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ABSTRACT

This work presents a formal probabilistic approach for solving op-
timization problems in design automation. Prediction accuracy is
very low especially at high levels of design flow. This can be at-
tributed mainly to unawareness of low level layout information and
variability in fabrication process. Hence a traditional determinis-
tic design automation approach where each cost function is repre-
sented as a fixed value becomes obsolete. A new approach is gain-
ing attention [13, 5, 2, 4, 10] in which the cost functions are rep-
resented as probability distributions and the optimization criteria
is probabilistic too. This design optimization philosophy is demon-
strated through the classic buffer insertion problem [11]. Formally,
we capture wirelengths as probability distributions (as compared to
the traditional approach which considers wirelength as fixed val-
ues) and present several strategies for optimizing the probabilistic
criteria. During the course of this work many problems are proved
to be NP-Complete. Comparisons are made with the Van-Ginneken
“optimal under fixed wire-length” algorithm. Results show that the
Van-Ginneken approach generated delay distributions at the root of
the fanout wiring tree which had large probability (0.91 in the worst
case and 0.55 on average) of violating the delay constraint. Our
algorithms could achieve 100% probability of satisfying the delay
constraint with similar buffer penalty. Although this work considers
wirelength prediction inaccuracies, our probabilistic strategy could
be extended trivially to consider fabrication variability in wire par-
asitics.

1. INTRODUCTION

Design automation of integrated systems is essentially optimization
driven by estimation. If the estimation of critical design objectives
is inaccurate, the optimality of optimization will be limited. Unfor-
tunately, estimation is always marred with inaccuracies which oc-
cur due to many factors. Unawareness of exact implementation in-
formation, unpredictable circuit behavior, fabriaction variability are
important ones among them. Traditionally, optimization in design
automation has been deterministic since it assumes a fixed value to
the pertinent cost function (like area, delay, power). Lately, a new
optimization approach is gaining attention [13, 5, 2, 4, 10] in which
the cost functions are represented as probability distributions and
the optimization criteria is probabilistic too. Such a design method-
ology would be able to address the issue of prediction uncertaini-
ties and fabrication variability in a much more robust fashion when
compared with traditional deterministic approach. In this paper we

present such an optimization methodology for the buffer insertion
problem [11]. We address unpredictabilities posed by wirelength
estimation and/or variation of interconnect properties due to fab-
rication variability [13] and illustrate the superiority of our proba-
bilistic approach over traditional deterministic Van-Ginneken algo-
rithm [11].

The problem of buffer insertion deals with the placement of
buffers at appropriate positions on the fanout wiring trees such that
the delay at the driving gate is minimal. Lukas van Ginneken [11]
presented an optimal buffer placement algorithm for RC-Trees un-
der the Elmore Delay model for wires. It was assumed that wire-
lengths of individual segments in the wiring tree are known a-priori
through some estimation engine. Estimating wirelengths especially
in a traditional top down design flow is extremely hard and error
prone. This makes estimation of delay and capacitive loading of
the individual wire segments extremely difficult. Even if the wire-
length estimates are accurate, the fabrication variability/uncertainty
makes accurate estimation of wire parasitics an intractable problem.
Hence, the traditional deterministic approach possesses serious dis-
advantages. In this paper we extend Van-Ginneken’s approach to
consider wirelength estimation inaccurcay by modeling it as prob-
ability distributions. We propose a new probabilistic criteria of se-
lecting the final solution. The new criteria computes and minimizes
the probability of violating a given delay constraint. The paper
also presents three algorithms for performing buffer insertion when
wire-lengths are assumed as distributions. These three approaches
have different pruning criteria (from very relaxed to very strict) and
varying runtime complexities. Several sub-problems were proved
NP-Complete indicating that finding an optimal solution in poly-
nomial time under the probabilistic wire-length assumption is very
hard.

Experiments were conducted on large benchmarks with state
of the art technology parameters. Comparisons were made with
the Van-Ginneken approach [11]. Results showed that the Van-
Ginneken approach generated delay distributions at the root of the
wiring tree which had large probability (0.91 in the worst case and
0.55 on average) of violating the delay constraint. Our algorithms
could achieve100% probability of satisfying the delay constraint
with similar buffer penalty. This is a very strong result since our
approach ensures that the delay constraint will always be satisfied.

Although in our approach we address wire-length predication
inaccuracies, our algorithms can be trivally extended to the case
where the estimation of wire parasitics is also inaccurate due to
fabrication variability.

The rest of the paper is organized as follows. In section 2, we for-
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mally state the buffer insertion problem and present the traditional
approach [11]. Section 3 presents the selection criteria in a proba-
bilistic scenario, and section 4 presents our Probabilistic Buffer In-
sertion Algorithms with different pruning criteria. We discuss our
results in section 5. The paper is concluded in section 6.

2. MOTIVATION

2.1. The Probabilistic Paradigm

Automation of integrated systems is marred with estimation inaccu-
racies which occur due to a combination of many factors. Unaware-
ness of exact layout information like routing, placement, exact logic
structure are prominent reasons. Lately fabrication uncertainties
have also begun to get considerable weight primarily due to increas-
ing complexity and scaling of the fabrication process. In the light of
such unpredictabilities, a traditional deterministic approach towards
design automation becomes incapable and obsolete. Basically, a de-
terministic approach assigns a fixed value to the cost function (like
area, delay, power) and does not consider the error associated with
the estimation of this cost function. Hence, very little could be said
about the optimality of the final design especially if the estimation
was erroneous. This calls for the development of a probabilistic ap-
proach towards design optimization. Such an approach models the
cost functions as probability distributions and optimizes the design
probabilistically, hence maximizing the likelihood of satisfying de-
sign constraints. Many researchers have suggested the importance
of such an approach [1, 5, 13, 4, 10, 2] since estimation inaccuracies
(both due to fabrication variability and layout unawareness) are be-
coming major bottlenecks in design closure. The main advantage of
such an approach would be faster design closure, better fabrication
yield (since fabrication variability would have been accounted for
during designing) and improved robustness.

In this paper we present such a probabilistic approach for the
classic buffer insertion problem. We revisit the traditional deter-
ministic buffer insertion approach proposed by Van-Ginneken and
reformulate the problem probabilistically. In this work we assume
the source of unpredictability to be the inaccuracy in wirelength
estimation. Hence we model the wirelengths as probability distri-
butions. Our approach can be trivially extended to the case when
the paramemters of the wires (and not the length itself) change due
to fabrication variability.

2.2. Traditional Buffer Insertion

2.2.1. The Problem

The Buffer Insertion Problem can be formally stated as:
Given the fanout wiring tree with parasitic resistances and ca-

pacitances, wire-lengths, potential buffer locations, sink required
times, sink capacitive loads and a delay constraint at the driving
gate, the problem is to place buffers into the tree such that the re-
quired arrival time at the input of the driving gate is maximum. We
also consider the optimization of the number of buffers used to sat-
isfy the delay constraint.

The buffer insertion problem formalized by [11] models the
fanout wiring tree as a set of distributed RC sections. The Elmore
Delay model [14] is used to compute the delay of such a wiring tree.
Figure 1 illustrates a typical wiring tree. Each of the individual wire
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Figure 1: RC Tree Network

segments is characterized by parasitic resistances and capacitances
(like R3 and C3). These depend on the length of the corresponding
wire. A subtree rooted at nodek is represented by two numbers:
the required arrival timeTk and capacitive loadingLk.

Adding a wire of lengthl at the root of a subtree affects theTk,Lk

values as :
T ′

k = Tk − rlLk − (1/2)rcl2 (1)

L′
k = Lk + cl (2)

When a buffer is added at the root of the subtree :

T ′
k = Tk − Dbuf − RbufLk (3)

L′
k = Cbuf (4)

When two subtrees rooted atn andm are merged into one sub-
tree :

T ′
k = min(Tn, Tm) (5)

L′
k = Ln + Lm (6)

These equations can be used to compute the required arrival time
To at the root of the wiring tree. For brevity we have omitted the
detailed description of this delay model. This is a very popular
delay model for capturing wire-delays in modern layout driven op-
timization systems. A lot of research has been done on the buffer
insertion problem [8, 15, 6, 3, 9] which is especially useful for large
global nets like clock trees. Most of these approaches use a dynamic
programming based approach in which the wiring tree is traversed
topologically from sinks to source while storing an optimal solution
set. Next we describe Van-Ginneken approach to buffer insertion
which solves the problem optimally for a fixed wiring topology and
buffer placement locations.

2.2.2. The Van-Ginneken Algorithm

Using the delay model described above, Van-Ginneken proposed
his buffer placement algorithm [11]. The input to his strategy was a
wiring tree with estimated parasitics and a set of possible buffer lo-
cations, fanout capacitive loadings and required arrival times. The
wire parasitics in turn are dependent on the wire-lengths which are
assumed to be prespecified. The problem is to decide buffers loca-
tions at the prespecified positions such that the required time at the
root is maximized. The Van-Ginneken strategy is optimal under the
Elmore Delay model. His algorithm traverses the wiring tree topo-
logically from primary outputs to primary inputs. At each possible
buffer location, it evaluates the possibility of adding a buffer and its
effect on the required time and capacitive loading at that node. This
is followed by local pruning of the generated solutions. The pruning
criteria removes those solutions from the set of potential solutions
which have another solution with better values of both required time
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Figure 2: Mean Value vs. Actual Delay Distribution

and capacitive loading. Lukas Van-Ginneken[11] proved that this
pruning criteria generates an optimal solution at the root in polyno-
mial time. Once again for brevity we do not go into the details of
this algorithm.

2.3. Shortcomings of Existing Approach

Existing approaches to Buffer Insertion (or any other problem in
design automation) do not consider the uncertainties in estimat-
ing wire-lengths (or any other pertinent cost function). Focusing
the discussion on Buffer Insertion, the Van-Ginneken approach as-
sumes wire-lengths to be prespecified from some estimation engine
as fixed values. In reality, no estimation engine can give accurate
wire-length predictions. This is due to the unawareness of future
optimizations and hence the state of the final design. This is also
due to the sensitivity between various cost functions. For example,
if congestion in a certain region is intolerable, then any strategy of
optimizing congestion could have adverse effects on wire-length.
Using a fixed value of wire-length therefore cannot capture the real
variations involved.

In this work we relax the assumption of having fixed wire-length
estimates and propose a new buffer insertion strategy which prob-
abilistically models lengths and optimizes the underlying distribu-
tion. But before we delve into the details of our algorithm, we quan-
titatively illustrate the shortcomings in making a fixed wire-length
estimate.

Let us assume that we know the distribution of length of the wire-
segments. The Van-Ginneken algorithm does not consider distribu-
tions, hence we consider the two ways of providing fixed length
values to the algorithm:

1. Average length of the distribution

2. Worst (longest) length in the distribution

We conducted experiments with these two wire-length estimates.
The Van-Ginneken algorithm was given these estimates and the
buffered solution was generated. On this buffered tree, we imposed
the real distribution of wire-lengths. Using these distributions, the
delay distribution at the root was computed.

Figure 2 illustrates the results when the average values from the
wire length distribution were given as wire-length estimates. The
figure reports the variation in delay at the root for the result gener-
ated by the Van-Ginneken algorithm. These plots are shown for dif-
ferent wirelength statistical distributions (tailed gaussian and gaus-
sian). The bold arrow illustrates the delay estimated by the Van-
Ginneken algorithm. In reality the delay values at the root are
distributions. It can be seen that there is a large portion of these
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Figure 3: Worst Case Length Estimate

distributions whose delay is greater than that estimated by the Van-
Ginneken algorithm. Let us suppose we have a delay constraint
illustrated by the dotted line. According to the Van-Ginneken solu-
tion this constraint is satisfied, but in reality, there is a large portion
of the delay distribution that violates this constraint. This clearly
shows that the deterministic fixed wirelength approach can result in
failure of design closure.

We also assigned the worst case length values as estimates.
Figure 3 presents the data for gaussian wire-length distributions.
Such an estimation strategy could be an overestimate and hence an
overkill. It can be seen that for the same delay constraint as in figure
2, the Van-Ginneken solution (shown in a bold arrow) will not be
able to satisfy the constraint. But in reality (by observing the delay
distribution of the Van-Ginneken buffered tree), we find that there
is a large area which lies within the constraint (the shaded area).
Hence the Van-Ginneken result would be an overkill both in terms
of number of buffers and delay.

What we observed so far was that using fixed values to esti-
mate cost functions does not accurately address the issue of un-
predictabilities. In reality, these cost functions should be modeled
as distributions and the algorithms should be re-formulated to con-
sider these distributions. In this work we present such an approach
for the buffer insertion problem.

3. PROBABILISTIC BUFFER INSERTION:
METRICS

The previous section illustrated the importance of considering prob-
ability distributions of cost functions during optimization. Let us
consider the following situation in this light. Given a wiring tree
with possible buffer locations and a delay constraint at the root, the
problem is to place buffers such that the delay constraint is satis-
fied. Consider two given solutions at the root, each corresponding
to different distributions (as illustrated in figure 4). The figure also
illustrates the delay constraint that needs to be satisfied. Here the
distribution with larger spread has lesser mean value for delay com-
pared with the distribution with smaller spread. A traditional ap-
proach would choose the distribution with smaller mean (see figure
4). Clearly this solution has a large area outside the delay con-
straint. Hence it has a larger probability of failure. In this situation
the second solution with a smaller spread should be the choice. This
observation can be formally outlined as follows

Minimize
∑

d≥Dcons

p(d) (7)

Here
d : Delay p(d): Probability of delay d
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Basically, we would like to choose a solution that minimizes the
total probability of the delay constraintDcons not being satisfied.
This is a probabilistic selection criteria.

4. PROBABILISTIC BUFFER INSERTION:
ALGORITHMS

In the next few sections we will describe algorithms to optimize the
criteria outlined above. The input to our algorithms is a wiring tree
with parasitic resistances and capacitances, distributions of wire-
lengths (instead of fixed values), possible buffer locations, sink re-
quired times, sink capacitive loads and a delay constraint at the root.
The root is assumed to be a Nand gate which drives the wiring tree.
The delay constraint needs to be satisfied at the input of this gate.
We modify the Van-Ginneken approach to consider probability dis-
tributions of wire-lengths, the details are outlined below.

4.1. The Global Algorithm
TheGlobal Algorithm approaches the problem similar to the Van-
Ginneken strategy. The RC-Tree network is traversed topologically
from sinks towards source. At the root of each subtree (internal
node in the network), the set of possible solutions are computed
by merging the solutions of fanout-subtrees. Just like the Van-
Ginneken approach each solution comprises of two entities: T and
L. T corresponds to the required arrival time at the root and L cor-
responds to the capacitive loading. The difference lies in the fact
that since wire-lengths are considered as distributions, both T and
L will be distributions too. Refering to figure 5(b), at any internal
nodei we have the option of whether to place a buffer or not. In or-
der to compute the potential solutions ati, the solutions at its fanout
nodesj andk are propagated toi (by adding the delay distribution
of the wires (x andy which connect them toi respectively). This
can be done using equations 1 and 2 (although all variables are dis-
tributions now). Now we generate the possible solutions at nodei
by merging these modified solutions from the fanout nodes using
equations 5 and 6. If nodei has two fanouts withm andn solutions
each, then there could be a total ofmn solutions ati. The possibil-
ity of buffer placement at nodei, makes this solution set to become
2mn. Each buffer is characterized by an input capacitanceCbuf ,
and internal delayDbuf and an output impedanceRbuf . Adding a
buffer modifies the solutions at nodei according to equations 3 and
4. All these equations would be applied on probability distributions
of L and T instead of fixed values.

The total solutions at nodei can become very large (non-
polynomial in problem size). Hence this solution set needs to be

pruned. Van-Ginneken has a very effective pruning criteria in which
both polynomiality and optimality were achieved [11]. Since the L
and T values are not fixed, the Van-Ginneken pruning criteria can-
not be used. We propose three probabilistic pruning strategies with
varying complexities in the next few sub-sections. After pruning,
we are left with a reduced set of solutions at nodei. A dynamic
programming implementation computes the delay distribution of all
potential solutions at the input of the gate driving the RC-Tree. The
solution which has the highest likelihood of meeting the delay con-
straint is chosen as the final solution of the buffering problem(using
equation 7).

T

L

A

B

(a)

Node i

m
solutions

n
solutions

x y

Node j Node k

(b)

Figure 5: Distribution of Potential Solutions at a node

4.2. Pruning Strategies
We now propose three different pruning strategies for the Global
Algorithm:

4.2.1. Criteria 1

Let us assume that at a given sub-tree we have all the possible solu-
tions (including the possibility of adding a buffer at the root of sub-
tree). Let us make the following observation. A specific solutioni
at the rootk of a subtree is actually a distribution in required time
(T i

k) and a distribution in capacitive loadingLi
k. On a two dimen-

sional plane with x-axis as T and y-axis as L, this solution can be
represented as a rectangle in the worst case. The length of the rect-
angle is bounded by the smallest and largest required time values in
the corresponding distribution. Similarly, the width of the rectangle
is defined by the range of capacitive loading. For any point (x,y)
inside the rectangle (x being the required time axis, y being the
loading axis), p(x)p(y) denotes the probability of havingx as the
required time andy as the loading. Note that the probability that a
solution point lies outside this rectangle is zero for the correspond-
ing solution. Also note that if this was a deterministic approach,
each solution would be represented as a point instead of a rectan-
gle, which is exactly the case in the Van-Ginneken algorithm [11].
Figure 5(a) illustrates this concept and shows the distribution of the
possible ssolutions at a nodek. Consider two potential solutionsA
andB as marked in figure 5(a) for nodek. It can be seen thatB is
better thanA both in terms of the required time and capacitive load
distributions. The dotted lines show thatA does not even partially
overlap withB along both T and L axis. Hence we can conclude
that solutionA is guaranteed to be worse thanB and can be pruned
out.

Formally the steps can be outlined as follows :

1. Given a rootk of a subtree with a set of possible solutions
(T,L) represented as rectangles

2. Prune out a rectangle which is definitely worse in capacitive
loading and required time than another solution
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3. The remaining set of solutions are considered co-optimal

Under this pruning strategy, the worst case number of solutions
at the root can be exponential in the total possible buffer locations.
The strategy also ensures that the optimal solution stays in the co-
optimal set generated at the root.

4.2.2. Criteria 2

Once again, we assume that we have all possible solutions at a sub-
treek. In this approach, we have a stricter selection criteria which
prunes out more potential solutions. We determine the probabilistic
relation between a pair of potential solutions. Each pair (A,B) can
have three possible relations: A can probabilistically prune out B,
B can probabilistically prune out A or (A,B) could be co-optimal.
These relations are elaborated as follows. First we would like to out-
line that given two distributionsX andY , probability thatX ≥ Y
is defined as

∑
y∈Y

(p(y)
∑

x∈X,x≥y
p(x)). Given the distribution

for T and L values for A and B, probabilities for the three possible
relations is computed as follows.

A prunes B : P (A⇒B) = PT (A≥B) · PL(A≤B) (8)

B prunes A : P (B⇒A) = PT (B≥A) · PL(B≤A) (9)

Co − exist : P (A∼B) = (1 − P (A⇒B) − P (B⇒A)) (10)

Equation 8 computes the probability for A being better than
B both w.r.t. required time (PT (A≥B)) and loading capacitance
(PL(A≤B)). These values could be easily computed since we
know theL and T distributions. Similarly equation 9 gives the
probability of B being better than A. Equation 10 gives the proba-
bility of co-existence. The dominant relation between A and B is
given by

max(P (A⇒B), P (B⇒A), P (A∼B)) (11)

Hence the relationship between two solutions A and B is decided
by the one with highest probability. Now let us instantiate a graph
G= (V,E) with each solution as node in G and edges defined as fol-
lows. If A prunes B according to equation 11 then there is a directed
edge from node A to node B. If two nodes do not have any edges
then they are co-existing solutions according to equation 11. Also
note that there can be at-most one edge between any two nodes. We
apply our pruning criteria on such a directed graph.

The main aim of pruning is to reduce the given set of solutions
while maintaining the quality. The cost of a nodeδi is defined by the
total number of nodes that can be pruned out by this solution. This
essentially corresponds to the out-degree of this node. We want to
find a maximum set of nodes such that:

1. All nodes in the set are co-optimal/independent

2. Each node not in this set has a directed edge from at-least one
of the nodes in this set (note the keyword from)

3. The cost of the set
∑

i
δi is maximum

This is a variation of the maximum independent set problem
[7]. The variation is that each node not in the independent set must
have an incoming edge from at-least one node in the independent
set. The logic behind this constraint is that if a node (or a solution)
is culled out, then there must be at-least one solution in the
independent set that prunes this solution out (according to the

n m
solutions

n
solutions

Root k

T1 T2

x

y

z

(a) (b)

m

T

L

Figure 6: Generate Solutions at a Node from its Fanout
Nodes

probabilistic criteria described in the equations above). Moreover,
we want to maximize the total cost of all nodes, since the cost
signifies the quality of a node (larger the cost, more are the
number of solutions it prunes out). We name this problem as the
DIRECTED MAXIMAL INDEPENDENT SET problem.

Theorem: DIRECTED MAXIMAL INDEPENDENT SET prob-
lem is NP-Complete.
Proof: Transformation fromV ertex − Cover [7]. Rest of the
proof is omitted for brevity.

Heuristic for Criteria 2

Algorithm 1 Heuristic for Criteria 2

INPUT: Directed Graph G=(V,E);
Compute the cost of each noden = outdegree(n)
A: Set of all nodes
While( A != ∅)

Choose highest cost vertexi from setA and addi to setB
Remove all solutions from setA that have an edge withi

ReturnB

The heuristic used for this criteria is described in Algorithm 1.
We sort all nodes w.r.t their cost values and iteratively pick the node
with highest cost. The final solution generated by this algorithm
will not satisfy the directed edge constraint of the Directed Maxi-
mal Independent Set problem. In fact the problem remains NP-C
even if the directed edge constraint is relaxed since it is an instance
of traditional Independent Set problem. Another point to note is
that this is a stricter pruning criteria (prunes out more potential so-
lutions) w.r.t. Criteria 1 but still does not guarantee a polynomial set
of solutions at the root. Next we describe an even stricter approach
which is completely polynomial.

4.2.3. Criteria 3

This approach is focussed on ensuring that the total number of so-
lutions generated at the root of the wiring tree are polynomial in the
possible buffer positions. Let us consider an internal nodek with
two subtrees (as shown in figure 6(b)). The two subtrees havem
andn solutions respectively. In the worst case there will bem · n
solutions at the rootk after merging (assuming there is no buffer at
the root). Merging two solutions from the left and the right subtrees
essentially amounts to applying equations 5 and 6 to the distribu-
tions of the corresponding solutions. Let us suppose we are trying
to merge solutionsx andy in figure 6(a). The generated solution has
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a delay distribution starting from T1 (see figure 7(a)). Also when-
everx is merged with any solution whose starting T value is greater
than T1, the generated solution will start from T1. Since there can
be at mostm + n distinct starting times in figure 6, the generated
m ·n solutions at rootk will be clustered in at mostm + n starting
times. This is illustrated in figure 7(a).

Now comes our pruning criteria. For each distinct starting time
value (shown in figure 7(a)), we pick exactly one solution and
prune the rest. Hence we have at mostm + n solutions at root
k. The exact strategy of picking these solutions will be discussed
in the subsequent paragraphs. Before that, let us consider the
situation where we can add a buffer at rootk. Hence for each of the
m · n solutions, we have the choice of adding a buffer. Therefore
the total number of solutions become2 · mn. Note that for the
buffered solutions the capacitance is no longer a distribution.This
is illustrated in figure 7(b) where the capacitance is a fixed value.
According to this pruning criteria, we pick exactly one of these
m · n buffered solutions at rootk. The selection criteria used is
as follows. We compute the probability that a buffered solution
is better than another using equation 8. For each solution, we get
the cumulative probability values. Finally we choose the solution
that has the largest value. This solution is probabilistically better
than all the other buffered solutions. Hence the total number of
solutions that we store at a subtree is O(m+n+1) (m+n for solution
with no buffers and one with the buffer). This is a polynomial
quantity. Even the Van-Ginneken algorithm [11] was storing at
mostm + n + 1 solutions at a subtree. This results in a polynomial
number of solutions at the root of the wiring tree. For brevity we
omit the proof of polynomiality, the proof is similar to [11].

Theorem: Criteria 3 is polynomial in the problem size
Proof: Proof is similar to [11] and is omitted for brevity.

Now we go into the details of howm + n solutions are chosen
from m · n possible solutions (for the case where there are no
buffers). As mentioned before there will bem + n distinct
starting T values (figure 7(a)). We choose exactly one solution
from each distinct starting T value. This problem is modeled
using COMPLETE R-PARTITE MAX COST CLIQUE problem
[12]. The transformation is as follows. We instantiate a complete
R-PARTITE graph G=(V,E) with the following properties. For each
set of solutions that have the same starting T value, we instantiate
a graph partition with a node for each solution. These nodes do
not have edges between them. There are undirected edges between
all other pair of nodes from different partitions. This generates
a complete R-PARTITE graph withm + n as R. The generated
graph is shown in figure 8. Each edge has a cost which signifies the
probability that the corresponding solutions are co-optimal. This

Complete R Partite Graph

Figure 8: Complete R-Partite Max Cost Clique

can be computed using equation 10. The problem is to find a clique
in this graph with maximum cost. Note that the largest clique in
this graph can be trivially generated by picking a node from each
levels. The challenge is to generate the clique with maximum cost.
Picking one node from each partition would ensure one solution
for each starting T value is chosen. Hence the total number of
chosen solutions areR = m + n. Larger the cost of the clique,
higher the probability of co-optimality of all solutions. Hence a
larger solution space could be represented by the same number of
solutions.

Theorem: COMPLETE R-PARTITE MAX COST CLIQUE is
NP-Complete
Proof: Transformation from 3SAT [7]. Rest of the proof is omitted
for brevity.

Heuristic for Criteria 3

We propose a heuristic (refer Algorithm 2) for the above prob-
lem formulation. We are givenm + n sets of solutions sorted in
increasing order of T. We traverse these sorted set one by one and at
each set we generate the possible cliques for each potential node in
this current set by merging it with each of the best cliques generated
at the previous set. From these potential solutions, the clique that
gives the maximum cost is stored. When the next set is traversed,
the possible solutions at the next set will use this best clique infor-
mation. The is done iteratively till the last set is encountered. At
this stage the clique with best cost is selected.

Algorithm 2 Heuristic for Criteria 3

INPUT: set ofmn solution partitioned inm + n distinct sets
Get the probability of co-existence between each solution pairi andj
Sort them + n sets depending on their startingT values
Loop(over allm + n set)

For(each solutionx in seti)
For(each solutiony in seti − 1)

Calculate the cost of the clique formed by addingx to the best
clique aty

Choose the clique with maximum cost and store it. This is the cost
of the best clique at x now
At the last set, among allx in this set, pick the clique with largest cost

This completes the description of the three pruning criteria. Each
of them has its own distinct property.Criteria 1 ensures that the
best solution will never be pruned out, but is not polynomial.Cri-
teria 2 has a methodology which enables more pruning and hence is
faster thanCriteria 1 but is still not provably polynomial.Criteria
3 is strictly polynomial and has a very firm selection mechanism.
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Bench Van-Gin Tcons Van-Gin # Bufs Crit 1 # Bufs Crit 2 # Bufs Crit 3 # Bufs
# Sinks Sol (nano sec) (nano sec) Pe Pe Pe Pe

54 121.2 122 0.198 14 0 13 0 15 0 13
96 102.4 103 0.563 19 0 19 0 19 0 20
216 585.9 586 0.467 23 - - 0 23 0 20
360 117.7 118 0.917 70 - - 0 73 0 72
468 582.6 583 0.531 45 - - 0.025 41 0.213 32
590 390.8 391 0.618 77 - - 0 80 0 79
720 722.3 723 0.596 61 - - 0 63 0 59
890 845.5 846 0.573 60 - - 0 59 0 57
1080 1598.3 1599 0.414 78 - - 0 84 0 69
1260 5812.2 5813 0.639 95 - - 0 93 0 94
Avg 0.552 - 0.003 0.021

Table 1: Results from Experiments
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Figure 9: Comparison of Solutions for a Benchmark

Delay (nano sec)

0.2

0.3

0.4

0.5

Delay Constraint0.6
Prob

740 820

0.1

780700

Figure 10: Delay Distribution of Solutions Satisfying a De-
lay Constraint

5. EXPERIMENTAL RESULTS

The objective through experimental results was to illustrate the su-
periority of our approach over fixed wire-length assumption and
also compare the quality of the three pruning criteria. For exper-
imental purposes, we used large wiring trees with large number of
sinks. Some of these trees were balanced and some were unbal-
anced (close to lt-trees). The required arrival times at the sinks of
the benchmarks were also chosen randomly. Values forr and c
(wire parasitics) were chosen for 0.18 micron technology. Wire-
lengths were taken as Gaussian distributions with mean varying be-
tween 100 to 1000λ and variance lying within10% of the mean.
The Van-Ginneken algorithm was used to generate a valid buffer
placement with largest required time at source. The delay constraint
for the tree was set at a value slightly greater than the single delay
value given by the Van-Ginneken Algorithm. This ensures that the
Van-Ginneken estimate always satisfies the constraint.

Table 1 illustrates the performance of our criteria as compared
with fixed wire-length estimate buffer insertion [11]. The aver-
age wire-length of the distribution was provided as wire length

73 74 7541 69

Fanout 590

39 40

Number of Buffers

0.29

0.48

0.15

0.66
Pe

0.56

Fanout 468

Figure 11: Trade-off Between Number of Buffers and Prob-
ability of Error

estimate input to the Van-Ginneken algorithm. We chose a so-
lution from the Van-Ginneken algorithm that satisfied the delay
constraint and then generated the delay distribution for the solu-
tion. The second column of table 1 provides the output of the Van-
Ginneken algorithm. It can clearly be seen from the results that
fixed value estimates result in delay constraint violation with very
high probabilities (Pe). Given a delay constraintPe is computed
usingPe =

∑
d≥Dcons

p(d)

On the other hand probabilistic buffer insertion results in the de-
lay constraint being satisfied with a very high probability. Even
though the total number of buffers between our approach and the
Van-Ginneken approach remain more or less the same, it was ob-
served that the buffer locations are different. Another observation
that we made was that Criteria 1, which has a very relaxed prun-
ing strategy was not practical for larger benchmarks since it did not
give results in a reasonable run time. Results also show that Criteria
2 solutions have the least probability (Pe) of not satisfying the de-
lay constraint without any major buffer penalty. We also observed
that for most cases, the actual delay distribution found using our
criteria were much better than those from the Van-Ginneken fixed
value algorithm. This is illustrated in figure 9. Clearly, the best so-
lution of the Van-Ginneken approach is worse than that generated
by Criteria 2. There is an important inference here:optimization
using fixed average wire-length estimates does not generate a
distribution with the smallest average delay. This is a critical ob-
servation since optimization using average wire-length values does
not optimize average delay at the root.

Figure 10 shows a typical delay distribution solution at the root
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using the probabilistic approach. It is evident that there are sev-
eral possible solutions for a given delay constraint (shown by the
arrow in figure 10) that have differing probabilities of satisfying the
constraint. We observed from the experiments that a trade-off ex-
ists between probabilistically satisfying a delay constraint and the
number of buffers used by that solution. Figure 11 shows such a
trade-off for two benchmarks. This gives the designer the flexibil-
ity of taking aProbabilistic − Risk of not satisfying the delay
constraint while choosing a solution with fewer buffers.

Table 2 shows that the run time comparison between the three
Criteria proposed in section 4. All values have been normalized
w.r.t. the run time values for Criteria 2. Criteria 1 is not polynomial
in complexity and hence has a very large run time for reasonably
large benchmarks. It has a much weaker pruning criteria, but the
quality of final solution could be very high since it retains all pos-
sible solutions which can potentially be better. But the runtime for
Criteria 1 was unreasonably large making it impractical when com-
pared with Criteria 2 and 3. As can be seen from table 2, run time
for Criteria 2 is similar to that of Criteria 3 even though it is not
polynomial in the worst case. This illustrates that Criteria 2 has a
very good performance both in terms of run time and quality of the
final solution.

Bench Criteria 1 Criteria 2 Criteria 3
Sinks
54 2.39 1 1.02
96 3.75 1 1.03
216 - 1 0.90
360 - 1 1.57
468 - 1 1.05
590 - 1 0.97
720 - 1 0.92
890 - 1 0.95
1080 - 1 0.91
1260 - 1 1.12

Table 2: Runtime Comparison Between the Three Criteria

6. CONCLUSION AND FUTURE WORK

Estimation in design automation is marred with inaccuracies. This
paper address the problem of wire-length estimation unpredictabil-
ities in buffer insertion. It solves the problem by modeling the
wire-lengths as probability distributions and proposes algorithms
for solving them. Traditional approach for buffer insertion is com-
pared with this novel approach. Results showed that traditional so-
lution can result in a very large probability of error while our algo-
rithms resulted in very accurate solutions. Several results of runtime
complexity were also discussed.

The future work would include developing models for estimat-
ing wire-length distributions and developing a complete synthesis
system that probabilistically traverses the solution space.
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