
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 192, 1974

A PROBABILISTIC APPROACH TO HP(R") («)
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D. STROOCK AND S.R.S. VARADHAN

ABSTRACT. The relationship between Hp(Rd), 1 < p < co, and the integrability of
certain functionals of Brownian motion is established using the connection between
probabilistic and analytic notions of functions with bounded mean oscillation. An
application of this relationship is given in the derivation of an interpolation theorem for
operators taking H\Rd) to L\Rd).

Introduction. The purpose of this paper is to give a "soft" analytic treatment of
the connection between Brownian motion and the theory of Hp(Rd), 1 < p
< co. The original relationship between these two subjects was discovered by
Burkholder, Gundy, and Silverstein [2] for Sx. Moreover, we have learned that
Burkholder and Gundy have recently extended their earlier result to Rd. The
route they take is more refined than ours and establishes the connection for all
0 <p < oo, whereas our technique restricts us to p > 1. Nonetheless, our
method avoids the difficult estimates on which theirs turns and has some nice
dividends of its own.

There are three contexts in which we discuss Hp(Rd). The first of these (cf. §1)
is described in terms of Wiener martingales having certain integrability proper-
ties. This space is denoted by OC^fl). Second, we talk about those harmonic
functions in Ri+X which become members of %P(Q) when evaluated along
Wiener paths. This space is denoted by %p(Rd.+x). Finally, in §2 we discuss
Hp(Rd) itself, described in terms of Riesz transforms. Theorem (3.3) and its
corollaries establish Hp(Rd) as the boundary values of %p(Rd.+l), and Theorem
(3.1) shows that Hp(Rd) arises as the result of "conditioning" members of %P(Q)
with respect to the first place that a Wiener path exits from Ri+X.

§4 is concerned with a Marcinkiewicz-type interpolation theorem (cf. Theorem
(4.1)) whose proof takes advantage of the above relationships between the
various ways of defining Hp(Rd). As a consequence of this theorem, we are able
to show that Hp(Rd) = Lp(Rd) for 1< p < oo.

It has been pointed out to us by E. M. Stein that essentially the same
interpolation theorem was discovered much earlier by S. Igari [7] using entirely
different methods.
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246 D.STROOCK AND S. R. S. VARADHAN

1. Probabilistic background. Let ñ = C([0, oo),Rä+l) (2) and let z(r,co) denote
the position of the path co at time t. We will use x(t,a) for the first ¿-coordinates
of z(r,co) andy(r,co) for the (d + l)st coordinate. Let 911, = <$)[z(s): 0 < s < t], for
t > 0, and put 911 = a( U/>09H/). Given z = (x,y) G Rd+X, we will denote by Pt
the Wiener measure on (Q, 9lt> starting at z. That is, R(z(0) = z) = 1 and

Pz(z(t + s) E T I 9IL,) = p^+iyaX exPH* - ^)P/20^   (a-s-.i)

for all s, t > 0 and T E <£[Rrf+1].
Let ? = inf {/ > 0: y(t) < 0}. Given z G R*+1 = {(x,y) G R^1 : y > 0}, we

will call the triple <ij(r), 9!t,, PJ} a continuous local martingale on [0,f) if r/ is a real
valued, measurable function on {(/,«) G [0,00) X fl: f(co) > t), i)(-,co) is contin-
uous on [0, f (co)) for ^-almost all co, and there exists a sequence of stopping times
r„ < ? such that t„ / f (a.s.,Pt) and <ij(r A tb),9H„^> is a bounded martingale
for each n. If sup„£'z[|T}(rll)|] < 00, then

til ) m lim !,(/)

exists for ^-almost all co. Moreover, if {ijCt,,)},.^ is uniformly ^-integrable, then
(y(t A f ),911,,/} > is a uniformly Pj-integrable, continuous martingale.

Examples of continuous local martingales on [0,f) are plentiful. For instance,
if A G C2(RÍ+l), then <A(z(/)) -}f¿ Ah(z(s))ds,^t„Pz) is a continuous local
martingale on [0,?) for all z G Ri+1. This can be easily seen by combining the
basic property defining P. with the Doob stopping time theorem applied to
t„ = inf{r > 0: y(i) G (1/«,«) or \x(t)\ > n) A n. See [12] for details.

The continuous version of the Doob decomposition theorem, proved by Meyer
(cf. M. Rao [9]), says that if <r/(f),9IL„.Ç> is a continuous local martingale on
[0,f), then there is a measurable function ^,: [0,00) X ñ -* R such that ¥,(0, •)
= 0, %(;u>) is continuous and nondecreasing on [0,£(co)) for ^-almost all
co, %(t, •) is 9IL,-measurable for all t > 0, and <ij2(r) - %(t),9l„Pzy is a
continuous local martingale on [0,£). Moreover, ^(r A f ) is unique up to a set
of /¿-measure zero. In the example cited above, %(t A £) = J"0'Af \Vh(z(s))\2ds.

The Burkholder-Gundy inequality says that if 0 < p < 00, then there exist
universal constants 0 < ap < Ap < 00 such that

(1.1)     apEz[\%(l;)\>/2] < E:[™Ph(t) - l(0)|'] < APEZ[\%(!;)\>/2]

for all continuous local martingales <ij(r),9H,,^> on [0,£). A nice proof of (1.1)
can be found in the paper of Getoor and Sharpe [5].

Let 1 < p < 00. We will say that ij G %"(Q) if <tj(0 - t,(0),91L„^> is a
continuous local martingale on [0,f) for all z G R^+1 and

(2) CflO, co),Rd+l) is the space of continuous functions on [0,00) with values in Ä-+l.
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(1-2) IMbrw - (sup jRi E^[mpHt) - tj(0)|'] dx^j'' < oo.

Notice that if tj G %P(Q) then, for each v > 0, <tj(/ A £ ) - ^(O),^,,^^) is a
continuous uniformly integrable martingale for almost every x G Rd. There is a
subspace of %p(Sl) which will be of particular interest to us. Namely, let
%p(Rd+i ) be the space of harmonic functions « on R$+x such that

(1.3) IIhHw-^I) - (sup fRi Ex<y ^sup |m(z(/))|'J dxJ ' < oo.

Obviously« G %p(Ri+x) implies % E 9C(Q)and UtjJI^q) < 2||k||3C,(ä<+i), where
T,H(i) = u(z(t A f )).

There is one more class of martingales with which we will have to deal. We will
say that 9 E ®.9H.Ö.(8) if <0(f A £) - 9(Qi),<%L„R/ is a continuous square
integrable martingale for every z E Ri+X and

(1.4) ll0lU.e.(B) - sup ess sup EM[(K) - b\t A 0)2M/2 < ».
z;/>0

As we will see later, the notion of ®.9H.G. martingales is a natural probabilistic
outgrowth of the analytic notion of a function of bounded mean oscillation. The
importance of this class of martingales to us is contained in the following
theorem.

Theorem (1.1). Lei tj G %X(Q) D %2(Q) and 9 G ®.9H.6.(ß). Then for z
E Ri+X :

HUOjCO - Tj(0))o(n]| < 2V*||%W)Jtf(*,G;))n
In particular, there is a universal constant F such that

jR4 \EX,MS) - r,(0)M)]\dx < PllolUe-cm/^^^supJuO) - rj(0)|]¿x

< í1hllxl(B)ll*ll».í«Lft(0)-
A proof of this theorem may be found in [5]. It is the inequality of Fefferman

in the present context.

2. Analytic background. For each 1 <j<d, define Rj on L?(Rd) by the
relation (PV/)A(|) = /"(£//l£l)/(£)• Clearly Rj is a bounded, translation invari-
ant, skew-adjoint operator on L2(Rd) into itself. One can also express the action
of Rj by the use of principal value integrals. Namely,

(2.1) Rjf(x) = limRV*f(x),

where Rjc)(x) = a¿(VW''+l)%oo)(l*l)- The convergence takes place in L2(Rd).
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248 D.STROOCK AND S. R. S. VARADHAN

These operators have an extensive theory and are known as the Riesz transforma-
tions. The book of Stein and Weiss [11] is an excellent reference for this material.

For each 1 < p < oo, let INI*,^ be defined on Lp(Rd) n L2(Rd) by
d

ll/ll//'(*<o = 2 II^/IL'(ä'0»
where R0 is tbe identity. Denote by Hp(Rd) the completion with respect to
\\-\\h'(r*) of the class of / G L"(Rd) D L2(Rd) such that H/IU^ < oo. Observe
that |H|#2(Ä,f) is commensurate with IMbr**) and that H2(Rd) = L2(Rd). We will
see later that this is also the case for all 1 < p < oo, but it is false for /> = 1.
Obviously, the Rj determine unique bounded operators from Hp(Rd) to Lp(Rd).
We will use R, to denote these operators as well. Note that R¡ is determined on
HX(R") by the relation (R,/)A(|) = /({/I* I )/(«)•

Lemma (2.1). The space Hx (Rd) coincides with the class off E Ü (Rd) such that,
for each 1 <j<d, i(Zj/\Z\)J(t) is the Fourier transform of a function in Lx(Rd).

It is immediately apparent from this lemma why Hx (Rd) is smaller than Ü (Rd).
Indeed, iff E Hx(Rd), then (f//|£|)/({) is continuous, since it is the Fourier
transform of an L1 (Rd)-function. Hence a necessary condition for/ G Hl(Rd) is
that fÄ,/(*) dx =j(0) = 0.

There is another class of functions with which we will be concerned; namely,
the John-Nirenberg class of functions having bounded mean oscillation. A
locally integrable function <f> on Rd will be said to have bounded mean oscillation
if

1 c(2-2) IltHuijcw) - SUP|Ô[ Je W*) -4>Q\dx<cc, (3)
where Q runs over the cubes contained in Rd. The space of all such functions is
denoted by B.M.O.(R'/). Actually, it is convenient to think of functions in B.M.O.
(R'O as being defined only up to additive constants. Then one can easily check
that ||-|Ib.m.o.(j?'0 is a complete norm on B.M.O.(R'/). One of the nice facts about
B.M.O.(R'0 is that many maps which do not map L°°(Rd) into itself continuously
map L°(Rd) continuously into B.M.O.(R</). The basic result in this direction is
the following (cf. Fefferman and Stein [3]).

Lemma (2.2). Let K E I) (Rd) be given and suppose B is a constant satisfying
H*llf (*) ̂  B «"d

Then there is a constant C depending only on d and B such that \\K * <í>Hb.m.o.(a<0
< CIMI^,), d. G ü°(Rd).

(3) Here and in what follows, if/is a function on Rd and S Q Rd, then^ denotes that mean
value of/on S.
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Following Fefferman and Stein [3], one can show from Lemma (2.2) that the
Riesz transforms determine a continuous map of L°°(Rd) into B.M.O.(Pd).
Indeed, the mapping with which they work is given by:

(2.3) S&L W* -*) - fHM)*
Notice that the definition here differs from that in (2.1), but the difference is
contained in an additive constant and so does not matter in B.M.O.(Prf).

An immediate consequence of the preceding is the next lemma.

Lemma (23). Leí/ G L2(Rd) and assume that

I/.RJ(x)4>(x)dx £ ^II4>IIb.M.O.(*0

for all <p G L2(Rd) (1 BM.O.(Rd). Thenf G Hx(Rd) and Mhw £ CA, where
C depends only on d.

We next want to give a characterization of B.M.O.(P'/) which will enable us to
relate this class of functions to ®.9L0.(ß). Essential for this is the following
inequality of John and Nirenberg [8].

Theorem (2.1). Suppose <f> E B.M.O.(/?rf) and that ||<í>||b.m.o.(a<o ^ 2~(d+x). Then
for all cubes Q, (l/\Q\) fQ exp[a|<p(x) - +Q\]dx < 2e*>/(2 - «*»)/«■ a < J log 2.
In particular, there exist universal constants Bp, 1 < p < oo, such that

(leí Jo ̂ x) ~ *Q\Pd*) ' - BpM™wy

A nice probabilistic derivation of the above appears in Garsia [4]. Using this
result we are now able to prove the characterization of B.M.O.(P'0 which we will
need. This characterization was first discovered by Gundy for S1. The proof we
give below is based on an idea due to Garsia.

Theorem (2.2). If> G B.M.O.(P¿), then <J>(x)/(l + \x\d+x) G Ii(Rd) and

sup   [py * (<j> - u„,(x,y))2](x) < C||(/)||1.M.0.(Ä<(), (4)
y>0;x^Rd

where C depends only on d. Conversely, if 0(x)/(l + Md+1) G Ii(Rd), then

II^IIb.mo.M < C    sup   [p, * (<f> - u+(x,y))2](x),
y>Q;x£Rd

where C depends only on d.

(*) Here and in what follows, if / is a function on Rd, then Uj(x,y) = py * f(x) is its harmonic
extension to Rd++l, wherepy(x) = bd(y/(y2 + \x\2))«+l)'2.
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250 D. STROOCK AND S. R. S. VARADHAN

Proof. We first observe that there are positive constants a and A depending
only on d such that for all/» > 1 :

1 /       a   r \x/p     I        1   C \x/p
2\s7 W\JB m ~ *Bl"dx)  - VT lefiom ~ +ax'dx)

<2(sup^fB\<Kx)-4>B\"dx^
Vp

where B runs over the balls in Rd. Combining this with Theorem (2.1), we see in
particular that

sup 7gi/B \<¡>(x) - <t>B\"dx < C,||<p||!i/.0.!(Ä,)

for 1 < p < oo.
We next note that

C°    l

where

-d+\y
Py(r) = CdQ.2 +y2yd+3)/2

and cd is a positive constant. Integrating with respect to x, one sees that
Jo00 Py(r)dr = 1.

Now suppose d» G B.M.O.(Rd). In [3] it is shown that c6(*)/(l + l*ld+1)
G Ü(Rd). In particular, u^,(x,y) is well defined. Using the preceding paragraph,
we have:

[Py * Oí» - u^(x,y))2](x) = py * <#>2(x) - (Py * <p(x))2

= Jf Py(r)(<t>2)BMdr - (/0°° py^^dr)

+ C ft-W(*«w) " X" Prv*)^)*) i/r

/•oo /•oo _
+ J0   Py(s)dsJo   PyWtBixj-Qn^fdr.
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We know that ((<b - ç^,))2)^ < C, ||«pIIb.m.o.(a<0- Moreover, 0 < r < s,

IfotM) ~ <í'fi(^)|2d+2 =  K* ~ ^B(x,S))B(x,r)2d*1

< c2(^)rf||<»lfâW')-

Hence

X   Py^^fo Py^^B(x,s)-^>B(x^)2dr

< C^+1)||<í>||I.m.o.(^/0   P,(*)*/0 P,W(J)        dr.

Note that

/•» /-j /s\d/(d+X) /•«> /•* /i\''/<<'+I>
Jo   PyW^Jo py^\r) dr = Jo   Px^)dsk px^\r) dr < °°'

and therefore the first assertion is proved.
To prove the converse statement, let B = B(x, r) be given. Note that

r 11^1
(r2 + |jcf)0+I>/2      /•" (|x|2/r2 + 1)C+1)/2 - 2<«'+1>/2r<'

for |jc| < r. Hence

< C ¿ |tf¿ ) - «+(x, r)p/v(x - I ) dt   Q.E.D.

We conclude this section with an important theorem due to Stein and Weiss.
Let/ G L2(Rd) and define «,(-, v) = py * Rjf for 0 < j < d and v > 0. Then it
is easy to check that the u¡ satisfy the generalized Cauchy-Riemann equations of
M. Riesz (cf. p. 91 of Stein and Weiss [11]). Hence by Theorem (4.14) of [8],
Œo uj)"/2 is subharmonic in P4+1 for a > (d - \)/d. We will not go through the
proof of this fact but will only mention that it can be checked by hand when
d = 1 and a = J. The general proof involves a clever application of elementary
matrix algebra.
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252 D. STROOCK AND S. R. S. VARADHAN

3. A projection theorem.

Lemma (3.1). Suppose </> G B.M.O. (Rd) and let 9+(t) = u^(z(i)), 0 < t < f.
Then 9^ G ®.9H.0.(S2) (5) and there is a universal constant C depending only on d
such that

l|0<t.lla.9M).(O) < C|MIb.m.o.(*')> •

Proof. Observe that for z G Ri+X :

EAW) - 0*{t A O)2 I 9M = di^xE^Mxd)) - «*(z(0)))2]

= Z{!»}P*) * K* - KfWO))2]Wd).
Hence the lemma follows from Theorem (2.2).   Q.E.D.

Lemma (3.2). 7/tj G 30(0) n 0C2(fi) anc/d» G B.M.O.(R<0, íAe«

/RJ¿UMn - ¥0))<K*(O)]l¿*
< CPl|<p||B.M.0.(^/^£^[oSup |t,(0-i](0)|]¿x,

wAere C is the constant in Lemma 3.1 and F is the constant in Theorem 1.1.

Theorem (3.1). For each 1 < p < oo anc/y > 0 /Aere /s a continuous linear map
Uy: %P(Q) -» Lp(Rd), such that ||n^||L,(Ä<0 < \k\\x,m, given by

(3.1) ¡Ri (TLyV)(x)<b(x)dx = ¡RJ EXty[(-n(l) - riOMximdx

for all 4, E U(Rd), \/p + \/q = 1. Moreover, ifr\ E %X(Q), then Uyr¡ G Hl(Rd)
and there is a universal constant Q, depending only on d, such that

(3.2) lln^lU.,^ < CdjRi ̂[0sup Ht) - ij(0)|] dx.

Finally, ifr¡ is bounded, then Uyr¡ is dominated by twice the bound on n.

Proof. When 1 < p < 00 the assertion is trivial. Indeed:

\hE„W)-i®)}xM))]dx\ < h\\w)(f#E„Mtf))\']dxy'

= h\^(ü)({RädxfRdPy(x - iMWdif'

=  lhlliK/(0)ll^llz,«(ÄO»
(5) Note that <u+(z(r)),9ll,,.C> is a continuous local martingale on [0,f), since Am+ = 0. In

particular, u+(z) = Ez[t(x(£))].
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and therefore the right-hand side of (3.1) determines a continuous linear
functional on Lq(Rd).

To treat the case when p = 1, we first suppose that tj G 5C'(ß) !~l 9C2(ß).
Then IL,tj G L2(Rd). Moreover, if <f> G L2(Rd) n B.M.O.(P'/), then by Lemma
(3.2):

\jRj (n^Tj)(x)<b(x)dx  < CF^fRd Ex¡y[0sup |tj(0 - tj(0)|] dx) \\<t>\\BM,om.

Hence, by Lemma (2.3), n^Tj G Hx(Rd) and (3.2) obtains. Given a general
tj G OC'(ß), define tj<°)(i) = ij(f A t0) for 0 < t < £, where t„ = inf{r > 0:
|tj(í AÍ)- tj(0)| > a}. Clearly qW G 30(0) n 9C2(ß) for all a > 0. Also,

¿P^^upJtjW-tjWWI]^

< 2/   P*. J sup |tj(í) - 7,(0)[; sup |i,(r) - tj(0)| > a] dx -» 0
•'* L0<r<f 0£/<í J

as a -* oo. From this and the preceding it follows that Iíyi¡^ tends in Hx(Rd) to
a n,Tj satisfying (3.1) and (3.2).   Q.E.D.

Lemma (33). Let I < p < co and suppose u G %P(RÍ+X). Given h > 0, /er
w(x, y) = «(*, v + h) in Pf. 77je« w G %p(Rd++x) and\\wL,'(M*i) < ll"ILw)-

Proof. Observe that

jRd Ex,y [oS»Pjw(*W)l'] dx = ¿ £*, [osupji<*(/)o</) + A)|'] <&

^   llMll3C(J«í+1)>
where & = inf {r > 0: >{f) < A}.   Q.E.D.

Theorem (3.2). Let 1 < p < oo and u G ^(Pí1-1). Sei Tj„(f) = «(z(r)), 0 < t
< f. P/ie/j T}„ G 9(7 (ß) and the function f = u(;2h) + TIh% is independent of
h > 0. Moreover, u = u{ and ||/||£p(aí) < lluliçK^^^i). Finally, if p — I, then
f E Hx(Rd) and ||/||Ai(A¿) < CHkII^^i), where C depends only on d.

Proof. Let h > 0 be given and set / = u(-,2h) + TIhj}u. Clearly / G L'(P<0.
Moreover, if <J> G Lq(Rd), then

SRJ(x)*(x)dx - ¡Ri u(x,2h)<b(x)dx + jRj Ejftoß) - iMW&))\dx

= fRjEx,h[Vu(n<r<x(n)]dx,
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254 D. STROOCK AND S. R. S. VARADHAN

since

fRj Ex,h[r,u(0)<t>(x(n)]dx = ¡Ri u(x,h)u+(x,h)dx = jRé u(x,2Hft{x)dx.(6)

Define £, = inf [t > 0: y(t) < h/n). Then

jRiEMS)<ti.<t))\dx

= lim jRi Ex,h[u(4Uh/n)u.(x(!;n),h/n)]dx

= lim f   u(x,2h/n)<b(x)dx.
n—*oo J R

Taking ¿>(x) = py(x° — x), we obtain

uf(x°,y) = fRJ(x)py(x° - x)dx = Jim ¡Ri u(x,2h/n)Py(x° - x)dx

= lim u(x°,y + 2h/n) = u(x°,y).
n—*oo

This proves that u = u¡, and, in particular, that u(-,2h) + nAijB is independent of
h > 0. Obviously, from « = uf it follows that H/H^i) < IMIx/W)» /
= limy^0py */ = lim^oty.

Now suppose that p = \. Since /= u(-,2) + n,T/u, and n,i)B G Äl(Ri+l)
satisfies (3.2), it suffices to prove that u(;2) G Hl(Ri+l) and ||t«C-,2>||jVi<jc^)
< CIImII^i^+i). Let g = u(;2) and w = «r Then w(jc,y) = i/(x,y + 2) and
therefore IMI^i^+i) < ||«|Idci(aí+i)- Also we have just seen that g = w(-,2h)
+ n^ for all A > 0. Clearly g G L2(Rd). Given <f> G L2(Rd) D B.M.O.(R1'), we
have

l^sto*«**! = \fR^x,2h)<tix)dx+fRaEx¿(VM)-VÁ0Mx(n)]dx

< \W;2h)\\v(R<)Uh(Ré) + C||m||oc,(aí+i)||<í)||b.m.o.(a'0-

Since ||w(-,2A)||L2(Äj) -» 0 as h -* oo, we see from Lemma (2.3) that g G H*(Rd)
and ||g||Hl(fi<0 < CIImIIk.^^.).   Q.E.D.

Theorem (33). // \<p < oo a«rf / G L'(Rrf), /Ae« m, G ^(Rf) and
HtyllixW) ̂  C-H/HlW wA*re Cp depends only on p. If f G #1(R'9 ene/ u}
= "^ 0 </ < c/, iAe/j «, G Wf ) a/u/ IIm,^.^.) < C||/||„I(Ä,), where C
depends only on d.

Proof. First suppose/ G Lp(Rd) and 1 < p < oo. Then, by Doob's inequality,

ez\ sup |M/(z«)|'l < c;iy|/(x(f))n

(6) We have used the fact that convolution with py is self adjoint.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A PROBABILISTIC APPROACH TO H^r') 255

for all z E Ri+X. Hence

hE^supbMW]^ < CPiRiPy * \f\p(x)dx = Cp\\f\\lrm.

Next suppose / G Hx(Rd) n L2(Rd) and set «, = uRjf, 0 <j < d. By the
theorem of Stein and Weiss mentioned at the end of §2, F = (2o u2)"^2 is
subharmonic in Ri+X for some 0 < a < 1. Hence, by Doob's inequality,

Ez\ sup \uj(z(t))\\ < Ez\ sup |P(z(f))H < C¡¡;Ez[\F(z(n)\Va]Lo<t<{ J Lo</<{ J

and therefore

fRjEx¡y[sup;\uj(z(t))\^dx < C¿£,,,[! \Rjf(x(n)\\dx

= C\\f\\H<(Rd)-

Since Hx(Rd) n L2(Prf) is dense in Hx(Rd), this completes the proof.   Q.E.D.

Corollary (33.1). For each 1 < p < oo, the mapping f-*Ujis an isomorphism
from Lp(Rd) onto %p(Ri+x). Also, f-*uf is an isomorphism from Hx(Rd) onto
%x(Ri+x). Finally, Rp I <j < d, maps Hx(Rd) continuously into itself.

Corollary (332). For each 1< p < oo, Hx(Rd) D L?°(Rd) is dense in Lp(Rd).
Moreover, iff E Lp(Rd) D Lx(Rd), then there exists a sequence {fn} Q Hx(Rd)
n L°(Rd) such thatf„ -*fin Lp(Rd) and supB ||/a l^ < 2\\f\\L«(Rtl).

Proof. Let / G Lp(Rd) for some 1 < p < oo. Define tj(/) = uf(z(t)), 0 < /
< f, and Tja(i) = tj(/ A tJ, 0 < t < f, where t0 = (inf{/ > 0: |tj(í) - tj(0)|
V |x(r)| > a}) A f. Clearly UyT]a E Hx(Rd) n L°°(Rd) for aU a > 0 and y
> 0. Moreover,/- Uyiia = uf(-,2y) + Uy(ri - tjJ. Since uf(-,2y) -» 0 in Lp(Rd)
C) as v -* oo, it remains only to show that Hn^Tj — tj,,)!^ -* 0 as a -* oo for each
v > 0. But

lln^T, - Tja)||; < 2pfRd £,,,[^1^) - Tj(0)|Va <f]¿x-»0   asa-*oo

since Ta 7> I (a.s., R) for all z E Rd++X.   Q.E.D.
Remark (3.1). A slight variation of the reasoning just given yields the following

multi-dimensional analogue of the F. and M. Riesz theorem. Let «q be a
harmonic function in Ri+X. Then uq = uf for some / G Hx(Rd) if and only if
there exist functions ux, ...,ud which are harmonic in P£+1 such that the (d + 1)-
triple (u0, ...,ud) satisfies the generalized Cauchy-Riemann equation of M. Riesz
in Pf-' and

(7) This is obvious, since py -* 0 in L' and H^H/;^*) ■ 1.
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sup í    (2 uj(x,y))   dx < oo.
y>0 jRd \ 0 /

The "only if' statement is obvious; simply take w, = uR¡. To prove the "if"
assertion it is enough to show that u0 E %x(Ri+l). But by the theorem of Stein
and Weiss at the end of §2, we know that (2o u}(x,y))a/2 is subharmonic in Ri+X
for some 0 < a < 1. Hence, reasoning just as we did in the proof of Theorem
(3.3),

j^ EXiy [0sup k(z(/))|] dx < C$ jRd EXty [ (Í uf(x(S„), A))*7'] dx

= cx'l:jRd(^u}(x,h)*jndx

for all 0 < A < y, where & = inf {t > 0: y(r) < A}.
Remark (3.2). We have shown that if / G Lx(Rd) satisfies

(*) sup f  Ex<y    sup \uf(z(t))\ \dx < oo,
V ' y>0 JRd Lu</<f J

then/ G Hx(Rd). In particular, SRjf(x)dx = 0. In fact, using the lemma on p.
225 of Stein [10], it is easy to show that uf(-,y) -* 0 in Ü(Rd) as y -» oo, and
therefore, since the R¡ are continuous on Hx(Rd) into itself and commute with
convolution by pr uf(-,y) -» 0 in Hl(Rd). However, we have found no direct
probabilistic proof of any of these properties of / directly from (*). It would be
interesting to find such a proof.

4. An interpolation theorem. Let 0C°°(ß) stand for the class of 17: [0,00) X Q
-+ R such that <ij(r) — ij(0),9IL,,P) is a continuous local martingale on [0,f) for
each z G Rí+1 and for which there exists a number B < 00 with the property
that

sup  Pz( sup h(i) - 7,(0)1 > b) = 0.

Lemma (4.1). Let {X, % À) be a measure space and suppose 9" is a subadditive
mapping of%x(Q) D 0C°°(Q) into a measurable function on (X,®}. Further, assume
that there exist numbers A,B, and 1 < p < 00 ímcA that

K\H >y)<^fRdEx>y[sup{\v(t)-iK0)|]áx

and

KM >y)< YpfR,Ex,y[sups\v(t) - iK0)l']<fe,
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for all y > 0 and some y > 0. Then for each 1 < r < p, ?TAas a unique extension
to 3Cr(ß) smcA rAar

(4.1) \m\vm < c(¿ P,,,[0supf WO - iK0)|'] <**)'•

The constant C in (4.1) depends only on p,r,A, and B.

Proof. Since 00 (ß) D 90° (0) is dense in 9C'(ß) with respect to the norm on
the right-hand side of (4.1) (cf. the proof of Corollary (3.3.2)), it suffices to prove
(4.1) for tj G 50 (ß) n ^"(ß). Let such an tj be given. For convenience we will
use ||tj|| to denote sup|Tj(/) - tj(0)|. By subadditivity

MM > y) < MMT)I > y/2) + M|5%)l > y/2),
where tjW(í) = tj(/ A ry),   0 < t < f,   tj(y) = tj - tjM,    and Ty = inf [t > 0:
\v(t

MM»I > Y/2) < ^fRjEx,y[h\\P A yp]dx

< ^/^[UtjINItjII < y]dx + 2^/^^(111,11 > y)dx.
Hence

rf0nY-imvM\>y/2)dy

< 2prBfRddxfoX -f^E^M'M < y]dy

+ 2prBfRjdxfQ°° Y-xPx<y(h\\ > y)dy

< 2»rpB¡Rddxj" Y-^dyfJ o'~I^,(||ti|| > a) da

+ 2pBfRdExJh\\r]dx

+ 2"BfRdEx,y[h\\r]dx

= 2pB^fRjExJ\\r,\\r]dx.

Also,

MMal > y/2) < yLe**IMM > y]dx,
and so
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r/o°° y'-xX(\DVM\ > y/2)dy

< 4ArfRádxfQ°° r-2^[N||,||ij|| > y]dy

= A Ar ¡Ridx f™ dyy'-^f" Px,y(\\r,\\ > a) da + yP^iM > y)]

8/4     r

Combining these, we arrive at (4.1).   Q.E.D.

Theorem (4.1). Let (X, % A) be a o-finite measure space and suppose T is a
subadditive mapping of Hx(Rd) D L°°(Rd) into measurable functions on Of,®). If
there exist numbers A, B, and 1 < p < oo such that

H\Tf\ >y)< (A/y)\\f\\H>m
and

Aflr/| > y) < (B/y>)Ml>m
for all y > 0, rAe« for 1 < r < p, T has a unique extension to U(Rd) such that

(4.2) \\Tßm < C\\f\\am.
The constant C depends only on A, B, p, r, and d.

Proof. By Corollary (3.3.2), Hx(Rd) n Lx(Rd) is dense in L'(Rd). Hence it
suffices to prove (4.2) for/ G Hl (Rd) ("1 L" (Rd). Also, we may assume A is finite.

Given y > 0, define «Ç, = T° Uy on 30(2) n 3Cw(ß). Then it is easily
checked that ^ satisfies the hypotheses of Lemma (4.1). Hence ^y has a unique
extension to Vr(Xt) such that

(4.3) ||sr,i,|£,w < c(¿ £v [o^Pfh(') - îK0)|r] ¿x)1/r.

The constant C in (4.3) is independent of y > 0.
Now let / G Hl(Rd) n n°(Rd) be given. Then / = us(-,2y) + Uytffi and so

\Tf\ < \Tuf(;2y)\ + \%rif\. Since «,(-,2y) -* 0 in Lp(Rd), the hypotheses of the
theorem guarantee that TuA\-,2y) -* 0 in Lr(A) as y -* oo. Hence, by Fatou's
lemma,

||7Y||L,W < lim hif II^tj/IL^) < CH^IIjcrp)

< 2C||«rW') < C'Mirw   Q-E-D-
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Corollary (4.1.1). For each 1 <j<d and 1 < p < oo, Rj has a unique
continuous extension to Lp(Rd) into itself. In particular, Hp(Rd) is isomorphic to
L"(Rd)forl<p< oo.(8)

Corollary (4.1.2). Suppose T is a linear map on Hx(Rd) n L2(Rd) into measura-
ble functions on Rd. Assume that

\\Tf\\ûm < A\\f\\ûm
and

I|7'*/IIb.m.o.(ji'') ^ ^II/IIl-cä-o
where T* is the adjoint of T on L2(Rd). Then T has a unique bounded extension as
a map from Hr(Rd) into Lr(Rd) for I < r < 2. Moreover, if T commutes with all
the Rj, 1 <j<d, then T maps Hx(Rd) continuously into itself.

Proof. Suppose/ G Hx(Rd) n L2(Rd) is given. Given <#. G L?(Rd) n L°°(P''),
we have

I/.Rd TfbWàdx ^ C||/||/ii(Äi)IMIi,«>(*i),

and therefore T extends uniquely as a bounded map of Hx (Rd) into Ii (Rd). We
now apply Theorem (4.1) to conclude that Phas a unique bounded extension as
a map from Hr(Rd) into U(Rd), 1 < r < 2. Finally, if T commutes with all the
Rj, then

WRjTßvm = WTRjñow < C\\Rjf\\Him < C'Maim
for all/ G Hx(Rd) n L2(Rd) and 1 <j < d.   Q.E.D.

Corollary (4.13). If K E Lx(Rd) satisfies the conditions of Lemma (2.2), then
\\K * f\\H'(R*) < Cr(B)\\f\\Hr(Rdy 1 < r < oo, where Cr(B) depends only on r and
B.

Remark (4.1). Corollary (4.1.3) contains the hard part of some of Hörmander's
results in [5]. In particular, his result about "almost Ii" operators follows from
Corollary (4.1.3) and the type of reasoning used in showing that R¡ is bounded
onLo°(P¿)toB.M.O.(P<0.
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