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Abstract—The paper describes a probabilistic active learning strategy for

support vector machine (SVM) design in large data applications. The learning

strategy is motivated by the statistical query model. While most existing methods

of active SVM learning query for points based on their proximity to the current

separating hyperplane, the proposed method queries for a set of points according

to a distribution as determined by the current separating hyperplane and a newly

defined concept of an adaptive confidence factor. This enables the algorithm to

have more robust and efficient learning capabilities. The confidence factor is

estimated from local information using the k nearest neighbor principle. The

effectiveness of the method is demonstrated on real-life data sets both in terms of

generalization performance, query complexity, and training time.

Index Terms—Data mining, learning theory, query learning, incremental learning,

statistical query model, classification.
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1 INTRODUCTION

THE support vectormachine (SVM) [1] has been successful as a high-
performance classifier in several domains including pattern
recognition, data mining, and bioinformatics. It has strong theore-
tical foundations and good generalization capability. A limitation of
the SVM design algorithm, particularly for large data sets, is the
need to solve a quadratic programming (QP) problem involving a
dense n� n matrix, where n is the number of points in the data set.
Since QP routines have high complexity, SVM design requires huge
memory and computational time for large data applications. Several
approaches exist for circumventing the above shortcomings. These
include simpler optimization criterion for SVM design, e.g., the
linear SVM and the kernel adatron, specialized QP algorithms like
the cojugate gradient method, decomposition techniques which
break down the large QP problem into a series of smaller QP
subproblems, the sequentialminimal optimization (SMO) algorithm
and its various extensions, Nystrom approximations [2], and greedy
Bayesian methods [3]. Many of these approaches are discussed in
[4]. A simple method to solve the SVM QP problem has been
described by Vapnik, which is known as “chunking” [5]. The
chunking algorithm uses the fact that the solution of the SVM
problem remains the same if one removes the points that correspond
to zero Lagrange multipliers of the QP problem (the non-SV points).
The large QP problem can thus be broken down into a series of
smaller QP problems whose ultimate goal is to identify all of the
nonzero Lagrange multipliers (SVs) while discarding the zero
Lagrange multipliers (non-SVs). At every step, chunking solves a
QP problem that consists of the nonzero Lagrange multiplier points
from the previous step, and a chunk of p other points. At the final
step, the entire set of nonzero Lagrange multipliers has been
identified, thereby solving the large QP problem. Several variations
of the chunking algorithm exist depending upon the method of
forming the chunks [6]. Chunking greatly reduces the training time
compared to batch learning of SVMs. However, it may not handle
large-scale training problems due to slow convergence of the
chunking steps when p new points are chosen randomly.

Recently, active learning has become a popular paradigm for
reducing the sample complexity of large-scale learning tasks [7], [8].
It is also useful in situations where unlabeled data is plentiful but
labeling is expensive. In active learning, instead of learning from
“random samples,” the learner has the ability to select its own
training data. This is done iteratively and the output of a step is used
to select the examples for the next step. In the context of support
vector machine, active learning can be used to speed up chunking
algorithms. In [9], a query learning strategy for large margin
classifiers is presented which iteratively requests the label of the
data point closest to the current separating hyperplane. This
accelerates the learning drastically compared to random sampling.
An active learning strategy based on version space splitting is
presented in [10]. The algorithm attempts to select the points that
split the current version space into two halves having equal volumes
at each step, as they are likely to be the actual support vectors. Three
heuristics for approximating the above criterion are described, the
simplest among them selects the point closest to the current
hyperplane as in [9].Agreedyoptimal strategy for active SV learning
is described in [11]. Here, logistic regression is used to compute the
class probabilities, which is further used to estimate the expected
error after adding anexample. The example thatminimizes this error
is selected as a candidate SV. Note that the method was developed
only for querying single point, but the result reported in [11] used
batches of different sizes in addition to single point.

Although most of these active learning strategies query only for
a single point at each step, several studies have noted that the gain
in computational time can be obtained by querying multiple
instances at a time. This motivates the formulation of active
learning strategies which query for multiple points. Error driven
methods for incremental support vector learning with multiple
points are described in [12]. In [12], a chunk of p new points having
a fixed ratio of correctly classified and misclassified points are
used to update the current SV set. However, no guideline is
provided for choosing the above ratio. Another major limitation of
all the above strategies is that they are essentially greedy methods
where the selection of a new point is influenced only by the current
hypothesis (separating hyperplane) available. The greedy margin-
based methods are weak because focusing purely on the boundary
points produces a kind of nonrobustness, with the algorithm never
asking itself whether a large number of examples far from the
current boundary do, in fact, have the correct implied labels. In the
above setup, learning may be severely hampered in two situations:
A “bad” example is queried which drastically worsens the current
hypothesis and the current hypothesis itself is far from the optimal
hypothesis (e.g., in the initial phase of learning). As a result, the
examples queried are less likely to be the actual support vectors.

The present paper describes an active support vector learning
algorithm which is a probabilistic generalization of purely margin
based methods. The methodology is motivated by the model of
learning from statistical queries [13] which captures the natural
notion of learning algorithms that construct a hypothesis based on
statistical properties of large samples rather than the idiosyncrasies
of a particular example. A similar probabilistic active learning
strategy is presented in [14]. The present algorithm involves
estimating the likelihood that a new example belongs to the actual
support vector set and selecting a set of p new points according to
the above likelihood, which are then used along with the current
SVs to obtain the new SVs. The likelihood of an example being an
SV is estimated using a combination of two factors: The margin of
the particular example with respect to the current hyperplane and
the degree of confidence that the current set of SVs provides the
actual SVs. The degree of confidence is quantified by a measure
that is based on the local properties of each of the current support
vectors and is computed using the nearest neighbor estimates.

The aforesaid strategy for active support vector learning has
several advantages. It allows for querying multiple instances and,
hence, is computationally more efficient than those that are
querying for a single example at a time. It not only queries for the
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error points or points close to the separating hyperplane but also a
number of other points which are far from the separating hyper-
plane and also correctly classified ones. Thus, even if a current
hypothesis is erroneous, there is scope for it being corrected owing
to the later points. If only error points were selected, the hypothesis
might actually becomeworse. The ratio of selected points lying close
to the separating hyperplane (and misclassified points) to those far
from the hyperplane is decided by the confidence factor, which
varies adaptively with iteration. If the current SV set is close to the
optimal one, the algorithm focuses only on the low margin points
and ignores the redundant points that lie far from the hyperplane.
On the other hand, if the confidence factor is low (say, in the initial
learning phase), it explores a higher number of interior points. Thus,
the trade off between efficiency and robustness of performance is
adequately handled in this framework. This results in a reduction in
the total number of labeled points queried by the algorithm in
addition to speed up in training, thereby making the algorithm
suitable for applications where labeled data is scarce.

Experiments are performed on four real-life classification
problems. The size of the data ranges from 684 to 495, 141,
dimension from 9 to 294. Our algorithm is found to provide
superior performance and faster convergence compared to several
related algorithms for incremental and active SV learning.

2 SUPPORT VECTOR MACHINE

Support vector machines are a general class of learning architec-
ture inspired from statistical learning theory that performs
structural risk minimization on a nested set structure of separating
hyperplanes [1]. Given training data, the SVM training algorithm
obtains the optimal separating hyperplane in terms of general-
ization error. Though SVMs may also be used for regression and
multiclass classification, in this article, we concentrate only on two-
class classification problem.

Algorithm: Suppose we are given a set of examples
ðx1; y1Þ; . . . ; ðxl; ylÞ;x 2 RN; yi 2 f�1;þ1g. We consider decision
functions of the form sgnððw � xÞ þ bÞ, where ðw � xÞ represents
the inner product of w and x. We would like to find a decision
function fw;b with the properties

yiððw � xiÞ þ bÞ � 1; i ¼ 1; . . . ; l: ð1Þ

In many practical situations, a separating hyperplane does not
exist. To allow for possibilities of violating (1), slack variables are
introduced like

�i � 0; i ¼ 1; . . . ; l ð2Þ

to get

yiððw � xiÞ þ bÞ � 1� �i; i ¼ 1; . . . ; l: ð3Þ

The support vector approach for minimizing the generalization
error consists of the following:

Minimize : �ðw; �Þ ¼ ðw �wÞ þ C
Xl

i¼1

�i; ð4Þ

subject to constraints (2) and (3).
It can be shown that minimizing the first term in (4) amounts to

minimizing a bound on the VC-dimension and minimizing the
second term corresponds to minimizing the misclassification error
[1]. The above minimization problem can be posed as a constrained
quadratic programming (QP) problem.

The solution gives rise to a decision function of the form:

fðxÞ ¼ sgn
Xl

i¼1

yi�iðx � xiÞ þ b

" #
:

Only a small fraction of the �i coefficients are nonzero. The
corresponding pairs of xi entries are known as support vectors and
they fully define the decision function.

3 PROBABILISTIC ACTIVE SUPPORT VECTOR

LEARNING ALGORITHM

In the context of support vector machines, the target of the learning
algorithm is to learn the set of support vectors. This is done by
incrementally training an SVMon a set of examples consisting of the
previous SVs and a new set of points. In the proposed algorithm, the
new set of points, instead of being randomly generated, is generated
according to a probability Pr�ðx;fðxÞÞ. �ðx; fðxÞÞ denotes the event
that example x is an SV. fðxÞ is the optimal separating hyperplane.
The methodology is motivated by the statistical query model of
learning [13], where the oracle, instead of providing actual class
labels, provides an (approximate) answer to the statistical query
“what is the probability that an example belongs to a particular
class?”

We define the probability Pr�ðx;fðxÞÞ as follows: Let < w; b > be
the current separating hyperplane available to the learner.

P�ðx;fðxÞÞ ¼ c if yðw � xþ bÞ � 1
¼ 1� c otherwise:

ð5Þ

Here, c is a confidence parameterwhich denotes how close the current
hyperplane < w; b > is to the optimal one. y is the label of x.

The significance of P�ðx;fðxÞÞ is as follows: If c is high, which

signifies that the current hyperplane is close to the optimal one,

points having margin value less than unity are highly likely to be

the actual SVs. Hence, the probability P�ðx;fðxÞÞ returned to the

corresponding query is set to a high value c. When the value c is

low, the probability of selecting a point lying within the margin

decreases and a high probability value ð1� cÞ is then assigned to a

point having high margin. Let us now describe a method for

estimating the confidence factor c.

3.1 Estimating the Confidence Factor for an SV Set

Let the current set of support vectors be denoted by
S ¼ fs1; s2; . . . ; slg. Also, consider a test set T ¼ fx0

1;x
0
2; . . . ;x

0
mg

and an integer k (say, k ¼
ffiffi
l

p
). For every si 2 S, compute the

set of k nearest points in T . Among the k nearest neighbors, let
kþi and k�i number of points have labels þ1 and �1,
respectively. The confidence factor c is then defined as

c ¼ 2

lk

Xl

i¼1

minðkþi ; k�i Þ: ð6Þ

Note that the maximum value of the confidence factor c is unity
when kþi ¼ k�i 8i ¼ 1; . . . ; l, and the minimum value is zero when
minðkþi ; k�i Þ ¼ 0 8i ¼ 1; . . . ; l. The first case implies that all the
support vectors lie near the class boundaries and the set S ¼
fs1; s2; . . . ; slg is close to the actual support vector set. The second
case, on the other hand, denotes that set S consists only of interior
points and is far from the actual support vector set. Thus, the
confidence factor c measures the degree of closeness of S to the
actual support vector set. The higher the value of c is, the closer the
current SV set is to the actual SV set.

3.2 Algorithm

The active support vector learning algorithm, which uses the

probability Pr�ðx;fðxÞÞ, estimated above, is presented below.

Let A ¼ fx1;x2; . . . ;xng denote the entire training set used for

SVM design. SV ðBÞ denotes the set of support vectors of the set B

obtained using the methodology described in Section 2. St ¼
fs1; s2; . . . ; slg is the support vector set obtained after tth iteration,

and < wt; bt > is the corresponding separating hyperplane. Qt ¼
fq1;q2; . . . ;qpg is the set of p points actively queried for at step t.
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c is the confidence factor obtained using (6). The learning steps

involved are given below:

Initialize: Randomly select an initial starting set Q0 of p instances
from the training set A. Set t ¼ 0 and S0 ¼ SV ðQ0Þ. Let the
parameters of the corresponding hyperplane be < w0; b0 > .
While Stopping Criterion is not satisfied:

Qt ¼ ;.
While CardinalityðQtÞ � p:

Randomly select an instance x 2 A.
Let y be the label of x.

If yðwt � xþ bÞ � 1:
Select x with probability c. Set Qt ¼ Qt [ x.

Else:
Select x with probability 1� c. Set Qt ¼ Qt [ x.

End If
End While
St ¼ SV ðSt [QtÞ.
t ¼ tþ 1.

End While

The set ST , where T is the iteration at which the algorithm

terminates, contains the final SV set.
Stopping Criterion: Among the p points actively queried at

each step t, let pnm points have margin greater than unity

(yðwt � xþ bÞ > 1). Learning is stopped if the quantity c�pnm
p exceeds

a threshold Th (say, ¼ 0:9).
The stopping criterion may be interpreted as follows: A high

value of the quantity pnm
p implies that the query set contains a small

number of points with margin less than unity. No further gain can

be thus achieved by the learning process. The value of pnm may

also be large when the value of c is low in the initial phase of

learning. However, if both c and pnm have high values, the current

SV set is close to the actual one (i.e., a good classifier is obtained)

and also the margin band is empty (i.e., the learning process is

saturated); hence, the learning may be terminated.

4 EXPERIMENTAL RESULTS AND COMPARISON

Organization of the experimental results is as follows: First, the

characteristics of the four data sets used are discussed briefly.

Next, the performance of the proposed algorithm in terms of

generalization capability, training time, and some related quan-

tities, is compared with two other incremental support vector

learning algorithms as well as the batch SVM. Linear SVMs are

used in all the cases. The effectiveness of the confidence factor c,

used for active querying, is then studied.

4.1 Data Sets

Four public domain data sets are used, two of which are large and

two relatively smaller. All the data sets have two overlapping

classes. Their characteristics are described below. The data sets are

available in the UCI machine learning and KDD repositories [15].
Wisconsin Cancer: The popular Wisconsin breast cancer data set

contains 9 features, 684 instances, and 2 classes.
Twonorm: This is an artificial data set, having dimension 20,

2 classes, and 20,000 points. Each class is drawn from a multivariate

normal distribution with unit covariance matrix. Class 1 has mean

ða; a; . . . ; aÞ and class 2 has mean ð�a;�a; . . . ;�aÞ. a ¼ 2

20
1
2
.

Forest Cover Type: This is a GIS data set representing the forest

cover type of a region. There are 54 attributes, out of which we

select 10 numeric valued attributes. The original data contains
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581,012 instances and eight classes, out of which only

495,141 points, belonging to classes 1 and 2, are considered here.
Microsoft Web Data: There are 36,818 examples with 294 binary

attributes. The task is to predict whether a user visits a

particular site.

4.2 Classification Accuracy and Training Time

The algorithm for active SV learning with statistical queries

(StatQSVM) is compared with two other techniques for incre-

mental SV learning as well as the actual batch SVM algorithm.

Only for the Forest Cover type data set, batch SVM could not be

obtained due to its large size. The sequential minimal optimization

(SMO) algorithm [16] is also compared for all the data sets. The

following incremental algorithms are considered: 1) incremental

SV learning with random chunk selection [17]. (Denoted by

IncrSVM in Table 1.) 2) SV learning by querying the point closest

to the current separating hyperplane [9]. (Denoted by QuerySVM

in Table 1.) This is also the “simple margin” strategy in [10].

Comparison is made on the basis of the following quantities:

Results are presented in Table 1.

1. Classification accuracy on test set (atest). The test set has
size 10 percent of that of the entire data set, and contains
points that do not belong to the (90 percent) training set.
Means and standard deviations (SDs) over 10 independent
runs are reported.

2. Closeness of the SV set. We measure closeness of the SV set
( ~SS), obtained by an algorithm, with the corresponding

actual one (S). These are measured by the distance D
defined as follows [18]:

D ¼ 1

n ~SS

X
x2 ~SS

�ðx; SÞ þ 1

nS

X
y2S

�ðy; ~SSÞ þDistð ~SS; SÞ; ð7Þ

where

�ðx; SÞ ¼ min
y2S

dðx; yÞ; �ðy; ~SSÞ ¼ min
x2 ~SS

dðx; yÞ;

and Distð ~SS; SÞ ¼ maxfmaxx2 ~SS �ðx; SÞ;maxy2S �ðy; ~SSÞg: n ~SS

and nS are the number of points in ~SS and S, respectively.

dðx; yÞ is the usual Euclidean distance between points x and

y. The distance measure has been used for quantifying the

errors of set approximation algorithms [18], and is related to

the � cover of a set.
3. Fraction of training samples queried (nquery) by the

algorithms.
4. CPU time (tcpu) on a Sun UltraSparc 350MHz workstation.

It is observed from the results shown in Table 1 that all three

incremental learning algorithms require several orders less

training time as compared to batch SVM design, while providing

comparable classification accuracies. Among them, the proposed

one achieves the highest or second highest classification score in

the least time and number of queries for all the data sets. The

superiority becomes more apparent for the Forest Cover type data

set, where it significantly outperforms both QuerySVM and
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IncrSVM. The QuerySVM algorithm performs better than IncrSVM
for Cancer, Twonorm, and the Forest Covertype data sets.

It can be seen from the values of nquery in Table 1 that the total
number labeled points queried by StatQSVM is the least among all
the methods including QuerySVM. This is in spite of the fact that
StatQSVM needs the label of the randomly chosen points even if
they wind up not being used for training, as opposed to QuerySVM,
which just takes the point closest to the hyperplane (and so does not
require knowing its label until one decides to actually train on it).
The overall reduction innquery for StatQSVM is probably achieved by
its efficient handling of the exploration-exploitation trade off in
active learning.

The SMO algorithm requires substantially less time compared to
the incremental ones. However, SMO is not suitable to applications
where labeled data is scarce. Also, SMOmay be used along with the
incremental algorithms for further reduction in design time.

The nature of convergence of the classification accuracy on test
set atest is shown in Fig. 1 for all the data sets. It is observed that the
convergence curve for the proposed algorithm dominates those of
QuerySVM and IncrSVM. Since the IncrSVM algorithm selects the
chunks randomly, the corresponding curve is smooth and almost
monotonic, although its convergence rate is much slower com-
pared to the other two algorithms. On the other hand, the
QuerySVM algorithm selects only the point closest to the current
separating hyperplane and achieves a high classification accuracy
in a few iterations. However, its convergence curve is oscillatory
and the classification accuracy falls significantly after certain
iterations. This is expected as querying for points close to the
current separating hyperplane may often result in gain in
performance if the current hyperplane is close to the optimal
one. While querying for interior points reduces the risk of
performance degradation, it also achieves poor convergence rate.
Our strategy for active support vector learning with statistical
queries selects a combination of low margin and interior points
and, hence, maintains a fast convergence rate without oscillatory
performance degradation.

In apart of the experiment, themargindistribution of the samples
was studied as ameasure of generalization performance of the SVM.
The distribution in which a larger number of examples have high
positive margin values leads to a better generalization performance.
It was observed that, although the proposed active learning
algorithm terminated before all the actual SVs were identified, the
SVM obtained by it produced a better margin distribution than the
batch SVM designed using the entire data set. This strengthens the
observation of [11] and [9] that active learning, along with early
stopping, improves the generalization performance.

4.3 Effectiveness of the Confidence Factor c

Fig. 2 shows the variation of the confidence factor c for the SV sets
with distance D. It is observed that, for all the data sets, c is linearly
correlated with D. As the current SV set converges closer to the
optimal one, the value of D decreases and the value of confidence
factor c increases. Hence, c is an effective measure of the closeness
of the SV set with the actual one.

5 CONCLUSIONS AND DISCUSSION

A method for probabilistic active SVM learning is presented.
Existing algorithms for incremental SV learning either query for
points close to the current separating hyperplane or select random
chunks consisting mostly of interior points. Both these strategies
represent extreme cases; the former one is fast but unstable, while
the later one is robust but slowly converging. The former strategy
is useful in the final phase of learning, while the later one is more
suitable in the initial phase. The proposed active learning
algorithm uses an adaptive confidence factor to handle the above
trade off. It is more robust than purely margin based methods and
potentially faster than random chunk selection because it can, to
some extent, avoid calculating margins for nonsupport vector
examples. The superiority of our algorithm is experimentally
demonstrated for some real life data sets in terms of both training
time and number of queries. The strength of the proposed
StatQSVM algorithm lies in the reduction of the number of labeled
points queried, rather than just speed up in training. This makes it
suitable for environments where labeled data is scarce.

The selection probability (P�, (5)) used for active learning is a
two level function of the margin (yðw � xþ bÞ) of a point x.
Continuous functions of the margin of x may also be used. Also,
the confidence factor c may be estimated using a kernel-based
relative class likelihood for more general kernel structures. Logistic
framework and probabilistic methods [14] may also be employed
for estimating the confidence factor.
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