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Abstract. This paper addresses the problem of building large-scale geometric maps of indoor environments with

mobile robots. It poses the map building problem as a constrained, probabilistic maximum-likelihood estimation

problem. It then devises a practical algorithm for generating the most likely map from data, along with the most

likely path taken by the robot. Experimental results in cyclic environments of size up to 80 by 25 meter illustrate

the appropriateness of the approach.
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1. Introduction

Over the last two decades or so, the problem of acquiring maps in indoor environments

has received considerable attention in the mobile robotics community. The problem of

map building is the problem of determining the location of entities-of-interest (such as:

landmarks, obstacles), often relative to a global frame of reference (such as a Cartesian

coordinate frame). To build a map of its environment, a robot must know where it is relative

to past locations. Since robot motion is inaccurate, the robot must solve a concurrent

localization problem, whose difficulty increases with the size of the environment (and

specifically with the size of possible cycles therein). Thus, the general problem of map

building is an example of a chicken-and-egg problem: To determine the location of the

entities-of-interest, the robot needs to know where it is. To determine where it is, the robot

needs to know the locations of the entities-of-interest.

In our experiments, we investigate a restricted version of the map building problem, in

which a human operator tele-operates the robot through its environment. In particular, we

assume that the operator selects a small number of significant places (such as intersections,

corners, dead ends), where he pushes (with high likelihood) a button to inform the robot

that such a place has been reached. The approach, however, can be applied to the problem

of landmark-based map acquisition (using one of the many landmark recognition routines

published in the literature, such as (Borenstein, Everett, & Feng, 1996, Choset, 1996,

Kuipers & Byun, 1991, Matarić, 1994)). Thus, the paper phrases the approach in the

language commonly used in the field of landmark-based navigation. The general problem
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addressed in this paper is: How can a robot construct a consistent map of an environment,

if it occasionally observes a landmark? In particular, the paper addresses situations where

landmarks might be entirely indistinguishable, and where the accumulated odometric error

might be enormous.

The paper presents an algorithm for landmark-based map acquisition and concurrent

localization that is based on a rigorous statistical account on robot motion and perception. In

it the problem of map building is posed as a maximum likelihood estimation problem, where

both the location of landmarks and the robot’s position have to be estimated. Likelihood

is maximized under probabilistic constraints that arise from the physics of robot motion

and perception. Following (Koenig & Simmons, 1996, Shatkay & Kaelbling, 1997a),

the high-dimensional maximum likelihood estimation problem is solved efficiently using

the Baum-Welch (or alpha-beta) algorithm (Rabiner & Juang, 1986), which is a special

version of EM (Dempster, Laird, & Rubin, 1977). Baum-Welch alternates an “expectation

step” (E-step) and a “maximization step” (M-step, sometimes also called “modification

step”). In the E-step, the current map is held constant and the probability distributions

are calculated for past and current robot locations. In the M-step, the most likely map is

computed based on the estimation result of the E-step. By alternating both steps, the robot

simultaneously improves its localization and its map, which leads to a local maximum in

likelihood space. The probabilistic nature of the estimation algorithm makes it considerably

robust to ambiguities and noise, both in the odometry and in perception. It also enables the

robot to revise past location estimates as new sensor data arrives.

The paper also surveys results obtained with a RWI B21 robot in indoor environments

of size 80 by 25 meter. One of the environments contains a cycle of size 60 by 25 meter,

which has been mapped successfully despite significant odometric error. The approach

has been integrated with a conventional method for building occupancy grid maps (Thrun,

1993, 1998), for which results are reported as well. Related work is reviewed in Section 9.

2. The probabilistic model

This section describes our probabilistic model of the two basic aspects involved in mapping:

motion and perception. These models together with the data (see next section) define the

basic likelihood function, according to which maps are built.

2.1. Robot motion

Let ξ and ξ′ denote robot locations in x-y-θ space (sometimes called poses), and let u denote

a control (motion command), which consists of a combination of rotational and translational

motion. Since robot motion is inaccurate, the effect of a control u on the robot’s location ξ

is modeled by a conditional probability density

P (ξ′|u, ξ) (1)

which determines the probability that the robot is at location ξ′, if it previously executed

control u at location ξ. P (ξ′|u, ξ) imposes probabilistic constraints between robot positions

at different points in time. If P (ξ) is the probability distribution for the robot’s location
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before executing a control u,

P (ξ′) :=

∫

P (ξ′|u, ξ) P (ξ) dξ (2)

is the probability distribution after executing that control. Figure 1 illustrates the motion

model. In Figure 1a, the robot starts at the bottom location (in a known position), and moves

as indicated by the vertical line. The resulting probability distribution is visualized by the

gray area in Figure 1a: The darker a value, the more likely it is that the robot is there. Figure

1b depicts this distribution after two motion commands. Of course, Figure 1 (and various

other figures in this paper) show only 2D projections of P (ξ), as P (ξ) is three-dimensional.

Note that the particular shape of the distributions results from accumulated translational

and rotational error as the robot moves.

Mathematically speaking, the exact motion model assumes that the robot accumulates

both translational and rotational error as it moves. Both sources of error are distributed

according to a triangular distribution, that is centered on the zero-error outcome.1 The width

of these distributions are proportional to the length of the motion command. Of course, the

resulting distribution is not triangularly distributed inx-y-θ space, as the different curvatures

in Figure 1 indicate.

Figure 1. Probabilistic model of robot motion: Accumulated uncertainty after moving as shown: (a) 40 meter,

(b) 80 meter.

2.2. Robot perception

Our approach assumes that the robot can observe landmarks. More specifically, we assume

that the robot is given a method for estimating the type, the relative angle and an approximate

distance of nearby landmarks. For example, such landmarks might be Choset’s “meet

points” (Choset, 1996) (see also (Kuipers & Byun, 1991, Matarić, 1994)), which correspond
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Figure 2. Probabilistic model of robot perception: (a) uncertainty after sensing a landmark in 5 meter distance,

(b) the corresponding map.

to intersections or dead ends in corridors and which can be detected very robustly. Various

other choices are described in (Borenstein et al., 1996).

In our probabilistic framework, landmarks are not necessarily distinguishable; in the

most difficult case, landmarks are entirely indistinguishable. It is also assumed that the

perceptual component is erroneous—the robot might misjudge the angle, distance, or type

of landmark. Thus, the model of robot perception is modeled by a conditional probability:

P (o|ξ,m). (3)

Here o denotes a landmark observation, and m denotes the map of the environment (which

contains knowledge about the exact location of all landmarks). P (o|ξ,m) determines the

likelihood of making observation o when the robot is at location ξ, assuming that m is the

correct model of the environment.

The perceptual model imposes probabilistic constraints between the map, m, and the

robot’s location, ξ. According to Bayes rule, the probability of being at ξ when the robot

observes o is given by

P (ξ|o,m) =
P (o|ξ,m) P (ξ|m)

∫
P (o|ξ′,m) P (ξ′|m) dξ′

= η P (o|ξ,m) P (ξ|m) (4)

Here P (ξ|m) measures the probability that the robot is at ξ prior to observing o and η

is a normalizer that ensures that the left-hand probabilities in (4) sum up to 1 (over all

ξ). Equation (4) implies that after observing o, the robot’s probability of being at ξ is

proportional to the product of P (ξ|m) and the perceptual probability P (o|ξ,m).
Figure 2a illustrates the effect of Equation (4) for a simple example. Shown there is the

distribution P (ξ|o,m) that results if the robot initially has no knowledge as to where it

is (i.e., P (ξ|m) is uniformly distributed), and if it perceives a landmark approximately 5

meters ahead of it, in a world m that contains exactly two indistinguishable landmarks.
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This world is shown in Figure 2b. The circles in Figure 2a indicate that the robot is likely

to be approximately 5 meter away from a landmark—although there is a residual non-zero

probability for being at another location, since the robot’s perceptual routines might err.

If the landmark were distinguishable, the resulting density (Figure 2a) would consist of a

single circle, instead of two.

Notice that although the perceptual model P (o|ξ,m) assumes exact knowledge of both

the robot’s location and its environment (which makes it easy to derive), the estimation

according to equation (4) does not assume knowledge of ξ. It only assumes knowledge of

the map m.

3. Data, maps, and the map likelihood function

Maps are built from data, by maximizing the likelihood of the map under the data. The data

is a sequence of control interleaved with observations. Without loss of generality, let us

assume that motion and perception are alternated, i.e., that the data available for mapping

is of the form

d = {o(1), u(1), o(2), u(2), . . . , o(T−1), u(T−1), o(T )}, (5)

where T denotes the total number of steps.

In statistical terms, the problem of mapping is the problem of finding the most likely map

given the data

m∗ = argmax
m

P (m|d). (6)

The probability P (m|d) can be written as

P (m|d) =

∫

· · ·

∫

P (m|ξ(1), . . . , ξ(T ), d) P (ξ(1), . . . , ξ(T )|d) dξ(1) . . . dξ(T ).(7)

By virtue of Bayes rule, the probability P (m|ξ(1), . . . , ξ(T ), d) on the right hand side of

Equation (7) can be re-written as

P (m|ξ(1), . . . , ξ(T ), d) =
P (d|m, ξ(1), . . . , ξ(T )) P (m|ξ(1), . . . , ξ(T ))

P (d|ξ(1), . . . , ξ(T ))
(8)

Based on the observation that o(t) depends only on the map m and the location ξ(t) at time

t, the first term on the right hand side of Equation (8) can be transformed into

P (d|m, ξ(1), . . . , ξ(T )) =
T∏

t=1

P (o(t)|m, ξ(t)) (9)

Furthermore, P (m|ξ(1), . . . , ξ(T )) = P (m) in Equation (8), since in the absence of any

data, m does not depend on any of the locations ξ(t) (with t = 1, . . . , T ). P (m) is the

Bayesian prior over all maps, which henceforth will be assumed to be uniformly distributed.

Finally, the term P (ξ(1), . . . , ξ(T )|d) in Equation (7) can be re-written as

P (ξ(1), . . . , ξ(T )|d) =
T−1∏

t=1

P (ξ(t+1)|u(t), ξ(t)) (10)
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This transformation is based on the observation that the robot’s location ξ(t+1) depends

only on the robot’s location ξ(t) one time step earlier and the action u(t) executed there.

Substituting Equations (8), (9), and (10) into the right-hand side of Equation (7) leads to

the likelihood function

P (m|d) =

∫

· · ·

∫
1

P (d|ξ(1), . . . , ξ(T ))

T∏

t=1

P (o(t)|m, ξ(t)) P (m)

·
T−1∏

t=1

P (ξ(t+1)|u(t), ξ(t)) dξ(1), . . . , dξ(T ). (11)

Since we are only interested in maximizing P (m|d), not in computing its value, we can

safely drop the constants P (m) and P (d|ξ(1), . . . , ξ(T )). The resulting expression,

argmax
m

∫

· · ·

∫ T∏

t=1

P (o(t)|m, ξ(t))

T−1∏

t=1

P (ξ(t+1)|u(t), ξ(t)) dξ(1), . . . , dξ(T ), (12)

is exclusively a function of the data d, the perceptual model P (o|m, ξ), and the motion

model P (ξ′|u, ξ) (c.f. Section 2). Maximizing this expression is equivalent to finding the

most likely map.

4. Efficient maximum likelihood estimation

Unfortunately, computing (12) is computationally challenging. This is because finding

the most likely map involves search in the space of all maps. For the size environments

considered here, this space often has 106 dimensions or more. To make matters worse, the

evaluation of a single map would require integrating over all possible locations at all points

in time, which for the datasets considered in this paper would require integration over more

than 105 independent variables, which is clearly infeasible. In the light of these numbers,

finding the map that globally maximizes the likelihood function appears to be difficult.

Fortunately, there exists an efficient and well-understood technique for hill-climbing in

likelihood space: the EM algorithm (Dempster et al., 1977), which in the context of Hidden

Markov Models is often referred to as Baum-Welch or alpha-beta algorithm (Rabiner &

Juang, 1986) (for applications of alpha-beta in the context of mapping see (Koenig &

Simmons, 1996, Shatkay & Kaelbling, 1997a, Oore, Hinton, & Dudek, 1997)). EM is a

hill-climbing routine in likelihood space which alternates two steps, an expectation step (E-

step) and a maximization step (M-step). In the E-step, probabilistic estimates for the robot’s

locations at the various points in times are estimated based on the currently best available

map (in the first iteration, there is none). In the M-step, a maximum likelihood map is

estimated based on the locations computed in the E-step. The E-step can be interpreted as

a localization step with a fixed map, whereas the M-step implements a mapping step which

operates under the assumption that the robot’s locations (or, more precisely, probabilistic

estimates thereof) are known. Iterative application of both rules leads to a refinement of

both, the location estimates and the map.

We believe that this algorithm can be shown to converge to a local maximum in likelihood

space. Our belief is based on existing convergence results for EM and Hidden Markov
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Models (Dempster et al., 1977, Rabiner & Juang, 1986) and a more recent result by Shatkay

and Kaelbling that shows the convergence of the alpha-beta algorithm for learning Hidden

Markov Models augmented with metric information (Shatkay & Kaelbling, 1997b).

4.1. The E-step

In the E-step, the current-best mapm and the data are used to compute probabilistic estimates

P (ξ(t)|d,m) for the robot’s position ξ(t) at t = 1, . . . , T . With appropriate assumptions,

P (ξ(t)|d,m) can be expressed as the normalized product of two terms

P (ξ(t)|d,m)

= P (ξ(t)|o(1), . . . , o(t), u(t), . . . , o(T ),m)

(a)
= η1 P (o(1), . . . , o(t)|ξ(t), u(t), . . . , o(T ),m) P (ξ(t)|u(t), . . . , o(T ),m)

(b)
= η1 P (o(1), . . . , o(t)|ξ(t),m) P (ξ(t)|u(t), . . . , o(T ),m)

(c)
= η2 P (ξ(t)|o(1), . . . , o(t),m) P (o(1), . . . , o(t)|m) P (ξ(t)|u(t), . . . , o(T ),m)

= η3 P (ξ(t)|o(1), . . . , o(t),m)
︸ ︷︷ ︸

:=α(t)

P (ξ(t)|u(t), . . . , o(T ),m)
︸ ︷︷ ︸

:=β(t)

(13)

Here η1, η2, and η3 are normalizers that ensure that the left-hand side of Equation (13) sums

up to one over all ξ(t). The derivation of (13) follows from (a) the application of Bayes rule,

(b) a commonly-used Markov assumption that specifies the conditional independence of

future from past data given knowledge of the current location and the map, and (c) a second

application of Bayes rule under the assumption in the absence of data, robot positions are

equally likely.

Both terms, α(t) and β(t), are computed separately, where the former is computed forward

in time and the latter is computed backwards in time. The reader should notice that our

definition of α(t) and β(t) deviates from the definition usually given in the literature on

Hidden Markov Models (c.f., (Rabiner & Juang, 1986)). However, our definition maps

nicely into existing localization paradigms. The computation of the α-values is a version of

Markov localization, which has recently been used with great success by various researchers

(Burgard, Fox, Hennig, & Schmidt, 1996, Kaelbling, Cassandra, & Kurien, 1996, Koenig

& Simmons, 1996, Nourbakhsh, Powers, & Birchfield, 1995, Simmons & Koenig, 1995,

Thrun et al., 1998, Thrun, in press). The β-values add additional knowledge to the robot’s

position, typically not captured in Markov-localization. They are, however, essential for

revising past belief based on sensor data that was received later in time, which is a necessary

prerequisite of building large-scale maps.

4.1.1. Computation of the α-values Since initially, the robot is assumed to be at the

center of the global reference frame,α(1) is given by a Dirac distribution centered at (0, 0, 0):

α(1) = P (ξ(1)|o(1),m) =

{
1, if ξ(1) = (0, 0, 0)
0, if ξ(1) 6= (0, 0, 0)

(14)
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All other α(t) are computed recursively:

α(t) = P (ξ(t)|o(1), . . . , o(t),m)

= η P (o(t)|ξ(t), o(1), . . . , u(t−1),m) P (ξ(t)|o(1), . . . , u(t−1),m)

= η P (o(t)|ξ(t),m) P (ξ(t)|o(1), . . . , u(t−1),m) (15)

whereη is again a probabilistic normalizer, and the rightmost term of (15) can be transformed

to

P (ξ(t)|o(1), . . . , u(t−1),m)

=

∫

P (ξ(t)|u(t−1), ξ(t−1)) P (ξ(t−1)|o(1), . . . , o(t−1),m) dξ(t−1)

=

∫

P (ξ(t)|u(t−1), ξ(t−1)) α(t−1) dξ(t−1) (16)

Substituting (16) into (15) yields a recursive rule for the computation of all α(t) with

boundary condition (14), which uses the data d, the model m, in conjunction with the

motion model P (ξ′|u, ξ) and the perceptual model P (ξ|o,m). See (Thrun, in press) for a

more detailed derivation.

4.1.2. Computation of the β-values The computation of β(t) is completely analogous,

but backwards in time. The initialβ(T ), which expresses the probability that the robot’s final

position is ξ, is uniformly distributed (β(T ) does not depend on data). All other β-values

are computed in the following way:

β(t) = P (ξ(t)|u(t), . . . , o(T ),m)

=

∫

P (ξ(t)|u(t), ξ(t+1)) P (ξ(t+1)|o(t+1), . . . , o(T ),m) dξ(t+1)

=

∫

P (ξ(t+1)|u(t), ξ(t)) P (ξ(t+1)|o(t+1), . . . , o(T ),m) dξ(t+1)

(17)

The rightmost expression is further transformed to:

P (ξ(t+1)|o(t+1), . . . , o(T ),m)

= η P (o(t+1)|ξ(t+1), u(t+1), . . . , o(T ),m) P (ξ(t+1)|u(t+1), . . . , o(T ),m)

= η P (o(t+1)|ξ(t+1),m) β(t+1) (18)

The derivation of the equations are analogous to that of the computation rule for α-values.

The result of the E-step, α(t) · β(t), is an estimate of the robot’s locations at the various

points in time t.

Figure 3 shows a sequence of β-values, which arose in one of the experiments described

below. This figure illustrates that some of the distributions are multi-modal; Kalman filters

(Kalman, 1960), which are frequently used in localization, are probably not appropriate

here.
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which is obtained by

P (mxy = l|d) =

T∑

t=1

∫

P (mxy = l|o(t), ξ(t)) α(t)β(t) dξ(t)

T∑

t=1

∑

l′∈L

∫

P (mxy = l′|o(t), ξ(t)) α(t)β(t) dξ(t)

=

T∑

t=1

∫

P (mxy = l|o(t), ξ(t)) α(t)β(t) dξ(t)

T∑

t=1

∫

α(t)β(t) dξ(t)

=
1

T

T∑

t=1

∫

P (mxy = l|o(t), ξ(t)) α(t)β(t) dξ(t) (19)

where

P (mxy = l|o(t), ξ(t)) =
P (o(t)|mxy = l, ξ(t)) P (mxy = l|ξ(t))

∑

l′∈L

P (o(t)|mxy = l′, ξ(t)) P (mxy = l′|ξ(t))
(20)

Since we assume that mxy does not depend on the robot’s position ξ (and hence in the

absence of data: P (mxy = l|ξ) = P (mxy = l′|ξ) ∀l, l′ ∈ L), expression (20) can be

simplified to

P (mxy = l|o(t), ξ(t)) =
P (o(t)|mxy = l, ξ(t))

∑

l′∈L

P (o(t)|mxy = l′, ξ(t))

= η P (o(t)|mxy = l, ξ(t)) (21)

Here η is the usual normalizer. While these equations look complex, they basically amount

to a frequentist approach. Equation (19) counts how often the generalized landmark l

was observed for location 〈x, y〉, divided by the number some generalized landmark was

observed for that location. Each count is weighted by the probability that the robot was at a

location ξ where it could observe something about 〈x, y〉. Frequency counts are maximum

likelihood estimators. Thus, the M-step determines the most likely map from the position

estimates computed in the E-step. By alternating both steps, both the localization estimates

and the map are gradually improved (see also (Rabiner & Juang, 1986, Shatkay & Kaelbling,

1997b)).

5. Efficiency considerations

In our implementation, all probabilities are represented by discrete grids. Thus, all integrals

are replaced by sums in all equations above. Maps of size 90 by 90 meter with a spatial

resolution of 1 meter and an angular resolution of 5◦ were used throughout all experiments
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reported here, with the exception of the experiments conducted in the Carnegie Museum

of Natural History, where maps of size 60 by 60 meters were used. Our implementation

employs a variety of “tricks” for efficient storage and computation:

• Caching. The motion model P (ξ|u, ξ′) is computed in advance for each control in d

and cached in a look-up table.

• Exploiting symmetry. Symmetric probabilities are stored in a compact manner.

• Coarse-grained temporal resolution. Instead of estimating the location at each in-

dividual micro-step, locations are only estimated if at least one landmark has been

observed, or if the robot moved 20 meters. In between, position error is interpolated

linearly.

• Selective computation. Computation focuses on locations ξ whose probability P (ξ)
is larger than a threshold: P (ξ) must be larger or equal to .001 maxξ′ P (ξ′).

• Selective memorization. Only a subset of all probabilities are stored for each P (ξ),
namely those that are above the threshold described above. This is currently imple-

mented with a generalized version of bounding boxes.

These algorithmic “tricks” were found to lower memory requirements by a factor of2.98·108

(in our largest experiment) when compared to a literal implementation of the approach. The

computation was accelerated by a similar factor.

All experimental results described below were obtained on a 200Mhz Pentium Pro

equipped with 64mb RAM in less than two hours per run. On average, the computa-

tion of a probability P (ξ(t))—which includes the computation of the corresponding α-

and β-table—took less than 10 seconds for the size environments considered here. Data

collection required between 15 and 20 minutes for each dataset. The (worst-case) memory

complexity and computational complexity are linear in the size of d and in the size of the

environment.

6. Results

The approach was tested using a B21 mobile robot, manufactured by Real World Interface,

Inc (see Figure 4). Data was collected by joy-sticking the robot through its environment

and using odometry (shaft encoders) to reverse-compute the corresponding control. While

joy-sticking the robot, a human chose and marked a collection of significant locations in the

robot’s environment, which roughly corresponded to the meet-points described in (Choset,

1996). These were used as landmarks. When the robot came across a landmark location,

the human operator pushed a button. Button presses were translated into two types of

observations: A landmark observation for the robot’s current position, and no-landmark

observations for all other locations within a perceptual radius of 10 meters. The choice of

10 meters was somewhat ad hoc—in many cases, the “true” distance between landmark

locations was smaller, causing somewhat of a perceptual conflict. To test the most difficult

case, we assumed that the landmarks were generally indistinguishable.

Figure 5a shows one of our datasets, collected in our university buildings. The circles

mark landmark locations. What makes this particular environment difficult is the large
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Figure 4. The RWI B21 robot used in our research.

circular hallway (60 by 25 meters). When traversing the circle for the first time, the robot

cannot exploit landmarks to improve its location estimates;thus, it accumulates odometric

error. As Figure 5a illustrates, the odometric error is quite significant; the final odometric

error is approximately 24.9 meters. Since landmarks are indistinguishable, it is difficult to

determine the robot’s position when the circle is closed for the first time (here the odometric

Figure 5. (a) Raw data (2,972 controls). The box size is 90 by 90 meters. Circles indicate the locations where

landmarks were observed. The data indicates systematic drift, in some of the corridors. The final odometric error

is approximately 24.9 meters. (b) Occupancy grid map, constructed from sonar measurements.
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Figure 6. (a) Maximum likelihood map, along with the estimated path of the robot. (b) Occupancy grid map

constructed using these estimated locations.

error is larger than 14 meters). Only as the robot proceeds through known territory can it

use its perceptual clues to estimate where it is (and was), in order to build a consistent map.

Figure 6a shows the maximum likelihood map along with the estimated path of the robot.

This map is topologically correct, and albeit some bents in the curvature of the corridors

(to avoid those, one has to make further assumptions), the map is indeed good enough for

Figure 7. Even in this simple case (small cycle, only minor odometric error), our approach improves the quality

of the map: (a) raw data, (b) occupancy grid map built from raw data, (c) corrected data, and (4) the resulting

occupancy grid map.
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Figure 8. After observing the 15th landmark, the most plausible map is topologically incorrect, due to string

odometric error. (a) Raw data, (b) Map and estimated trajectory, (c) occupancy grid map. The irregular dark areas

in (b) indicate that the approach assigns high probability to several locations for the last step.

practical use. This result demonstrates the power of the method. In a series of experiments

with this dataset, we consistently found that the principle topology of the environment was

already known after two iterations of the Baum-Welch algorithm; after approximately four

iterations, the location of the landmarks were consistently known with high certainty.

The result of the estimation routine can be used to build more accurate occupancy grid

maps (Elfes, 1989, Moravec, 1988). Figure 6b shows an occupancy grid map constructed

Figure 9. After observing the 16th landmark, the most plausible map is topologically still incorrect.
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Figure 10. After observing the 17th landmark, our approach finds a topologically correct map. From this point

on, the maximum likelihood map is always topologically correct.

from sonar measurements (using a ring of 24 Polaroid sonar sensors), using the guessed

maximum likelihood positions as input to the mapping software described in (Thrun, 1998).

In comparison, Figure 5b shows the same map using the raw, uncorrected data. The

map constructed from raw data is not usable for navigation, whereas the corrected map is

sufficient for our current navigation software (see (Thrun et al., 1998) for a description of

the navigation routines).

Figure 11. The map obtained after observing the 20th landmark is topologically correct.
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Figures 7 to 11 show the map at different stages of the data collection. Figure 7 shows

results for mapping the small cycle in the environment. Here most published methods should

work well, since the odometric error is considerably small. The quality of the occupancy

grid map benefits from our approach, as shown in Figure 7b&d. In particular, the corrected

occupancy grid map (Figure 7d) shows an obstacle on the right that is missing in the map

constructed from raw data). The importance of revising past location estimates based on

data collected later in time becomes more apparent when the robot maps the second circle

in the environment. Here the odometric error is quite large (more than 14 meters). Figures

8-11 show consecutive results after observing the 15th, 16th, 17th, and 20th landmark,

respectively. While the resulting map is topologically incorrect in the first two Figures,

with 17 observations or more the map is topologically correct. We conjecture that any

incremental routine that does not revise past location estimates would be bound to fail in

such a situation.

Figures 12 and 13 show results obtained in a different part of the building. In this run,

one of the corridors was extremely populated, as the “fuzziness” of the occupancy grid

map suggests. The floor material in both testing environments consisted of carpet and tiles,

which typically amplifies errors in the robot’s odometry.

After convergence of the Baum-Welch algorithm, the β values demonstrate nicely the

connection of the current approach and Markov localization. This is because the β-values

globally localize the robot (with d in reverse order): The final value, β(T ), is uniformly

distributed, indicating that in the absence of any sensor data the robot’s location is unknown.

As T decreases, an increasing number of observations and controls are incorporated into the

estimation. Figure 14 shows an example, obtained using the second dataset. Here the last

fourβ-tables (β(24), . . . , β(21)) are shown, after convergence of the map building algorithm.

The final value, β(24), which is shown on the left in Figure 14, is uniformly distributed. With

every step in the computation the uncertainty is reduced. After three steps, the approach has

already uniquely determined the robot’s position with high certainty (rightmost diagram).

The α values, in contrast, effectively track a robot’s position under the assumption that the

initial position is known.

7. Application

The mapping algorithm was successfully employed in a practical problem, involving the

fast acquisition of a map for a museum. In the past (Burgard, et al., 1998, Fox, Burgard,

& Thrun, 1997), we successfully deployed a robot in the “Deutsches Museum Bonn,” with

the task of engaging people and providing interactive guided tours through the museum.

During six days of operation, the robot entertained and guided more than 2,000 visitors of

the museum and an additional 2,060 “virtual” that commanded the robot through the Web.

During those tours, it traversed approximately 18.5 km at an average speed of approximately

36.6 cm/sec. The reliability of the robot in reaching its destination was 99.75% (averaged

over 2,400 tour goals).

One of the bottlenecks of this installation was the requirement for accurate maps. Our

navigation software (Thrun et al., 1998) requires highly accurate maps for reliable nav-

igation. In fact, the map used in this exhibition was acquired by hand, and it took us

approximately a week of (quite painful) tape-measuring, interleaved with data collection
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Figure 12. (a) A second dataset (2,091 controls, box size 90 by 90 meters), and (b) occupancy grid map, constructed

from sonar measurements.

and tedious hand-tuning of the map, to come up with an accurate map. Accurate maps

were of uttermost importance, since the robot had to be able to navigate even in extremely

crowded environments (see Figure 15), while at the same time a large number of obstacles

were practically “invisible” to the robot’s sensors (such as glass cages). In fact, three of

the seven collisions that our robot encountered during the exhibition were caused by inac-

curacies in the map, which we than manually improved after the fact. With one exception,

Figure 13. (a) Maximum likelihood map, along with the estimated path of the robot, and (b) the resulting occupancy

grid map.
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Figure 16. Raw data collected in the Carnegie Museum of Natural History of Natural Science in Pittsburgh, PA.

The area in (a) measures only 60 by 60 meters, and the total map is only approximately 45 meters long.

significantly smaller than our testing environments. It is about 45 meters long, and the area

shown in Figure 16a measures only 60 by 60 meters. The dataset was collected in less than

15 minutes: In about 3 minutes, we marked nine locations on the museum’s floor using tape,

and in an additional 11 minutes we joy-sticked the robot through the museum, pressing a

button whenever it traversed one of the markers. We did not measure anything by hand (of

course, the relative location of the markers to each other is estimated by the algorithm; it

Figure 17. The corrected map of the Carnegie Museum of Natural History of Natural Science is good enough for

the robotic tour-guide.
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does not have to be measured manually). The final odometric error is approximately 25.1

meters and almost 90 degrees.

In approximately 41 minutes of computation (on a Pentium PC), our approach generated

the map shown in Figure 17. While this map is not perfect, it is sufficient for navigation

(once we draw in “invisible” obstacles by hand). Thus, our approach reduced the time to

acquire a map from approximately a week to an hour or so. This is important to us since

in the past we have frequently installed robots at various sites, often at conferences, where

time pressure prohibits modeling environments by hand. We conjecture that similar time

savings can be achieved in installing robots in other indoor environments, such as hospitals

(King & Weiman, 1990).

Figure 18. A second dataset is integrated into the first, both collected in the museum. The relative location of

the second set with respect to the first is unknown. (a) Raw data, (b) result after a single iteration (less than 2

minutes computation), (c1)-(c5) The alpha values (in the first iteration of the estimation algorithm) demonstrate

the localization under global uncertainty. After only four iterations, the robot knows with fairly high confidence

where it is.

8. Suitability for collaborative multi-robot mapping

Multi-robot collaboration is a topic that is currently gaining significant attention in the sci-

entific community (see e.g., (Matarić, 1997, Parker, 1996)). A sub-problem of multi-robot

collaboration is multi-robot map acquisition (Lopez & Sierra, 1997). In the most general

problem, one would like to place robots at arbitrary locations in an unknown environment

and have the robots build a single, consistent map thereof. In the most difficult case, the rel-

ative location of the robots to each other is unknown. Thus, to build a single map, the robots

have to determine their position relative to each other, i.e., there is a global localization

problem.

As noticed above, our approach is a generalization of Markov localization, which has

been demonstrated to localize robots globally (Burgard et al., 1996). To cope with multiple
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robots whose relative location is unknown, our basic approach has to be extended slightly.

In particular, the initial position of the second robot relative to the first one is unknown.

Thus, the initial belief P (ξ(0)), and hence α(0), is initialized uniformly for the second robot

(and in fact, every other robot but the first). As in the single-robot case, the initial position

of the first robot is defined as (0, 0, 0), and α(0) is initialized using a Dirac distribution (c.f.,

Equation (14)). With this extension, our approach is fit for collaborative multi-robot map

acquisition.

To evaluate our approach empirically, we collected a second dataset in the Carnegie

Museum of Natural Science. This dataset is shown in Figure 18a. Strictly speaking, this

dataset was collected with the same robot. However, there is no difference to a dataset

collected with a different robot of the same type, so that the results should directly transfer

over to the multi-robot case.

Figure 18b shows the resulting position estimates after a single iteration of the EM

algorithm, if the map generated using the first dataset is used as an initial map (shown in

Figure 17a). After a single iteration, which requires less than two minutes of computation

time, the robot has correctly determined its position relative to the first robot (with high

confidence), and the resulting map incorporates observations made by both robots. Figures

18c1-c5 illustrate the efficiency with which the robot localizes itself relative to the existing

map. Here the first alpha values, α(1), α(2), . . . , α(5), are depicted, in the first iteration of

EM. Initially, after incorporating a single observation, the robot does not yet know where it

is, but it assigns high likelihood to positions that were previously marked in the map. After

only four steps, the robot knows where it is, as indicated by the unimodal distribution in

Figure 18c4. Not shown in Figure 18 are the corresponding β-values. After computing and

incorporating those, the robot knows with high certainty where it was for any point in time.

The availability of an initial map greatly improves the computational efficiency of the

approach. Our approach required 1 minute and 57 seconds for estimating the location of

the robot when the previously acquired map was used, for a dataset that took 12 minutes

and 19 seconds to collect. Thus, once a map is known, our approach appears to be fast

enough to localize and track robots as they move.

9. Related work

Over the last decade, there has been a flurry of work on map building for mobile robots (see

e.g., (Chatila & Laumond, 1985, Leonard, Durrant-Whyte, & Cox, 1992, Rencken, 1993,

Thrun, 1998)). As noticed by Lu and Milios (1997), the dominating paradigm in the field

is incremental: Robot locations are estimated as they occur; the majority of approaches

lacks the ability to use sensor data for revising past location estimates. A detailed survey

of recent literature on map building can be found in (Thrun, 1998). The approach proposed

there, however, is also incremental and therefore incapable of dealing with situations such

as the ones described in this paper.

Recently, several groups have proposed algorithms that revise estimates backwards in

time. Koenig and Simmons investigated the problem under the assumption that a topologi-

cally correct sketch of the environment is available, which simplifies the problem somewhat

(Koenig & Simmons, 1996). They proposed a probabilistic framework similar to the one

described here, which also employs the Baum-Welch algorithm for estimation. Shatkay
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and Kaelbling (1997a) generalized this approach for mapping in the absence of prior in-

formation. Their approach consults local geometric information to disambiguate different

locations. Both approaches differ from ours in that they build topological maps. They do not

explicitly estimate global geometric information (i.e., x-y-θ positions). As acknowledged

in (Shatkay & Kaelbling, 1997a), the latter approach fails to take the cumulative nature

of rotational odometric error into account. It also violates a basic “additivity property” of

geometry (see (Shatkay & Kaelbling, 1997a)). Even in the absence of odometric error, it

is unclear to us if the approach will always produce the correct map. Oore and colleagues

applied an EM-based algorithm to a related problem, in which a robot learned to associate

sensor input with poses (Oore et al., 1997) (see also (Thrun, in press)).

Lu and Milios (1997) have proposed a method that matches laser scans into partially

built maps, using Kalman filters for positioning. Together with Gutmann (1996), they

have demonstrated the appropriateness of this algorithm for mapping environments with

cycles. Their approach is incapable of representing ambiguities and multi-modal densities.

It can only compensate a limited amount of odometric error in x-y-θ-space, due to the

requirement of a “sufficient overlap between scans” (Lu & Milios, 1997). In all cases

studied in (Gutmann, 1996, Lu & Milios, 1997), the odometric error was an order of

magnitude smaller than the one reported here. In addition, the approach is largely specific

to robots equipped with laser range finders. It is unclear to us if the approach can cope with

less accurate sensors such as sonars.

To the best of our knowledge, the topic of collaborative multi-robot mapping has pre-

viously only been studied by Lopez and colleagues (Lopez & Sierra, 1997). Like ours,

their approach models the uncertainty of a robot’s location explicitly, and it also takes this

uncertainty into account when building maps. However, their approach lacks a method

for localization. As the uncertainty grows larger than a prespecified threshold, mapping

is simply terminated, thereby imposing tight, intrinsic bounds on the size of environments

that can be mapped. Due to the lack of a localization component, robots cannot localize

themselves in another robot’s map.

The approach proposed in this paper also relates to work in the field of Markov localization,

which requires a map to be given. Recently, Markov localization has been employed

by various groups with remarkable success (Burgard et al., 1996, Kaelbling et al., 1996,

Koenig & Simmons, 1996, Nourbakhsh et al., 1995, Simmons & Koenig, 1995, Thrun

et al., 1998, Thrun, in press). In our own work, Markov localization played a key role in

a recent installation in the Deutsches Museum Bonn, where one of our robots provided

interactive tours to visitors. In more than 18.5km of autonomous robot navigation in a

densely crowded environment (top speed 80 cm/sec, average speed 36 cm/sec), Markov

localization was absolutely essential for the robot’s safety and success (Fox et al., 1997).

The method proposed here directly extends this approach. In future installations of the

tour-guide robot, maps do not have to be crafted manually but can now be generated by

joy-sticking a robot through its environment. This will reduce the installation time from

several days to only a few hours.
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10. Discussion

This paper proposed a probabilistic approach to building large-scale maps of indoor en-

vironments with mobile robots. It phrased the problem of map building as a maximum

likelihood estimation problem, where robot motion and perception impose probabilistic

constraints on the map. It then devised an efficient algorithm for maximum likelihood es-

timation. Simplified speaking, this algorithm alternates localization and mapping, thereby

improving estimates of both the map and the robot’s locations. Experimental results in

large, cyclic environments demonstrate the appropriateness and robustness of the approach.

The basic approach can be extended in several interesting directions.

The current approach is “passive”, i.e., it does not restrict in any way how the robot

is controlled. Thus, the approach can be combined with one of the known sensor-based

exploration techniques. We have already integrated the approach with our previously de-

veloped algorithm for greedy occupancy-grid-based exploration described in (Thrun, 1993,

Buhmann et al., 1995) (see also (Yamauchi & Beer, 1996)); however, no systematic results

are available at this point in time. Another possibility, which has not yet been implemented,

would be to combine the current approach with Choset’s sensor-based covering algorithm

(Choset, 1996).

Our current implementation also relies on humans to identify landmarks. While this is

reasonable when mapping an environment collaboratively with a human, it is impractical if

the robot is to operate autonomously. The lack of a landmark-recognizing routine is purely

a limitation of our current implementation, not of the general algorithm. Recent research

on landmark-based navigation has produced a large number of methods for recognizing

specific landmarks (see, e.g., (Borenstein et al., 1996)). In particular, Choset’s sensor-based

covering algorithm (Choset, 1996) automatically detects and navigates to so-called meet-

points. Meet-points correspond to intersections, corners, and dead-ends (see also (Kuipers

& Byun, 1991)). We conjecture that a combined algorithm, using Choset’s approach

for exploration and meet-point detection and our approach for mapping, would yield an

algorithm for fully autonomous exploration and mapping.

One interesting extension would be to apply the proposed method to other types repre-

sentations, with different sensor models. The perceptual model used here, which is based

on landmarks, is just one choice out of many possible choices. A different choice would

be the probabilistic sensor model described in (Burgard, Fox, & Hennig, 1997, Burgard

et al., 1996), which specifically applies to proximity sensors, such as sonars or laser range

finders. The inverse sensor model (also called sensor interpretation), which is employed in

the map building step (M-step), can be realized by the approach described in (Thrun, 1998),

where neural networks are used to extract occupancy grid maps from sensor data. As a

result, proximity sensor readings would be directly incorporated in the position estimation,

thereby obliviating the need for landmarks. The extension of the current approach to other

sensor models is subject to future work.
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Notes

1. The density function of a triangular distribution centered on µ and with width σ is given by f(x) =
max{0, σ−1 − σ−2|x− µ|}.
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