraft
deck operations is presented in Algorithm 1.

Algorithm 1 starts out with an initialization of the
problem. All the state parameters of different kinds of
resource are set as initial capacity or idle state. Note that Sg
is initialized with the dummy start operations of each aircraft,
and the start time of Sg is set as the released time of the

corresponding aircraft. Afterwards, the schedule is generated
by iteratively choosing the eligible operation with the highest
priority, and the operation is arranged as early as possible
and is allocated support equipment.

To be specific, at each stage g, the set of eligible oper-
ations is calculated, from which an operation i∗, j∗ is

Table 4: Notation for optimization algorithm.

Parameter/variable Definition

x
The representation of individual

in population

x
L The vector of x that is used for

generating a left-justified schedule

x
R The vector of x that is used for

generating a right-justified schedule

Dk
The kth scenarios of durations

by random sampling

Ns
The number of replications for

evaluation an individual

Rf The integrated fitness value

Np The size of the population

Nt
The number of the elite individuals in

the teacher group

G The generation of evolution

E The eligible operation set

ηij
The probability of being chosen

for eligible operation Oij

μeg
The priority value of operation Oeg

based on the LFT rule

LFTij The latest finish time of operation Oij

xi,G The ith target vector at the Gth generation

vi,G The ith donor vector at the Gth generation

x
r
tbest,G

A individual randomly selected
from the teacher group

Fi The scale factor for the ith individual

Cri
The crossover probability
for the ith individual

MF The mean values of Fi

MCr The mean values of Cri

SF The set of the successful scale factors

SCr
The set of the successful crossover

probabilities

ωF The weight factor of scale factor

ωCr The weight factor of crossover probabilities

meanWA SF The mean of all successful scale factors

meanWA SCr
The mean of all successful
crossover probabilities

ΔRf m The improvement of fitness

IRUR The integrated resource utilization ratio

λ
p
k The weight of type k of personnel in IRUR

λek
The weight of type k of support

equipment in IRUR

λsk
The weight of type k of workstation

space in IRUR

λwk
The weight of type k of supply

resource in IRUR

TIRU The total integrated resource utilization

tp1 S The start point of the peak for schedule S

Table 4: Continued.

Parameter/variable Definition

tp2 S The end point of the peak for schedule S

esij
The earliest start time of operation

Oij in the schedule

lsij
The latest start time of operation

Oij in the schedule

Na A random number of local operations

prij
The selection probability for operation

Oij in the reshuffle operations

center i The center of start time of all the aircraft

Δcentre The difference of center of two aircraft

pli g
The probability of selecting the ith
neighborhood at the gth iteration

αreward The reward parameter

αpenalty The penalty parameter

Nl The number of neighborhoods for selection

β g
The reward received by the reinforcement

feedback for an neighborhood
selected at iteration g

N iter ngs
The iteration number for performing

the reinforcement phase

N lb
iter

The lower bound of the
iteration number N iter

Nub
iter

The upper bound of the
iteration number N iter

R Cmax

The response of algorithm under
different mission cases and
deterministic durations

pmc
j

The probability of occurrence
of jth mission case

C j
max The makespan of the jth mission case

Nmc The number of mission case

Lplk The lth personnel of the trade k k ∈ Ke

PCLMi
The responses of PCLM with

the ith distribution

IRMi
The responses of IRM with

the ith distribution
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chosen according to the priority value (see Section 6 for
optimization of the value). Then, the earliest precedence-
resource-feasible starting time of operation Oi∗ j∗ is initial-
ized by the earliest precedence-feasible starting time of it.
To arrange the operation which satisfies the constraints
of personnel, equipment, workstation space, and supply
resource in the duration, the time ERSi∗ j∗ is postponed
until the earliest resource-feasible starting time of the four
kinds of resource are equal SPi∗ j∗ = SEi∗ j∗ = SSi∗ j∗ = SWi∗ j∗ .
Afterwards, the start/finish time of the operation is set, and
the required equipments are allocated according to the
MTRCA rule. At the end of this loop, all the state parameters
and set Sg are updated for the next scheduling.

5.1.2. Parallel Schedule Generation Scheme. Different from
the SSGS, a feasible schedule is created by considering
increasing decision time t in the time-oriented PSGS. At each
decision time t, as many operations as possible are started
such that precedence and resource feasibility are given. As
the same as that in SSGS, the sequence in which operations
are considered is determined by a priority value.

Except for the parameter definitions listed in Section
5.1.1, some additional parameters are used as follows. Ag is

assumed to be the set of operations active in period tg of stage

g, and Cg denotes the set of completed operations at schedul-

ing time tg of stage g. Different from Dg, the set of operations

Table 5: Acronym definition.

Acronyms Definition

OONF Operation on node-flow

RSPFDO
The robust scheduling problem

for flight deck operations

PCLM
The probability of completing
within the limitative makespan

IRM
The weighted sum of expected makespan

and variance of makespan

HTLBO
Hybrid teaching-learning-based

optimization algorithm

RC(M)PSP
Resource-constrained (multi)project

scheduling problem

RPS Robust project scheduling

DCAP The Deck operations Course of Action Planner

HTN Hierarchical task network

MABO Myopic activity-based optimization

CES The earliest-start policies

CPS The preselective policies

CLPS The linear preselective policies

CRB The resource-based policies

CAB The activity-based policies

CPP The preprocessor policies

CGP The generalized preprocessor policies

RCPSPs RCPSP and its variations

TLBO The teaching-learning-based optimization

INS Inertial navigation system

AON Activity on node network

SSGS Serial schedule generation scheme

PSGS Parallel schedule generation scheme

MTRCA
The minimum total processing
time remaining in covering area

DJ Double justification

CC/BM Critical chain/buffer management

CPC Preconstraint policy

AL Activity list

RK Random key

LJ Left-justified

RJ Right-justified

LFT The latest finish time rule

DE The differential evolution

RUR The resource utilization ratio

IRUR The integrated resource utilization ratio

AVNS Adaptive variable neighborhood search

LA Learning automata

T-normal The truncated normal distribution

d-LB The lower bound of duration

d-UB The upper bound of duration

AP Addition parameter

MMGA The multimodal genetic algorithm

MDE The modified differential evolution algorithm

IPSO The improved particle swarm optimization algorithm

Table 5: Continued.

Acronyms Definition

HEDA The hybrid estimation of distribution algorithm

ABGA The genetic algorithm with CAB policy

ABGR
The greedy randomized adaptive search

procedure with CAB policy

RBEDA
The estimation of distribution algorithm

with CRB policy

UAV The upper adjacent value

LAV The lower adjacent value

IQR The minimum interquartile range

Table 6

Decision variable Definition

Sij
The starting time of operation
Oij in the temporal schedule

Eij
The completion time of operation

Oij in the temporal schedule

Xpijkl
=1 if operation Oij is allocated to personnel

l l ∈ Lpk with trade k k ∈ Kp ; =0 otherwise

Xeijkl
=1 if operation Oij is allocated to equipment

l l ∈ Lek of the type k k ∈ Ke ; =0 otherwise

Y ijeg

=1 if operation Oij precedes operation Oeg

when allocated to the same resources;
=0 otherwise
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which are eligible both for precedence and resource at
scheduling time tg of stage g is denoted by

The parallel schedule generation scheme for aircraft deck
operations is presented in Algorithm 2.

Similarly, the overall process of the proposed PSGS for
aircraft deck operations is derived from the conventional
one for RCPSP in [57]. At the beginning, when g = 1, set
Ag and Cg are initialized with the dummy start operations

of each aircraft and null set, respectively, and all the state
parameters of different kinds of resource and start/finish time
of operations in Ag are initialized as Algorithm 1 does.

As a time-oriented scheduling scheme, PSGS creates a
feasible schedule by considering increasing decision time t.
At each scheduling stage g, the decision time tg is determined

by the latest finish time of operation in Ag−1, and then the

decision times finished at tg are selected from Ag−1 and are

added to Cg. At this point, the set of operations which are

eligible both for precedence and resource Dg
′ tg is calculated

according to (12). Then repeat the scheduling that selects the
operation in Dg

′ tg with the highest priority, arrange the

start time as Si∗ j∗ ≔ tg and the corresponding finish time,

allocate the required equipments according to the MTRCA
rule, and update the scheduling process set Ag, Dg

′ tg , and

state parameters until Dg
′ tg is null.

5.1.3. Backward Scheduling. As mentioned earlier, the
forward and backward pass scheduling both can be used in
the serial and parallel schedule generation. In the forward
pass scheduling, all operations are shifted to the left of the
timeline, which means the schedule starts from the initial
operation’s immediate successors, and the starting time is
set as soon as possible. The schedule obtained in this way is
also called the left-justified schedule. On the other hand,
the operations also can be scheduled oppositely by backward
pass scheduling (also called right-justified); that is, all opera-
tions are shifted to the right except for the first and last
operations, and the schedule starts from the final operation’s
immediate predecessors. In this way, the completing time is
set as late as possible, and the detailed procedure of backward

Input: Priority of support operations xij, initial precedence relation D′ = V , AN .

Output: Temporal schedule Sij, Eij , initial equipment allocation plan Xeijkl .

01: Initialize Uptik, Uet
ik′
, Ust

ik″
, Uwt

k‴
, Sg ≔⋃i∈I

i, 1 , Si1 ≔ Eri, Ei1 ≔ Eri.

02: While Sg < J

03: Calculate Dg ≔ i, j ∣ i, j ∉ Sg, Pij ⊆ Sg according to D′.

04: i∗, j∗ ≔minOi j∈Dg
i, j ∣ xij = infOpq∈Dg

xpq .

05: ESi∗ j∗ ≔max Eij ∣ i, j ∈ Pi∗ j∗ , initialize ERSi∗ j∗ ≔ ESi∗ j∗ .

06: Repeat

07: SPi∗ j∗ ≔min t ∣ t ≥ ERSi∗ j∗ , rpi∗ j∗k ≤Upτi∗k, τ = t, t + Edi∗ j∗ , ∀k ∈ Kp ,

08: SEi∗ j∗ ≔min t ∣ t ≥ ERSi∗ j∗ , rei∗ j∗k′ ≤ Ueτ
i∗k′

, τ = t, t + Edi∗ j∗ , ∀k′ ∈ Ke ,

09: SSi∗ j∗ ≔min t ∣ t ≥ ERSi∗ j∗ ,Usτ
i∗k″

⋅ rsi∗ j∗k″ = 0, τ = t, t + Edi∗ j∗ , ∀k″ ∈ Ks ,

10: SW i∗ j∗ ≔min t ∣ t ≥ ERSi∗ j∗ , rwi∗ j∗k‴
≤Uwτ

i∗k‴
, τ = t, t + Edi∗ j∗ , ∀k‴ ∈ Kw .

11: ERSi∗ j∗ ≔max SPi∗ j∗ , SEi∗ j∗ , SSi∗ j∗ , SW i∗ j∗ .

12: Until SPi∗ j∗ = SEi∗ j∗ = SSi∗ j∗ = SW i∗ j∗ .

13: Si∗ j∗ ≔ ERSi∗ j∗ , Ei∗ j∗ ≔ ERSi∗ j∗ + di∗ j∗ .

14: For ∀k ∈ Ke∧ rei∗ j∗k > 0

15: Select l ∈Ueti∗k t = Si∗ j∗ according to MTRCA rule, Xei∗ j∗kl ≔ 1.

16: End For

17: Update Uptik, Uet
ik′
, Ust

ik″
, Uwt

k‴
, Sg ≔ Sg ⋃ i∗, j∗ .

18: End While

Algorithm 1: Algorithm of serial schedule generation scheme for aircraft deck operations.

Dg
′ tg = i, j

i, j ∉ Cg ⋃ Ag , rpijk ≤Up
tg
ik ∀k ∈ Kp , reijk′ ≤ Ue

tg

ik′
∀k′ ∈ Ke ,

Us
tg

ik″
⋅ rsijk″ = 0 ∀k″ ∈ Ks , rw

ijk‴
≤Uw

tg

ik‴
∀k‴ ∈ Kw , Pij ⊆ Cg

12
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pass scheduling of RCMPSP can be found in [58]. It has been
verified that the combination of the forward and backward
pass scheduling can produce significant improvements in
reducing the makespan [59], and the double justification
(DJ) which constantly updates a solution through iteration
with forward and backward pass scheduling alternately is
the most widely applied technique.

To make the backward pass scheduling suitable for
aircraft deck operations, the following work is done. Firstly,
the start point of the total operations must be set late enough
to ensure that operations start from a positive time under a
certain set of priority values. Then after the right-justified
schedule SRij , E

R
ij i ∈ I, j ∈ J i is generated with different slack

for each aircraft, the makespan can be reduced by subtracting
a span ΔTL from the whole schedule, thus eliminating the
slack. Note that the above translation must satisfy the
constraints in (2) since the released times for each air-
craft are different; therefore, the span is set by ΔTL =

mini∈I S
R
i1 − Eri , and the final right-justified schedule is

obtained as Sij, Eij = SRij , E
R
ij − ΔTL, i ∈ I, j ∈ J i.

5.2. Robust Resource Allocation Scheme

5.2.1. Robust Equipment Allocation Adjustment Scheme. The
initial equipment allocation plan, which is generated along
with the baseline schedule, can satisfy the equipment
constraints, but not necessarily the most robust one. To pro-
tect the baseline schedule against the stochastic disturbance
of operation durations, a heuristic algorithm for further
adjustment of equipment allocation is proposed. Firstly,

given a pair of operations (Oij, Oeg) with Sij + dij ≤ Seg, the

time difference between the start of operation Oeg and the

end of Oij is denoted as the pairwise float:

PFijeg =
Seg − Eij, if i, j ∉ Ps

eg,

Seg − Eij + BM, otherwise,
13

where Ps
eg represents the set of direct predecessors of opera-

tion Oeg in the OONF network D″ = V , AN ∪AS , and the

resource flow AS is determined by the baseline schedule.
The pairwise float serves an important function of buffer
against stochastic disturbance. The larger the pairwise float
is, the less impact of uncertainty will be imposed on the suc-
cessor operation. However, when i, j ∈ Peg, the successor

operation will be affected by the predecessor, which denotes
that the pairwise float is meaningless, so a large number,
i.e., BM, is added to ignore the buffer function in such pairs.

It has been discussed that the protection effect does not
increase linearly with the growth of time slack, and it is
a good way to represent the protection effect using a
negative exponential function [60]. The following surrogate
robustness objective function for equipment allocation is
suggested to guide the adjustment under the original baseline
schedule and equipment constraints.

min RE = 〠
k∈Ke

〠
i,j , e,g ∈Qk

exp −PFijeg , 14

Input: Priority of support operations xij, initial precedence relation D′ = V , AN .

Output: Temporal schedule Sij, Eij , initial equipment allocation plan Xeijkl .

01: Initialize Uptik, Uet
ik′
, Ust

ik″
, Uwt

k‴
, A1 ≔⋃i∈I

i, 1 , C1 ≔∅, Si1 ≔ Eri, Ei1 ≔ Eri, g≔ 2.

02: While Cg ⋃ Ag < J

03: tg ≔min Sij + dij ∣ i, j ∈ Ag−1 .

04: Ag ≔Ag−1 − i, j ∣ i, j ∈ Ag−1 ∧ tg = Eij .

05: Cg ≔ Cg−1 ⋃ i, j ∣ i, j ∈ Ag−1 ∧ tg = Eij .

06: Calculate Dg
′ tg according to Equation (12).

07: Repeat

08: i∗, j∗ ≔minOi j∈Dg
′ tg

i, j ∣ xij = infOpq∈Dg
′ tg

xpq .

09: Si∗ j∗ ≔ tg, Ei∗ j∗ ≔ Si∗ j∗ + di∗ j∗ .

10: Ag ≔Ag ⋃ i∗, j∗ .

11: For ∀k ∈ Ke∧ rei∗ j∗k > 0.

12: Select l ∈ πLe
tg
i∗k according to MTRCA rule, Xei∗ j∗kl ≔ 1.

13: End For

14: Update Uptik, Uet
ik′
, Ust

ik″
, Uwt

k‴
, Dg

′ tg .

15: Until Dg
′ =∅

16: g≔ g + 1
17: End While

Algorithm 2: Algorithm of parallel schedule generation scheme for aircraft deck operations.
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whereQk denotes the set of operation pairs which possess the
same equipment of type k k ∈ Ke .

Typical methods of robust resource flow construction,
such as interprogramming-based heuristics (e.g., MinEA,
MaxPF, and MinED) and simulation-based constructive
procedure (e.g., MABO) [28], are always time-consuming
for large-scale scheduling problems. In view of the above
situation, a greedy heuristic algorithm is designed. In each
iteration, the algorithm searches the operations one by one
in each equipment of type k k ∈ Ke , and the adjustment is
performed once the surrogate objective is optimized. The
adjustment falls into two categories:

(1) Swap: two operations in different equipments are
swapped with each other.

(2) Shift: an operation is shifted to another equipment.

The two kinds of adjustments are based on the premises
that the equipment constraints are satisfied and there are
no overlaps of time in schedule. Figure 5 shows an example
of the adjustment.

In Figure 5, Lelk denotes the lth support equipment of
type k k ∈ Ke , and Ii − j represents operation j of aircraft i.
Suppose that the equipment constraints are satisfied for the
operations in Figure 5, then operation Oij can choose to swap
with operation Oeg or shift to the vacancy within equipment

Le3k. The principle of selecting the adjustment is to maximize
the local robustness. Note that the local robustness of opera-
tion Oij is related to not only the time difference between
operation Oij and other adjacent operations in the same

equipment but also the time difference within equipments
which operation Oij can be adjusted to.

We define the local robustness index of operation Oij

before adjustment as LROn
ij = exp −PF

f
ij + exp −PFbij ,

where PF
f
ij represents the pairwise float between operation

Oij and its predecessor in the same equipment, and PFbij
represents that between operation Oij and its successors

similarly. For example, PF
f
ij = PF23ij and PFbij = PFij16 in

Figure 5. If there are no predecessors of operation Oij,

let PF
f
ij = BM. Similarly, if there are successors of opera-

tion Oij, let PFbij = Cmax − Eij. The time difference of the

vacancy is denoted by the pairwise float of operations on
either side (as shown in Figure 5). Then, the local robust-
ness index before adjustment of Lelk which is reachable for
operation Oij is represented as

After the adjustment, the operation Oij is shifted in the

vacancy or swapped with the corresponding operation. Now

the local robustness index of operation Oij is represented as

LROc
ij, which can be calculated in the same way as LROn

ij.

Likewise, the local robustness index after adjustment of Lel′k
that operation Oij originally adheres to can be represented as

Finally, the difference of the local robustness index of Lelk
between after and before adjustment is computed as

ΔREkl = LROc
ij + LREc

kl′
− LROn

ij + LREn
kl 17

At each decision-making point, robustness will be
improved only when there are some equipments so that
ΔREkl < 0, and the equipment corresponding to the mini-
mum ΔREkl is selected. Let N

k
justment be the number of adjust-

ment in an iteration for equipment of the type k k ∈ Ke . The

Lek
l

Lek
3

Lek
2

Lek
1

I3 − 5 I2 − 6

I2 − 3 Ii − j I1 − 6

I3 − 4 Ie − g

PFvacancy
Cmax

PFij
f

PFeg
f

PFeg
b

PFij
b

t

Vacancy

Shi�

Swap

Figure 5: Robust equipment adjustment.

LREn
kl =

exp −PFf
eg + exp −PFbeg , if Oij is swappable withOeg, Xeijkl ≠ 1, Xeegkl = 1,

exp −PFvacancy , if a vacancy of Lelk can be inserted byOij, Xeijkl ≠ 1

15

LREc
kl′
=

exp −PFf
eg + exp −PFbeg , if Oij is swappedwithOeg, Xeijkl′ ≠ 1, Xeegkl′ = 1,

exp −PFvacancy , if Oij is shif ted and create a vacancy in Le
l′
k, Xeijkl′ ≠ 1

16
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adjustment will continue until Nk
justment ∀k = 0, and then the

most robust equipment allocation plan is generated. To be
specific, the robust equipment allocation adjustment scheme
is presented in Algorithm 3.

5.2.2. Robust Personnel Allocation Scheme. Since the baseline
schedule is feasible for each type of resources and personnel
are replaceable with the same trade in group, the proposed
robust personnel allocation scheme is operation-based, i.e.,
the personnel allocation plan is executed according to the
starting time sequence of operations.

Firstly, all the operations are placed in an increasing
order according to their planned starting times. Note that if
there are some operations with the same starting time, a
tie-break will be conducted to distinguish the criticality of
them using the notion of free slack RCFij [61] based on the
critical chain scheduling method. As the free slack and the
criticality are negatively correlated, and RCFij = 0 indicates
operation Oij is in the critical chain.

Similar to the method in Section 5.2.1, a robustness
evaluation function is adopted to guide the personnel alloca-
tion for each operation in the sequence list. The float time
between operation Oij and operations which adhere to the l
th personnel with trade k k ∈ Kp is denoted by

IFijkl =

Sij − LFTkl , if e, g ∉ Pse
ij ,

Sij − LFTkl + BM, else if e, g ∈ Pse
ij ,

Sij + BM, else if e, g =∅,

18

where operation Oeg is the latest scheduled operation of the

lth personnel with trade k k ∈ Kp (denoted as Lplk), and
the completion time of Oeg corresponds to the latest comple-

tion time of Lplk, which is denoted as LFTkl . P
se
ij represents the

set of direct predecessors of operation Oij in the OONF

network D‴. Similar to (14), a robustness index of personnel
is presented as RPijkl = exp −IFijkl , and operation Oij is
allocated to the personnel with the minimum RPijkl .

To be specific, the robust equipment allocation scheme is
presented in Algorithm 4, where Upk t, i = l ∣ LFTkl ≤ t,
i ∈ Rpkl is the set of available personnel that can support
aircraft i at decision point t.

5.3. Scheduling Policy. After the baseline schedule and the
resource allocation of the aircraft flight deck, operations are
determined, then it comes to the execution stage to turn the
baseline schedule into various executed schedules with
unpredictable durations. During the multistage decision
process, the scheduling policy serves a crucial function of
determining dynamically which operations are to be
started next in each possible scenario. In the resource-
constrained project scheduling problem with stochastic
activity durations, robust project scheduling and stochastic
project scheduling are the major two approaches.

In robust project scheduling, a fixed baseline schedule is
generated in advance of project execution, and the roadrun-
ner scheduling policy and the railway scheduling policy are
commonly used in execution. Roadrunner scheduling,

Input: Initial equipment allocation plan Xeijkl , temporal schedule Sij, Eij and

precedence relation D″ = V , AN⋃ AS .

Output: Adjusted equipment allocation plan Xeijkl′ and updated precedence relation D‴ = V , AN⋃ AS⋃ AE .

01: Initialize Nk
justment = 1000.

02: For ∀k ∈ Ke
03: While Nk

justment > 0

04: Nk
justment = 0.

05: For ∀ i, j ∈ J
06: Calculate LROn

ij and find the equipment l when Xeijkl = 1.

07: For ∀l′ ∈ Lek − l ∧ i ∈ Rekl′
08: if vacancy for shift or operations for swap exist, then calculate LREn

kl ,
LROc

ij, LRE
c
kl′
,and obtain ΔREkl .

09: End For

10: Select the optimal equipment l∗ = arg min ΔREkl ∧ΔREkl < 0.
11: If l∗ ≠∅
12: Perform the shift or swap and update Xeijkl .

13: Nk
justment =Nk

justment + 1.

14: End If
15: End For
16: End While
17: End For

18: Update the precedence relation D‴ =D″⋃ AE according to adjusted Xeijkl′.

Algorithm 3: Robust equipment allocation adjustment scheme.
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typically applied in a critical chain/buffer management (CC/
BM) schedule, assumes that activities are started as soon as
possible when all their predecessors have finished and
enough resource units are available. The goal of this policy
is to decrease the expected length of the project. Derived
from the train schedule, the railway scheduling policy
indicates that every activity should not be started earlier
than its planned starting time in the baseline. This policy
is introduced in order to increase the stability of the
project. It has been investigated that railway scheduling
performs better than roadrunner scheduling in terms of
improving both the stability and the expected project
length considering all optimal baseline schedules with the
same project length [62].

As for stochastic project scheduling without a baseline
schedule and resource allocation plan, the scheduling policy
operates in a specific way with a vector of weights for
activities (e.g., activity list.); that is, in each decision-making
stage, the unscheduled activity with the maximum weight
whose predecessors have already been completed is selected.
The selected activity will be arranged at the point satisfying
all the resource constraints. Therefore, stochastic project
scheduling is also classified as online reactive scheduling.

As is illustrated in Section 2.2, only CAB and CRB become
good choices for our problem. CAB is an activity-based policy,
which means that activities are scheduled as early as possible
according to the order of an activity list π, with the side
constraint that si d ≤ sj d , if i≺π j for each scenario d. i≺π j

denotes that activity i precedes activity j in activity list π.
CRB is a resource-based policy, which means it is a direct
extension of deterministic parallel scheduling. In this policy,
the first precedence and resource feasible activity on activity
list π is selected at each decision point.

In the RSPFDO, as is shown in (1), PMLM and IRM are
the main criteria to be focused on, rather than the deviation
between the baseline and the executed schedule, so the
railway scheduling policy is conservative in this regard. On

the other hand, roadrunner scheduling ensures that opera-
tions are started as soon as possible under the constraints
of resource flow, while parallel scheduling of the supply
resource may change the schedules generated by SSGS even
in a deterministic environment. Besides, the policies used in
stochastic project scheduling suffer from the major drawback
that the fixed resource allocation and the baseline informa-
tion are not taken into account. To cope with the complicated
resource constraints and stochastic operation durations in
the RSPFDO, a preconstraint policy (CPC) is proposed and
elaborated as follows.

In general, the policy is executed in the way of parallel
scheduling, or it can be regarded as a kind of resource-
based scheduling. The improvement lies in that all the
resource constraints are converted into precedence con-
straints before execution.

(1) The resource flows caused by personnel, equipment,
and workstation space allocation are converted into
the finish-start precedence relations in the OONF
D = V , AN ∪AP ∪AE ∪AS .

(2) As for the supply resource of each type k, the set of
operations that require supply resource of the same
type are found, and then a start-start precedence
relation is added to each pair of operations in the
set. In the start-start precedence relation, if the
starting times of operation Oij and operation Oeg sat-

isfies the inequality Sij ≤ Seg, the inequality Sij ≤ Seg
regarding the practical starting times of the two
operations makes sense. This strategy is similar to
the side constraint applied in CAB.

The execution of the preconstraints is a supply resource-
based scheduling process in fact as the resource constraints of
other types are completely converted into the precedence
constraint. At each decision point t, the policy selects the

Input: Temporal schedule Sij, Eij and precedence relation D‴ = V , AN⋃ AS⋃ AE .

Output: Personnel allocation plan Xpijkl and updated precedence relation D = V , AN⋃ AP ⋃ AE ⋃ AS .

01: Sort the operations by increasing Sij (tie-break: increasing RCFij) and obtain the

sequence list of operations for allocation.
02: For n = 1 J
03: Select the nth operation Oij in the sequence list.

04: For ∀k ∈ Kp∧ rpijk > 0

05: Calculate the idle personnel πLpk Sij, i = l ∣ LFTkl ≤ Sij, i ∈ Rpkl
06: For ∀l ∈Upk Sij
07: Calculate IFijkl and obtain RPijkl .

08: End For
09: Sort the personnel in Upk Sij by increasing RPijkl , select the

first mth m = rpijk personnel to support Oij, and update Xpijkl .

10: End For
11: End For

12: Update the precedence relation D =D″⋃ AP according to Xpijkl .

Algorithm 4: Robust personnel allocation scheme.
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eligible operation with the minimum starting time in
baseline. Operations are eligible when their predecessors
have already been completed, and there is enough supply
capacity left to be processed at t.

6. Proactive Robust Scheduling
Optimization Algorithm

The baseline schedule and resource allocation plan can be
generated by the proposed proactive robust scheme formula-
tion and scheduling policy under the certain priority value of
each operation, and the practical executed schedule also can
be worked out by the scheduling policy. In other words, a
given duration scenario and a priority vector of operation
have been formulated into mathematical forms. Besides, both
the resource allocation schemes and CPC policy are designed
for the robustness objective. Next, the robustness optimization
of the baseline schedule for RSPFDO will be dealt with. The
RSPFDO is NP-hard because it can be classified as RCMPSP,
which is a general form of the resource-constrained project
scheduling problem (RCPSP). As is mentioned in Section 2.3,
inspired by successful applications of the TLBO in RCPSPs, a
hybrid TLBO (HTLBO) algorithm for solving the RSPFDO is
proposed in this paper, which combines with some other
efficient strategies utilized in RCPSP.

6.1. Representation of Schedules. Among different kinds of
schedule representations, activity-list (AL) representation
and random-key (RK) representation are most widely used.
Generally, procedures that make use of the AL representation
outperform the others because under the RK representation,
there are many different representations for one single sched-
ule, which make it difficult for (meta)heuristics to search for
the best solution in a large space. The AL representation also
suffers from the drawback that a single schedule can be
represented by different activity lists, which is more obvious
when a multiproject background with different released
times is involved. However, this problem occurs more
frequently with the form of RK in the single project [54].

To cope with this problem, Debels and Vanhoucke [56]
embed the RK representation with the TO condition, which
indicate that, for any two activities i and j (Si < Sj) in a given
left-justified schedule, activity i should have a higher priority
than activity j, thus ensuring that each schedule corresponds
to only one representation. Besides, inspired by the work in
[56], to make use of the forward/backward scheduling
technique, a population-orientated forward/backward sched-
uling method is proposed based on the RK representation
which is used in the two cases below:

Case 1. x = x
L = S11, S12,… , S1 J1

, S21,… , Sij,… , Sn Jn
if

used for generating a left-justified schedule.

Case 2. x = x
R = E11, E12,… , E1 J1

, E21,… , Eij,… , En Jn
if

used for generating a right-justified schedule.where x denotes
the representation of individual in the population as well as
the vector of priority. When a schedule is generated, its
representation is adjusted and saved by vectors of starting

times or completion times according to how it will be used.
In this form, the TO condition is satisfied. If a vector of
priority is used for generating a left-justified schedule, then
x
L is selected, and when xi < x j, the ith operation will have
a higher priority than the jth operation, while if a vector of
priority is used for generating a right-justified schedule, then
x
R is selected, and when xi < x j, the jth operation will have a
higher priority than the ith operation.

6.2. Robustness Evaluation. The robustness evaluation for
aircraft flight deck operations includes three steps:

Step 1. Baseline schedule generation. A corresponding
baseline schedule is generated by SSGS or PSGS under a
given vector of priority x, in the way of either forward sched-
uling or backward scheduling, as shown in Section 5.1.

Step 2. Robust resource allocation. According to the given
baseline schedule, personnel and equipments are allocated
to each operation based on the robust personnel allocation
plan and equipment adjustment scheme, as illustrated in
Section 5.2.

Step 3. Simulation with certain replications. Firstly, Ns sce-

narios Dk = dk11, d
k
12,… , dk1 J1

, dk21,… , dkij,… , dkn Jn
1 ≤ k

≤ Ns are generated by random sampling, where dkij indicates

the sampling of the stochastic duration of operation Oij

according to its distribution function under the kth particular
scenario. Then, the robust criteria are calculated by the
average of Ns times of simulation with CPC scheduling policy

Pr Cmax x ≤ Cmax
∗ =

1

Ns
〠
Ns

k=1

1

2
sgn Cmax

∗ + ε − Cmax Dk, x + 1 ,

ECmax x =
1

Ns
〠
Ns

k=1

Cmax Dk, x ,

VCmax x =
1

Ns
〠
Ns

k=1

Cmax Dk, x − ECmax x
2,
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where ε is a minimal value to make sure that when Cmax Dk,
x = Cmax

∗, the return of sgn · is still 1, which is in accor-
dance with the definition of PCLM. Ashtiani et al. [63]
showed that when computational effort matters, a rather
low number of replications Ns (Ns = 10 for common cases)
for evaluation is preferred during the search stage, which
leads to lower accuracy but a higher number of scanned solu-
tions and a better final outcome. In our problem, the accuracy
of the final algorithm is obviously vital, and 3000 replications
of simulation are conducted for the final evaluation.

To compare the fitness values of two individuals with the
objectives in lexicographical order as shown in (1), the fitness
values are integrated into a weighted sum

min Rf = 1 − Pr Cmax ≤ Cmax
∗ + δ ECmax + ωVCmax ,
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where δ is a minimum value to prioritize the two objec-
tives in (1); here, we set δ = 10−7 to ensure that the value of
PCLM dominates the fitness function.

In order to make a fair comparison among different
algorithms, the termination condition of the algorithm is
measured by the maximum number of generated sched-
ules Ngs

max. Note that making a baseline schedule or solving
one scenario with the CPC policy will be counted as one
generated schedule.

To make the most of the limitative maximum number of
generated schedules in this problem, two techniques are
presented to concentrate on the largest computational effort
on those promising solutions.

The first one is named as threshold-based evaluation. This
technique is developed based on the following consideration.
If the makespan of a baseline schedule is not within the limi-
tative makespan Cmax D0, x > C∗

max , there is no need to
continue robust resource allocation and evaluation with the
multiple replications, where D0 represents the vector of
expected durations used for baseline schedule generation.

The second one is designed for right-justified schedule
evaluation. The purpose of the double justification is to
reduce the makespan of flight deck operations. However,
the final baseline schedule is a left-justified one in which
the operation is started as soon as possible, so the evaluation
with multiple replications can be neglected. More precisely,
for any right-justified schedule or the opposite one whose

makespan is beyond the limitative makespan with a given
x, set Pr Cmax x ≤ Cmax

∗ = −1, ECmax x = Cmax D0, x ,
VCmax x = 0, thus ensuring that the fitness value is always
inferior to those of other promising solutions.

6.3. Procedure of the Proposed HTLBO. The flowchart of
HTLBO for solving the RSPFDO is shown in Figure 6. The
framework of the algorithm is based on the original TLBO
which contains the teacher phase and the student phase.
Compared to the conventional TLBO, there are three main
improvements. Firstly, differential evolution operators and
peak crossover operators are used for updating the popula-
tion in the teacher phase and the student phase, respectively.
Secondly, a reinforcement phase with learning-automata-
based adaptive variable neighborhood search is incorporated
into the algorithm. Thirdly, different from the double
justification operated on individual solution, a population-
orientated forward/backward scheduling is adopted, which
means that after updating the population in a certain phase,
the whole population will be scheduled in the way contrary
to that in the last phase.

The overall procedure of HTLBO is illustrated as follows:

Step 1. Initialization phase. Initialize Np left-justified (LJ)
students with the regret-based random sampling method
with the latest finish time (LFT) rule, as discussed in Section
6.4. Then after threshold-based robustness evaluation of each

Initialize the le�-justi�ed population using the
regret-based random sampling method with the LFT

rule

Build the LJ teacher group with Nt elite
individuals

Le�-justi�ed scheduling

Each student learns from the LJ teacher
group by mutation strategy of Eq. (22)

and binomial crossover operator

Apply threshold-based robustness
evaluation and greedy selection

Right-justi�ed
scheduling

Each student interacts with another
student using the peak crossover

operator

Apply right -justi�ed schedule evaluation
and survival-of-the-�ttest selection
mechanism, update the RJ teacher

group

Is the termination
criterion satis�ed?

Yes

No

Output the best teacher

Initialization phase

Teacher phase

Student phase

Reinforcement phase

Right-justi�ed
scheduling

Each student learns from the RJ teacher
group by mutation strategy of Eq. (22)

and binomial crossover operator

Apply right -justi�ed schedule evaluation
and survival-of-the-�ttest selection

Le�-justi�ed scheduling

Each student interacts with another
student using the peak crossover

operator

Apply threshold-based robustness
evaluation and survival-of-the-�ttest
selection mechanism. update the LJ

teacher group

Le�-justi�ed scheduling

Select a teacher randomly from
the LJ teacher group

Apply learning-automata-based adaptive
variable neighborhood search on the

teacher

Figure 6: The flowchart of HTLBO for the RSPFDO.
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student, a LJ teacher group with Nt LJ elite individuals of
different representations is built. Set the generation G = 1.

Step 2. Teacher phase with left-justified scheduling. The
framework of the teacher phase is based on the differential
evolution (DE) algorithm, as discussed in Section 6.5. A
teacher is chosen randomly from the LJ teacher group for
each student, and then the teaching is conducted by mutation
strategy of (22) with the binomial crossover operator. After-
wards, an LJ baseline schedule and resource allocation plan
of each new individual is generated. At last, threshold-based
robustness evaluation and greedy selection are applied to
update the population.

Step 3. Student phase with right-justified (RJ) scheduling. For
each student, another classmate is randomly selected from
the population to form a pair. Then, two successors are
created using the crossover operator, of which the baselines
are generated by right-justified scheduling. At last, RJ
schedule evaluation and survival-of-the-fittest selection
mechanism are applied to update the population, and the
RJ teacher group is updated with Nt RJ elite individuals, as
discussed in Section 6.6.

Step 4. Teacher phase with right-justified scheduling. This
step is executed in a similar way as that of step 2, except that
the phase is based on right-justified scheduling, indicating
that RJ baseline schedules are generated and RJ schedule
evaluation are applied.

Step 5. Student phase with left-justified scheduling. This step
is executed in a similar way as that of step 3, except that the
phase is based on left-justified scheduling. In this step, LJ
baseline schedules along with robust resource allocations
are generated, and threshold-based robustness evaluation is
applied. Besides, an LJ teacher group is updated at last.

Step 6. Reinforcement phase with left-justified scheduling. In
this phase, a teacher is selected randomly from the LJ teacher
group. Then, a learning-automata-based adaptive variable
neighborhood search is applied to update the teacher’s
performance, as discussed in Section 6.7.

Step 7. Judge whether the termination criterion is satisfied. If
the answer is yes, output the best teacher which includes the
optimal robust baseline, personnel, and support equipment
allocation plan; otherwise, go to step 2 to continue search
with the generation G =G + 1.

6.4. Population Initialization. To obtain good initial popula-
tion at the beginning of search, individuals are generated by
adopting the regret-based random sampling method with
the latest finish time (LFT) rule [52]. With this method, oper-
ations with a small CPM-based latest finish time LFT have a
higher chance of being selected. More precisely, the RK
representation (starting time/completion time vector) is
obtained from the initial schedule, which is generated by
repeatedly selecting an unscheduled operation from the
eligible operation set (denoted as E). An eligible operation

is an unselected one for which all of the predecessors have
already been selected. A roulette wheel selection strategy is
applied to select operation in E, and the probability ηij of

being chosen for eligible operation Oij based on the LFT rule
is represented as

ηij =
μij + 1

∑ e,g ∈E μeg + 1
, 21

where μeg =max i,j ∈ELFTij − LFTeg + 1 is the priority value

of operation Oeg, and LFTij is the latest finish time of

operation Oij. Suppose that the population size is Np, each
individual is generated with this procedure.

6.5. Teacher Phase. In this phase, the primary goal is to utilize
the knowledge of the elite individual (teacher) to improve the
performance of each individual (student) and the level of
the total population (class). Here, the operators of the
DE algorithm are applied because it is simple and robust with
fast convergence, especially in the area of scheduling [64].

In the basic DE, only the mutation strategies with
the guide of the best individual, such as DE/best/1,
DE/current-to-best/1, and DE/best/2, can imitate the
teaching process. To overcome the limitation and increase
the diversity of teaching ways, the mutation strategy for
teaching is proposed, inspired by the mutation strategy of
DE/current-to-gr_best/1 [65].

vi,G = xi,G + Fi ⋅ x
r
tbest,G − xi,G + Fi ⋅ xri1 ,G

− xri2 ,G
, 22

where xi,G and vi,G are the target vector and the donor vector
at the Gth generation, respectively, and x

r
tbest,G is randomly

selected from the teacher group which contains Nt different
elite individuals. Note that xrtbest,G, xri1 ,G, and xri2 ,G are all ran-

domly selected from the current population, and i ≠ ri1 ≠ ri2.
In addition, none of them equals to x

r
tbest,G. Fi is the scale

factor of the ith individual target vector.
After the mutation operation, the binomial crossover

operator and greedy selection of the basic DE are applied to
update individuals with the guide of teachers. As for the
parameter setting of scale factor Fi and crossover probability
Cri, a parameter adaptation scheme is employed inspired by
the work in [44, 65].

For each generation G, the parameters of Fi and Cri for
each individual target vector is generated independently as

Fi = Cauchy MF, 0 1 ,

Cri = Gaussian MCr, 0 1 ,
23

where Cauchy MF, 0 1 and Gaussian MCr, 0 1 are random
values sampled from a Cauchy distribution with mean values
MF and MCr respectively, and variance of 0.1. At the begin-
ning, both MF and MCr are initialized as 0.5. The set of the
successful scale factors and crossover probabilities are
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denoted as by SF and SCr, respectively, and at the end of each
generation, MF and MCr are updated as

MF = ωFMF + 1 − ωF meanWA SF ,

MCr = ωCrMCr + 1 − ωCr meanWA SCr ,
24

where ωF and ωCr are the weight factors conforming to
uniform distribution (0.2, 0.8), and the mean of all successful
scale factors and crossover probabilities is computed as

meanWA SF = 〠
SF

m=1

wmSF,m,

meanWA SCr = 〠
SCr

m=1

wmSCr,m,

25

where wm = ΔRf m/∑
SF
m=1ΔRf m, SF = SCr , and the improve-

ment of fitness ΔRf m = Rf m,old − Rf m,new .
Note that the teacher phase is divided into two parts:

right-justified teaching that the population is backward-
scheduled and left-justified teaching that the population is
forward-scheduled, and the parameter setting of each part
is different. The same is true to the other phases.

6.6. Student Phase. Apart from learning from teachers,
students always improve themselves by learning from each
other. In this stage, the main purpose is to help the
population making progress together with the interaction
between individuals, and meanwhile avoiding falling into
local extremum caused by the teacher phase so fast. The
peak crossover operator that makes use of the resource
utilization ratio (RUR) [66] is modified according to the
resource conditions in flight deck operations and applied
in the student phase.

Firstly, under a given schedule S, the integrated resource
utilization ratio (IRUR) which measures the multiresource
utilization at time unit t is defined as

IRUR t, S = 〠
k∈Kp

λ
p
k

Kp
〠

Oi j∈At

rpijk
Lpk

+ 〠
k∈Ke

λek
Ke

〠
Oi j∈At

reijk
Lek

+ 〠
k∈Ks

λsk
Ks

〠
Oi j∈At

rsijk
Ni

+ 〠
k∈Kw

λwk
Kw

〠
Oi j∈At

rwijk

Lwt
k

,

26

where λpk , λ
e
k, λ

s
k, and λ

w
k represent the weight of type k of per-

sonnel, support equipment, workstation space, and supply
resource respectively, and they can be calculated by (take
λ
p
k as an example)

λ
p
k =

∑i∈I∑j∈J i
dij ⋅ sgn rpijk

∑i∈I∑j∈J i
dij

27

Further, the total integrated resource utilization can be
denoted under a given start time t and time length l
within the schedule S

TIRU t, l, S = 〠
t+l−1

τ=t

IRUR τ, S 28

With the TIRU, the time intervals when the integrated
resource utilization is high (namely, peaks) can be found,
and they are exactly the bottlenecks of multi-aircraft flight
deck operations. In the algorithm, only one peak, denoted
by tp1 S , tp2 S , is considered, and the start time tp1 S
of the peak with length l is calculated as

tp1 S = arg max
0≤t≤Cmax−l

TIRU t, l, S 29

As the peak contains good gens of individual, a two-
point crossover operator is conducted to each pair of
individuals to take advantage of the peak for interaction
between individuals. For each individual xi, another indi-
vidual x j j ≠ i is randomly selected from the population
to form a pair. The pair takes turns to be the mentor
xm and the learner xl to learn from each other. Let Sm
and Sl be the schedule of mentor and learner, respectively,
which are saved after evaluation in the last phase along
with IRUR. At each turn, one successor xs is generated
with the crossover of xm and xl as follows. Firstly, the
length of the peak l is randomly sampled from the interval
1/4 Cmax xm , 3/4 Cmax xm , and the peak and start

time tp1 of the mentor xm are calculated by (26), (27),
(28), and (29). Then, a two-point crossover [56] is applied
to generate the successor xs.

Case 1. If xl,i < tp1 Sm , then xs,i ≔ xl,i − BM.

Case 2. If tp1 Sm ≤ xl,i ≤ tp2 Sm , then xs,i ≔ xm,i.

Case 3. If xl,i > tp2 Sm , then xs,i ≔ xl,i + BM.

Finally, after evaluations for the two successors, we select
the one with better fitness and replace the old individual.
However, to avoid loosening high-quality teacher, the
individual with the best fitness will not be replaced unless
the successors outperform it. This selection mechanism can
be called as survival of the fittest which is commonly used
in genetic algorithms.

6.7. Reinforcement Phase. As the teacher group serves as the
guider of the class, its performance is crucial for both the
evolution process and the output of the algorithm. To further
improve the teaching level, a reinforcement phase is
incorporated into the algorithm, which is realized by
adaptive variable neighborhood search (AVNS).

In a nutshell, the AVNS starts from an individual selected
from the teacher group, and then neighboring individuals are
generated by means of several neighborhood operators and
being tested for acceptance [67]. Different from the basic
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variable neighborhood search, the neighborhood operator is
randomly selected in each iteration according to an updating
probability. Since the neighborhood operator serves as a
crucial function in search [68], five neighborhood operators
covering different neighborhood scales are utilized according
to the problem structure.

(1) Swap operations: swap two operations between
which no precedence relation exists by exchanging
their priority values.

(2) Shift operation: shift an operation to a new location
in the schedule. Select an operation Oij randomly,
and the feasible range of shift is defined as esij, lsij ,
where esij and lsij are the earliest and latest start time
of operation Oij in the schedule. Then, the set of
operations whose start times are within the feasible
range is constructed, and the corresponding start
time list in ascending order is calculated. Finally, an
interval in the start time list is selected randomly,
and the priority value of operation Oij is set as a
random number within the interval.

(3) Reshuffle operations within the aircraft. Firstly, an
aircraft i ∈ I is selected randomly, and Na operations
corresponding to aircraft i are also selected ran-
domly. Then each of the selected operation is shifted
into a new location by means of a shifting operation
operator. Here, the number of reshuffle operation is
a random integer Na ∈ Z 4, 9 .

(4) Reshuffle operations with resource driven: the
selection of operations is biased to those under-
utilizing the resources in time intervals. Contrary
to the peak crossover which focuses on the time
interval with high resource utilization, this oper-
ator aims at polishing the solution by addressing
the inefficiencies in resource utilization. To be
specific, Na Na ∈ Z 4, 9 operations are selected
to shift into a new location by means of a shifting
operation operator, and the selection probability for
operation Oij is defined by

prij =
1/IRUR Sij

∑e∈I∑g∈Je
1/IRUR Seg

30

(5) Swap neighbor aircraft: swap operations between
two adjacent aircrafts in order. Here, the order of
aircraft I S is based on the concept of the “center
of mass” [45], and center (i) for each aircraft i ∈ I
is computed as

centre i =
1

J i
〠
j∈J i

Sij 31

The order of aircraft is sorted according to the centers of
mass. Select n 1 ≤ n < I randomly and set i1 = I S n, i2 = I

S n+1, with Δcentre = centre i2 − centre i1 , then the swap
operation is conducted by Si1 j = Si1 j + Δcentre, ∀j ∈ J i1 and

Si2 j′ = Si2 j′ − Δcentre, ∀j′ ∈ J i2 .

From the perspective of the neighborhood scale, swap
operations and shift operation belong to the small neigh-
borhood, and reshuffle operations within aircraft and
reshuffle operations with resource driven belong to the
medium neighborhood. Swap neighbor aircraft belong to
the large neighborhood.

To select a suitable neighborhood in each iteration, an
adaptive variable neighborhood strategy based on learning
automata [69] is designed. Learning automata (LA) are
simple devices of reinforcement learning that take actions
in a feedback loop with single state environments. The objec-
tive of LA is to find an optimal state-oriented action and
learn from the environmental feedback (reward or penalty)
generated by past actions. At each time instant t, a single
automaton selects an action according to its action probabil-
ity vector, which is updated with a specific learning scheme,
such as linear reward-penalty, linear reward-inaction, and
linear reward-ε-penalty. The general update scheme for the
adaptive variable neighborhood is given by

pli g + 1 = pli g + αrewardβ g 1 − pli g

− αpenalty 1 − β g pli g ,
32

pl j g + 1 = pl j g − αrewardβ g pl j g + αpenalty 1 − β g

Nl − 1 −1 − pl j g ,

33

where pli g denotes the probability of selecting the ith
neighborhood at the gth iteration, which is initialized as
pli = 1/Nl, i = 1, 2,… ,Nl, the constants αreward and αpenalty
are the reward and penalty parameters, Nl is the number
of neighborhoods for selection, and β g represents the
reward received by the reinforcement feedback for a
neighborhood selected at iteration g; here, we define it as

β g =

1, if better result,

1

Nl
, if equal result,

0, if worse result

34

Equation (32) is used for updating the probability of
the ith neighborhood at the gth iteration, while (33) is
used to update the probabilities of other neighborhoods.
When αreward = αpenalty or αpenalty = 0, the update scheme
is referred as linear reward-penalty LR‐P or linear reward-
inaction LR‐I , respectively. When αpenalty is small compared
to αreward, it is referred as linear reward-ε-penalty LR‐εP . In
this algorithm, we adopt the LR‐I scheme because of its
ε-optimality in all stationary environments [70], then
αpenalty can be neglected in the algorithm.
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Finally, the procedure of the learning-automata-based
adaptive variable neighborhood strategy is summarized
as follows:

Firstly, during the generation G, one individual is selected
randomly from the teacher group to perform the reinforce-
ment phase, for which the iteration number N iter ngs is
determined according to the current number of generated
schedules ngs. As the algorithm focuses on the global
exploration of solutions in the initial stage, the exploitation
of local search increases with the evolution of the algorithm.
N iter ngs is defined as a linearly increasing function

N iter ngs =N lb
iter + Nub

iter −N lb
iter

ngs
Ngs

max

35

where N lb
iter and Nub

iter represent the lower bound and upper
bound of the iteration number N iter. Ignoring the effect of
local search in the initial stage, we set N lb

iter = 0.
Secondly, in each iteration, one of the five neighborhood

operators is selected based on the roulette wheel selection
method. After the conduct of the neighborhood operator
and evaluation on the solution, the new individual is chosen
if the solution quality is improved, and the probabilities of
neighborhood selection are updated according to (32) and
(33). The iterative process continues until the number of
iteration reaches N iter ngs , and the best individual replaces
the original one in the teacher group.

7. Simulation Experiments

To investigate the superiority of the new model and the
proactive robust optimization method for the RSPFDO, a
set of simulation scenarios are conducted. Firstly, the pro-
posed HTLBO algorithm is tested under the deterministic
operation durations and is compared to other algorithms
for the resource-constrained (multi)project scheduling
problem (RC(M)PSP) to verify the advantage of HTLBO in
baseline schedule generation. Then, the proposed proactive
robust optimization method is used to solve the RSPFDO
under the uncertainty of stochastic operation durations.
Comparisons between the proposed method and other

stochastic project scheduling algorithms are also conducted.
Besides, the impacts of the proposed robust resource alloca-
tion schemes and CPC policy are further tested and analyzed.
All the experiments are performed on a personal computer
with Intel Xeon E5 (3.0 gigahertz) processor using MATLAB
2017a under Windows 7.

7.1. Simulation Case Generation. The simulation case is
generated based on the flight deck as shown in Figure 3.
Two typical mission cases of flight deck operations are
introduced, as they represent different levels of complexity
in the operational environment.

(1) Mission case I: eight aircraft are required for pre-
flight preparation before launch, including three
ground attack aircraft, three fighter aircraft, one early
warning aircraft, and one electronic warfare aircraft.
There are about 136 operations to be scheduled,
which make it a medium-size scheduling problem.

(2) Mission case II: twelve aircraft are required for pre-
flight preparation before launch, including five
ground attack aircraft, four fighter aircraft, one early
warning aircraft, one electronic warfare aircraft, and
one refueling aircraft. About 204 operations will be
scheduled in this case, which make it a large-size
scheduling problem.

Firstly, a general OONF network, formulated from the
pre-flight preparation process of single aircraft, is shown in
Figure 7. There are 17 operations to be executed for each
single aircraft except for the dummy start operation
(numbered 1) and the dummy end operation (numbered
19). Kpk, Kek′, Ks1, Kwk″, which, adhering to the operation,
represents the requirement of the operation for each type of
resource. For example, Kpk′ indicates that personnel with

trade k′ k′ ∈ Kp is required for the operation. Note that
supply resource requirement is ignored in Figure 7 because
there is a one-to-one correspondence between equipment
and supply resource k′ = k″, and only one kind of work-
station space (cockpit) is considered. In addition, the
number regarding the kinds of personnel, equipment,
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Figure 7: The general OONF network of a single aircraft.
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and supply resource is ∣Kp∣ = 4 and ∣Ke∣ = ∣Kw∣ = 5, respec-
tively, and the required units of personnel and equipment
for all the relevant operations are 1. Suppose that all the
personnel can be allocated to all the aircraft, then Rpkl =
I, ∀k ∈ Kp, ∀l ∈ Lpk.

Table 7 shows the operation durations for a team of
aircraft. The operation duration for the baseline schedule is
different among aircraft according to their types and
missions. The dummy start operation and end operation,
denoted as No. 1 and No. 19 are neglected in the table since
there are no duration and resource requirement for them.
The symbol “—“ in the table indicate that the corresponding
operation is unnecessary for this aircraft. Three types of
distribution are considered for the uncertainty, i.e., the
uniform distribution, the truncated normal (abbreviated as
T-normal) distribution with standard deviation σ, and the
Bernoulli distribution with probability p. The operation
duration for baseline schedule is set by the expected opera-
tion duration corresponding to the distribution except that
the operation duration which follows Bernoulli distribution
is set by the duration when the operation is executed. This
is in line with the practice in flight deck operation scheduling
that once an operation (e.g., oxygen filling and nitrogen
charging) stands a certain chance of being executed, it will
be considered as a deterministic event in the baseline sched-
ule. As for the distribution level, the lower bound of duration
(d-LB), the upper bound of duration (d-UB), and the
addition parameter (AP) of distribution (e.g., σ and p) for
each level are given. Note that distribution level I has
relatively little variability, while distribution level II has larger
variability, which are set for analysis of the effect of distribu-
tion level on the algorithm performance.

Table 8 shows the information related to different
mission cases, where the parking spot and the release time
for each aircraft, available number of personnel of each
trade, and the limitative makespan for different mission
cases are set.

Table 9 shows the reachability relation between parking
spots and support equipments. In addition, the maximum
number of supported aircraft corresponding to supply
resource of each type is set as Lwt

1, Lw
t
2,… , Lwt

5 = 5, 5, 2,
4, 2 , ∀t > 0.

7.2. Comparison with Other Algorithms for Deterministic
RC(M)PSP. Since the baseline schedule serves as the
principal part of the flight deck operation plan, the
optimization of its makespan is the foremost to make
the makespan within the limitative value as much as
possible. To verify the advantages of the proposed
HTLBO algorithm in solving the RSPFDO under deter-
ministic operation durations that can be viewed as
RCMPSP, the objective of HTLBO is set as min Cmax D0,
x instead of the robust one as shown in (1), and the robust
resource allocation and scheduling policy are neglected in
those experiments.

For convenience, when SSGS and PSGS are used in
the HTLBO algorithm, HTLBO-SS and HTLBO-PS are
called respectively. In addition, 4 different algorithms,
i.e., multimodal genetic algorithm (MMGA) [39], modified
differential evolution algorithm (MDE) [41], improved
particle swarm optimization algorithm (IPSO) [71], and
hybrid estimation of distribution algorithm (HEDA) [42],
are used to make a comparison with the HTLBO
algorithm.

Table 7: Operation durations for a team of aircraft.

Operation
no.

Operation duration for baseline schedule (min) Distribution
type

Distribution level I (min) Distribution level II (min)
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 d-LB d-UB AP d-LB d-UB AP

2 4 4 6 4 4 3 3 4 3 5 4 3 Uniform di2 − 0.8 di2 + 0.8 — di2 − 1.5 di2 + 1.5 —

3 8 8 9 7 7 6 6 7 6 9 7 6 T-normal di3 − 0.5 di3 + 0.5 σ = 0 3 di3 − 1.0 di3 + 1.0 σ = 0 8

4 3 3 5 3 3 4 4 3 4 5 5 3 Uniform di4 − 0.8 di4 + 0.8 — di4 − 1.5 di4 + 1.5 —

5 6 6 7 6 6 5 6 5 5 7 6 5 T-normal di5 − 0.5 di5 + 0.5 σ = 0 3 di3 − 1.0 di3 + 1.0 σ = 0 8

6 5 5 — 4 4 3 3 — 5 4 8 5 Uniform di6 − 0.8 di6 + 0.8 — di6 − 1.5 di6 + 1.5 —

7 4 4 3 5 5 3 3 — 3 3 5 5 T-normal di7 − 0.5 di7 + 0.5 σ = 0 3 di7 − 1.0 di7 + 1.0 σ = 0 8

8 — 5 — 6 8 6 8 6 9 8 8 6 T-normal di8 − 1.0 di8 + 1.0 σ = 0 6 di8 − 1.2 di8 + 1.2 σ = 1 2

9 13 13 18 15 15 11 11 18 12 12 15 12 T-normal di9 − 0.1 di9 + 0.1 σ = 0 05 di9 − 0.3 di9 + 0.3 σ = 0 1

10 6 6 — — 4 4 5 5 4 4 5 4 T-normal di10 − 0.1 di10 + 0.1 σ = 0 05 di10 − 0.3 di10 + 0.3 σ = 0 1

11 — 3 5 — 5 3 3 — 3 5 5 3 Bernoulli 0 di11 p = 0 4 0 di11 p = 0 4

12 3 3 3 4 4 4 3 3 4 4 4 3 T-normal di12 − 1.0 di12 + 1.0 σ = 0 5 di12 − 1.5 di12 + 1.5 σ = 0 8

13 12 12 15 12 12 12 12 15 12 12 12 12 T-normal di13 − 1.2 di13 + 1.5 σ = 0 7 di13 − 1.5 di13 + 2.0 σ = 1 0

14 8 8 10 8 8 8 8 10 8 8 8 8 T-normal di14 − 1.0 di14 + 1.5 σ = 0 8 di14 − 1.5 di14 + 2.0 σ = 1 2

15 3 — 5 5 3 — 3 5 3 3 3 5 Bernoulli 0 di15 p = 0 6 0 di15 p = 0 6

16 10 10 — 12 12 8 9 — 8 6 12 8 T-normal di16 − 0.8 di16 + 1.2 σ = 0 5 di16 − 1.5 di16 + 1.8 σ = 1 0

17 10 10 — 12 12 8 9 — 8 6 12 8 T-normal di17 − 0.8 di17 + 1.2 σ = 0 5 di17 − 1.5 di17 + 1.8 σ = 1 0

18 7 7 10 7 7 6 6 6 8 8 7 6 T-normal di18 − 1.0 di18 + 1.0 σ = 0 7 di18 − 1.6 di18 + 1.6 σ = 1 1
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In terms of the parameter setting, the response of
algorithm under different mission cases is integrated and is
set firstly.

R Cmax = 〠
Nmc

j=1

pmc
j ⋅ C j

max, 36

where Nmc is the number of mission case, pmc
j is the prob-

ability of occurrence of the jth mission case, and C j
max is

the makespan of the jth mission case. In this experiment,
Nmc = 2, and the probability of occurrence for each mission
case can be supposed as pmc

j = 0 5. As for the existing algo-

rithms, several better groups of parameter setting from the
corresponding reference [39, 41, 42, 71] are selected, and
the best set of related parameters for each algorithm is
determined after several preliminary experiments based on
the response definition. As for the proposed HTLBO algo-
rithm, the set of parameters is chosen through the Taguchi
method, which will be discussed in detail in the next section.
Table 10 shows the parameter settings for each algorithm.
Note that there are several versions of MMGA, and GA-
DCA-RK is selected because it outperforms the others in
the preliminary experiments.

To evaluate the accuracy and stability, experiments using
these algorithms are conducted under the two mission cases.
In both cases, the maximum number of schedule is set as
5000 and 10,000 to investigate the difference of solutions,
and the best result (best), average result (avg.), and standard
deviation (std.) after 30 independent runs are shown in

Table 11. The best results demonstrate the capacity of
searching for the optimal solution, and the solution quality
and the robustness of the algorithm can be evaluated by the
average result and standard deviation.

Table 11 shows that the performances of HTLBO-SS and
HTLBO-PS are better in both accuracy and stability in the
two mission cases. Furthermore, the comparison between
HTLBO-SS and HTLBO-PS is conducted, and the following
conclusions can be reached. Firstly, the same best results
are obtained by the two algorithms in both cases, and
HTLBO-SS has more chance of finding better solutions
according to the average result. Note that in mission case II,
the success rate of finding optimal solutions is up to 100%
with the HTLBO-SS algorithm after 10,000 iterations.
Although the standard deviation of HTLBO-SS is slightly
larger than that of HTLBO-PS in mission case I, it outper-
forms HTLBO-PS in general. The reason can be found in
[57] that the SSGS generates active schedules while the PSGS
creates nondelay ones. Therefore, the PSGS searches in a
smaller solution space than the SSGS does. Based on the
above results, the SSGS is chosen to generate the baseline
schedule for the RSPFDO, and HTLBO-SS is actually used
in the following experiments. As for the other four algo-
rithms in Table 11, it is obvious that IPSO and HEDA
outperform the MMGA and MDE in terms of best result
and average result because the double justification is used
for local search in IPSO and HEDA.

To make a clearer understanding of the results, a Gantt
chart is introduced to show the baseline schedule and the
resource allocation plan. For example, Figures 8 and 9 show
the Gantt chart of optimal personnel allocation and support
resource allocation respectively in deterministic mission case
II obtained by the HTLBO-SS algorithm, and the personnel
allocation is generated randomly according to the baseline
schedule. In the two figures, Lplk represents the lth personnel

of the trade k k ∈ Ke , Lel′
k′
represents the l′th support equip-

ment of the type k′ k′ ∈ Ke , and Ii − j represents operation
j of aircraft i. The makespan of the baseline schedule is
Cmax = 65, which is consistent with the best result in Table 11.

7.3. Comparison with Other Algorithms of Stochastic Project
Scheduling. In this section, the stochastic operation dura-
tions under different distribution levels are taken into
consideration. Firstly, an optimal set of parameters is
selected for the HTLBO algorithm through the Taguchi
method. Then, based on the selected parameters, the HTLBO
algorithm is compared with other algorithms of stochastic
project scheduling.

There are five key parameters to be set in the HTLBO
algorithm. They are the population size Np, teacher group

Table 8: Information related to different mission cases.

Mission case
Parking spot no. (released time/min) Number of personnel

C∗
maxI1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 ∣Lp1∣ ∣Lp2∣ ∣Lp3∣ ∣Lp4∣

Mission case I 2 (11) 3 (6) 4 (0) — — 5 (0) — — 6 (5) 8 (0) 9 (0) 10 (12) 4 4 6 8 60

Mission case II 1 (17) 2 (6) 3 (0) 4 (0) 5 (0) 6 (22) 7 (18) 8 (12) 9 (0) 10 (0) 11 (7) 12 (11) 5 5 8 10 70

Table 9: Reachability relation between parking spots and support
equipments.

Parking spot no.
Set of reachable support equipments no.

Ke1 Ke2 Ke3 Ke4 Ke5

1 [1] [1] [1] [1] [1]

2 [1] [1, 2] [1] [1] [1, 2]

3 [1, 2] [1, 2] [1] [1] [1, 2]

4 [2] [2, 3] [1, 2] [1, 2] [2, 3]

5 [2] [3, 4] [2] [2] [3]

6 [3] [3, 4] [2] [2] [3]

7 [3, 4] [5] [3] [3] [4]

8 [4, 5] [5, 6] [4, 5] [3, 4] [4]

9 [4, 5] [6, 7] [4, 5] [3, 4] [4, 5]

10 [5] [6, 7] [5] [4] [5]

11 [6] [8, 9] [6] [5] [6]

12 [6] [8, 9] [6] [5] [6]
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size Nt, upper bound of the iteration for enforcement phase
Nub

iter (also denoted as Niu), reward parameter αreward (also
denoted as α), and number of scenario for robustness evalu-
ation Ns. With the four levels for five parameters given in
Table 12, an orthogonal array L16 (45) with 16 parameter
combinations is obtained [71]. For each distribution level,
the responses of PCLM and IRM for each parameter combi-
nation are represented by a combination result of different
mission cases with probabilities of occurrence. Suppose
that PCLMij and IRMij are the responses of PCLM and
IRM under the ith distribution level and the jth mission
case, pmc

j is the probability of occurrence of the jth mis-

sion case, then the responses of the ith distribution PCL
Mi and IRMi are

PCLMi = 〠
Nmc

j=1

pmc
j ⋅ PCLMij,

IRMi = 〠
Nmc

j=1

pmc
j ⋅ IRMij

37

In this experiment, the value of Nmc and pmc
j are equal

to those in the experiment in Section 7.1. The weights
between ECmax and VCmax are set to ω = 0 1.

In this section, the maximum iteration is set as 25,000,
and 30 independent runs are carried out for each parameter
combination. The influence of the parameters on the solution
robustness under the two distribution levels is shown in
Figures 10 and 11, respectively. The vertical axis represents
the PCLM in Figures 10(a) and 11(a), and IRM in
Figures 10(b) and 11(b), and the horizontal axis represents
the factor levels.

It can be seen that the parameterNs has the greatest effect
on the performance under both distribution levels. In distri-
bution level I, Ns = 10 results in the best performance while
in level II, Ns = 20 is the best choice. Since the calculation
of evaluation for multiscenario is a part of the algorithm
and accounts for a certain proportion of the maximum num-
ber of generated schedules, less variability of duration results
in fewer scenarios used for evaluation, which is consistent
with the conclusion obtained in [23]. In both distribution
levels, the variations of parameters show opposite trends
in the PCLM and the IRM, which conform to the inverse
relationship between the PCLM and the IRM. Based on
the experiment results, the optimal parameter combination
is set to Np = 30, Nt = 5, Niu = 70, α = 0 2, and Ns = 10
under distribution level I, and Np = 30, Nt = 5, Niu = 25,
α = 0 1, and Ns = 20 under distribution level II.

Based on the selected parameter combinations, the
HTLBO algorithm is compared with the other algorithms
for stochastic project scheduling, i.e., the genetic algorithm

Table 10: Parameter settings of the algorithms.

Algorithm Parameters

HTLBO-SS/PS
Population size Np = 30, teacher group size Nt = 3, upper bound of the iteration for

enforcement phase Nub
iter = 10, and reward parameter αreward = 0 05.

MMGA Population size 50, crossover probability 0.8, and mutation probability 0.002

MDE Population size 100, the scale factor F1 = 0 7, F2 = 0 7, and the crossover probability CR1 = 0 3, CR2 = 0 7.

IPSO
Number of particles M = 50, inertial weight w = 0 2, self-learning factor c1 = 4, social-learning

factor c2 = 2, and selected time periods q = 3.

HEDA
Population size NP = 250, the number of selected individual to update the probability matrix

P = 20% NP, the learning speed β = 0 5, the PBLS accept rate Pper = 0, and the descending rate λ = 0 8.

Table 11: Result comparison between TLBO and published algorithms (deterministic case).

Case set Ngs
max Performance measurement HTLBO-SS HTLBO-PS MMGA MDE IPSO HEDA

Mission case I

5000

Best 55 55 58 59 56 56

Avg. 55.65 55.75 59.97 60.60 57.73 57.47

Std. 0.24 0.20 0.51 0.73 1.23 0.53

10,000

Best 55 55 57 58 56 56

Avg. 55.40 55.85 58.80 59.7 57.57 56.84

Std. 0.25 0.13 0.44 0.42 1.36 0.18

Mission case II

5000

Best 65 65 69 71 66 67

Avg. 65.05 65.25 70.56 72.87 68.13 68.50

Std. 0.05 0.20 0.73 0.74 2.18 0.72

10,000

Best 65 65 68 70 66 67

Avg. 65 65.15 69.20 71.6 67.87 67.86

Std. 0 0.13 0.65 0.65 1.29 0.33
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with CAB policy (denoted as ABGA [23]), the greedy ran-
domized adaptive search procedure with CAB policy (denoted
as ABGR [72]), and the estimation of the distribution
algorithm with CRB policy (denoted as RBEDA [73]).
The parameter settings of each algorithm are as follows:
for ABGA, population size nPob = 40; for ABGR, the car-
dinality of the elite set is 80, the probability of selecting
activity with latest finish time (LFT) pLFT = 0 95, the
probability of selecting activity randomly pRandom =
0 05, minimum of nit nitmin = 1, and maximum of nit
nitmax = 30; for the EDA, the population size of each gen-
eration M = 250, the size of the elite set Q = 0 1% M, the
PBLS acceptance rate Pper = 0 1, and the learning speed
β = 0 5. For all the algorithms, numbers of scenario for
robustness evaluation under the two distribution levels are
set to 10.

With different termination criteria (10,000 and 25,000),
the results are shown after 30 runs for each case (see
Tables 13 and 14). In Tables 13 and 14, the results are
depicted in the form of Pr Cmax ≤ Cmax

∗ , ECmax, VCmax ,
which represent the average of Pr Cmax ≤ Cmax

∗ , ECmax,
and VCmax of 30 runs, respectively. The results in
Tables 13 and 14 demonstrate that the HTLBO outper-
forms the other algorithms in terms of each criterion in
both cases. In both mission cases under distribution level I,
the probability of completing within the limitative makespan
can reach 100%, and the probability can maintain above 94%

under distribution level II with 25,000 schedules. The above
results prove the effectiveness of the HTLBO algorithm in
solving the RSPFDO.

As for the other algorithms, the ABGA algorithm
performs the worst in general. Compared to the RBEDA
algorithm, the ABGR algorithm works far better under distri-
bution level I and slightly worse under distribution level II.
This result is in line with the conclusion that the activity-
based policies outperform the resource-based ones for the
problems with small variability of activity durations [73]. In
addition, the RBEDA with the CRB policy has the far larger
variance of makespan than others, which makes it not
suitable for the RSPFDO.

Note that the proposed HTLBO algorithm is coded in
MATLAB, the elapsed time of which can be about 500 times
as that of C++ as researched by Fang et al. [73]. This will not
have an influence on the performance of the HTLBO because
the objective of this paper is to get results good enough rather
than quick results. Table 15 shows the average CPU time
under different cases and maximum number of generated
schedules after 30 runs.

In general, it takes less than five minutes to solve the
RSPFDO in any cases, which can satisfy the limitation of
planning time. Actually, it will take less time to reach the
optimal solution due to the fast convergence of the HTLBO
algorithm. When comparing the average CPU time under
deterministic durations with that under the two distribution
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Figure 8: Gantt chart of optimal personnel allocation in deterministic mission case II.
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levels, it can be found that it takes more time with the
deterministic durations, and the greater the variability of
durations is, the more time the algorithm will take. Under
the deterministic durations, the computational time corre-
sponds to the time required to generate Ngs

max solutions with
SSGS, while under the stochastic durations, a portion of time
is required for robustness evaluation with the CPC scheduling
policy, which has turned the majority of resource constraints
(except for the supply resources) into the precedence con-
straints, thus reducing the time of searching for and updating

resource-feasible operations. Besides, when the variability of
durations increases, the completion times of operations
become more scattered, which results in the reduction of
the number of resource-feasible operations at the same
decision point t, thus increasing the time of searching and
updating the resource-feasible operations.

7.4. Experiment Results with Resource Allocation Schemes and
Scheduling Policies. In this section, under the framework of
the HTLBO algorithm, the results under different resource
allocation scheme combinations and scheduling policies are
compared and analyzed. The resource allocation scheme
combinations are constructed according to whether the
robust personnel allocation scheme and the robust equip-
ment adjustment scheme are applied, and four kinds of
combinations can be selected. They are “Yes-Yes,” “Yes-
No,” “No-Yes,” and “No-No,” where “Yes” indicates that
the corresponding resource allocation scheme is applied,
while “No” indicates the opposite. If the robust personnel
allocation scheme is not used, the personnel will be allocated
randomly. Similarly, if the robust equipment adjustment
scheme is not applied, the initial equipment allocation gener-
ated along with the baseline schedule by SSGS will be the final

Table 12: Combination of parameters values.

Parameters
Factor level

1 2 3 4

Np 30 50 80 100

Nt 1 3 5 7

Niu 15 25 50 70

α 0.01 0.05 0.1 0.2

Ns 10 20 40 70
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Figure 9: Gantt chart of optimal support resource allocation in deterministic mission case II.
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decision plan. To verify the performance of the CPC schedul-
ing policy, another four scheduling policies, i.e., roadrunner,
railway, CRB, and CAB, are used to make comparisons.

With the selected parameter combinations obtained in
Section 7.3 and terminal condition of 25,000 schedules, the
results of different resource allocation scheme combinations
and scheduling policies are demonstrated in Table 16 after
30 runs for each case. Furthermore, to make a clear presenta-
tion, the trade-off relationship is depicted between PCLM
and IRM of different resource allocation scheme combina-
tions and scheduling policies, under different mission cases
and distribution levels, as shown in Figures 12 and 13. The
results of CRB and CAB are ignored in the figures because of
their poor performance. In each figure, the x-axis represents
the IRM and the y-axis denotes the PCLM, and the result
of a certain resource allocation scheme combination along
with a scheduling policy is remarked as “scheduling
policy-Y/N-Y/N.” For instance, “CPC-Y-N” denotes the
result obtained by the CPC scheduling policy, the robust

personnel allocation scheme, and not using of the robust
equipment adjustment scheme. Combining the result in
Table 16 with demonstration in Figures 12 and 13, the
influences of different resource allocation scheme combi-
nations and scheduling policies on the results are analyzed
as follows.

The influence of the scheduling policy is explained firstly.
The two online reactive scheduling policies, i.e., CRB and CAB,
perform worse than the other policies. To be specific, the
performances of CAB are close to those of the other policies
under distribution level I in both mission cases, but far worse
under distribution level II with high variability. CRB works
even worse than CAB except under distribution level II in
mission case II. With the same resource allocation scheme
combination, CPC outperforms the roadrunner and railway
in terms of both PCLM and IRM, while the results of
roadrunner and railway vary under different distribution
levels and mission cases. In most cases, railway is better than
roadrunner. It also can be found in Table 16 that regardless of
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the resource allocation scheme combination, railway works
out the minimum variance of the makespan, while roadrun-
ner performs the last but one, which precedes CRB, which
confirms the results of Tian and Demeulemeester [62]. The
variance of the makespan of CPC is between than that of
railway and roadrunner and close to that of CAB. To sum
up, CPC combines the advantages of all the other scheduling
policies and works best in terms of optimizing PCLM and
the average of makespan, and the variance of the makespan
is moderate.

As for the influence of the resource allocation scheme, it
is obvious that both PCLM and IRM improve with the
application of the robust personnel allocation scheme and
robust equipment adjustment scheme for all the scheduling
policies except for CRB and CAB because the resource alloca-
tion is not needed in the two scheduling policies. Note that
when only one of the two schemes is used, the improvement
made by the robust personnel allocation scheme is greater
than that by the robust equipment adjustment scheme for
all the scheduling policies, and the underlying reason may
stem from two aspects. Firstly, in the flight deck operations,
the requirement for personnel is greater than that for support
equipment, as shown in Figures 8 and 9. Therefore, the
influence of the robust personnel allocation scheme is more
comprehensive than the other. Secondly, since the robust
equipment adjustment scheme is based on an initial alloca-
tion, it has limited the degree of adjusting the operations
from the beginning under the range constraint of equipment,
thus weakening the function of robust allocation. As for the
personnel allocation, it is developed from nothing. In

addition, from Figures 12 and 13, it reveals that the effects
of resource allocation scheme combinations on the robust-
ness criteria vary in different distribution levels and different
policies. Firstly, under distribution level I, CPC has less influ-
ence on the PCLM than the IRM. Railway has less influence
on both PCLM and IRM. However, different from CPC, the
roadrunner has more influence on PCLM than IRM.
Secondly, under distribution level II, the ranges of both
PCLM and IRM become larger in any scheduling policy
due to the increase in variability. In mission case I, CPC has
the largest ranges of both PCLM and IRM, while in mission
case II, the roadrunner does. Furthermore, it can be seen
from Table 16 that the variance of the makespan is reduced
by the application of resource allocation schemes, but the
effects are not so obvious.

Note that the above comparisons and analysis of different
resource allocation scheme combinations and scheduling
policies are based on the framework of the proposed proac-
tive robust optimization method. To further compare and
analyze the effects of different resource allocation scheme
combinations and scheduling policies at a micro level, the
specific baseline schedule and resource allocation is adopted,
as shown in Figures 8 and 9.

Firstly, as the personnel allocation is generated randomly
in Figure 8, the robust personnel allocation scheme is applied
to reallocate the personnel for each operation according to
the baseline schedule, and the new personnel allocation is
shown in Figure 14. Likewise, based on the initial equipment
allocation plan in Figure 9, the robust equipment adjustment
scheme is applied to update the allocation of equipment.

Table 13: Results of the four algorithms (10,000 schedules).

Algorithm
Mission case I Mission case II

Distribution level I Distribution level II Distribution level I Distribution level II

HTLBO [0.9998, 56.83, 0.65] [0.9078, 58.27, 1.53] [0.9998, 66.87, 0.64] [0.8797, 68.48, 1.56]

ABGR [0.9282, 58.73, 0.67] [0.3677, 60.51, 1.58] [0.9650, 68.35, 0.73] [0.3810, 70.45, 1.65]

ABGA [0.4638, 60.35, 0.66] [0.1136, 61.85, 1.86] [0.3129, 70.37, 0.81] [0.0120, 73.60, 2.37]

RBEDA [0.6360, 59.57, 3.52] [0.4281, 60.59, 5.12] [0.5732, 70.23, 4.56] [0.4728, 70.51, 5.74]

Table 14: Result comparison with other algorithms (25,000 schedules).

Algorithm
Mission case I Mission case II

Distribution level I Distribution level II Distribution level I Distribution level II

HTBLO [1.0000, 56.65, 0.61] [0.9449, 57.94, 1.47] [1.0000, 66.34, 0.53] [0.9457, 67.89, 1.46]

ABGR [0.9640, 58.43, 0.68] [0.4503, 60.25, 1.59] [0.9772, 68.07, 0.68] [0.4484, 70.25, 1.50]

ABGA [0.6385, 59.65, 0.62] [0.1885, 61.23, 1.62] [0.4216, 70.28, 0.57] [0.0332, 72.16, 2.05]

RBEDA [0.6825, 59.41, 3.13] [0.4629, 60.31, 4.11] [0.6866, 69.32, 3.79] [0.5163, 70.31, 5.81]

Table 15: Comparison of average CPU time.

Ngs
max

Mission case I Mission case II
Deterministic
durations (s)

Distribution
level I (s)

Distribution
level II (s)

Deterministic
durations (s)

Distribution
level I (s)

Distribution
level II (s)

5000 50.9 42.35 42.40 79.68 62.51 62.75

10,000 98.63 83.30 84.59 171.13 125.83 126.48

25,000 250.16 174.18 198.07 388.76 276.12 298.92
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Considering the fact that some kinds of equipments are used
for only one operation, little adjustment is made on them.
The Gantt chart of robust support resource allocation of the
2nd type which is required most frequently is depicted, as
shown in Figure 15. From Figures 14 and 15, it is noteworthy
that more operations with precedence relation are allo-
cated to the same personnel or equipment compared to the
origin allocations.

Then, based on the baseline schedule and robust person-
nel and equipment allocation, the five scheduling policies are
applied for simulation experiment under the two distribution
levels with 3000 replications for each policy. Figure 16 shows
the resulting distributions of the makespan with different
scheduling policies. The boxplots show the median value as
a horizontal dashed line, and the black diagonal lines

emanating from the median denote the 95% confidence
interval of the median. The edges of each box refer to the
25th (Q1) and 75th (Q3) percentiles while the red asterisks
represent the outliers of the makespan. The horizontal black
lines (connected by the dashed line whiskers) signifies
extreme nonoutlier values and are subdivided into upper
adjacent value (UAV) and lower adjacent value (LAV).

As is revealed in Figures 16(a) and 16(b), the minimum
median, which means the best ECmax, is obtained under
CPC. The minimum Q1 and UAV imply a larger PCLM,
and the minimum Q3 and LAV indicate the capacity of
completing the operations as soon as possible. The advantage
of CPC is independent of the distribution level. However,
railway has the minimum interquartile range (IQR, equal
to Q3-Q1), which measures the stability of the makespan.

Table 16: Results of resource allocation scheme combinations and scheduling policies (25,000 schedule).

Scheduling
policy

Robust personnel
allocation

Robust equipment
adjustment

Mission case I Mission case II
Distribution level I Distribution level II Distribution level I Distribution level II

CPC

Yes Yes [1.0000, 56.59, 0.61] [0.9449, 57.94, 1.47] [1.0000, 66.34, 0.53] [0.9457, 67.89, 1.46]

No Yes [0.9998, 56.92, 0.68] [0.9022, 58.32, 1.59] [0.9999, 66.77, 0.59] [0.8712, 68.56, 1.47]

Yes No [0.9998, 56.65, 0.67] [0.9198, 58.15, 1.56] [0.9999, 66.48, 0.60] [0.9359, 68.09, 1.46]

No No [0.9994, 57.17, 0.67] [0.8644, 58.54, 1.58] [0.9995, 66.93, 0.58] [0.8607, 68.69, 1.50]

Roadrunner

Yes Yes [0.9988, 56.75, 0.79] [0.8857, 58.36, 1.74] [0.9948, 66.89, 0.85] [0.9184, 68.09, 1.76]

No Yes [0.9957, 57.12, 0.85] [0.8462, 58.66, 1.91] [0.9869, 67.28, 1.02] [0.8261, 68.68, 1.89]

Yes No [0.9974, 56.86, 0.84] [0.8715, 58.60, 1.78] [0.9911, 67.00, 0.99] [0.8963, 68.24, 1.78]

No No [0.9919, 57.19, 0.85] [0.8248, 58.76, 2.01] [0.9826, 67.32, 1.07] [0.8024, 69.06, 2.09]

Railway

Yes Yes [0.9983, 57.09, 0.54] [0.9061, 58.52, 1.17] [0.9988, 66.91, 0.45] [0.9324, 68.24, 1.17]
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Figure 12: Results of resource allocation scheme combinations and scheduling policies under mission case I.
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CRB still performs the worst, and CAB is competitive under
distribution level I but falls behind the other policies
except that CAB performs better than CRB under distribution
level II, as is similarly shown in Table 16.

Finally, comparison in resource allocation scheme
combinations is conducted, and four combinations are
applied for simulation experiment under the two distribution
levels with 3000 replications by the CPC policy. Figures 16(b)
and 17(a) demonstrate the distributions of the makespan
with different resource allocation scheme combinations. In
Figures 17(a) and 17(b), the average of the makespan is
improved with the application of the robust personnel
allocation scheme and robust equipment adjustment scheme,
and the improvement made by the robust personnel alloca-
tion scheme is greater than that by the robust equipment
adjustment scheme. The improvement is independent of
the distribution level as well. The difference between the
IQR of each scheme combination is not much obvious, which
is consistent with the results shown in Table 16, which indi-
cates that the application of the robust resource allocation
scheme exhibits a relatively little effect on the stability of
the makespan.

On the basis of the above computational results,
some conclusions and managerial insights are summarized
as follows.

(1) The generation of schedule with smaller expectation of
the makespan is an important content of the robust
optimization for the RSPFDO. Under the determinis-
tic expectation of durations, the proposed HTLBO
with both SSGS and PSGS outperforms some state-
of-the-art algorithms for deterministic RC(M)PSP in
both accuracy and stability, and the SSGS performs
the best due to its active nature. The results indicate
the superiority of HTLBO in deterministic RC(M)PSP.

(2) In terms of resource allocation, both the proposed
robust personnel allocation scheme and the robust

equipment adjustment scheme can help improve the
robustness of the plan. Since the requirement for
equipments is far less than that of personnel in the
flight deck operations, the improvement made by the
robust personnel allocation scheme is greater than that
by the robust equipment adjustment scheme.

(3) Under the stochastic operation durations with either
higher or lower variability, the proposed HTLBO
performs much better than some main algorithms
for stochastic project scheduling, and the proposed
preconstraint policy (CPC) which considers all kinds
of constraints in the RSPFDO outperforms the main
existing scheduling policies in terms of both PCLM
and IRM. The advantages of CPC become more obvi-
ous when dealing with higher variability. In general,
the proposed HTLBO is proved to be an effective
method for the RSPFDO.

8. Conclusions and Future Work

In this paper, the robust scheduling problem for flight deck
operations (RSPFDO) under duration uncertainty is studied.
Literature investigation shows that the RSPFDO is of great
significance and is hard to solve because of complicated
constraints. To address this challenge, a proactive robust
optimization method for the problem is proposed. Firstly,
the procedures for flight deck operations, various kinds
of constraints of resource, and expression of duration
uncertainty are described. On this basis, a comprehensive
mathematical formulation for RSPFDO is established
with the robust objectives of maximizing the probability of
completing within the limitative makespan (PCLM) and
minimizing the weighted sum of expected makespan and
variance of makespan (IRM). The optimal solution for the
RSPFDO contains a baseline schedule and a personnel and
support equipment allocation plan. Subsequently, to generate
a robust solution, both serial and parallel schedule generation
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Figure 13: Results of resource allocation scheme combinations and scheduling policies under mission case II.
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schemes for baseline schedule are presented, and a robust
personnel allocation scheme and equipment allocation
adjustment scheme are designed accordingly for resource
allocation. Furthermore, in terms of scheduling implementa-
tion, an RSPFDO-oriented preconstraint scheduling policy
(CPC) is developed to turn baseline schedules into executed
schedules. Besides, a hybrid teaching-learning-based optimi-
zation (HTLBO) algorithm for proactive robust scheduling
optimization of the RSPFDO is proposed, with which the
baseline schedule along with the personnel and equipment
allocation can be optimized continuously.

To investigate the validity and superiority of the
proposed method for solving the RSPFDO, a series of
experiments are conducted. According to the experimental
results, the following conclusions can be made. Firstly, under
the deterministic durations, HTLBO is competitive com-
pared to some state-of-the-art algorithms for deterministic
RC(M)PSP, and HTLBO with serial schedule generation
scheme (SSGS) outperforms that with the parallel schedule
generation scheme (PSGS). Secondly, considering the sto-
chastic operation durations, the proposed HTLBO performs
much better than some main algorithms for stochastic
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Figure 14: Gantt chart of robust personnel allocation.
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project scheduling. Thirdly, the objective of the RSPFDO is
improved with the application of the robust personnel alloca-
tion scheme and robust equipment adjustment scheme, and
the proposed CPC outperforms the main existing scheduling
policies in terms of both PCLM and IRM. In general, the
proposed HTLBO is proved to be an effective method for
the RSPFDO.

In the future, an improved mathematical model for the
RSPFDO is expected. For example, the setup times and
transfer times of personnel or support equipments between
operations will be considered, and the stages of respot and
turnaround for launching will be incorporated. The second
is that major disruptions such as breakdowns of aircraft
or equipments should be taken into consideration; thus,
the scheduling problem for flight deck operations under
uncertainty can be solved in virtue of proactive-reactive

scheduling. Besides, the influence of different resources
on the flight deck operations will be analyzed to further
optimize the resource configuration, especially the number
of personnel of each trade and the arrangement of stationary
deck resources which are the two key factors.
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