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A Probabilistic Approach to Aircraft Conflict Detection

M. Prandini, J. Hu, J. Lygeros, and S. Sastry

Abstract

In this paper, we concentrate primarily on the detection component of conflict detection and resolution schemes operating
at the mid-range and short range level of the air traffic management process.
Probabilistic models for mid-term and short term prediction are introduced. Based on the mid-term prediction model, the
maximum instantaneous probability of conflict is proposed as criticality measure of a two aircraft encounter situation. The
computational issues involved in its estimate are solved by resorting to randomized methods which provide also quantitative
bounds on the level of approximation introduced. As for short range detection, closed-form analytical expressions - though
approximations - for the probability of conflict are obtained by using the short term prediction model. Based on these expres-
sions, an algorithm for decentralized conflict detection and resolution that generalizes potential fields ideas to path planning in
a probabilistic dynamic environment is suggested.
The proposed approaches are shown to be promising using Monte Carlo simulations.
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I. Introduction

Despite technological advances such as the availability of powerful on-board computers and advanced
positioning and communication systems as, for example, Global Positioning System (GPS) and Automatic
Dependence Surveillance-Broadcast (ADS-B), the current Air Traffic Management System (ATMS) is still
based on

• A rigidly structured airspace, the aircraft being forced to fly along predefined jetways without the possibility
of selecting optimal routes and utilizing favorable winds (see Figure 1), with a few exceptions at those
altitudes where the air traffic density is low;
• A centralized, mostly human-operated system architecture, the Air Traffic Controller (ATC) on the ground
being responsible of aircraft separation by issuing adequate trajectory specifications to the pilots.

For a detailed account of the current ATMS practice, see e.g. [1] and [2].
The increasing demand for air travel is stressing the current ATMS, and it is likely to cause both safety
and performance degradation. It is believed, however, that by increasing the level of automation, efficiency
of ATMS can be improved and tasks of human operators can be simplified, so as to handle the increased
demand in air traffic in a more reliable way, even enhancing the level of safety of the current system.
The primary concern of all advanced ATMS is to guarantee safety of air travel. Safety is typically quantified
in terms of numbers of conflicts, i.e., situations where two aircraft come closer than a certain distance from
one another. The safety distance is encoded by means of a minimum allowed horizontal separation and
a minimum vertical separation. Currently, for en-route airspace the minimum horizontal separation is 5
nautical miles (nmi), while inside the Terminal Radar Approach Control (TRACON) area it is reduced to 3
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Fig. 1. A sketch of the current ATMS structure organized in Air Route Traffic Control Centers (ARTCCs), Special Use Airspace
(SUA) areas, TRACONs facilities, with the aircraft flying along VHF Omni-Directional Range (VOR) jetways and entering
the TRACON through gates.

nmi. The minimum vertical separation is 2000 feet (ft) above the altitude of 29, 000 ft (FL290), and 1000 ft
below FL290.

To prevent conflicts, ATMS resorts to a two stage process. In the first stage conflict detection is performed:
the positions of the aircraft in the future are predicted based on their current positions and flight plans, and
they are compared so as to detect potential situations of conflict. Once a potential conflict has been detected,
the trajectories of the aircraft involved in the conflict are re-planned in the conflict resolution stage.
Conflict detection and resolution is actually given consideration at three different levels of the ATM process,
which differ in the time horizon over which conflict detection and resolution is performed:

Long range: Some form of conflict prediction and resolution is carried out at the level of the entire National
Airspace System (NAS), over a horizon of several hours. It involves composing flight plans and airline
schedules (on a daily basis, for example) to ensure that airport and sector capacities are not exceeded ([3],
[4], [5]). This is typically accomplished using large scale integer and linear programming techniques.
Mid-range: Conflict prediction and resolution is carried out by ATCs, over horizons of the order of tens of
minutes. It involves modifying the pre-planned flight plan on-line to ensure adequate aircraft separation.
Semi-automated tools have been developed to assist ATCs with these decisions, for example the Center
TRACON Automation System (CTAS, [6]) integrating the algorithm developed in [7], [8], operating within
the terminal area and the en-route airspace close to the terminal area, and the conflict probe based on the
User Request Evaluation Tool (URET) ([9]), operating within the en-route airspace. The algorithms and
techniques of [10], [11] can also be used at this level.
Short range: Conflict prediction and resolution is also carried out on board the aircraft at the Flight Man-
agement System (FMS) level, over horizons of seconds to minutes.The Traffic Alert and Collision Avoidance
System (TCAS, [12], [13]) currently operating on all commercial aircraft carrying more than 30 passengers
is such a prediction/resolution algorithm. The algorithms of [10], [11] also belong to this category.

The reader is referred to [14] for a survey of the different conflict detection and resolution schemes presented
in the literature, the main classification criterion being the modeling method used for projecting the aircraft
position in the future.
One of the difficulties in predicting the aircraft future position consists in modeling the perturbations in-
fluencing its motion. The actual motion of the aircraft is in fact affected by uncertainty, due mainly to
wind, but also to errors in tracking, navigation, and control. However, the resultant error with respect to
the nominal trajectory can reasonably be modeled as the sum of a large number of independent random
perturbations acting in disjoint time intervals, and thus it is expected to be Gaussian. This hypothesis was
indeed verified by air traffic data in [15], [16].
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In general terms, in the probabilistic approach to conflict prediction, the uncertainty affecting the aircraft
motion is taken into account by considering the ensemble of sample paths and computing the probability of
projected conflicts, thus avoiding the conservativeness of the worst-case approach (this is the technique used
in [11], [17]), but still being robust with respect to uncertainty. The main issues are then building a simple
but still realistic probabilistic prediction model, and computing the probability of conflict based on such a
model.
In [7], [8], [10], a description of the global effect of the perturbations affecting the aircraft motion over a 20
minutes time horizon is given in probabilistic terms, by distinguishing the resultant uncertainty in the along-
track and in the cross-track directions. Specifically, the tracking errors are typically described as zero mean
Gaussian random variables with the variance of the along-track component, σ2

a(t), growing quadratically
with time:

σ2
a(t) ∼ r2

at2, (1)

the variance of the horizontal cross-track component, σ2
c (t), growing quadratically with the traveled distance,

s(t), and then saturating at a fixed value:

σ2
c (t) ∼ r2

cs2(t), sat{σ2
c (t)} = σ̄2

c , (2)

and, finally, the variance of the vertical cross-track component remaining constant.
In [7], it is argued that this model is fairly accurate for predicting the position of an aircraft over a mid-term
horizon, as it reflects the fact that pilots tend to correct cross-track errors in the short term, while dealing
with along-track errors in the long term, using small changes in speed.

Based on this probabilistic description of the aircraft motion, two main methods have been introduced for
computing the probability of conflict for a two aircraft encounter situation. In [7], a closed-form analytic
expression for the probability of conflict for level flight is derived under specific assumptions, i.e., the two
aircraft flying along straight lines with constant tracking errors over the whole time horizon. In spite of its
simplicity, which makes it very attractive for on-line computation, the exact interpretation of the proposed
criticality measure remains to be clarified when such simplifying assumptions are not verified. In [10],
[18], Monte Carlo simulation is used to compute the probability of conflict. This approach does not require
particular assumptions and allows for many different scenarios, but it is not suitable for on-line computation.

In this paper, we introduce probabilistic prediction models for mid-range and short range conflict detection
which are both inspired by the empirically motivated description of the perturbations acting on the aircraft
motion described above. For simplicity, we deal with the level flight case. The extension of the proposed
approaches to the non-level flight case is straightforward as remarked in Section IV.

As for mid-range conflict detection (Section II), the introduced prediction model is simple and realistic,
but it does not allow the derivation of closed-form expression for the probability of conflict. Based on this
model, we actually suggest a measure different from the probability of conflict for evaluating the criticality
of a two aircraft encounter situation, and give a procedure for computing its estimate and also characterizing
the level of accuracy achieved. An algorithm for mid-term conflict detection is then proposed and its
performances are compared by Monte Carlo simulations to the ones achieved by the algorithm in [7], which
uses an approximation of the probability of conflict as criticality measure. The simulations are based on a
more detailed, stochastic ordinary differential equation model for the motion of the aircraft, and they show
that the proposed mid-term conflict detection algorithm has in general superior performances to the ones
of [7]. On the other hand, the criticality measure in [7] for level flight is easier to be computed since it is
in fact given by a closed-form expression. However, no closed-form expression is available for the non-level
flight case. On the contrary, we shall show that, if the level of approximation introduced is kept fix, the
computational load in computing our criticality measure does not significantly increase in the 3-D case with
respect to the 2-D case. Still, further work has to be done to evaluate the performance of our approach in
terms of computational load as a function of the level of approximation introduced.
In Section III, we propose a model for short term prediction which is basically an approximation of the
mid-term prediction model. The aircraft motion is in fact modeled as a deterministic motion plus a (scaled)
Brownian motion perturbation whose variance grows linearly with time, instead of quadratically. According
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to this model, the probability of conflict is shown to be the probability that a Brownian motion escapes
from a time-varying safe region. Approximate expressions for the probability of conflict are obtained in
closed-form for both the finite and infinite horizon cases, thus allowing for fast computations. Based on
these expressions, an algorithm is proposed for decentralized conflict resolution. This algorithm is used for
evaluating the efficacy of the proposed criticality measure by Monte Carlo simulations.

Developing tools for automated conflict detection and resolution is currently a research topic of great in-
terest to the air traffic control community. This interest is motivated by the Federal Aviation Administration
(FAA) initiatives to increase the ATMS flexibility by allowing aircraft to fly more user preferred routes from
origin to destination, in the perspective of the realization of the “Free Flight” paradigm ([19]). Possible
implications of our research on the current FAA program are discussed in the conclusions.

II. Mid-range conflict detection

A conflict prediction and resolution scheme at the ATC level can be viewed as a feedback control scheme,
where the ATC, aircraft, and radar correspond to the plant (ATC and radar playing the role of actuators and
sensors respectively), and the detection and resolution components correspond to the controller. Our goal
is to design the two “controller” modules and verify that the closed loop system possesses certain desirable
properties. In the present paper, we restrict our attention to specific suggestions for detection and validation,
describing only briefly in Section IV our current work on mid-range conflict resolution.

We consider two aircraft flying in the same region of the airspace, each following its individual flight plan.
The flight plan is assumed to consist of a sequence of way points and a sequence of speeds for moving between
them. Based on this information and on the measurements of the current positions of the aircraft, the models
developed in [7], [8] can be modified to provide empirically motivated estimates of the probability distribution
for the projected positions of the two aircraft in the near future. One can then define the instantaneous
probability of conflict PC at a future time as the probability that an aircraft will enter the protected zone
around the other one. Conflict detection consists of estimating such a probability and warranting some action
when it is ‘high’. The design choices that enter into conflict detection are the different ways of weighting the
value of PC at various time instants, and the different ways of computing estimates of PC. Here, we declare
conflicts based on the maximum value of PC over the prediction horizon. Randomized techniques are used
to both estimate PC and compute its maximum. The advantage of randomized techniques is that they tend
to be computationally efficient. They also provide analytical bounds on the accuracy of the approximation
involved, provided one makes appropriate design choices. The parameters that one needs to set are the
prediction horizon (taken here to be 20 minutes as a reasonable look ahead time) and the threshold for
declaring a conflict. Systematic guidelines for setting threshold values can be found in [20].

Performance of a conflict prediction/resolution scheme is measured in terms of safety, impact on ATC
workload, and efficiency (impact on fuel consumption, deviations from schedule, etc.). Here, we restrict our
attention only to the issue of safety. In fact safety is closely coupled to ATC workload, as the controllers
may choose to disregard disruptive advisories.
We model the aircraft motion by means of a stochastic differential equation and evaluate the performance of
the detection scheme in terms of probability of false alarms and successful alerts by Monte Carlo simulations.
The simulation results are also used to tune the threshold of the algorithm, in an attempt to optimize the
tradeoff between the probability of successful alerts and the probability of false alarms. At a later stage we
hope to be able to provide theoretical bounds on the safety of the proposed design - including the resolution
component - and estimate its impact on ATC workload by means of human-in-the-loop simulations.

This section is organized as follows. In Section II-A, we introduce the probabilistic framework in which we
develop our detection scheme and perform the validation. In Section II-B, we describe the detection scheme
and explain how we deal with the involved computational issues in order to formulate an algorithm for its
implementation. Finally, simulation results are reported in Section II-C.
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A. Probabilistic Models

In this section, we introduce stochastic models for prediction and validation which are based on the
knowledge of the aircraft flight plan and are inspired by the probabilistic description given in [7] and reviewed
in the introduction.

We assume that the trajectory specifications the aircraft receives from the ATC are in terms of a sequence
of way points {Pj}j=0,...,n, Pj ∈ R

3 (or R
2), to follow and a sequence of speeds, {vj}j=1,...,n, vj ∈ R+,

between way points. These two sequences constitute the so-called flight plan.
At a given time, way points in the past are discarded from the flight plan, therefore at all times the first way
point, P0, encodes the current position of the aircraft. We assume that the flight plan of the aircraft over
the time horizon of interest is known a-priori in its entirety, except of course P0, which is measured by radar,
and depends on how well the aircraft is tracking the flight plan. In this regard, in this paper we suppose that
the initial position of the aircraft is known precisely, i.e., we ignore errors in the radar measurements. This
assumption can in fact be justified by noticing that uncertainty in the initial position will become rapidly
dominated by the perturbation to the aircraft motion as time goes on ([10], [7]). A model including radar
measurement errors is proposed in [21].

In the following, we shall deal with the level flight case. Hence, Pj ∈ R
2, j = 0, . . . , n. This is for ease of

explanation, since the generalization to the three dimensional case is straightforward with the only added
difficulty consisting of more complex notation ([22]).

Prediction model. For the purpose of conflict prediction, we assume that each aircraft tries to follow
its flight plan moving along the straight line joining successive way points Pj−1 and Pj with the prescribed
speed vj . Then, the nominal arrival times {Tj}j=0,...,n of the aircraft at the ordered way points sequence
{Pj}j=0,...,n can be recursively computed by:

Tj =
‖Pj − Pj−1‖

vj

+ Tj−1, (3)

for j = 1, . . . , n, initialized with T0 = 0 (recall that P0 encodes the current position of the aircraft).
Based on the nominal arrival times, the nominal distance traveled by the aircraft, s(t) ∈ R+, and its nominal
position, p(t) ∈ R

2, at time t ∈ (Tj−1, Tj ], are respectively given by s(t) = vj(t − Tj−1) + s(Tj−1) and

p(t) = p(Tj−1) + vj(t − Tj−1)
Pj−p(Tj−1)

‖Pj−p(Tj−1)‖ , j = 1, . . . , n, initialized with s(T0) = 0 and p(T0) = P0.

The projection of the aircraft position in the future is affected by uncertainty. Following [8], [10], we
assume that the aircraft predicted position can be modeled as a multivariate Gaussian random variable.
Precisely, let x(t) := (x1(t), x2(t))

T ∈ R
2 denote the aircraft predicted position at time t. We then assume

that: x(t) ∼ N (m(t), V (t)), where we set the mean:

m(t) = p(t). (4)

As for the covariance matrix, V (t), we assume that the variance of the predicted position increases with
time in every direction, reflecting the fact that the uncertainty on the aircraft position tends to increase
the further we try to make a prediction into the future. We actually use the description in [7], [8], where
the variances of the predicted position in the along-track and cross-track directions, σ2

a(t) and σ2
c (t), grow

according to equation (1) and (2), respectively, and the along-track and cross-track error components are
assumed to be independent.
Denote with ϑj the heading of the aircraft at time t ∈ [Tj−1, Tj), i.e., the angle that vector Pj −Pj−1 makes
with the x1 axis of the global framework in which the Pj ’s are given. Then, the covariance matrix V (t) for
t ∈ [Tj−1, Tj) has the following expression:

V (t) = R(ϑj)V̄ (t)R(ϑj)
T (5)

where V̄ (t) := diag(σ2
a(t), σ2

c (t)) is the covariance matrix in the body coordinate frame and R(ϑ) is the



6

rotation matrix associated with the angle ϑ, i.e.,

R(ϑ) =

(

cosϑ − sin ϑ
sin ϑ cosϑ

)

. (6)

In Figure 2 the prediction model for the aircraft motion is drawn with the ellipses representing equi-
probability curves of the probability distribution N (m(t), V (t)) along the aircraft nominal trajectory. Note
that V (t) “jumps” instantaneously at the way points; more specifically, it is discontinuous as a function of
time, with the discontinuity points being at the time {Tj}j=1,...,n of heading changes. Considering instan-
taneous turns introduces, in general, inaccuracy in the evaluation of the probability of conflict in the region
near the way points. On the other hand, these discontinuities can be avoided by using a more realistic
nominal trajectory with smooth turns, such as the one computed by the trajectory synthesizer implemented
in CTAS.

P
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uncertainty at way point j

uncertainty at way point j
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v
j+1
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Fig. 2. Mid-range prediction model for the aircraft motion.

Validation model. To validate a mid-range conflict detection algorithm using statistics collected through
Monte-Carlo simulation, we need stochastic models to generate trajectories for the aircraft motion.
The model proposed for predicting the position of an aircraft in the future consists of the probability
distributions of the random variables representing the aircraft projected positions over a 20 minutes horizon.
On the one hand, this model is simple and allows fast computations, which makes it ideal for on-line conflict
detection. On the other hand, it does have certain built-in inaccuracies, which may make it inappropriate
for generating trajectories for simulation or validation. In particular, the prediction model

1. does not describe the possible correlation among the random variables describing the projected positions
of the aircraft at different time instants,
2. ignores the possible correlation between the cross-track and along-track errors,
3. uses simple nominal position assumptions and supposes instantaneous turns.

For validation, we would like to have a model to generate trajectories that alleviates as many of the drawbacks
of the prediction model as possible. This validation model will invariably be more complicated than the
prediction model, and therefore more difficult to compute with; this is not a major concern however, as it
will only be used off-line.
In this paper, we introduce a stochastic ordinary differential equation model for the aircraft motion that
succeeds in eliminating one of the sources of inaccuracy: it provides a formal way of correlating the positions
of a single aircraft at different points in time, while maintaining at each time instant the statistics of the
prediction model.

Consider an aircraft moving in R
2, and let x = (x1, x2)

T denote its position with respect to a global
inertial coordinate frame. Assume its velocity has magnitude v and makes an angle ϑ with respect to the
x1 axis. Consider now a body coordinate frame χ = (χ1, χ2) with χ1 aligned with the aircraft velocity, χ2

perpendicular to it and lying on the plane on which the aircraft flies. The two frames are related through a
coordinate transformation:

x = R(ϑ)χ + p, (7)
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where R(ϑ) is the rotation matrix of equation (6) and p denotes the position of the origin of the body frame
with respect to the inertial frame.
In light of what we discussed so far, equation(7) is to be reinterpreted as follows:

• the origin p of the body coordinate frame represents the nominal position of the aircraft,
• χ1 and χ2 represent the variation of the aircraft position with respect to the nominal, in the along-track
and cross-track directions respectively,
• x represents the actual position of the aircraft once one takes into account the uncertainty along the
along-track and cross-track directions.

We can now derive a kinematic model for the motion of the aircraft in these coordinate frames. We assume
that the perturbation affecting the aircraft motion is generated through the stochastic differential equation:

χ̇ = Aχ + η (8)

where χ(0) ∼ N (0, Vχ(0)) and η := (η1, η2)
T is a white Gaussian noise process independent of χ(0), with zero

mean and covariance Vη(t). We shall, in fact, show in the paragraph below on the tuning of the validation
model parameters that by appropriately selecting matrix A and the covariance matrices Vχ(0) and Vη(t),
we are able to obtain uncorrelated Gaussian along-track and cross-track errors whose variance respectively
keeps growing with time and saturates according to equations (1) and (2).

By differentiating equation (7), and using equation (8), we get a nonlinear kinematic model for the aircraft
motion which, by modeling turns as discrete events occurring at the way points, reduces to the piecewise
linear stochastic differential equation:

{

ẋ = A(θj)(x − p) + B(θj)vj + C(θj)η
ṗ = D(θj)vj

, t ∈ [Tj−1, Tj), j ≥ 1 (9)

with initial conditions x(0) = p(0) = P0, and switching times {Tj} given by equation (3), where we set
A(ϑ) := R(ϑ)AR(ϑ)T , B(ϑ) = D(ϑ) := R(ϑ)(1, 0)T , C(ϑ) := R(ϑ).

The validation model can then be thought of as a hybrid stochastic dynamical system, with discrete
events Turn occurring at the way points, the effect of Turn being the update of ϑ and v. Based on this
interpretation, we are currently studying a method for formally evaluating the safety properties of detection
algorithms formulated in this probabilistic framework.

Tuning of the validation model parameters. For our stochastic validation model to resemble the
statistics derived from air traffic data ([15], [16]), we need to appropriately tune its parameters, that is the
covariance matrices Vχ(0) and Vη(t), and the matrix A of the tracking error model (8). The tuning is based
on the following proposition, whose proof is omitted since it easily follows from standard results for the
solution of stochastic differential equations (see e.g. [23]).

Proposition 1 Consider the stochastic differential equation χ̇(t) = Aχ(t) + η(t), t ∈ [0, T ], where η(·)
is a white Gaussian noise process with η(t) ∼ N (0, diag(Vη1

(t), Vη2
)), t ∈ [0, T ], independent of χ(0) ∼

N (0, diag(Vχ1
(0), Vχ2

(0))). Set

Vχ1
(0) = Vχ2

(0) = 0, Vη1
(t) = 2r2

at,
Vη2

2a
= σ̄2

c , and A =

(

0 0
0 −a

)

, where a =
rc

σ̄c

v1. (10)

Then, χ1(·) and χ2(·) are independent Gaussian processes with zero mean and variance

var[χ1(t)] = r2
at2; (11)

var[χ2(t)] = σ̄2
c (1 − exp(−2

rc

σ̄c

v1t)). (12)

By tuning the parameters in equation (8) according to equation (10), we then have that χ(·) resembles the
empirically observed characteristics of the along-track and cross-track errors. As a matter of fact, var[χ1(t)]
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in (11) has the same growth rate as the along-track variance σ2
a(t) in (1), var[χ2(t)] in (12) is monotonically

increasing to the saturation value σ̄2
c as the cross-track variance σ2

c (t) in (2). Moreover, the time constant
of the decaying exponential in equation (12) is equal to 1/2 of the time t̄ = σ̄c

rcv1

required for σ2
c (t) to reach

the saturation value σ̄2
c in the case when the aircraft trajectory is a straight line traveled with speed v1. For

rc = 1/57 and σ̄c = 1 nmi (values estimated on real traffic data, [15], [16]) and for v1 = 500 nmi/h (typical
cruising speed) such a time is about 6 minutes. Therefore, by setting a = rc

σ̄c
v1, we get that var[χ2(t)]

reaches 86% of the saturation value in about 6 minutes.

B. Conflict detection algorithm

Consider Na aircraft sharing a region of the airspace and flying at the same altitude. A situation of conflict
is encountered when an aircraft enters the protected zone around another aircraft, which for level flight in
the en-route space is a circle of radius ρ = 5 nmi:

C =
{

d ∈ R
2 : ‖d‖ ≤ ρ

}

. (13)

We assume that each aircraft, say i, has assigned its own flight plan {P i
j}j=0,...,ni

, P i
j ∈ R

2 and {vi
j}j=1,...,ni

,

vi
j ∈ R+. Then, the overall encounter situation can be described through the configuration, γ, of the Na air-

craft system, which consists of the flight plans of all aircraft, i.e., γ =
{

{P i
j}j=0,...,ni

, {vi
j}j=1,...,ni

}

i=1,...,Na
.

A conflict detection scheme consists of extracting some measure, C(γ), of how critical the current configu-
ration, γ, is, comparing this measure to a threshold, C̄, and declaring a conflict if the threshold is exceeded.
The process should be repeated every time the configuration, γ, changes, that is every time a new measure-
ment comes in from the radar, every time the ATC changes a flight plan, etc. In pseudo-code, this scheme
can be encoded by:

Algorithm 1 (General Conflict Detection)

when γ changes do
begin

Compute C(γ)
if C(γ) > C̄ declare a conflict

end

The rest of this section concerns primarily with the implementation of this piece of pseudo-code. This
involves deciding on a measure of criticality, C(·), developing an efficient algorithm for computing it for a
given configuration, γ, and setting the threshold C̄.
We now introduce a probabilistic measure of criticality C for a two aircraft encounter situation, based on
the prediction model presented in Section II-A. Then, we present an algorithm for computing it making
use of stochastic estimation algorithms. As for the threshold C̄, it can be set either by heuristic arguments
such that used in [8] or by referring to the procedure suggested in [20]. We postponed the discussion on the
computation of the threshold to Section II-C, where the performance of our detection algorithm is validated
by Monte Carlo simulations using the ODE model of Section II-A.

Measure of criticality. Consider two aircraft, A and B, flying at the same altitude, and let xA and xB

denote their positions in the inertial reference frame. Given the probability density function pdt
(y) for the

separation d(t) := xA(t) − xB(t) of the two aircraft at time t, the instantaneous probability of conflict at
time t is given by:

PC(t) =

∫

y∈C
pdt

(y)dy. (14)

In the algorithm proposed here, conflict detection is based on the maximum value of the probability of
conflict PC(t) over a finite horizon of length T . The time horizon T is chosen to be equal to 20 minutes.
This is because the computation of PC(·) is based on the prediction model introduced in Section II-A, which
is in fact valid over a 20 minutes horizon. Thus, we consider Algorithm 1 with

C(γ) := max
t∈[0,T ]

PC(t).
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In principle, this algorithm can be used irrespectively of which is the probability distribution of the aircraft
positions, the main problem being integrating the resultant distribution for their separation d(t) over the
protected zone C. Based on the prediction model in Section II-A, however, we consider the case when the two
aircraft positions xA(t) and xB(t) are Gaussian random variables, xi(t) ∼ N (mi(t), V i(t)), i = A, B, with
mi(t) and V i(t) given by (4) and (5). Moreover, we make the assumption that they are uncorrelated. Then,
the separation d(t) between the predicted positions of two aircraft at time t is a Gaussian random variable,
d(t) ∼ N (µ(t), Q(t)), with mean µ(t) := mA(t) − mB(t) and covariance matrix Q(t) := V A(t) + V B(t).

It is important to note that the accuracy of conflict prediction is limited by the uncorrelation assumption.
The tracking error is in fact primarily due to wind, which may correlate the positions of the two aircraft,
especially near the conflict point where the aircraft are close to each other. Still, the independence assumption
between the tracking noises of the two aircraft, though unrealistic, is commonly used ([8], [10]). Modeling
the tracking error correlation properties is not dealt with in this paper, though it obviously needs to be
addressed in future work.

A randomized conflict detection algorithm. The major obstacle in the implementation of the pro-
posed conflict detection scheme is the computation of C(γ). The problem is that one cannot derive an
analytical expression for PC(·), and even the evaluation of PC(t) for a given t is time consuming. This
obstacle turns out to be overwhelming in the on-line application of the detection scheme, where computation
is subject to time constraints. One then has to give up the ambitious objective of finding an exact solution
and look for an approximate one.
In this paper, we introduce an algorithm for computing an approximate solution to the optimization problem
and we also set up a methodology to provide a quantitative estimate of the level of approximation introduced.
The obtained results rests on the theory of empirical processes, whose main aim is to study how to estimate
unknown quantities through experimentation [24].

Suppose for the time being that given a t ∈ [0, T ], we are able to compute PC(t) with no error. Then, we
can resort to the following algorithm in order to compute C(γ).

Algorithm 2 (Randomized Estimate of C(γ))

Initialization: Choose an integer N and set C′(γ) = 0
for i = 1, . . . , N
begin

Extract at random ti ∈ [0, T ] according to the uniform probability distribution
if C′(γ) < PC(ti) then C′(γ) = PC(ti)

end

Clearly, since we are testing just N values of PC(t) for determining the maximum over the time interval
[0, T ], C′ will be an approximation of C. In addition, the quality of the approximation is random due to the
stochastic selection of the ti’s. Nevertheless, a quantitative statement can be proved showing that C′ is a
good approximation in a probabilistic sense based on the following theorem.

Theorem 1 (Randomized optimization) Let (Z,F ,P) be a probability space, and let f : Z → R be
a measurable function. Extract N independent samples z1, z2, . . . , zN from Z according to the probability
distribution P and define f̄ := maxz∈{zi}N

i=1

f(z). Fix an arbitrary real number β ∈ (0, 1). Then,

P{z ∈ Z : f(z) > f̄} ≤ β, (15)

with probability greater than 1 − (1 − β)N .

Proof See Lemma 11.1 in [24]. 2

In the previous statement, f̄ is a random variable defined on the product space ZN with the product
probability measure PN := P × . . . × P hosting the random extraction (z1, z2, . . . , zN). Thus, P{z ∈
Z : f(z) > f̄} ≤ β may or may not be satisfied according to such a random extraction and, therefore,
P{z ∈ Z : f(z) > f̄} ≤ β defines a probabilistic event in the space ZN . Theorem 1 says that probability
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PN of this event is greater than 1 − (1 − β)N .
A possible interpretation of equation (15) is the following. Suppose that an opponent would like to determine
a z̄ such that f(z̄) > f̄ and she uses the same probabilistic strategy as in the randomized algorithm: she
randomly selects a z̄ in Z according to P . Then, her probability of “beating” f̄ is not greater than β.
In Theorem 1, parameter β is arbitrary and, therefore, the probability of success left to the opponent can
be reduced at will. On the other hand, (15) is not a deterministic statement and it only holds true with
probability PN at least equal to 1 − (1 − β)N . As β approaches 0, 1 − (1 − β)N tends to 0 and so the
statement becomes evanescent. In addition, we observe that statement (15) only quantifies the probability
that one can improve result f̄ by randomly selecting a new parameter z̄. On the other hand, Theorem 1
says nothing on how large such an improvement can be.

In our case, we are interested in maximizing the probability of conflict PC(t) over the time interval [0, T ].
Note that the function PC : [0, T ] → [0, 1] is not smooth since the Gaussian probability density function
pdt

appearing in the expression (14) of PC(t) loses smoothness in the set of instants {t ∈ {T A
j }j=0,...,n1

∪
{T B

j }j=0,...,n2
∪ {T A

∗ , T B
∗ } with t ≤ T }, where {T i

j}j=0,...,ni
, i = A, B, are the nominal times of arrival of

aircraft i at its way points sequence, and T i
∗ is the time instant when the cross-track error variance of aircraft

i saturates. However, this is a finite set. Hence, if Z is taken to be the interval [0, T ], F the Borel σ-algebra
on [0, T ] and P the uniform probability distribution, Theorem 1 can be applied with function f(z) = PC(z).
Denote with ⌈c⌉ the smallest integer greater than c. Then, we have

Assertion 1 Fix δ ∈ (0, 1), β ∈ (0, 1), and set N := ⌈ ln(δ)
ln(1−β)⌉. Then, if the random extractions in Algo-

rithm 2 are independent, C′ given by Algorithm 2 is an approximation of C in the sense that there exists an
exceptional set S ⊂ [0, T ] of Lebesgue measure at most βT such that sup[0,T ]\S PC(t) ≤ C′ ≤ sup[0,T ] PC(t)
with probability at least 1 − δ.

Next, we introduce a method to compute a uniformly good approximation of PC(t) over every finite set of
time instants {t1, t2, . . . , tN}. This method will allow us not only to circumvent the difficulty of integrating
the probability density function pdt

(·) over the protected zone C, but also to estimate the maximum of PC(t)
over [0, T ] when combined with the randomized optimization.
Recall that PC(t) is the probability that a random variable with time-dependent probability distribution
N (µ(t), Q(t)) takes values in the protected zone C given in (13). By an appropriate change of coordinates,
however, we can use a different viewpoint seeing PC(t) as the probability that a random variable with
standard normal distribution N (0, I) takes values in a time-dependent set Ct. The required change of
coordinates is given in the following proposition, whose proof is omitted since it is easy to be verified. Note
that a similar procedure is followed in [7].

Proposition 2 Set w := L(t)−1[d(t) − µ(t)], where L(t) is the Cholesky factorization of the covariance
matrix Q(t). Then, w is a standard 2-D Gaussian random variable and PC(t) can be computed as the
probability of w to assume values in the set Ct := {w ∈ R

2 : L(t)w + µ(t) ∈ C}.

This suggests the following algorithm for probabilistically estimating PC(t) for a given time instant t.

Algorithm 3 (Randomized Estimate of PC)

Initialization Choose an integer M and set PC′(t) = 0
for j = 1, . . . , M do
begin

Extract at random wj ∈ R
2 according to the Gaussian probability density function N (0, I)

if wj ∈ Ct then PC′(t) = PC′(t) + 1
end

PC′(t) = PC′(t)
M

Again, PC′(t) is a random approximation of PC(t), due to the stochastic selection of the wj ’s. Nevertheless,
a quantitative statement can be proven showing that it is a good approximation in a probabilistic sense.
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Theorem 2 (Estimation of Probability Measures) Let (Z,F ,P) be a probability space. Consider a
finite collection of sets A = {A1, . . . , AN} ⊂ F . Extract M independent samples z1, . . . , zM from Z in

accordance with P and define P̂(Ai) := 1
M

∑M
j=1 1zj∈Ai

, i = 1, . . . , N , where 1zj∈Ai
= 1 if zj ∈ Ai, 0

otherwise. Fix ǫ ∈ (0, 1). Then,

PM{(z1, . . . , zM ) ∈ ZM : sup
A∈{Ai}N

i=1

|P̂(A) − P(A)| > ǫ} ≤ 2N exp(−2Mǫ2). (16)

Proof By Chernoff bound ([24]). 2

Equation (16) means that each finite collection of sets A has the property of uniform convergence of empirical
probabilities (UCEP) since, for each fixed accuracy level ǫ, the probability that the approximation error in
estimating the probability measure of a set in A exceeds ǫ tends to zero uniformly over A, as the number
M of samples goes to infinity. It is quite intuitive that the UCEP property is a necessary condition for
successfully applying Algorithm 2 using an estimate of the function PC(·) to be optimized instead of the
true function. Since by Proposition 2, PC(t) is the measure of the set Ct = {w ∈ R

2 : L(t)w + µ(t) ∈ C}
according to N (0, I), then, if Z is taken to be R

2, F the Borel σ-algebra on R
2 and P = N (0, I), Theorem

2 can be applied to get the following result for the estimate PC′ in Algorithm 3.

Assertion 2 Fix δ ∈ (0, 1), ǫ ∈ (0, 1), and set M = ⌈ 1
2ǫ2

ln 2N
δ
⌉. Then, if the random extractions in

Algorithm 3 are independent, PC′(t) is an uniform approximation of PC(t) to accuracy ǫ with confidence
1−δ over every finite set of time instants {t1, . . . , tN}, i.e., supt∈{ti}N

i=1

|PC′(t)−PC(t)| ≤ ǫ, with probability
at least 1 − δ.

One has then to use some optimization technique to compute the maximum of PC′(t) over [0, T ]. Observe
that maximizing even the modified function PC′(t) is not easy, since there is not a closed-form expression
for it. This is the reason why we finally resort to the randomized optimization method described before,
thus obtaining a fully randomized procedure for the approximate evaluation of C(γ).

Algorithm 4 (Randomized Conflict Detection)

Initialization: Fix ǫ ∈ (0, 1), β ∈ (0, 1), δ ∈ (0, 1). Set N = ⌈ ln( δ
2
)

ln(1−β)⌉, M =
⌈

1
2ǫ2

ln 4N
δ

⌉

when γ changes do
begin

Extract at random wj ∈ R
2, j = 1, . . . , M , according to the Gaussian density function N (0, I)

Extract at random ti ∈ [0, T ], i = 1, . . . , N , according to the uniform density function
for i = 1, . . . , N do
begin

Compute µ(ti) and Q(ti)
Compute the Cholesky decomposition Q(ti) = L(ti)L(ti)

T

Set PC′(ti) = 0
for j = 1, . . . , M do
begin

if L(ti)wj + µ(ti) ∈ C then PC′(ti) = PC′(ti) + 1
end

PC′(ti) = PC′(ti)
M

if PC′(ti) > C̄ declare a conflict
end

end

The algorithm therefore declares a conflict if and only if the estimate of the measure of criticality

C′(γ) := max
t∈{ti}N

i=1

PC′(t),
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where PC′(t) is computed according to Algorithm 3, exceeds the threshold C̄. Under the assumption that all
the random extractions are made independently of one another, the following theorem provides an estimate of
the accuracy of our approximation. Similar accuracy estimates are given in [25], [26], [27], where randomized
methods are applied to robust and adaptive control.

Theorem 3 (Approximate estimation of C) Given ǫ ∈ (0, 1), β ∈ (0, 1) and δ ∈ (0, 1), C′(γ) is an
approximate estimate of C(γ) to accuracy 2ǫ and level β with confidence 1 − δ in the sense that

P{t ∈ [0 T ] : PC(t) > C′(γ) + 2ǫ} ≤ β,

with probability greater than 1 − δ, where P denotes the uniform probability distribution on [0, T ].

Proof C′ is a random variable on the probability space [0, T ]N × R
2M . As ti’s are independent of one

another and the same holds for wj’s, and also considering that the extraction of {ti}N
i=1 is independent of

the extraction of {wj}M
j=1, we can conclude that the probability measure in [0, T ]N ×R

2M is just the product

probability measure PN × QM , where P and Q respectively denote the uniform probability distribution on
[0, T ] and the standard Gaussian probability distribution on R

2. Now, according to Theorem 1 relation

P{t ∈ [0 T ] : PC(t) > max
t∈{ti}N

i=1

PC(t)} ≤ β, (17)

holds true with probability PN greater than 1 − (1 − β)N . Set

q := QM{(w1, . . . , wM ) ∈ R
2M : sup

t∈{ti}N
i=1

|PC′(t) − PC(t)| > ǫ}. (18)

Putting together these two results we conclude that the following holds with a product probability PN ×QM

not less than 1 − [(1 − β)N + q]

P{t ∈ [0, T ] : PC(t) > PC(arg max
t∈{ti}N

i=1

PC′(t))+2ǫ} ≤ P{t ∈ [0, T ] : PC(t) > PC(arg max
t∈{ti}N

i=1

PC(t))} ≤ β,

where the first inequality follows from (18) and the second from (17). Thus, maximizing PC′(t) over {ti}N
i=1

leads to an approximate maximum of PC(t) to accuracy 2ǫ and level β with confidence 1 − δ where δ =

(1 − β)N + q. If we now use the estimate q ≤ 2Ne−2Mǫ2 given by equation (16), we can easily conclude that

using N =
⌈

ln( δ
2
)

ln(1−β)

⌉

time instants t’s and M =
⌈

1
2ǫ2

ln 4N
δ

⌉

vectors w’s suffices to approximately maximize

PC(t) over [0, T ] to accuracy 2ǫ and level β with confidence 1 − δ. 2

Note that the number of samples needed to achieve a certain approximation level in terms of the accuracy,
level and confidence, is independent of the nature of the sample space and of the probability distribution. In
particular, this means that it does not depend on the dimension of the Euclidean space from which the w’s
are extracted. Thus, the computational load does not significantly increase in the 3-D case with respect to
the 2-D case ([22]). This is not be the case if one would resort to numerical methods based on gridding or to
approximate analytic methods such the one proposed in [8]. However, further work is required to evaluate
the computational efficiency of our approach to mid-term conflict detection, as a function of the accuracy,
level and confidence parameters.

C. Validation

In order to validate the conflict detection algorithm introduced in Section II-B, we use Monte Carlo
simulations based on the ODE model of the aircraft motion described in Section II-A. We compare the
performance achieved by Algorithm 4 in Section II-B, with the one achieved by the algorithm in [8]. The
algorithm in [8] is in fact based on the same description of the uncertainty affecting the aircraft motion
on which our prediction model is based. Differently from our approach, the criticality measure of a two
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aircraft encounter adopted in [8] is an approximation of the probability of conflict. This approximation
consists of computing the probability of conflict as if each aircraft were flying at a constant velocity, with a
constant tracking error. The values for the velocities, and the mean and variance of the Gaussian random
variables describing the tracking errors are set equal to the velocities and tracking error characteristics at
the point of minimum deterministic separation (see [7] for more details). An analytical expression for such
an approximation is given for the level flight case, while, as for the 3-D case, one has to resort to a numerical
procedure ([28]).

The protocol for evaluating the performance of each detection algorithm consists of the following steps:

1. Given the flight plans of the two aircraft, generate pairs of aircraft trajectories over a 20 minutes time
horizon according to the discretized version of the stochastic differential equation (9) (sample time set equal
to 1 second), with ra = 0.25 nmi/min, rc = 1/57, and σ̄c = 1 nmi;
2. For each pair of simulated trajectories, execute the conflict detection algorithm at every radar measure-
ment time (radar measurement time set equal to 12 seconds), each time using the updated flight plans and
time horizon. These are respectively obtained by removing the way points which have been surpassed and
setting the first way point equal to the current radar measurement, and by subtracting the elapsed time
from the 20 minutes initial horizon. A conflict is declared as soon as the estimated value of the criticality
measure exceeds the prescribed threshold;
3. Compute the probability of false alarm P(FA) and the probability of successful alert P(SA), i.e., the ratio
between the number of alerts issued when there was no conflict and the total number of cases when there
was no conflict (P(FA)), and the ratio between the number of alerts issued before a situation of conflict
effectively happens and the total number of conflicts (P(SA)).
4. Plot the System Operating Characteristic (SOC) curve, i.e., the probability of successful alert versus the
probability of false alarm parameterized by the threshold, and choose the optimal threshold.

Note that when using the detection algorithm for avoiding conflict situations, response times of ATC and
pilots jointly with the aircraft maneuverability could make some of the detected conflicts not preventable,
thus reducing the number of successful alerts. Modeling these aspects is not dealt with in the present paper.

It is evident that the computed P(FA) and P(SA) estimates depend on the value of the threshold used
to decide whether an alert should be issued, both being decreasing as functions of the threshold. An ideal
conflict detection scheme should operate at point (0, 1), where there are no false alarms and all the situation
of conflicts are detected. On the other hand, a real conflict detection scheme cannot operate at this point
- irrespective of the threshold chosen - due to the uncertainty affecting the aircraft positions. However, the
more the SOC curve approaches the point (0, 1), the better is the performance of the system. The threshold
can, therefore, be defined on the basis of this consideration as the one that corresponds to the minimum
distance of the SOC curve from the ideal operating point (0, 1) thus striking an “optimal” compromise
between the number of false alarms and successful alerts as suggested in [20], [29].

We now describe the results obtained by Monte Carlo simulations in two different encounter situations. In
the first example, the aircraft nominal trajectories are straight lines traveled with constant speeds, whereas in
the second example the lines joining the way points describe a more complex zig-zag pattern. For these two
cases, we draw the SOC curve and compare the performance obtained by Algorithm 4 with those obtained
by implementing the detection algorithm described by Erzberger et al. in [8]. The parameters ra, rc and σ̄c

are set equal to the empirical values ra = 0.25 nmi/min, rc = 1/57 and σ̄c = 1 nmi in both the prediction
and simulation models.

The simulations show that Algorithm 4 can deal with more general encounter situations than the algorithm
in [8]. Specific comments on the obtained results are given at the end of the section.

Example 1 (30◦ path crossing angle configuration)
Consider the case when the two aircraft are flying straight at the same altitude along paths whose crossing
angle is 30◦ at speeds of 480 nmi/h and 500 nmi/h. For sake of clarity, in the left side of Figure 3 we have
drawn a realization of the trajectories obtained by performing step 1 of the described simulation protocol.
For each pair of trajectories, the initial nominal minimum separation and time to minimum separation are
respectively 5 nmi and 4 min. As we iterate the algorithms along the trajectories according to step 2, these
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quantities keep changing and in fact after about 4 minutes the time to the closest point of approach becomes
zero. By running Algorithm 4 and the one proposed in [8] on 1000 pairs of trajectories generated by the
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Fig. 3. Left: Sample pair of simulated trajectories. The ⋆ stand for the starting points. Right: SOC curves for Algorithm 4
(solid) & Erzberger algorithm (dashed). The ◦ stand for the “optimal” threshold points (Example 1: ǫ = 0.05; δ = 0.1;
β = 0.05; 1000 simulations).

stochastic ODE modeling the aircraft motion, we estimate the probability of successful alert and false alarm
and draw the SOC curve for both algorithms. The result is plotted in the right side of Figure 3, where the
solid line curve corresponding to the detection algorithm proposed in this paper is almost overlapped to the
dashed line curve corresponding to the algorithm in [8]. In this example, the “optimal” threshold value C̄,
i.e., the one at the point of the SOC curve nearest to ideal operating point (0, 1), and the “optimal” values
for P(FA) and P(SA) are similar for the two algorithms (C̄ ≃ 0.85, P(FA)≃ 0.18, P(SA)≃ 0.78). 2

Example 2 (zig-zag flight paths configuration)
In this example, we consider the case when the sequence of way points in the flight plans describes a zig-zag
configuration at a fixed altitude with speeds vA

1 = 505 nmi/h and vA
2 = 455 nmi/h, vB

1 = 460 nmi/h and
vB
2 = 470 nmi/h. In Figure 4 a realization of the trajectories is represented. The estimates of the probability
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Fig. 4. Left: Sample pair of simulated trajectories. The ⋆ stand for the starting points. Right: SOC curves for Algorithm 4
(solid) & Erzberger algorithm (dashed). The ◦ stand for the “optimal” threshold points (Example 2: ǫ = 0.05; δ = 0.1;
β = 0.05; 1000 simulations).

of successful alert and false alarm obtained by 1000 Monte Carlo samples are used to plot the SOC curves in
the right side of Figure 4, where the solid line SOC curve corresponds to the detection algorithm proposed in
this paper. In this case, the “optimal” threshold values for the introduced detection procedure and the one
proposed in [8] are respectively C̄ = 0.62, corresponding to P(FA)=0.164 and P(SA)=0.778, and C̄ = 0.79,
corresponding to P(FA)=0.264 and P(SA)=0.727. Thus, Algorithm 4 has a slightly higher probability of
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successful detection and a false alarm probability of 16.4%, which is 3/5 that of [8].
Note that for each value of P(SA), the algorithm in [8] corresponds to a higher value of P(FA) with respect
to our approach. 2

The two algorithms give similar results when the aircraft are flying along straight lines, whereas when the
cross pattern is more complex our algorithm generally performs better than the algorithm in [8]. This actually
is also the case when the trajectories are straight lines traveled at constant speed, but the prediction models
for the two algorithms take into account the uncertainty in the current position ([21]). Figure 5 represents
the plots of P(FA) and P(SA) as functions of the threshold obtained by 1000 Monte Carlo simulations for
the same encounter as in Example 1, but considering a cross-track error with constant variance σ2

c = σ̄2
c in

the prediction models. Note that in this case, irrespectively of the threshold value, P(FA) given by [8] is
higher than P(FA) given by our approach, and this increase of P(FA) is not compensated by an adequate
increase of the probability of successful alert. The same behavior actually occurs in Example 2.
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Fig. 5. Plots of P(FA) and P(SA) vs threshold for our algorithm (solid) & Erzberger algorithm (dashed) (Example 1 with
constant cross-track variance: ǫ = 0.05; δ = 0.1; β = 0.05; 1000 simulations).

In our opinion, an explanation for the obtained results is that the measure of criticality used for detecting
a situation of conflict in [8] is computed by integrating the probability density function of the distance at
the minimum separation point over a strip that is an extension of the circular domain of integration for
computing the probability of conflict at that time instant. Thus, it can be viewed as an over approximation
of the instantaneous probability of conflict. On the other hand, the criticality measure in [8] is the probability
of conflict for a fictitious encounter which extends in both the time directions to an infinite horizon, with the
aircraft keeping flying at constant velocities with a constant tracking error. So, if either the trajectories are
not straight lines or they are diverging and the current position is affected by uncertainty, the probability
of conflict computed in [8] may highly overestimate the probability of conflict of the real encounter. This
happens for example in the case when a collision occurs along the nominal trajectories of the fictitious
encounter. Hence, a higher value for the probability of false alarms is found in the simulations.

It is important to observe that different configurations lead to different SOC curves and therefore to
different optimal thresholds. A sensitivity analysis of the dependence of the threshold on the flight plans
should be performed by parameterizing them as a function of the crossing angles, minimum deterministic
distance, and time of minimum distance, in order to set a value for the threshold which is appropriate for the
typically encountered path configurations. Other aspects that should be taken into account for the tuning
of the threshold are the detection of conflict a certain amount of time before it occurs and the prediction of
its occurrence time (so as to avoid “last minute” maneuvers). These aspects, in fact, highly influence the
efficiency of every prediction/resolution scheme involving the human-in-the-loop component. These issues
are currently under study.
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III. Short range conflict detection

In this section, we propose to adopt a sample path viewpoint in order to measure the criticality of an
encounter situation. The approach is motivated by the fact that the motion of each aircraft involved in the
encounter is subject to perturbations, whose overall effect in short time horizons can be modeled as a white
noise affecting the aircraft velocity. In this way a different likelihood is attributed to the different admissible
paths of each aircraft, and the probability of conflict of the encounter can be computed as the probability
that a path of some aircraft enters the protected zone of another aircraft. The proposed approach is briefly
explained next, whereas the mathematical derivations are postponed to the following subsections.

Consider the following first order stochastic differential equation in R:

ds

dt
(t) = f(t) + w(t), (19)

where f(·) is a piecewise Lipschitz continuous function defined on [0,∞) and w(·) is a white noise with power
spectral density ν2, i.e., E[w(t)w(t + z)] = ν2 δ(z) for all z, t ≥ 0.
Equation (19) can be used to model the motion of an aircraft. In such a case, ds/dt represents the aircraft
ground speed, f is the air speed which can be directly controlled by the aircraft, and w models mainly
local wind effects such as air turbulence, as well as deviations due to mechanical and human factors, [30].
Integrating equation (19), we have

s(t) =

∫ t

0

f(z) dz + b(t), (20)

where b(t) =
∫ t

0
w(z) dz is a Gaussian process with stationary, independent increment, whose mean value and

variance are respectively E[b(t)] =
∫ t

0
E[w(z)] dz = 0 and Var[b(t)] =

∫ t

0

∫ t

0
E[w(z1)w(z2)] dz1 dz2 = ν2t. This

last equation and the Kolmogorov continuity theorem imply that b(t) has a continuous version B(t), i.e.,
P ({ω : b(t, ω) = B(t, ω)}) = 1 for all t ≥ 0, where {B(t, ω), t ≥ 0} is continuous in t with probability one
(see [31]). The continuity of b(t) is actually required when equation (19) is used to model the aircraft motion.
Note that, after scaling by 1/ν, b(t) is a standard Brownian Motion (BM). A BM possesses many unusual
local properties. For example, at any fixed time its sample path is not differentiable with probability one.
However, this is not of a major concern since we are interested in its collective properties, i.e., the probability
that the perturbed trajectory experiences a large deviation from the nominal one or, more precisely, that
s(·) evolves outside some safe set thus causing a conflict. In [32] the approach based on equation (19) is
used for highway safety analysis.
By subtracting the nominal motion

∫ t

0
f(z) dz and properly scaling, we can therefore reduce the perturbed

motion in (20) to a standard BM. Correspondingly, the safe set is transformed into some time-varying set.
The problem of computing the probability of conflict then reduces to calculating the escaping probability of
a standard BM with respect to a time-varying region. In general, however, it is very hard - if not impossible
- to get an analytical expression for such a probability. A case when this is possible is the following.

Lemma 1 (Bachelier-Levy, [33]) Let B(t) be a standard one dimensional BM starting at the origin. Fix
µ ∈ R and define τ := inf{t ≥ 0 : B(t) = a − µt} to be the first time B(t) reaches a point which is moving
with speed µ towards the origin starting at position a > 0. Then, τ has probability density function:

pτ (t) =
a√
2πt3

exp[− (a − µt)2

2t
], t ≥ 0. (21)

This lemma will prove to be of utmost importance for estimating the probability of conflict in the - more
complex - situations of real interest, which will in fact be reduced to the case described in the lemma by
appropriate approximations.

The rest of the present section is organized as follows. We start by detailing the prediction model we
propose for short range conflict detection (Section III-A). In Section III-B, we derive closed-form approxi-
mations of the probability of conflict. Finally, in Section III-C, we describe a decentralized conflict resolution
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algorithm based on the introduced closed-form approximations. This algorithm is used to analyze the effec-
tiveness of the proposed criticality measure by Monte Carlo simulations.

A. Prediction model

Consider an aircraft flying with constant speed along a straight line on a plane. Denote with u = (u1, u2)
T

the aircraft velocity and with ϑ the angle that vector u makes with the x1 axis of a global coordinate frame.
The aircraft motion can then be represented by the following kinematic model:

x(t) = u t + R(ϑ)ΣB(t) (22)

where R(ϑ) is the rotation matrix given by equation (6), Σ = diag(νa, νc), ν2
a , ν2

c being the power spectral
densities of the perturbations affecting the motion in the along-track and cross-track directions, and B(t) is
a standard 2-D BM.
Note that under the constant velocity assumption, the variances of the along-track and cross-track per-
turbations given in equations (1) and (2) can be approximated as linear in time over short time horizons.
Therefore, the proposed model can be used for short term prediction. As for the values of νa, νc, setting
rc = 1/57 and ra = 0.25 nmi/min ([15], [10]), and considering standard cruising speeds of commercial air-
craft, e.g., v = 480 nmi/h, the growth rate of σi

c(t) with time is given by rcv ≃ 0.14 nmi/min which is lower
than the growth rate ra of σi

a(t). Hence, typically νa > νc.
Model (22) seems also suitable for the free flight scenario prospected for the future ATMS, [19]. In this case
in fact the saturation phenomenon attributed in [7] to pilot feedback to maintain the aircraft on a specific
trajectory is not so significant, since, according to the free flight paradigm, each aircraft receives advisories
rather than mandatory trajectory specifications from the ATCs. Moreover, early conflict detection and reso-
lution is responsibility of individual aircraft which have only partial information about the intentions of the
surrounding aircraft - mainly their current positions and headings -, and which cannot rely on the fact that
the intruder will make an effort to maintain its current heading precisely.

B. Closed-form expressions for the probability of conflict

Consider two aircraft, labeled A and B, flying at the same altitude. Assume without loss of generality
that at time t = 0 aircraft A is at the origin of a global coordinate frame, flying along the x1 axis from left
to right with a velocity uA ∈ R

2, while aircraft B is at position ∆x0 ∈ R
2, flying with a velocity uB ∈ R

2

which makes an angle ϑ with the x1 axis. A conflict occurs if aircraft B enters the protected zone of aircraft
A or vice versa (see Figure 6).

2

1

protected zone

θ

x

u

u

x

A

B

Fig. 6. Encounter situation for two aircraft flying at the same altitude.

Denote with xA(t) and xB(t) the position of aircraft A and B, respectively. By the kinematic model (22),
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we get the following description for the two aircraft system:

{

xA(t) = uAt + ΣBA(t)
xB(t) = ∆x0 + uBt + R(ϑ)ΣBB(t)

(23)

where BA(t) and BB(t) are independent standard 2-D BMs. We assume that the BMs BA(t) and BB(t)
start at the origin, thus ignoring errors in the radar and GPS measurements, as in the mid-term prediction
model. Subtracting the first equation from the second in (23) leads to the following description of the aircraft
relative position:

∆x(t) = ∆x0 + ∆u t − n(t), (24)

where we set ∆x(t) := xB(t) − xA(t), ∆u := uB − uA, and n(t) := ΣBA(t) − R(ϑ)ΣBB(t).
Equation (24) suggests that one can think of the motion of aircraft A as consisting only of the perturbation
n(t), and the motion of aircraft B as deterministic with constant velocity ∆u starting at ∆x0. Furthermore,
it is shown in Proposition 3 that the Gaussian process n(t) can be reduced to a standard 2-D BM by a
coordinate transformation, which is similar to the one used in Proposition 2.

Proposition 3 Set P :=
√

2 R(ϑ
2 )Λ, with Λ = diag(λ1, λ2), where







λ1 =
√

ν2
a cos2(ϑ

2 ) + ν2
c sin2(ϑ

2 )

λ2 =
√

ν2
a sin2(ϑ

2 ) + ν2
c cos2(ϑ

2 )
. (25)

Then, the stochastic process n̄(t) := P−1n(t) is a standard 2-D BM starting at zero.

Proof The thesis easily follows once one observes that [Σ2 + R(ϑ)Σ2R(ϑ)T ]t is the covariance matrix of
n(t) and it is equal to PPT t. 2

By using the coordinate transformation with matrix P−1 given in Proposition 3, equation (24) can be
rewritten as follows

∆s(t) = ∆s0 + u t − n̄(t), (26)

where ∆s(t) := P−1∆x(t) is the relative position of the two aircraft in the new coordinate system, ∆s0 :=
P−1∆x0, u := P−1∆u, and n̄(t) = P−1n(t) is a 2-D standard BM starting at zero. Therefore, we can view
the motion of aircraft A as a standard 2-D BM starting at the origin and the motion of aircraft B as a
motion at constant velocity u starting at ∆s0.
In the new coordinate system, the circular protection zone of radius ρ = 5 nmi around aircraft B is trans-
formed into an ellipse initially centered at ∆s(0) = ∆s0 and then moving along with aircraft B at velocity
u (see Figure 7), with boundary described by:

λ2
1(x1 − ∆s1(t))

2 + λ2
2(x2 − ∆s2(t))

2 = ρ2/2, (27)

where λ1 and λ2 are given in (25), and the evolution in time of ∆s(t) is governed by equation (26). A
conflict then occurs if and only if the 2-D standard BM n̄(t) starting at the origin (i.e., aircraft A in the new
coordinate system) ever wanders into this moving ellipse.

Before estimating the probability of such an event, we introduce some definitions that will be used in the
derivations. We define xd to be the distance of the origin from the line h along which aircraft B is flying, and
a to be the distance from the position ∆s0 of aircraft B at t = 0 to the projection H of the origin on h, as
indicated in Figure 7 representing the new coordinate system. Then, xd and a can be computed as follows:

xd =
|∆sT

0 R(π
2 )u|

‖u‖ , a = −∆sT
0 u

‖u‖ . (28)

Observe that a positive value for a indicates that the two aircraft are approaching each other, whereas a
negative value for a indicates that they are flying away from each other. Then, if we ignore the effect of the
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x2
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u

Fig. 7. Transformed protection zone.

noise, in the new coordinate system the minimal separation distance during the encounter is given by xd if
a > 0, and by ‖∆s0‖, i.e., the distance at time t = 0, if a < 0.

Denote the conflict event, i.e., the event that n̄(t) ever wanders into the moving ellipse, by F . The
probability of conflict P (F ) does not admit a closed-form formula. However, we can approximate it by a
“decoupled” event. Let k be the line passing through the center of the ellipse and orthogonal to u which
moves along with the ellipse with velocity u (see Figure 7). The projected width 2L of the ellipse along line
k can be computed as follows:

L =
ρ

λ1λ2

√

u2
1λ

2
1 + u2

2λ
2
2

2(u2
1 + u2

2)
, (29)

where λ1 and λ2 are given in equation (25). Denote by τ the first time n̄(t) hits k and define F ′ to be
the event that the first time n̄(t) hits line k, it is within a distance of L from the center of the ellipse. In
[34], it is shown that P (F ′) is a good estimate of the probability of conflict P (F ) when the difference of the
two aircraft velocities is much larger than the variance growth rate of the BM, which is in fact the case of
interest. The intuition for this is that when the velocity of the moving ellipse is high, the only dimension of
the ellipse that is relevant for the event F is that perpendicular to u. The interested reader is referred to
[34] for a formal discussion on the quality of such an approximation.
With no loss of generality, in order to compute P (F ′) we assume that u is aligned with the positive x1 axis.
As a matter of fact, the axes rotation eventually necessary to make u aligned with the positive x1 axis can
be incorporated into the transformation matrix P , and still the motion of aircraft A remains a standard BM,
since BM is invariant with respect to rotations.
Assume that the two aircraft are approaching each other. Then, a given by equation (28) is positive.
Moreover, time τ for aircraft A to reach line k has evidently the distribution pτ (·) given by equation (21) in
Lemma 1 with µ = ‖u‖. The approximate probability of conflict P (F ′) can then be written as:

P (F ′) =

∫ ∞

0

pτ (t)

∫

|y−xd|<L

1

2πt
exp(−y2

2t
) dy dt =

∫ ∞

0

pτ (t)
[

Q(
xd − L√

t
) − Q(

xd + L√
t

)
]

dt, (30)

where we set Q(y) :=
∫ ∞

y
1√
2π

exp(−z2/2) dz.

Note that by Formula 1 in Appendix A, E[τ ] = a/µ. When µ is greater than 1, pτ (t) concentrates near
t0 := a/µ. If we then use the 0-th order expansions of Q(xd−L√

t
) and Q(xd+L√

t
) around t0 in (30), we get:

Assertion 3 The probability of conflict can be approximated by:

P 0 := Q(
xd − L√

t0
) − Q(

xd + L√
t0

). (31)

where L is given by equation (29), a and xd are given by equation (28), and we set t0 := a/µ.
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Fig. 8. P 0 for path angles ϑ = 0◦ (upper left); ϑ = 45◦ (upper right); ϑ = 90◦ (lower left); ϑ = 180◦ (lower right) with
‖uA‖ = 7 nmi/min, ‖uB‖ = 8 nmi/min, νa = 2, νc=1.

In [34], it is shown that P 0 is a remarkably sharp estimate of P (F ′) computed by numerical integration
even in the case when µ = ‖u‖ is much smaller than 1 (the approximation error when µ > 1 is barely visible).
Higher order approximations of the probability of conflict can also be obtained.

Figure 8 shows some level curves of P 0 as a function of the initial position ∆x0 of aircraft B for the path
angles ϑ = 0◦, 45◦, 90◦, 180◦. In each plot, aircraft A is moving from left to right with velocity ‖uA‖ = 7
nmi/min starting at the origin and aircraft B is moving with velocity ‖uB‖ = 8 nmi/min. To see the results
more compactly, we used relatively large νa and νc (νa = 2 and νc = 1). Note that in all the examples νa

and νc are treated as adimensional quantities with the understanding that their squares are equal to the
values in nmi2/min of the along-track and cross-track power spectral densities of the BM appearing in the
aircraft model (22). Observe that as the cross path angle ϑ increases, the region delimited by the same P 0

equi-probability line gets more and more extended. This means that for a fixed distance of the two aircraft,
the situation of headon conflict (ϑ = 180◦) is the most dangerous, whereas the situation of overtake conflict
(ϑ = 0◦) is the least dangerous.

We now introduce an expression for the probability of conflict within a time horizon tf . Limiting the
prediction time horizon to be finite makes in fact much sense, since for the same value of the probability
of conflict, the more dangerous situations are the ones with smaller projected collision time. Moreover, by
considering a finite prediction horizon, we avoid problems similar to those pointed out in Section II-C for
the algorithm in [8].
The probability of conflict within a fixed horizon tf is computed as follows:

P (F ′ ∩ {τ ≤ tf}) =

∫ tf

0

pτ (t)

∫

|y−xd|<L

1

2πt
exp(−y2

2t
) dy dt =

∫ tf

0

pτ (t)
[

Q(
xd − L√

t
) − Q(

xd + L√
t

)
]

dt,
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Fig. 9. P 0
tf

for tf = 10 min (top); tf = 15 min (bottom) with ϑ = 90◦, ‖uA‖ = 7 nmi/min, ‖uB‖ = 8 nmi/min, νa = 2, νc = 1.

which, by using 0-th order series expansions of Q(xd−L√
t

) and Q(xd+L√
t

) around t0, and Formula 2 in Ap-

pendix A, leads to

Assertion 4 The probability of conflict within time tf can be approximated by:

P 0
tf

:=
[

Q(
a − µtf√

tf
) + exp(2aµ)Q(

a + µ tf√
tf

)
][

Q(
xd − L√

t0
) − Q(

xd + L√
t0

)
]

(32)

where L is given by equation (29), a and xd are given by equation (28), and we set t0 := a/µ.

Figure 9 shows some level curves of P 0
tf

for ϑ = 90◦, in the two cases when tf = 10 min and tf = 15

min. Note that P 0
tf

looks like a truncation of the corresponding infinite horizon version. Moreover, it is not
surprising that as νa and νc increase, the truncation becomes smoother.
We also computed higher order approximations of the probability of conflict for both the infinite and finite
horizon cases, but they were not significantly different from the 0-th order ones.

Remark 1 In [35], the expression (31) for the probability of conflict is obtained by a different approach,
which mainly consists of computing the probability that the aircraft distance at the nominal time of closest
approach is lower than the minimum allowed distance, given that their initial positions and velocities are
uncertain. In [35], it is then proposed to use a level curve of (31) to delimit the “alert zone” which is the
protection zone around the aircraft where ATC assistance for conflict avoidance is required in a free flight
setting. By approaching the problem from the process point of view, we get more general results which can for
example be easily extended to the finite horizon case. This allows the alert zone to be appropriately chosen
based also on the look-ahead time horizon.
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C. A decentralized conflict resolution algorithm for validation

Many contributions have been presented in the literature to deal with the issue of providing coordination
maneuvers which are guaranteed to be safe for the two aircraft case, both in a deterministic (see e.g. [11],
[12], [36], [37]) and in a probabilistic setting (see e.g. [8], [35]). In particular, TCAS ([12]), currently
operating on all passenger aircraft carrying more than 30 seats, deals with short range conflict resolution by
choosing among a predefined set of maneuvers the least aggressive one that ensures a safe distance between
two aircraft which are predicted to incur in a conflict situation. In TCAS, however, uncertainty in the
aircraft position is not taken into account when predicting a conflict.
Conflicts involving multiple aircraft, besides being more general, may actually occur in high-traffic areas.
Moreover, it might also happen that by solving a two aircraft conflict without taking into consideration the
other surrounding aircraft, one generates a conflict with a third aircraft, or that by solving the conflicts
pairwise, no feasible resolution maneuver can be found. Despite of that, there are only a few contributions
treating directly the multiple aircraft case, and they typically consider a deterministic setting. Among
them, we mention [38], [39], [40], [41], where the approach to multiple aircraft conflict resolution is based
on the optimization of a cost function, which is suitably selected so as to take into account practical factors
such as fuel consumption and passenger comfort. The computational issues involved in such a constrained
optimization problem are solved by genetic algorithms in [38], semidefinite programming combined with a
branch-and-bound search in [39], and an iterative method based on approximating the performance index
as quadratic and the constraints as linear in [40]. The main drawback of these approaches is that there is
no guarantee that the obtained solution is actually optimal. In [41], resolution maneuvers are classified into
different homotopy types, and the problem is reduced to a convex optimization problem within each type.
Therefore, one can, in principle, compute the global optimum by comparing the optimal solutions associated
with all the different types of maneuvers. The number of types, however, highly grows with the number of
aircraft involved in the encounter.

We introduce in this section an algorithm for multiple aircraft conflict resolution which uses the proba-
bility of conflict calculated in Section III-B to guide each aircraft to its desired destination, while avoiding
possible situations of conflict with other aircraft flying in the same region of the airspace. Differently from
the algorithms for multiple aircraft conflict resolution mentioned above, in our algorithm the uncertainty
affecting the aircraft motion is taken into account. Moreover, we consider decentralized conflict resolution,
since each aircraft solves its own conflicts with the other aircraft based on information regarding their po-
sitions/intentions, but without coordinating with them. However, in contrast with the worst case approach
to decentralized conflict resolution in [11], [17] where the aircraft do not trust each other, the idea here is
that each aircraft assumes that the other aircraft will try to behave rationally but this effort is undermined
by the various uncertainties inherent in the environment.

Our algorithm is inspired by [42] where the potential and vortex field method is applied to generate
coordination maneuvers for multiple aircraft encounters. The main difference from this contribution is that
we use the information not only on the current positions but also on the current headings and speeds of the
surrounding aircraft in order to generate the repulsive force acting on the aircraft. Thus, the two cases when
two aircraft are at the same distance, but approaching and flying away from each other, do not lead to the
same repulsive force, and hence abrupt avoidance maneuvers are avoided.

In this paper, the probabilistic algorithm for conflict resolution is used for assessing the significance of the
proposed criticality measure by Monte Carlo simulations. In [41], this algorithm is used as ’random type
chooser’, thus providing a randomized solution to the combinatorial optimization problem.

Consider the case when two aircraft (labeled A and B) are currently at positions aA and aB and have
destinations bA and bB respectively. Assume their initial headings are toward their own destinations and
that they fly at a constant speed, say vA and vB respectively.
At each time instant t, the probability of conflict Pc(t) can be calculated by equation (31) (or equation (32)
with some fixed horizon tf ) using the current positions xA(t), xB(t) and velocities uA, uB of the two aircraft.

We define for each aircraft three particular headings of interest:
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• Current heading ϑc: Direction along which the aircraft is currently flying.
• Destination heading ϑd: Direction defined by the current aircraft position and its desired destination.
• Gradient heading ϑg: Direction corresponding to the highest decrease of the probability of conflict. Since
both aircraft maintain their velocities within a short time, ϑg can be chosen as the direction of the negative
gradient of Pc as a function only of the current position of the aircraft.

Our resolution strategy aims at making each aircraft reach the desired destination while avoiding situations
of conflict by appropriately changing the heading. This is done by updating the aircraft headings at every
∆t time instants by means of the following algorithm, which in fact represents the heart of our detection
and resolution scheme.

Algorithm 5 (Decentralized conflict detection and resolution)

Compute Pc(k) based on xA(k), xB(k), uA(k), uB(k)
for i = A, B do
begin

Compute ϑi
c(k), ϑi

d(k), and ϑi
g(k) given xA(k), xB(k), uA(k), uB(k).

Set ϑ̄i(k) := Pc(k)ϑi
g(k) + (1 − Pc(k))ϑi

d(k).
Given ϑi

c(k − 1) choose the new headings at step k as follows:

ϑi
c(k) =

{

ϑ̄i(k), if |ϑ̄i(k) − ϑi
c(k)| < β

ϑi
c(k − 1) + β · sgn(ϑ̄i(k) − ϑi

c(k − 1)) otherwise.

end

where β is the maximal turn angle allowed per time step and we used z(k) to denote z(k∆t).

The ideal new heading ϑ̄i(k) is the weighted sum of destination heading and gradient heading, with weights
depending on Pc(k). Intuitively, if Pc(k) is high, then decreasing the probability of conflict becomes a priority
and therefore the aircraft should pursue the gradient direction more. If, instead, Pc(k) is negligible, then the
aircraft should pursue the destination direction. In any case, due to the nonholonomic nature in aircraft,
the deviation from current heading is restricted by β. This is the reason why the new heading is chosen to
be the one nearest to ϑ̄i(k) within the allowed range.

The validation protocol adopted in performing the Monte Carlo simulations is as follows:

1. At every iteration, execute
(a) An initialization step, where given the flight plans of the two aircraft, one computes ϑi

d(0) and set
xi(0) = ai, ϑi

c(−1) = ϑi
d(0), ui(0) = (vi cos(ϑi

c(−1)), vi sin(ϑi
c(−1)))T , i = A, B, and k := 0;

(b) A resolution step, where one chooses the current heading at time k by means of Algorithm 5;
(c) An updating step, where one updates the aircraft velocities and positions at time step k + 1 as follows:

ui(k + 1) = (vi cos(ϑi
c(k)), vi sin(ϑi

c(k)))T

xi(k + 1) = xi(k) + ∆t ui(k + 1) + R(ϑi
c(k)) diag(νa, νc)∆t ni(k + 1),

i = A, B, where R(ϑ) is the rotation matrix of angle ϑ, and nA and nB are independent 2-D white Gaussian
noises with unit covariance matrices.
(d) A verification step, where one check if both the aircraft have reached their destinations. If this is not

the case, one sets k := k + 1 and go back to step b.
2. After a prescribed number of iterations, build the histogram of the minimum separation distance between
the aircraft.

This approach can be viewed as a receding horizon control method, with ∆t and the horizon over which Pc is
computed respectively representing the control horizon and the prediction horizon. Hence, in each simulation
of the encounter we actually test our short range conflict detection and resolution algorithm repeatedly.

Simulation results are shown in Figure 10 for two typical encounters: headon encounter and orthogonal
encounter. The speeds of the two aircraft are chosen such that it takes 30 minutes for them to fly from
their starting positions (marked with stars) to their destination positions (marked with diamonds) along
the unresolved straight line motion. We used equation (31) for computing Pc(k). Moreover, we set νa =



24

x 1 (nmi)

x 2(n
m

i)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

frequency(%)

dmin (nmi)
7 8 9 10 11 12 13 14

0

5

10

15

20

25

30

35

x 1 (nmi)

x 2(n
m

i)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

frequency(%)

dmin (nmi)
7 8 9 10 11 12 13 14

0

5

10

15

20

25

Fig. 10. Resolution maneuver for two aircraft encounter situations (νa = 0.35, νc = 0.2, β = π/25).

0.35, νc = 0.2, and β = π/25. The values of νa and νc are chosen so as to get a first order approximation of
the growing rate of the along-track and cross-track variances in (1) and (2).
The histograms obtained by running 100 simulations show that in both cases the minimum separation
distance is respected and, moreover, most of the minimum separation distances are greater than 2ρ. The
factor 2 arises since each aircraft tries to maintain a distance of ρ from the other one, and there is no
coordination between them.

In the simulations, the two aircraft update their heading every ∆t = 1 min. Hence, a zoom into the
resolution trajectories would reveal lots of chattering between positions corresponding to higher Pc and
lower Pc. This behavior is expected, since the function Pc is very sensitive to the heading of the two aircraft.
In order to get flyable paths, we can either update the heading at a larger time step or predict a certain
period of time further into the future and take the average of the resolution headings during that period
(which acts as a low pass filter). This is not dealt with in the present paper.

The algorithm can be extended to the multiple aircraft case. Suppose we have n aircraft sharing the same
region of the airspace. Then, all aircraft pairs have to be considered and the new heading of each aircraft
has to be computed taking into account the overall probability of conflict.
For each aircraft, say i, i ∈ {A1, A2, · · · , An}, we compute the probability of conflict between it and any of
the other aircraft. Denote with P ij

c (k) the probability of conflict between aircraft i and j, and with ϑij
g (k) the

corresponding gradient heading. Then, the new heading ϑi
c(k) for aircraft i is chosen based on the expression

given in Algorithm 5 for the two aircraft case, but with the ideal heading computed as follows:

ϑ̄i(k) = P̄c(k)

∑

j 6=i P ij
c (k)ϑij

g (k)
∑

j 6=i P ij
c (k)

+ (1 − P̄c(k))ϑi
d(k),

where P̄c(k) = maxj 6=i P ij
c (k) is the maximum probability of conflict among all aircraft pairs involving
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Fig. 11. Resolution for three aircraft encounter situations (νa = 0.35, νc = 0.2, β = π/25).

aircraft i and is used as an indicator of the degree of danger for aircraft i in the multiple aircraft setting.

Simulation results for two different three aircraft encounter situations are shown in Figure 11. All param-
eters remain the same as in the two aircraft case. Since the airspace is not considerably more congested than
as in the two aircraft case, still most of the minimum separation distances are centered around 2ρ.
The situation becomes more complicated when the number of aircraft increases to, say, eight as it is shown
in Figure 12. The first encounter situation is a symmetric encounter where the eight aircraft pass through
a common point at angles evenly distributed in [0, 2π]. In the second encounter situation, the eight aircraft
are divided into two groups. The aircraft in each group follow each other in a streamline and the trajectories
of the two groups are orthogonal to each other. In this simulation, we set ρ = 10 instead of 5 nmi just for
the maneuvers to be more evident in the pictures. Note that in this case, the minimal separation of ρ nmi is
satisfied for 92 out of 100 runs for the first example and 94 out of 100 runs for the second one. This shows
that the algorithm cannot guarantee absolute safety. We are currently analyzing its safety properties as a
function of the number of aircraft involved in the encounter and the uncertainty level.

IV. Conclusions

In this paper, we dealt with aircraft conflict detection at the mid-range and short range levels of the ATMS.
Starting from an empirically motivated probabilistic description of the aircraft motion, stochastic models are
proposed for mid-term and short term prediction of the aircraft positions, thus allowing the corresponding
criticality measures to take into account the various sources of uncertainty inherent in the environment.

Although we focused on the planar case, the extension to the 3-D case is straightforward. As for mid-term
conflict detection, the computation of the proposed criticality measure can still be performed in an efficient
way by the randomized methods as remarked at the end of Section II-B. As for the short range conflict
detection, in a similar way to the 2-D case, analytical approximations for the probability of conflict can be
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Fig. 12. Resolution for eight aircraft encounter situations (νa = 0.35, νc = 0.2, β = π/25, ρ = 10 nmi).

computed for the 3-D case, and then be used to derived a decentralized 3-D resolution algorithm. However,
it is considerably harder to get meaningful bounds for the error of such approximations.

We are currently working on formulating algorithms for mid-range conflict resolution and investigating
different design alternatives. In particular, we are studying a model predictive control approach to achieve
this goal. The idea is to use the current radar measurements, the introduced detection module and an
optimization algorithm to minimize an appropriate resolution cost function over all possible flight plans.
ATC is notified if changes in the upcoming way points are imminent. The process is repeated every time a
new radar measurement becomes available.
The design choices that enter into conflict resolution are the different resolution cost functions and the
different optimization techniques. The optimization could be carried out by randomized algorithms, but
one has to carefully investigate the smoothness properties of the cost to be optimized as a function of the
controlled variables, i.e. the flight plans.
The parameters one needs to set are: How far in advance should ATC be notified of flight plan changes
(partly determined by human capabilities) and the bounds on the allowable flight plans (partly determined
by aircraft capability and ATC protocol).
Once the prediction/resolution algorithm has stabilized, we hope to be able to test it in human-in-the-loop
simulations. This will allow us to tune the various parameters, and assess its impact on ATC workload.

In parallel we are working towards a methodology for formally evaluating the safety properties of the
proposed algorithms. This will hopefully lead to a more general probabilistic verification methodology for
hybrid systems.
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Appendix

I. Formulae

The formulae reported in this section are derived in [34]. The proofs are omitted for brevity.

Formula 1 If x > 0, v > 0, then

∫ ∞

0

x√
2πt

exp[− (x − vt)2

2t
] dt =

x

v
.

Formula 2 Define Q(x) :=
∫ ∞

x
1√
2π

exp(−z2/2) dz. Then, for a > 0, b 6= 0, s > 0

∫ s

0

a√
2πt3

exp[− (a − bt)2

2t
] dt = Q(

a − bs√
s

) + exp(2ab)Q(
a + bs√

s
).
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Caption of figure 1:
A sketch of the current ATMS structure organized in Air Route Traffic Control Centers (ARTCCs), Special
Use Airspace (SUA) areas, TRACONs facilities, with the aircraft flying along VHF Omni-Directional Range
(VOR) jetways and entering the TRACON through gates.
Caption of figure 2:
Mid-range prediction model for the aircraft motion.
Caption of figure 3:
Left: Sample pair of simulated trajectories. The ⋆ stand for the starting points. Right: SOC curves
for Algorithm 4 (solid) & Erzberger algorithm (dashed). The ◦ stand for the “optimal” threshold points
(Example 1: ǫ = 0.05; δ = 0.1; β = 0.05; 1000 simulations).
Caption of figure 4:
The ⋆ stand for the starting points. Right: SOC curves for Algorithm 4 (solid) & Erzberger algorithm
(dashed). The ◦ stand for the “optimal” threshold points (Example 2: ǫ = 0.05; δ = 0.1; β = 0.05; 1000
simulations).
Caption of figure 5:
Plots of P(FA) and P(SA) vs threshold for our algorithm (solid) & Erzberger algorithm (dashed) (Example
1 with constant cross-track variance: ǫ = 0.05; δ = 0.1; β = 0.05; 1000 simulations).
Caption of figure 6:
Encounter situation for two aircraft flying at the same altitude.
Caption of figure 7:
Transformed protection zone.
Caption of figure 8:
P 0 for path angles ϑ = 0◦ (upper left); ϑ = 45◦ (upper right); ϑ = 90◦ (lower left); ϑ = 180◦ (lower right)
with ‖uA‖ = 7 nmi/min, ‖uB‖ = 8 nmi/min, νa = 2, νc=1.
Caption of figure 9:
P 0

tf
for tf = 10 min (top); tf = 15 min (bottom) with ϑ = 90◦, ‖uA‖ = 7 nmi/min, ‖uB‖ = 8 nmi/min,νa = 2,

νc = 1.
Caption of figure 10:
Resolution maneuver for two aircraft encounter situations (νa = 0.35, νc = 0.2, β = π/25).
Caption of figure 11:
Resolution for three aircraft encounter situations (νa = 0.35, νc = 0.2, β = π/25).
Caption of figure 12:
Resolution for eight aircraft encounter situations (νa = 0.35, νc = 0.2, β = π/25, ρ = 10 nmi).


