
A Probabilistic Analysis of

Coverage Methods

Research Thesis

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

INFORMATION MANAGEMENT ENGINEERING

Ekaterina Kutsy

Submitted to the Senate of

the Technion - Israel Institute of Technology

SIVAN 5768 - HAIFA - JUNE 2008

Table of Contents

Table of Contents ii

List of Figures iv

Abstract v

Acknowledgements vii

1 Introduction 1

2 A cross-product functional coverage model 4

3 Testing Model 1 7

3.1 Model definition . 7

3.2 Test generation strategies . 8

3.3 The probability to expose an error with the Directed and Random

sampling strategies . 9

3.4 A comparison of the Directed and Random sampling strategies 11

4 Testing Model 2 13

4.1 Model definition . 13

4.2 Test generation strategies . 13

4.3 Random, Round-Robin and Hybrid sampling strategies: recurring case 15

4.3.1 The probability to expose an error 15

4.3.2 The probability to expose an error with a cost 19

4.3.3 Expected number of samples until error detection 21

4.4 The Random and Round-Robin sampling strategies: non-recurring case 24

4.4.1 The probability to expose an error 24

4.5 The Directed strategy . 24

ii

4.5.1 Reduction to a search problem 24

4.5.2 The optimal strategy in terms of cost: recurring case 25

4.5.3 The optimal strategy in terms of cost: non-recurring case . . . 27

4.5.4 The optimal strategy in terms of probability to expose an error 28

5 Testing Model 3 32

5.1 Model definition . 32

5.2 Test generation strategies . 32

5.3 Expected sampling cost . 33

5.4 Optimal sampling strategy in terms of expected sampling cost 34

6 Testing Model 4 35

6.1 Model definition . 35

6.2 Expected sampling cost . 35

6.3 Two sampling strategies . 36

6.3.1 Strategy I . 36

6.3.2 Strategy II . 38

7 Related work 39

Bibliography 42

A Optimal number of directed samples in the Hybrid strategy 43

B A proof of Proposition 2: recurring case 45

iii

List of Figures

4.1 The optimal number of directed samples in example 8 20

6.1 Illustrating the two options of switching to level i + 1 after j or j + 1

samples in level i. 37

iv

Abstract

Testing of hardware and software frequently cost more than the development of the

product itself. As a result there is a constant effort, both in the industry and in

the academia, to make this process as efficient as possible. Automatic test genera-

tors are tools that generate test vectors (i.e., input sequences) that are run on the

tested program / hardware, and the outputs are then compared to some predefined

specification (ideally this process is fully automatic). The simplest type of automatic

test generation is generating random input vectors. There are various analytic results

showing the effectiveness of such testing, assuming a uniform distribution of the tests.

However, uniformly generated tests are not the only way tests are generated in the

industry.

Hardware testing is typically done by modeling the environment of the tested

component with a set of constraints. Every solution to this set of constraints is a

test, and hence such constraints-based test generators produce a large number of

solutions. A typical scenario is that of beginning the testing process by defining a

coverage model, which is a partition of the sampling space to coverage goals according

to the developer’s knowledge of the expected functionality of the tested product.

Then, using a constraint solver, various constraints are added in order to direct the

constraint solver to goals that were not yet covered. Another possible scenario is that

random sampling is combined with such directed sampling in various ways. Directed

sampling has a cost, since a more constrained model is many times harder to solve.

There is therefore a trade-off between cheaper sampling – achieved by generating

random samples – and directed sampling that have a higher probability of covering

v

vi

the predefined goals. In this thesis we examine four testing models, each of which

makes different assumptions about the error distribution, the testing environment, the

associated costs, and the possible testing strategies. In each such model we compute

the probability to find an error, assuming it exists, or the expected cost until achieving

full coverage of the goals.

Acknowledgements

I would like to thank Dr. Ofer Strichman, my supervisor, for his many suggestions

and constant support during this research. I am also thankful to him for his guidance

and patience.

I thank Laurent Fournier from IBM Corp. who expressed his interest in my work,

supplied me with the necessary information about functional coverage model and

provided useful references. I also thank Avi Ziv from IBM Corp. who helped me

understand the world of verification.

The generous financial help of the Technion is gratefully acknowledged.

Of course, I am grateful to my family for its patience and love.

Finally, I wish to thank my friends Anna and Polyna for sharing with me their

knowledge, providing useful advices and friendly encouragement.

Haifa, Israel Ekaterina Kutsy

May 26, 2008

vii

Chapter 1

Introduction

Testing is an integral, inevitable part of any sufficiently large development process

of software and hardware. Both the hardware and software industries face problems

related to the expenses of the process, balancing between the quality of the product

on one hand, and the time-to-market and cost on the other hand. According to [1],

the budget dedicated to testing ranges from 40 to 80 percent of the overall project’s

cost1.

The problem with testing, as Dijstra once said, is that it can only expose problems,

not prove their absence. It is a major problem, then, to estimate the value of a given

test effort. The main technique for measuring the thoroughness of testing is called

test coverage analysis, or simply coverage. The main idea is to partition the set of

states, lines of code, statements etc., and to check whether each one of these sets were

sampled in the given set of test vectors (also called the test suite). A given partition

is called a coverage model.

There are two general types of coverage: code coverage and functional coverage

[1].Given a set of test vectors (sequences of inputs), the first type of coverage measures

things such as ‘statement coverage’ (percentage of statements in the code that were

visited in one or more of the tests), ‘branch coverage’ (percentage of branch statements

1In the software industry, these numbers keep going up: Bill Gates declared a few years ago
that in Microsoft for every developer there is a full time testing engineer, and more recently it was
published that only 1 out of 6 engineers in Microsoft do product development, whereas the rest are
dedicated to testing and maintenance.

1

2

that were evaluated to both true and false) and so forth. Code coverage applies to both

software and hardware, the latter through coverage of code written in a hardware-

description language such as VHDL. Functional coverage is more flexible and not

tied to the code structure, rather to user-defined behaviors, or functionalities, of the

tested system. Hence, one can define test goals, or subsets of states to be covered.

For example, when testing a circuit that includes a buffer, the tester can specify two

goals to cover: a run of the system in which the buffer is under-full, and another run

in which it overflows. Given a set of test vectors, the tester can run these tests on

the checked system and determine, either manually or automatically, whether both

goals were covered. If they were not covered, he/she can add more tests manually

or even use a system for automatically generating tests that are directed towards the

non-covered subsets (an approach called coverage-driven test-generation).

The main tool in the hardware domain for directing tests is to model the envi-

ronment of the tested system, abstractly, with a set of constraints over the inputs of

the tested system (and possibly additional variables local to the environment). Any

solution to these constraints (more precisely, the projection of these solutions to the

inputs of the tested system) is a sequence of inputs that reflect a ‘behavior’ of the

real world in which the tested hardware is supposed to function. The problem of

solving such a set of arbitrary constraints (over finite, discrete domains) is known as

the Constraints Satisfaction Problem, or CSP. Indeed, the hardware testing industry

develops and / or uses commercial CSP solvers to generate tests. The description

of the environment in CSP terms is typically abstract and can be under- or over-

approximating of the real environment, and typically even both at the same time

(i.e., the modeled environment allows non-realistic behaviors and at the same time

disallows real behaviors). The process of coverage-driven test generation corresponds

to changing the CSP model. Note that a CSP model can have many solutions, and

the specific solution given by the CSP solver is simply the first it finds, and hence

can be considered as arbitrary. Therefore directing the solver towards a solution with

3

specific attributes amounts to adding constraints. If the CSP model is overly con-

strained, on the other hand, constraints may need to be removed in order to cover

some of the goals.

The iterative process of changing the CSP model for achieving the coverage goals

has an associated cost. This is in contrast to random testing in which the cost per test

is negligible, but has a smaller chance of succeeding to cover the specified coverage

goals. This tradeoff between cost and quality under various coverage model schemes

is the subject of this research: we develop probabilistic models under which various

test generation strategies can be analyzed and compared. Specifically, for a given

test generation strategy, we compute its probability to expose a logical error (given

a model of the error, as will be explained later) and its expected cost. For some of

the testing models we show an optimal testing strategy in terms of the probability to

detect the error or the overall cost, depending on the model.

We assume that the coverage model itself is given (the definition of the cover-

age goals), and hence concentrate on the value of various test generation strategies

in terms of their ability to cover these predefined coverage goals, and the cost for

executing them.

There are some previous works that tried to estimate the success of a testing effort

based on various techniques which are quite far from the current work. We delay the

description of these works to Chapter 7.

This research is a joint work with the IBM-HRL verification group, which develops

various tools for hardware testing. The running example used in this proposal is a

realistic example of testing a floating-point unit of a microprocessor [5].

Chapter 2

A cross-product functional
coverage model

We begin with several general definitions.

A cross-product functional coverage model is defined by:

• A set of attributes (variables) V = {v1, . . . , vn}.

• A set of domains D = {D1, . . . , Dn} corresponding to the attributes.

• A set of partitions P = {P1, . . . , Pn} of the attributes’ domains.

• A set of constraints/restrictions C = {C1, . . . , Ck}. These constraints define

(only approximately, in practice) which of the assignments can occur in the real

environment of the tested system.

Example 1. In a cross-product coverage model for a floating-point unit, the attributes
include:

• Instruction,

• Operand-I,

• Operand-II,

• Result,

• Round-Mode,

4

5

• Round-Occur,

• Interrupt-enable-mode,

• Status register mode and so forth.

The domain of the attribute Instruction is: fadd, fsub, fdiv, fmul, fabs, fneg, fsel,
fmr, etc. A possible partition of this domain is to a set of arithmetic instructions and
a set of non-arithmetic instructions, with the values fadd, fsub, fdiv, fmul,. . . and
fabs, fneg, fsel, fmr,. . . respectively.

The state-space D is defined as the cartesian product of the Domains D1,. . . ,Dn.

A coverage model is a partition of D. Each of the elements of the partition – which

are subsets of the possible assignments – is called a coverage goal, and we say that

such a goal is covered by a test-suite if at least one of the tests results in a valuation

corresponding to that goal. The coverage goals of a cross-product functional coverage

model CM is the Cartesian product of the partitions P1,. . . ,Pn. Not all resulting

goals are legal, however. For example, the cross-product of a fabs Instruction and a

negative Result is an illegal event.

Example 2. Consider once again the floating-point unit. We define the following
cross-product coverage model, based on partitioning the domain of only two variables:

• Let v1 and v2 represent the operands attributes (corresponding to Operand-I and
Operand-II above).

• The respective domains of v1 and v2 are D1 and D2, and are equal to 128 bits
each.

• The respective partitions P1 and P2 are equal to:

{±0,±∞,±NaN,±Norm,±Denorm}. There is a mapping between each value
in D1, D2 to one of these partitions.

The coverage model is the Cartesian product of P1 and P2 and hence has 102

elements.
Note that there are other attributes in the tested system, such as Round-mode,

Result, and so forth. But these attributes are not partitioned for this coverage model.

6

A logical error (i.e., ‘bug’) is defined as a (possibly empty) subset B ⊆ D. The

goal of a coverage model is to increase the probability of finding at least one of

the elements of B for a given test effort. The coverage model expresses the tester’s

presumed knowledge on the system’s structure and functionality. For instance, in

the above example the numbers in the domain of v1 and v2 are partitioned to 10

categories which are known by the tester to activate different parts of the logic.

We now describe four different testing models, each of which assumes a specific

functional coverage model scheme, various assumptions on the error distribution (B),

the cost of directed sampling, the bound (if exists) on the number of tests, and so

forth. In the first two models the goal is to maximize the probability of finding an

error. In the last two the goal is to minimize the cost of achieving full coverage.

Given the initial parameters of each such testing model, we derive a probabilistic

model for each of the above mentioned strategies and compare them in order to find

the optimal strategy. Note that we have multiple objectives (probability to find the

bug and cost), which complicates the definition of the ‘best’ strategy.

Chapter 3

Testing Model 1

3.1 Model definition

In this model the tested system is modeled by a set of Boolean variables (bits, from

hereon) V = v1, . . . , vn, and correspondingly, both the error distribution B and the

coverage model are given as sets of bits. Since these are binary variables, the partition

of the domains is such that a variable’s domain can either be partitioned to {0},{1} or

not at all. We call the former set the coverage-model visible bits, and the latter set the

coverage-model invisible bits, and denote the latter by ci. This terminology reflects

the fact that the former set of bits are those that we are interested in observing their

values, whereas the latter set are those bits that we ignore. Hence, there are 2|V \ci|

goals to cover, each of which contains 2|ci| assignments.

Example 3. Consider a system with 5 bits v1, . . . , v5, from which ci = {v1, v4} are
coverage-model invisible. This means that the state-space is partitioned by the coverage
model to eight coverage goals (25−2), one goal for each possible assignment to the
visible bits. In other words, each goal is an abstraction, referring to the invisible bits
as ‘don’t cares’. For example the partition v2 = 0, v3 = 0, v5 = 0 contains the 4
assignments:

v1 = 0, v2 = 0, v3 = 0, v4 = 0, v5 = 0
v1 = 0, v2 = 0, v3 = 0, v4 = 1, v5 = 0
v1 = 1, v2 = 0, v3 = 0, v4 = 0, v5 = 0
v1 = 1, v2 = 0, v3 = 0, v4 = 1, v5 = 0

7

8

To model the error distribution B, the model assumes a partition of the bits to bug

visible bits and bug invisible bits, the latter denoted by bi. The former have a specific

Boolean value, whereas the latter are ‘don’t cares’, i.e., each assignment that agrees

with the bug visible bits corresponds to a bug. Hence, there are 2|bi| assignments that

expose the error. Since this definition of a set of bugs correspond to the set defined

by the cross-product of the bi variables, we refer to it as a product bug. Every tested

system has a (possible empty) union of product bugs. For simplicity, in this testing

model we assume a single product-bug, and a single cross-product coverage model.

Example 4. Consider the system described in the previous example with 5 bits
v1, . . . , v5. Assume bi = {v1, v2}, i.e., these are bug invisible bits, hence there are
22 erroneous assignments.

3.2 Test generation strategies

• Directed : A strategy in which the test is directed to a given coverage goal by

means of additional constraints to the CSP modeling of the environment. This

strategy has a high cost due to the additional effort of modeling the constraints

that impose the selection of a sample from a given goal and also additional cost

of solving the more-constrained model.

• Random: A strategy in which tests are chosen in random. The Random strategy

has a low cost.1

In this testing model we compare a directed sampling strategy that achieves 100%

coverage (i.e., using 2|bi\ci| samples), and a random strategy with the number of

samples 2|V \ci|. The question is: given the sets ci and bi, how do the two sampling

strategies compare?

1In practice uniformly distributed samples are very hard to generate, since an automatically
generated test is a result of solving a CSP problem, and consecutive solutions are similar to each other
(only few variable values are different between consecutive solutions). To improve the distribution
such solvers introduce randomness in various parts of the algorithm, but still uniformity is not
guaranteed. Nevertheless in our analysis we consider this distribution as being uniform.

9

Results for this model

Our results in this section show that:

• When the cost of directed sampling is disregarded (i.e., considered to be equal

to that of random testing), directed testing is always better or equal to the

random strategy.

• When the cost of directed sampling is higher than some threshold, random

testing is better.

3.3 The probability to expose an error with the

Directed and Random sampling strategies

As explained above, there are 2|V \ci| goals that we want to cover, each of which con-

tains 2|ci| assignments. There are 2|bi| assignments that expose the error, distributed

evenly over 2|bi\ci| goals. Hence, the number of errors in each such goal is equal to:

2|bi|

2|bi\ci|
= 2|bi∩ci|, (3.1)

whereas there is no error in the other goals. First consider the directed sampling

strategy:

• The probability to find an error in a goal of the first set of goals (those goals

that contain assignments that expose the error) is:

2|bi∩ci|

2|ci|
= 2−|ci\bi| . (3.2)

• The overall probability to find an error is:

1−
(
1− 2−|ci\bi|

)2|bi\ci|

. (3.3)

Example 5. We demonstrate the formulas above for two cases:

10

• The case ci ⊆ bi: V = {v1, v2, v3, v4, v5}, bi = {v1, v2} and ci = {v1}. There
are 2|V |−|ci| = 25−1 = 16 goals to cover, and in each goal there are 2|ci| = 2
assignments, 2|bi| = 4 of them expose the error. Only 2|bi−ci| = 2 of 16 partitions
contain 2|bi∩ci| = 2 errors. The probability to find an error in one sample is
2−|ci−bi| = 20 = 1. The overall probability to find an error, according to (3.3),
is:

1− (1− 2−|ci\bi|)2|bi\ci|
= 1− (1− 20)21

= 1 .

• The case ci 6⊆ bi: V = {v1, v2, v3, v4, v5}, bi = {v1, v2} and ci = {v1, v3}. There
are 2|V ∩ci| = 25−2 = 8 goals to cover, in each there are 2|ci| = 4 assignments,
2|bi| = 4 of which expose the error. Only 2|bi\ci| = 2 of 8 goals contain 2|bi∩ci| = 2
errors. The probability to expose an error in one of them is 2−|ci∩bi| = 2−1 = 0.5.
The overall probability to expose one or more errors, according to (3.3), is:

1− (1− 2−|ci\bi|)2|bi\ci|
= 1− (1− 2−1)21

= 0.75 .

Hence the probability to find an error with this sampling strategy is maximal (=1)
when ci ⊆ bi.

Now consider the Random sampling strategy. As before, we will make 2|V \ci|

samples (equivalent to the number of partitions to cover). The overall probability to

expose an error is then:

1−
(
1− 2|bi\V |

)2|V \ci|

= 1−
(
1− 2−(|V \bi|)

)2|V \ci|

. (3.4)

With the Random sampling strategy the overall probability to expose an error

when |bi| = |ci| and |V | → ∞ is:

1− e−1 ≈ 0.63 ,

whereas with the Directed sampling strategy the overall probability to expose an error

in the case bi = ci is equal to 1.

Is the Directed sampling strategy always superior to the random one? To answer

this question we compare in the next subsection equations (3.3) and (3.4).

11

3.4 A comparison of the Directed and Random

sampling strategies

Assume the following cost of a single sample, in each of the sampling strategies:

• Random: cost = 1.

• Directed : cost = C.

As defined in Sect. 3.1, there are 2|bi\ci| goals with erroneous assignments. The

total number of directed samples is equal to 2|bi\ci| ∗n where n is a number of samples

in each subset (n ≥ 1)2. A total sampling cost in this case is equal to 2|bi\ci| ∗ n ∗ C.

At the same time we can make 2|bi\ci| ∗ n ∗C random samples instead of 2|bi\ci| ∗ n

directed samples (C random samples instead of a single directed sample).

We can compare the two strategies in the following way.

P(not to find an error with directed sampling) =
(
1− 1

2(|ci\bi|)

)2(|bi\ci|)∗n

P(not to find an error with random sampling) =
(
1− 1

2(|V \bi|)

)2(|bi\ci|)∗n∗C

Since |V | ≥ |ci|, the probability not to find an error is lower in one directed sample

than it is in one random sample.

However, the probability not to find an error with the Random strategy decreasing

when increasing C (the probability not to find an error with the Directed strategy

stays unchanged). Therefore start from some value of C the probability not to find the

error with the Random strategy becomes lower than it is with the Directed strategy.

We now find a value of C for which the probability not to find an error is equal

in both strategies, assuming the overall cost is the same:

2For simplicity of the model assume that with directed testing we perform an equal number of
tests in each subset.

12

(
1− 1

2(|ci\bi|)

)2(|bi\ci|)∗n

=
(
1− 1

2(|V \bi|)

)2(|bi\ci|)∗n∗C
. (3.5)

We take logarithm on both sides to make it easier to extract C:

ln
(
1− 1

2(|ci\bi|)

)2(|bi\ci|)∗n

= ln
(
1− 1

2(|V \bi|)

)2(|bi\ci|)∗n∗C
. (3.6)

We now have

2(|bi\ci|) ∗ n ∗ ln

(
1− 1

2(|ci\bi|)

)
= 2(|bi\ci|) ∗ n ∗ C ∗ ln

(
1− 1

2(|V \bi|)

)

which implies that

C =

ln

(
1− 1

2(|ci\bi|)

)

ln

(
1− 1

2(|V \bi|)

) . (3.7)

If a cost of one directed sample is higher than C, then the random strategy is

better. Otherwise the directed sampling is preferable.

This result is conditional on decreasing the probability not to find an error when

increasing C. The term 1− 1
2(|V \bi|) is smaller than 1, and therefore increasing C leads

to decreasing of the probability not to find an error:

(
1− 1

2(|V \bi|)

)2(|bi\ci|)∗n∗(C+1)

=
[(

1− 1

2(|V \bi|)

)C

∗
(
1− 1

2(|V \bi|)

)]2(|bi\ci|)∗n
.

Therefore the probability not to find an error with the Random strategy monotonic

decreases when increasing C.

Equation (3.7) shows that either random or directed sampling is better, depending

on the value of C. Hence, there is no advantage to a hybrid strategy (i.e., switching

between these two strategies).

Chapter 4

Testing Model 2

4.1 Model definition

In this testing model we assume a partition of the space of all possible assignments

to k goals. Denote by Ni the number of assignments in goal i, and let N
.
=

∑k
i=1 Ni.

Assume that the error is such that it is only exposed within a single goal. The goal

parameters are:

• ni ≤ Ni is the number of assignments in goal i that expose the error, assuming

the error is in goal i.

• pi denotes the probability that the bug is in goal i, where
∑k

i=1 pi = 1.

4.2 Test generation strategies

The four strategies that we study in this model are called Random, Round-Robin,

Hybrid and Directed :

• Directed : See Sect. 3.2. In this testing model, however, there is no restriction

on whether the number of tests in each coverage goal is the same.

• Random: See Sect. 3.2.

13

14

• Round-Robin: A variant of the directed strategy, by which the coverage goals

are sampled following a cyclic order. It is assumed that the cycles are complete,

i.e., each goal is sampled an equal number of times.

• Hybrid : A combination of the previous two strategies.

Directed sampling is commonly used with the aid of expert knowledge as to which

goal to sample next. In Sect. 4.5 we will study automatic guidance of this strategy

that leads to optimality in terms of the expected cost until exposing the bug.

Random sampling is important in case we have no information about the bug

distribution or the probability to expose it in each goal.

Round-Robin sampling, like directed sampling, has a high cost due to the addi-

tional effort of directing the samples through additional constraints. This strategy

is commonly used in the verification world due to its simplicity, and the fact that it

does not rely on expert’s knowledge as to where to look next.

Hybrid sampling raises the problem of finding the optimal point to switch between

the Random and Round-Robin strategies. Further, this point can be different if we

determine a-priory the overall cost that we are willing to invest in testing. In other

words, knowing the number of tests left and the number of uncovered goals, allows

us to compute the optimal point of changing the strategy.

We can conduct a sampling process in this model in two different ways:

• The recurring case - sampling with replacement (assignments that were previ-

ously sampled are not removed from the sampling space).

• The non-recurring case - sampling without replacement (assignments that were

previously sampled are removed from the sampling space).

The next two sections are dedicated to these two ways of performing the samples,

with the Round-Robin and Random strategies.

Results for this model

Our results show that:

15

• Recurring case: When the cost of a random sample and a single round-robin

sample are assumed to be equal, it can still be the case that random testing is

better.

• Recurring case: There are some cases in which the Hybrid strategy is preferable

over both pure strategies.

• Nonrecurring case: Here we derive formulas for computing the probability to

find an error in the Round-Robin and Random strategies, but are unable to

compare between them.

• Both recurring and non-recurring cases: exists Directed strategy that leads to

minimal expected cost of a testing process.

4.3 Random, Round-Robin and Hybrid sampling

strategies: recurring case

Assume that there is a bound M on the number of allowed samples. With the Random

strategy, the next tested assignment is chosen randomly, hence so is the goal i to which

this sample belongs. With the Round-Robin strategy, each goal i is sampled C = M
k

times.1

4.3.1 The probability to expose an error

The Random strategy

• The probability not to find the bug in one sample if the bug is in goal i:

P(not to find a bug in one sample | bug is in goal i) =

= P(not to find a bug in one sample | bug is in goal i, we sampled goal i)∗

∗P(we sampled goal i | bug is in goal i)+

1For simplicity of the model assume that M is a multiple of k.

16

+P(not to find a bug in one sample | bug is in goal i, we did not sample goal i)∗

∗P(we didn’t sample goal i | bug is in goal i) =

=
(
1− ni

Ni

)
∗ Ni

N
+ 1 ∗

(
1− Ni

N

)
=

=

(
Ni

N
− ni

Ni

∗ Ni

N

)
+

(
1− Ni

N

)
= 1− ni

N
(4.1)

• The probability not to find the bug in one sample based on (4.1):

P(not to find a bug in one sample) =

=
k∑

i=1

P(not to find a bug in one sample | bug is in goal i) ∗ pi =

=
k∑

i=1

(
1− ni

N

)
∗ pi (4.2)

• The overall probability to find the error in M samples:

1−
k∑

i=1

(
1− ni

N

)M

∗ pi . (4.3)

The Round-Robin strategy

• The probability not to find the error in one directed sample:

P(not to find a bug in one sample in goal i) =

= P(not to find a bug in one sample in goal i | bug is in goal i) ∗ pi =

=
(
1− ni

Ni

) ∗ pi (4.4)

• The overall probability to expose the error in M samples:

1−
k∑

i=1

(
1− ni

Ni

)M
k ∗ pi . (4.5)

17

Under what sampling strategy is the probability to find an error better? The

answer depends on the parameters of the coverage model and distribution of the

assignments in it that expose the error. The examples below demonstrate this depen-

dency.

Example 6. Assume a partition with N = 1500, 2 goals and M = 40. The following
table presents various values of n1, n2, N1 and N2, and the corresponding probabilities.

n1 N1 p1 n2 N2 p2 Random Round-Robin
250 1000 0.5 50 500 0.5 0.8708 0.9376
50 1000 0.5 250 500 0.5 0.8708 0.8207
200 800 0.5 100 700 0.5 0.9667 0.9755
100 800 0.5 200 700 0.5 0.9667 0.9647

The Hybrid strategy

The Hybrid sampling strategy makes random samples and then continues with Round-

Robin sampling. Denote by D the total number of Round-Robin samples (hence,

we make M − D Random samples). The probability to find the error with the

Hybrid strategy may be higher than both Random and Round-Robin, as we will later

demonstrate with an example.

The overall probability not to expose an error in k goals with D directed and

M −D random samples is equal to:

f(D)
.
=

k∑
i=1

(
1− ni

N

)M−D

∗
(

1− ni

Ni

)D
k

∗ pi . (4.6)

Using this formula, the following example demonstrates that the Hybrid strategy

can be better than both Random and Round-Robin.

Example 7. Assume a partition with N = 1500, 2 goals and M = 40. The following
table presents various values of n1, n2, N1 and N2, and the corresponding probabilities.

n1 N1 p1 n2 N2 p2 Random Round-Robin Hybrid
100 100 0.01 200 9900 0.99 0.55 0.35 0.5598 (D=2)
10 100 0.4 200 9900 0.6 0.3482 0.5524 0.5575 (D=30)

18

In order to find the optimal value of D, discrete optimization tools can be used,

for a given values of ni, Ni, pi for all i = {1, . . . , k}. In Appendix A we show that ap-

proximating the optimal value by considering D as a continuous number is infeasible.

We can prove, however, that there is a single optimal value of D.

Proposition 1. The probability not to find an error with the Hybrid sampling is a
convex function with a single point of minimum.

Proof. We use the following equivalence:

(
1− ni

N

)M−D

∗
(
1− ni

Ni

)D
k

=

(
1− ni

N

)M

(
1− ni

N

)D
∗

(
1− ni

Ni

)D
k

=

(
1− ni

N

)M

∗
[(

1− ni

Ni

)

(
1− ni

N

)k

]D
k

. (4.7)

Rewriting (4.6) according to (4.7) yields:

f(D)
.
=

k∑
i=1

(
1− ni

N

)M

∗
[(

1− ni

Ni

)

(
1− ni

N

)k

]D
k

∗ pi . (4.8)

The right component of (4.7) can be either smaller or greater than 1. For a given
i, (4.7) is a convex function of D. Since a sum of convex functions is convex, then
f(D) is convex, which means that, because D is finite, it has a single finite optimal
value.

In some cases it is possible to compute the optimal value without invoking a

discrete optimization algorithm. Denote by ratioi the ratio

(
1− ni

Ni

)
(

1−ni
N

)k . Then, from

(4.8) we can see that:

19

• If ratioi > 1 for all i, the random sampling is better than any hybrid one, i.e.,

D = 0 is the optimal point.

• If ratioi < 1 for all i the directed sampling is better than any hybrid one, i.e.,

D = M is the optimal point.

The following example shows that in other cases the optimal value of D depends

on M .

Example 8. Assume a partition with N = 17000, k = 5, pi = 1
5
:

ni Ni ratioi

2 4000 1.000088
2 7000 1.000303
3 1500 0.998881
10 2500 0.998935
10 2000 0.997932

The optimal value of D was computed numerically for various values of M as can
be seen in Fig. 4.1. As we can see in this figure, up to some value of M it is better
to use only directed sampling, and afterwards some mix is optimal.

Note that the discussion in this section assumed a single parameter D, and hence

D
k

samples in each coverage goal. The more general case, in which a different number

of samples for each goal is possible, will be studied as part of Sect. 4.5, which considers

the Directed strategy.

4.3.2 The probability to expose an error with a cost

We now extend the previous analysis to the case that there is an associated cost C

with the Round-Robin strategy. Hence, we can make C random samples for the price

of one directed sample. We assume that there is testing budget and attempt to find

the best strategy that still satisfies this budget. The probability not to find an error

under the Hybrid strategy now is equal to:

f(D)
.
=

k∑
i=1

(
1− ni

N

)M−C∗D
∗

(
1− ni

Ni

)D
k

∗ pi

20

The optimal number of directed samples

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

The total number of samples M

T
h
e
 o

p
ti
m

a
l
D

Figure 4.1: The optimal number of directed samples in example 8

The probability to expose an error under the Hybrid strategy – based on (4.8) –

is:

f(D)
.
=

k∑
i=1

(
1− ni

N

)M

∗
((

1− ni

Ni

)

(1− ni

N
)C∗k

)D
k

∗ pi . (4.9)

As in the previous section, in some cases it is possible to compute the optimal

value without invoking a discrete optimization algorithm. We define

ratioC
i

.
=

((
1− ni

Ni

)

(1− ni

N
)C∗k

)D
k

.

Then we can see that:

• if ratioC
i > 1 for all i, then the optimal point is when D = 0.

• if ratioC
i < 1 for all i, then the optimal point is when D = M

k
.

Note that sufficiently increasing C can make all ratios be larger than 1, and hence

encourages the use of the random strategy, as expected.

21

4.3.3 Expected number of samples until error detection

We now consider the expected number of samples until error detection with the

Random and Round-Robin strategies. The total cost is then simply this number

multiplied by the respective cost.

The Round-Robin strategy

Let M denote the number of samples until the error is detected. The expected value

of M is:

E(M) =
∞∑

j=1

j ∗ p(M = j) =
∞∑

j=1

j

k∑
i=1

p(M = j|bug in i) ∗ pi

We denote by l the index of the round, hence:

∞∑

l=0

k∑
i=1

(l ∗ k + i) ∗ p(M = l ∗ k + i|bug in i) ∗ pi =

=
∞∑

l=0

k∑
i=1

(l ∗ k + i) ∗
(
1− ni

Ni

)l

∗ ni

Ni

∗ pi =

k∑
i=1

[∞∑

l=0

(l ∗ k + i) ∗
(
1− ni

Ni

)l

∗ ni

Ni

]
∗ pi =

k∑
i=1

[∞∑

l=0

i ∗
(
1− ni

Ni

)l

∗ ni

Ni

+
∞∑

l=0

l ∗ k ∗
(
1− ni

Ni

)l

∗ ni

Ni

]
∗ pi =

=
k∑

i=1

[
i ∗ ni

Ni

∗
∞∑

l=0

(
1− ni

Ni

)l

+ k ∗
∞∑

l=0

l ∗
(
1− ni

Ni

)l

∗ ni

Ni

]
∗ pi .

Since
∑∞

l=0

(
1 − ni

Ni

)l

is a geometric series with a base smaller than 1, this is equal

to:
k∑

i=1

[
i ∗ ni

Ni

∗
(

1

1− (
1− ni

Ni

)
)

+

22

+k ∗ (
1− ni

Ni

) ∗
∞∑

l=0

l ∗
(
1− ni

Ni

)l−1

∗ ni

Ni

]
∗ pi .

Since
∑∞

l=0 l ∗
(
1− ni

Ni

)l−1

∗ ni

Ni
is the formula for computing the expected value over

a geometric-distribution with p = ni

Ni
, this is equivalent to:

k∑
i=1

[
i ∗ ni

Ni

∗ Ni

ni

+ k ∗
(
1− ni

Ni

)
∗ Ni

ni

]
∗ pi =

=
k∑

i=1

[
i + k ∗

(
Ni

ni

− 1

)]
∗ pi =

=
k∑

i=1

i ∗ pi + k ∗
k∑

i=1

(
Ni

ni

)
∗ pi − k . (4.10)

As we can see from (4.10), the order of goals in the Round-Robin sampling strategy

affects the expected number of samples until finding the error. In particular, the best

strategy is to order the goals in decreasing values of pi (this will minimize the left

component of (4.10)). This matches our intuition: starting with the goal with the

highest probability to contain the error, reduces the overall search time.

A special case

Now assume a special case: the probability of the error to be in goal i is equal for all

i, i.e. pi = 1
k

for all i. The other parameters remain unchanged.

Claim 1. If the probability of the error to be in goal i is equal for all i, then the
expected number of samples until error detection is independent of the ordering of the
goals during a Round-Robin sampling process.

23

Assigning pi = 1
k

in (4.10) yields:

E(M) =
k∑

i=1

i ∗ 1

k
+ k ∗

k∑
i=1

(
Ni

ni

)
∗ 1

k
− k =

=
k ∗ (k + 1)

2
∗ 1

k
+

k∑
i=1

Ni

ni

− k =

=
1− k

2
+

k∑
i=1

Ni

ni

. (4.11)

As we can see from (4.11), the result in this case does not depend on the ordering

of the different goals in the cycle. The obtained result is non-intuitive, because one

would expect that the values of ni, Ni affect the best order. In other words, it seems

reasonable that starting from the goal in which the chances of detecting the error, if

it is indeed there, are the highest. But (4.11) tells us that this is not the case: all

orders lead to the same expected value.

The Random strategy

The expected number of samples until error detection with the Random strategy:

E(M) =
∞∑

j=1

j ∗ p(M = j) =
∞∑

j=1

j

k∑
i=1

p(M = j/bug in i) ∗ pi =

=
∞∑

j=1

j

k∑
i=1

(
1− ni

N

)j−1

∗ ni

N
∗ pi =

=
k∑

i=1

N

ni

∗ pi . (4.12)

We can see from (4.10) and (4.12) that the optimal strategy, in terms of the

expected number of samples until error detection, depends on the values of ni, Ni for

all i. Hence, there is no dominant strategy in this case.

24

4.4 The Random and Round-Robin sampling strate-

gies: non-recurring case

In this section we consider the Round-Robin and Random sampling strategies when

samples are removed from the search space before continuing to the next sample.

4.4.1 The probability to expose an error

The probability to expose the error in M samples:

• The Random strategy:

1−
k∑

i=1

(S∏
j=0

(
1− ni

N − j

))
∗ pi , (4.13)

where S = min(M, N − n1, . . . , N − nk) − 1. The reason we need to limit the

number of rounds to S is that it is impossible to sample more than M − 1 or

N − ni − 1 without detecting the bug, for all i.

• The Round-Robin strategy:

1−
k∑

i=1

(S∏
j=0

(
1− ni

Ni − j

))
∗ pi . (4.14)

where S = min(M
k
− 1, N1 − n1 + 1, . . . , Nk − nk + 1). The reason we need to

limit the number of rounds to S is that it is possible that one of the goals will

be emptied from its assignments before reaching the value M
k

.

Like in the recurring case, there is no possibility to compare the Random and the

Directed sampling strategy in the non-recurring case. The optimal strategy depends

on the parameters of coverage model.

4.5 The Directed strategy

4.5.1 Reduction to a search problem

Now consider the Directed sampling strategy: we can directly sample any goal i at

any time t in order to find a bug. In this case we can reduce our problem to an

25

equivalent search problem.

The following problem corresponds to a class of Multi-Armed Bandit problems

(Simple Family of Alternative Bandit Processes), presented by John Gittins in [4].

Definition 1 (Search problem (Problem 3 in [4])). A stationary object is hidden in
one of n boxes. The probability that a search of box i finds the object if it is in box i is
qi. The probability that the object is in box i is pi, and changes by Bayes’ theorem as
successive boxes are searched. The cost of a single search of box i is Ci. How should
the boxes be sequenced for search so as to minimize the expected cost of finding the
object?

Our problem can be reduced to a search problem as follows.

Our problem: The searched ‘object’ is a single error that exists in one of k goals.

The probability that a sampling of goal i finds the error conditional on the error

being in goal i is ni

Ni
. The probability that the error is in goal i is pi and changes by

Bayes’ theorem after each sample. Denote by Ci the cost of a single sample in goal i.

In what order should we sample the goals in order to minimize the expected cost of

finding the error? This problem is equivalent to the search problem above.

In Sect. 4.5.2 we will discuss the optimal strategy that leads the expected sampling

cost until bug detection to minimum. We will examine the optimal strategy in the

recurring and the non-recurring cases of our model.

4.5.2 The optimal strategy in terms of cost: recurring case

In the formulas below we use ni

Ni
instead of qi as in the original formulas in [4].

Assume Ci = const is the cost of a single sample in goal i. Let C(i, j) be the total

cost of j samples in goal i (C(i, j) = j ∗ Ci). The expected overall cost of finding an

error by [4] is:
n∑

i=1

pi ∗
∞∑

j=1

(
1− ni

Ni

)j−1 ∗ ni

Ni

∗ C(i, j) . (4.15)

Gittins shows how to associate a value with each goal, called the index of that

goal, which is then used for choosing the next goal to search.

26

After j unsuccessful searches in goal i, the appropriate index of goal i is:

vi(j) = sup
N>j

∑N
r=j+1 pi ∗

(
1− ni

Ni

)r−1 ∗ ni

Ni

(N − j) ∗ Ci

. (4.16)

Since
(
1− ni

Ni

)r−1
is a decreasing function of r the maximum is reached at N = j+1:

vi(j) =
pi ∗

(
1− ni

Ni

)j ∗ ni

Ni

Ci

. (4.17)

This means that it is sufficient to compute a value vi(j) for any goal i only for one

step forward, which means that this is a greedy strategy :

Definition 2 (Greedy strategy). A greedy strategy is a strategy that makes the locally
optimum choice at each stage with the hope of finding the global optimum.

It follows from (4.17) that the greedy strategy is an optimal strategy in the recur-

ring case with a fixed cost.

In the formulas (4.16, 4.17) Gittins uses a-priory probabilities pi, that in fact

change after j unsuccessful searches in the box i into posterior probabilities p′i by

Bayes’ theorem proportionally to pi ∗
(
1 − ni

Ni

)j
. From (4.17) it follows that the

optimal policy is that of conforming to the index p′i ∗ ni

Ni
/Ci.

If we adopt the convention that the a-priory probabilities pi change according to

Bayes’ theorem then the optimal policy for a search problem is a policy conforming

to the index pi ∗ ni

Ni
/Ci (Theorem 8.1 [4]). The optimality of this policy is proved in

various papers (for example in [6]).

Following Theorem 8.1 in [4] under the optimal policy the goal i is sampled next

if its index is:
pi ∗ ni

Ni

Ci

= max
j

pj ∗ nj

Nj

Cj

. (4.18)

Conclusion: The greedy strategy is optimal if a cost of one sample is fixed (Ci =

const).

27

4.5.3 The optimal strategy in terms of cost: non-recurring
case

Search problem (non-recurring case): Suppose now that the probability of finding an

error on the j-th search of goal i conditioned on not finding it before, and provided

it is in box i is ni

Ni−j+1
, and that the cost of the j-th search of goal i is Cij.

The expected total cost required to find the object by [4] is now:

E

{
n∑

i=1

pi ∗
∞∑

j=1

j−1∏
r=1

(
1− ni

Ni − r

) ∗ ni

Ni − j
∗ C(i, j)

}
, (4.19)

where C(i, j) is the total cost of j searches in goal i. Note that unlike the recurring

case, which was discussed in Sect. 4.5.2, here C(i, j) is not necessarily equal to j ∗Ci

where Ci is some fixed cost, because there is a different cost for each sample in the

same goal.

Therefore the optimal strategy for the search problem is that based on an index,

which now takes the form:

vi(xi(j)) = sup
N>j

piE

{
∑N

r=j+1

∏r−1
s=j+1(1− ni

Ni−s+1
) ∗ ni

Ni−r+1
|xi(j)

}

E

{
∑N

r=j+1 Ci,r|xi(j)

} , (4.20)

where xi(j) denotes that a goal i is searched at the j-th time, N is an integer-

valued stopping variable for goal i and pi is a posterior probability that an error is in

goal i.

Conclusion: In the generalized case the optimal sampling strategy is not greedy -

we choose the next goal by the evaluation of the expected benefit over time N .

However we want to prove the following claim.

Claim 2. The greedy strategy is optimal relatively to the expected cost until error
detection when the cost of a single sample in each goal is non-decreasing.

Proof. 2 A greedy strategy is optimal in non-recurring case when:

pi ∗ ni

Ni−j+1

Ci,j

≥
pi ∗ ni

Ni−j+1
+ pi ∗

(
1− ni

Ni−j+1

) ∗ ni

Ni−j

Ci,j + Ci,j+1

2The claim was proved by Laurent Fourner from IBM.

28

First, recall the inequality:
For any a, b, c, d > 0

a

c
<

a + b

c + d
<

b

d
⇔ a

c
<

b

d
. (4.21)

Using (4.21) we can express a condition for optimality of the greedy strategy in
the following manner:

pi ∗ ni

Ni−j+1

Ci,j

≥
pi ∗

(
1− ni

Ni−j+1

) ∗ ni

Ni−j

Ci,j+1

. (4.22)

From (4.22) it follows that if:

Ci,j+1 ≥ Ci,j ∗ Ni − j + 1− ni

Ni − j
, (4.23)

then the subexpression of (4.20)

∏j−1
r=1

(
1− ni

Ni−r

) ∗ ni

Ni−j

Ci,r

is a decreasing function of r and, like in the recurring case, the maximum in (4.20) is
reached at N=j+1.

Conclusion: The non-decreasing cost of directed samples in each goal i leads to

the optimality of the greedy strategy in the non-recurring case in our model.

4.5.4 The optimal strategy in terms of probability to expose
an error

Gittin’s proof only considers the optimal expected cost. In this section we show

that Gittin’s indices are optimal also in terms of the probability to expose an error,

assuming the cost is fixed.

Denote by S = {S1, S2, . . . , } a sampling strategy, where Si denotes a decision

made at time i ≥ 1. Denote by P (S, t) the probability to expose an error with

strategy S up to time t.

Proposition 2. Let S be a greedy sampling strategy following the indices in (4.18)
and using a constant cost (Ci = C for all i). Then the probability to expose an error
up to any time t under S is maximal.

29

This proposition is correct for both the recurring and nonrecurring case. The

proof for the recurring case appears in Appendix B3.

A proof of Proposition 2: non-recurring case

Proof. (⇒) Denote by S the greedy strategy as specified in the proposition, and by
S ′ any other strategy. Strategies can be seen as a series of decisions. Assume we are
considering the suffixes of the decisions made by the two strategies, starting from the
first time they made a different decision. Call that time ‘t’. Denote by Dt an error
distribution at time t, by u(i)t a number of unsuccessful samples in goal i up to time
t. Let pt

i denote the probability of the error being in goal i at time t, for any goal i.
Note that the value of pt

i depends on the order of samples prior to time t. Let P(find
an error | St = i) denote a probability to find an error in goal i at time t with the
strategy S.

We prove (⇒) by induction.
Base: t = 1. Since S is greedy and P(find an error | S1 = i) = maxj pt

j ∗ nj

Nj−u(j)t−1
,

P(find an error | S1 = i) ≥ P(find an error | S ′1 6= i) is true for t = 1. Therefore
P (S, 1) ≥ P (S ′, 1).

Assumption: Assume that P (S, t) > P (S ′, t) is true for any time n ≤ t.
Step: Now we prove that P (S, t + 1) > P (S ′, t + 1) is true.
Assume St = i (that is, S decides on goal i at time t). After unsuccessful search in

goal i at time t the new error distribution Dt+1 at time t + 1 is computed as follows.
The probability pj of an error being in any goal j changes by Bayes’ theorem:

pt+1
j = P(error is in goal j at time t + 1) =

= P(error is in goal j at time t) ∗ 1

bug was not found at time t in goal i

= P(error is in goal j at time t) ∗ 1

1− pt
i ∗ ni

Ni

. (4.24)

After adding constraints4 the probability to find an error if the error is in goal i is
equal now to ni

Ni−u(i)t−1−1
and the probabilities to find an error if the error is in goal

j stay unchanged for any goal j 6= i (
nj

Nj−u(j)t−1
=

nj

Nj−u(j)t
).

Under a greedy strategy S we sample at time t + 1 a goal with the highest prob-
ability to expose an error. Assume such a goal at time t + 1 is the goal k.

The following lemma is proved in Appendix B for the recurring case:

3The proof for the recurring case is by Laurent Fournier from IBM.
4Recall that in the non-recurring case we add constraints in order to exclude the assignment that

have already been sampled before.

30

Lemma 1. Let i, j, k, m be indices of goals.

{(
P(find an error in goal i at time t) > P(find error in goal j at time t)

)
∧(

P(error is in goal k at time t) > P(error is in goal m at time t)
)}

⇒(
P(error is in goal k at time t + 1 | error was not found in goal i at time t) >

P(error is in goal m at time t + 1 | error was not found in goal j at time t)
)

.

(4.25)

This lemma holds in the nonrecurring case as well, although there is a minor
change in the proof, because the probability at each step changes also due to the
change in the sizes of the goals Ni.

Proof. The left-hand side of B.2 in our case is equivalent at time t to:

pt
i ∗ ni

Ni−u(i)t−1
> pt

j ∗ nj

Nj−u(j)t−1
∧

pt
k > pt

m .
(4.26)

It follows from (4.26) that

1

1− pt
i ∗ ni

Ni−u(i)t−1

>
1

1− pt
j ∗ nj

Nj−u(j)t−1

. (4.27)

The probabilities of having an error in goal k, m at time t + 1 change as follows:

pt+1
k = P(error is in goal k at time t + 1) =

P(error is in goal k at time t + 1 | error was not found in goal i at time t) .

According to (4.24), this is equal to:

pt
k ∗

1

1− pt
i ∗ ni

Ni−u(i)t−1

,

and similarly,

pt+1
m = P(error is in goal m at time t + 1) =

P(error is in goal m at time t + 1 | error was not found in goal j at time t) =

pt
m ∗

1

1− pt
j ∗ nj

Nj−u(j)t

.

We now need a lemma that is proved in Appendix B (the proof of which does not
rely on the model being recurring or non-recurring):

31

Lemma 2. If a goal with the highest probability of finding the error is sampled at
time t without success, then the probability of having an error in the other goals at
time t + 1 increases maximally compared to any other choice at time t.

Following Lemma 2, for all k 6= i pt+1
k increases maximally if at time t we sampled

the goal with the highest probability to find the error.
Then it follows from (4.26) and (4.27) that at time t + 1:

pt
k ∗

1

1− pt
i ∗ ni

Ni−u(i)t−1

> pt
m ∗

1

1− pt
j ∗ nj

Nj−u(j)t−1

or put another way:
pt+1

k > pt+1
m ,

which is equivalent to the right-side of Lemma 1.

The probabilities to find an error in goal k if it is in goal k or in goal m if it is in
goal m stay unchanged in time t + 1. That is,

nk

Nk − u(k)t−1

=
nk

Nk − u(k)t

,

nm

Nm − u(m)t−1

=
nm

Nm − u(m)t

.

Following Lemma 1

pt+1
k ∗ nk

Nk − u(k)t

> pt+1
m ∗ nm

Nm − u(m)t

.

Therefore we obtain:

P(find an error in goal k at time t + 1 | an error was not found in goal i at time t) >

P(find an error in goal m at time t + 1 | an error was not found in goal j at time t) ,

and the following property holds:

P (S, t+1) > P (S ′, t+1|S ′t = i, S ′t+1 6= k) > P (S ′, t+1|S ′t 6= i, S ′t+1 6= k) = P (S ′, t+1) .

Chapter 5

Testing Model 3

5.1 Model definition

The aim in this testing model is to cover exactly N goals with minimum cost, assuming

each goal contains the same number of assignments. This model assumes recurring

sampling.

5.2 Test generation strategies

• Random: See Sect. 3.2.

• Directed : See Sect. 3.2.

• Hybrid : A strategy that combines the two previous ones. The problem is to

find the optimal point to switch between two strategies.

Assume the following cost of a single sample, in each of the generation strategies:

• Random: cost = 1.

• Directed : cost = C.

• Hybrid : the cost is calculated as 1 as long as the testing is random, and C

otherwise.

32

33

5.3 Expected sampling cost

We analyze the cost of covering N samples with the three strategies:

1. Random. The assignments for the next sample are chosen randomly over the

space of all goals. Let i denote the number of goals already covered. Hence, there

are N − i goals left. Also, let SN−i denote the number of samples required for

covering the first of the remaining N−i goals. SN−i is distributed Geometrically,

and its expected value is:

E(SN−i) =
1

pi

=
N

N − i
. (5.1)

The expected total cost for covering N goals with the random sampling strategy

is:

E(total) =
N−1∑
i=0

1 ∗ E(SN−i) =
N−1∑
i=0

N

N − i
. (5.2)

Driving N to infinity yields

lim
N→∞

N−1∑
i=0

N

N − i
= N ∗ log N. (5.3)

2. Directed. The number of samples for covering N goals is exactly N and the

total cost of sampling is:

E(total) = N ∗ C. (5.4)

3. Hybrid. In this strategy first N1 goals are covered by the random strategy, and

then N2 = N −N1 goals are covered with the directed sampling strategy. The

expected total cost is:

E(total) = E(totalN1) + E(totalN2) =

N1∑
i=0

N

N − i
+ N2 ∗ C. (5.5)

34

5.4 Optimal sampling strategy in terms of ex-

pected sampling cost

It is obvious that the Directed strategy is better than the Random one up to

a given, computable cost C. Otherwise the Random strategy is preferred. The

Hybrid strategy uses the advantages of both strategies. This strategy combines

first N1 cheap random samples with N2 expensive directed samples in order to

achieve the optimal result. The problem is to find the best value of N1 (in other

words, when to switch between the strategies, which we will call the switch

point). From (5.5) the switch point is reached when:

C ∼ N

N −N1

. (5.6)

In other words, the switch point is when the average cost of samples until

covering a new goal with the random sampling equals to the cost of one directed

sample. The switch point can be computed from (5.6) a-priory. There is no

advantage to deciding the size of N1 dynamically, i.e., during the testing process

in this case.

Chapter 6

Testing Model 4

6.1 Model definition

In the previous model we defined a testing model with a fixed cost for performing

directed sampling. In Testing Model 4 we consider a more general and realistic model.

As in the previous model, here we also need to cover N goals. In this model,

however, after covering one or more goals, constraints are added to rule out their

associated assignments, and random sampling continues from there with a different

cost. When constraints are added this way, we say that the testing process passed

a level. The cost of sampling in level i is denoted by Ci (the cost changes in each

level because of the different number of constraints). Let Ni be the number of goals

covered at level i. Then N =
∑k

i=1 Ni for some k ≥ 1.

6.2 Expected sampling cost

The total number of goals to be covered after i levels is N −∑i
l=1 Nl. Let j denote

the number of new goals that have already been covered in level i. There are N −
∑i−1

l=1 Nl − j remaining goals. Like in Model 3, the number of samples required for

35

36

covering the first of the remaining N − ∑i−1
l=1 Nl − j uncovered goals is distributed

geometrically. The expected number of samples until covering a single goal is thus:

N −∑i−1
l=1 Nl

N −∑i−1
l=1 Nl − j

.

The expected number of samples until covering Ni j goals in level i is equal to:

Ni−1∑
j=0

N −∑i−1
l=1 Nl

N −∑i−1
l=1 Nl − j

.

The expected total cost of covering N goals in this model is:

E(N) =
k∑

i=1

E(Ni) = C1 ∗
N1−1∑
j=0

N

N − j
+C2 ∗

N2−1∑
j=0

N −N1

N −N1 − j
+ . . .+Ck ∗Nk , (6.1)

where k is not known a-priori.

Like in testing model 3, the optimal strategy is the one that minimizes the total

cost of covering the N goals. The problem is to find all the points N1, . . . , Nk from

equation (6.1) for switching among these strategies in order to reach the optimal

result.

6.3 Two sampling strategies

We now consider two sampling strategies, neither of which is optimal. Both strategies

calculate, after covering a new goal, whether it is better to add constraints that

remove all covered goals so far (that were not yet removed), or to keep sampling

without adding such constraints. The difference between the two strategies is that

the first one calculates the expected cost of covering all the remaining goals with both

options, whereas the second strategy considers only the expected cost of covering the

next uncovered goal.

6.3.1 Strategy I

Two things happen when we stay in level i:

37

i i+1 i i+1

b

c

a

j

j+1

Figure 6.1: Illustrating the two options of switching to level i + 1 after j or j + 1
samples in level i.

• The number of goals that are covered increases, and since we do not rule them

out, the expected number of samples until covering the next goal – and hence

the cost – increases.

• Switching to level i + 1 later, decreases the cost of finding the remaining un-

covered goals, because there will be less goals in the search space in level i + 1,

and less goals to cover. Hence the cost decreases.

We would like to find the point in which the increase in cost due to the first effect is

higher than the reduction in cost due to the second effect. Fig. 6.1 illustrates the two

options in level i: whether to stay for the next goal j + 1 in level i (right) or switch

to level i + 1 (left). We would like to switch if the cost of the segment a in the figure

is smaller than the cost of the segments b + c.

• a is the cost of covering N − (
∑i−1

l=1 Nl)− j uncovered goals in level i + 1,

• b is the cost of covering goal j + 1 in level i, and, finally,

• c is the cost of covering N − (
∑i−1

l=1 Nl)− j − 1 uncovered goals in level i + 1.

38

Thus, we switch if a < b + c, or, equivalently, if:

Ci+1 ∗
N−∑i−1

l=1 Nl−j−1∑
t=0

N −∑i−1
l=1 Nl − j

N −∑i−1
l=1 Nl − j − t

< Ci ∗ N −∑i−1
l=1 Nl

N −∑i−1
l=1 Nl − j

+

Ci+1 ∗
N−∑i−1

l=1 Nl−j−2∑
t=0

N −∑i−1
l=1 Nl − j − 1

N −∑i−1
l=1 Nl − j − 1− t

. (6.2)

6.3.2 Strategy II

In this strategy after covering a new goal, we make a decision if to cover the next

goal in level i or in level i + 1. We move to level i + 1 if:

Ci+1 ∗ N −∑i−1
l=1 Nl − j

N −∑i−1
l=1 Nl − j

< Ci ∗ N −∑i−1
l=1 Nl

N −∑i−1
l=1 Nl − j

. (6.3)

The two sides of this test reflect the cost of covering the next goal in levels i + 1

and i, respectively. Note that the left-hand side is equal to Ci+1. The reason that

the expected number of samples until covering the next goal is 1 is that when moving

to the next level, all goals that were previously covered are excluded by constraints.

Hence any sample hits a new goal.

Chapter 7

Related work

Prior work that we are aware of used the same two measures that we use here: the

probability to find an error if it exists and the cost of finding it. However, they all

focused on random testing, and ignored the possibility of a coverage model combined

with directed sampling as in our testing models. In the rest of this section, then, we

describe various measures of testing quality.

Fault simulation is a common method for estimating the quality of a testing

method, the quality of a given set of tests, or the progress of a testing effort. It

consists of simulating a circuit in the presence of faults which are artificially inserted

into the circuit by the tester, and checking how many of them can be discovered by the

test method. With the increase in the number of gates in the circuit, the number of

possible faults increases, which results in high computational time for a complete fault

simulation. To overcome the high computational requirements, statistical sampling

methods have been proposed. In fault sampling, a subset of the total faults known as

fault sample is randomly selected from a set of all possible faults and used for fault

simulation. The percentage of faults found, known as the sample coverage, can be

used to predict within a small error range the fault coverage, which is the percentage

of real faults that are covered by the test vectors in the design1. This technique is

1Fault coverage should not be confused with coverage related to a coverage model.

39

40

frequently used to evaluate the quality of fault-coverage models.

Fault simulation and sampling is not the only way to estimate fault coverage. For

example, the CAD-tool PROTEST (Probabilistic Testability Analysis), presented in

[8], estimates the fault detection probability (the probability to cover an error) and

the necessary number of tests, called the test lengths, for achieving the required fault

coverage. The fault detection probability is computed with a simple model: it is

computed according to the probability of some logical component having a specific

value assuming that there exists a single path from this component to a primary

output (this assumption is not realistic). This can be thought of as estimating the

value of ni/Ni in our second model, i.e., estimating the probability of detecting an

error in a given partition (a logical component in their case). Their work focuses on

random sampling only.

In [7] the STAtistical Fault Analysis (STAFAN) is proposed as an alternative to

fault simulation. In this analysis, two probabilistic characteristics of circuit nodes,

called controllability and observability, are estimated from signal statistics obtained

from fault-free simulation. The unbiased fault detection probability on a path is esti-

mated as a product of the controllability of the nodes of the path and the observability

of this path on an output. Hence, not only overall fault coverage for a given set of

input vectors and the number of faults is estimated, but also a list of potential faults

that are not likely to be found with this test-set is given (these are the faults that

their computed detection probability is low).

In [2] a simple model for projecting the cost of ATPG is based on two phases: in

Phase I the distribution of faults detected per number of tests is exponential, whereas

in phase II it is close to a linearly decreasing function. In other words, in Phase II

each additional test tends to detect fewer faults relatively to Phase I. As a result, the

cost/effectiveness of test generation in Phase I is better than in Phase II. The author

claims that in the general case, the crossover from Phase I to Phase II is a gradual

process. The empirical results show that it occurs typically after 65% – 85% of fault

covering.

41

Their work somewhat reminds of our 4th model, in the sense that in the 4th model

we also attempt to find the switching point(s): we switch when the probability to

cover a new goal in level i is lower than the probability to cover the new goal in level

i + 1 we switch to level i + 1. The difference is that while in [2] switching means

to stop testing, we add constraints and continue testing. In our model the switching

point is not constant, rather it is computed according to various assumptions about

the cost.

An accurate fault coverage probabilistic model is presented in [3]. A cost-based

analysis finds a stoping point in fault simulation, evaluates fault coverage at this

point and predicts fault coverage for longer test length. The prediction process is

defined as follows: first, a relatively small number of random input vectors is chosen,

and several check-points in the test process are added by a tester. At each check-

point the stopping criteria are used to decide whether to stop or continue the fault

simulation. The authors define two stopping criteria for fault simulation: a threshold

for cost/benefit ratio and a lower bound on the desired fault coverage. If one of

them is met, the fault simulation is stopped, the fault coverage is estimated, and

the prediction for the longer test length is calculated. Otherwise, the additional

tests are used to continue the fault simulation. In addition to the estimation of the

expected fault coverage, a lower bound on the variance of this value is estimated as

well. Variance’s value is used for computing a more precise expected fault coverage,

which predicts more accurately the actual fault coverage.

Bibliography

[1] http://www.haifa.ibm.com/projects/verification/coverage advisor/.

[2] Prabhakar Goel, Test generation cost analysis and projections, Proceedings of the

17th Design Automation Conference, 1980, pp. 77–84.

[3] Shashank K. Mehta Hailong Cui, Sharad C. Seth, Modeling fault coverage of

randome test patterns, Journal of Electronic Testing: Theory and Applications

19 (2003), 271–284.

[4] Gittins John, Multi-armed bandit allocation indexes, Prentice-Hall, Englewood

Cliffs, N.J., 1989.

[5] Shmuel Ur Avi Ziv Oded Lachish, Eitan Marcus, Hole analysis for functional

coverage data, 39th Annual ACM IEEE Design Automation Conference, 2002,

pp. 807–812.

[6] Weber Richard, On the gittins index for multiarmed bandits, The Annals of Ap-

plied Probability 2 (1992), no. 4.

[7] Vishwani D. Agrawal Sunil K. Jain, Stafan: An alternative to fault simulation, 2

(1985), 38–44.

[8] Hans-Joachim Wunderlich, Protest: A tool for probabilistic testability analysis,

22th Design Automation Conference, 1985, pp. 204–211.

42

Appendix A

Optimal number of directed

samples in the Hybrid strategy

We want to find the strategy that leads to a minimum the probability not to find

an error - an optimal point of the function f(D). We can approximate this discrete

function to a continues one. A natural technique for solving this problem is by

computing ∂f(D)
∂D

:

∂f(D)

∂D
=

k∑
i=1

pi ∗
[((

1− ni

N

)M ∗ (
1− ni

N

)−D
)′
∗

(
1− ni

Ni

)D
k

+

+
(
1− ni

N

)M−D

∗
((

1− ni

Ni

)D
k

)′]
=

=
k∑

i=1

pi ∗
[(

1− ni

N

)M
(
− ln

(
1− ni

N

) ∗ (
1− ni

N

)−D
)

+

+
(
1− ni

N

)M−D

∗ ln
(
1− ni

Ni

)
∗

(
1− ni

Ni

)D
k
]

=

=
k∑

i=1

pi ∗
(
1− ni

N

)M−D

∗
[
ln

(
1− ni

Ni

)
∗

(
1− ni

Ni

)D
k −

− ln
(
1− ni

N

)]
. (A.1)

We want to find a value of D for which this derivation is equal to 0 (the minimum

43

44

of the function f(D). The difficulty of finding an optimal point is in the sum of

components: each of them may have any value. Thus we are unable to extract an

optimal value of D from (A.1). We can find the minimal value of f(D) for a given

partition only by a numeric solution.

Appendix B

A proof of Proposition 2: recurring

case

Proposition 2. Let S be a greedy sampling strategy following the indices in (4.18) and

using a constant cost (Ci = C for all i). Then the probability to expose an error up

to any time t under S is maximal.

The Proposition 2 for recurring case is proved by Laurent Fournier from IBM.

Proof. (⇒) Denote by S the greedy strategy as specified in the proposition, and by

S ′ any other strategy. Strategies can be seen as a series of decisions. Assume we are

considering the suffixes of the decisions made by the two strategies, starting from the

first time they made a different decision. Call that time ‘t’. Denote by Dt an error

distribution at time t. Let pt
i denote the probability of the error being in goal i at

time t, for any goal i. Note that the value of pt
i depends on the order of samples prior

to time t. Let P (St = i) denote a probability to find an error in goal i at time t with

the strategy S.

Assume in contradiction that exists another policy S ′ that P (S ′, t′) > P (S, t′).

45

46

Assume that all decisions Si = S ′i until time t−1 and at time t we make first different

decision St 6= S ′t.

Since S is greedy, the decision St = i is better than any other decision S ′t 6= i at

time t. Since pt
i ∗ ni

Ni
= maxj pt

j ∗ nj

Nj
and P (S, t− 1) = P (S ′, t− 1), P (S, t) > P (S ′, t).

We proved that P (S, t) is maximal up to time t. Now we want to prove that this

property holds for t + 1.

Assume the second after pt
i ∗ ni

Ni
maximal value of probability to expose an error

at time t is pt
j ∗ nj

Nj
. In the proof we use the following lemma (this lemma is equivalent

to Lemma 2 in Sec. 4.5.4):

Lemma 2. If goal with the highest probability of finding an error in it is sampled at

time t, then the probability of having an error in the other goals at time t+1 increases

maximally compared to any other choice at time t.

Proof. The Lemma 2 is proved by Bayes’ theorem:

pt+1
j =

= P(error is in goal j at time t + 1 | error was not found at time t in goal i) =

=

P(error was not found at time t in goal i | error is in goal j at time t)∗
∗P(error is in goal j at time t)

P(error was not found at time t in goal i)
=

=
P(error is in goal j at time t)

P(error was not found at time t in goal i)

(B.1)

It follows that pt+1
j increases maximally at time t + 1 if at time t an error was not

found in goal i.

Therefore the probability to find an error in goal j increases maximally at time

47

t+1 if at time t we sampled goal i. If at time t+1 a goal i still has the highest value

of pt+1
i ∗ ni

Ni
, then St+1 = i and:

P (S, t + 1) = P (S, t + 1|St = i, St+1 = i) > P (S, t + 1|St = i, St+1 6= i) >

> P (S, t + 1|St 6= i, St+1 6= i) ≥ P (S ′, t + 1|S ′t 6= i, S ′t+1 6= i) = P (S ′, t + 1)

Otherwise, St+1 = j:

P (S, t + 1) = P (S, t + 1|St = i, St+1 = j) > P (S, t + 1|St = i, St+1 6= j) >

> P (S, t + 1|St 6= i, St+1 6= j) ≥ P (S ′, t + 1|S ′t 6= i, S ′t+1 6= j) = P (S ′, t + 1)

As we can see, a decision St+1 leads to maximal probability to expose an error up

to time t + 1. We proved that P (S, t + 1) > P (S ′, t + 1). Now we prove that the left

side of our claim holds for time t + 2.

Since S is greedy, we select at time t+1 a goal with the probability to find an error

higher than in a goal selected under S ′. For comparison of P (S, t+2) and P (S ′, t+2)

we use the following lemma (this lemma is equivalent to Lemma 1 in Sec. 4.5.4):

Lemma 1. Let i, j, k, m be indices of goals.

{(
P(find an error in goal i at time t) > P(find bug in goal j at time t)

)
∧

(
P(error is in goal k at time t) > P(error is in goal m at time t)

)}
⇒

(
P(error is in goal k at time t + 1 | error was not found in goal i at time t) >

P(error is in goal m at time t + 1 | error was not found in goal j at time t)
)

.

(B.2)

48

Proof. Assume at time t an error was not found in goal i:

pt+1
k =

= P(error is in goal k at time t + 1 | error was not found at time t in goal i) =

=

P(error was not found at time t in goal i | error is in goal k at time t)∗
∗P(error is in goal k at time t)

P(error was not found at time t in goal i)
=

=
P(error is in goal k at time t)

P(error was not found at time t in goal i)

(B.3)

Similarly:

pt+1
m =

= P(error is in goal m at time t + 1 | error was not found at time t in goal j) =

=

P(error was not found at time t in goal j | error is in goal m at time t)∗
∗P(error is in goal m at time t)

P(error was not found at time t in goal j)
=

=
P(error is in goal m at time t)

P(error was not found at time t in goal j)

(B.4)

Therefore the following result obtained:

P(error is in goal k at time t)

P(error was not found in goal i at time t)
>

P(error is in goal m at time t)

P(error was not found in goal i at time t)
>

P(error is in goal m at time t)

P(error was not found in goal j at time t)

or put another way:

P(error is in goal k at time t + 1 | error was not found in goal i at time t) >

49

P(error is in goal m at time t + 1 | error was not found in goal j at time t) .

Now assume St+1 = j and a goal with the maximal probability to find an error is

sampled under S at time t + 2. Thus, by Lemma 2:

P(find an error in goal j at time t + 1) > P(an error in goal l at time t + 1)∧
P(error is in goal n at time t + 1) > P(error is in goal m at time t + 1) ⇒
P(find an error in goal n at time t + 2) > P(find an error in goal m at time t + 2)

(B.5)

Since S ′t 6= i, S ′t+1 6= j and the fact that S is greedy follows:

P (S, t + 2|St = i, St+1 = j) > P (S ′, t + 2|S ′t 6= i, S ′t+1 6= j) .

Therefore the Proposition 2 holds for t + 2:

P (S, t + 2) > P (S ′, t + 2)

The proof may be continued by induction using Lemmas 1 and 2. The Proposition

2 holds for any time t in contradiction with assumption that exists time n ≥ t such

that under non-greedy strategy S ′ P (S ′, n) > P (S, n).

