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Abstract

The problem of efficiently and accurately locating pat-
terns of interest in massive time series data sets is an
important and non-trivial problem in a wide variety
of applications, including diagnosis and monitoring of
complex systems, biomedicM data analysis, and ex-
ploratory data analysis in scientific and business time
series. In this paper a probabflistic approach is taken
to this problem. Using piecewise linear segmentations
as the underlying representation, local features (such
as peaks, troughs, and plateaus) are defined using 
prior distribution on expected deformations from a ba-
sic template. Global shape information is represented
using another prior on the relative locations of the
individual features. An appropriately defined prob-
abilistic model integrates the local and global infor-
mation and directly leads to an overall distance mea-
sure between sequence patterns based on prior knowl-
edge. A search algorithm using this distance measure
is shown to efficiently and accurately find matches for
a variety of patterns on a number of data sets, includ-
ing engineering sensor data from space Shuttle mis-
sion archives. The proposed approach provides a nat-
ural framework to support user-customizable "query
by content" on time series data, taking prior domain
information into account in a principled manner.

Introduction and Motivation

Massive time series data sets are commonplace in a
variety of online monitoring applications in medicine,
engineering, finance, and so forth. As an example,
consider mission operations for NASA’s Space Shut-
tle. Approximately 20,000 sensors are telemetered once
per second to Mission Control at Johnson Space Cen-
ter, Houston. Entire multi-day missions are archived
at this 1 Hz rate for each of the 20,000 sensors.
From a mission operations viewpoint, only a tiny frac-
tion of the data can be viewed in real-time, and the
archives are too vast to ever investigate. Yet, the
data are potentially very valuable for supporting di-
agnosis, anomaly detection, and prediction. This is a
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familiar problem in archived time series storage: high-
dimensional data sets at very high resolution make
manual exploration virtually impossible.

In this paper we address the general problem of
matching a sequential pattern (called a query Q) 
a time series database (called the reference sequence
/~). We will assume that Q and R are each real-
valued univariate sequences. Generalizations to multi-
variate and categorical valued sequences are of signif-
icant practical interest but will not be discussed here.
To keep the discussion and notation simple we will as-
sume that the sequence data are uniformly sampled
(i.e., uniformly spaced in time). The generalization
to the non-uniformly sampled case is straightforward
and will not be discussed. The problem is to find the k
closest matches in R to the query Q. Most solutions to
this problem rely on three specific components: (1) 
representation technique which abstracts the notion of
shape in some sense, (2) a distance measure for pairs 
sequence segments, and (3) an efficient search mecha-
nism for matching queries to reference sequences. The
contribution of this paper is primarily in components
(1) and (2). A piecewise linear representation scheme
is proposed and combined with a generative probabilis-
tic model on expected pattern deformations, leading to
a natural distance metric incorporating relevant prior
knowledge about the problem.

Related Work

There are a large number of different techniques for
efficient subsequence matching. The work of Falout-
sos, Ranganathan, and Manolopolous (1994) is fairly
typical. Sequences are decomposed into windows, fea-
tures are extracted from each window (locally esti-
mated spectral coefficients in this case), and efficient
matching is then performed using an R*-tree structure
in feature space. Agrawal et al. (1995) proposed 
alternative approach which can handle amplitude scal-
ing, offset translation, and "don’t care" regions in the
data, where distance is determined from the envelopes
of the original sequences. Berndt and Clifford (1994)
use dynamic time-warping approach to allow for "elas-
ticity" in the temporal axis when matching a query Q
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to a reference sequence R. Another popular approach
is to abstract the notion of shape. Relational trees
can be used to capture the hierarchy of peaks (or val-
leys) in a sequence and tree matching algorithms can
then be used to compare two time series (Shaw and
DeFigueiredo, 1990; Wang, et al., 1994).

A limitation of these approaches in general is that
they do not provide a coherent language for expressing
prior knowledge, handling uncertainty in the matching
process, or integrating shape cues at both the local and
global level. In this paper we investigate a probabilistic
approach which offers a theoretically sound formalism
for

*. Integration of local and global shape information,

. Graceful handling of noise and uncertainty, and

¯ Incorporation of prior knowledge in an intuitive
manner.

The probabilistic approach to template matching is rel-
atively well-developed in the computer vision litera-
ture. The method described in this paper is similar in
spirit to the recent work of Burl and Perona (1996).

A Segmented Piecewise Linear
Representation

There are numerous techniques for representing se-
quence data. The representation critically impacts
the sensitivity of the distance measure to various dis-
tortions and also can substantially determine the effi-
ciency of the matching process. Thus, one seeks robust
representations which are computationally efficient to
work with. Spectral representations are well-suited to
sequences which are locally stationary in time, e.g.,
the direct use of Fourier coefficients (as in Faloutsos et
al. (1995)) or parametric spectral models (e.g., Smyth,
1994). However, many sequences, in particular those
containing transient behavior, are quite non-stationary
and may possess very weak spectral signatures even lo-
cally. Furthermore, from a knowledge discovery view-
point, the spectral methods are somewhat indirect.
We are interested here in pursuing a representational
language which can directly capture the notion of se-
quence shapes and which is intuitive as a language for
human interaction.

There is considerable psychological evidence (going
back to Attneave’s famous cat diagram, 1954) that
the human visual system segments smooth curves into
piecewise straight lines. Piecewise linear segmenta-
tions provide both an intuitive and practical method
for representing curves in a simple parametric form
(generalizations to low-order polynomial and spline
representations are straightforward). There are a large
number of different algorithms for segmenting a curve
into the K "best" piecewise linear segments (e.g.,
Pavlidis (1974)). We use a computationally efficient
and flexible approach based on "bottom-up" merg-
ing of local segments into a hierarchical multi-scale
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Figure 1: Automated segmentation of an inertial nav-
igation sensor from Space Shuttle mission STS-57. (a)
original data, the first 7.5 hours of the mission, origi-
nally 27,000 data points, (b) the segmented version 
this sequence, K = 43 segments chosen by the multi-
scale merging algorithm described in the text.

segmentation, where at each step the two local seg-
ments are merged which lead to the least increase in
squared error. Automated approaches to finding the
best number of segments K can be based on statis-
tical arguments (penalized likelihood for example or
Minimum Description Length as in Pednault (1991)
for this problem). We found that for piecewise linear
segmentations, simple heuristic techniques for finding
good values of K worked quite well, based on halting
the bottom-up merging process when the change in ap-
proximation error in going from K to K - 1 increased
substantially. Figure 1 shows the segmentation of an
inertial navigation sensor from the first 8 hours of a
Space Shuttle mission by this method. For practical
applications it may be desirable to have K chosen di-
rectly by the user to reflect a particular resolution at
which matching is to be performed.

Probabilistic Similarity Measures
Defining "similarity" metrics is a long-standing prob-
lem in pattern recognition and a large number of dis-
tance measures based on shape similarity have been
proposed in the literature. Typically these similarity
measures are designed to have certain desirable prop-
erties such as invariance to translation or scaling.

Here we propose a probabilistic distance model
based on the notion of an ideal prototype template
which can then be "deformed" according to a prior
probability distribution to generate the observed data.
The model consists of local features which are then
composed into a global shape sequence. The local fea-
tures are allowed some degree of deformation and the
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global shape sequence has a degree of elasticity allow-
ing stretching in time and amplitude of the signal. The
degree of deformation and elasticity are governed by
prior probability distributions.

Specifically, let Q be a query sequence consisting of
k local features, i.e., Q = {ql,..., q~}. For example, ql
and q3 could be peaks and q2 could be a plateau. Let
14, 1 < i < k - 1, be the observed distances between
the centroids of feature i and feature i + 1. Each I4 is a
pair (x4, y4) containing the temporal distance and am-
plitude distance respectively. Let d4, 1 < i < k, be the
observed deformation (defined in the next section) be-
tween local feature q4 and the observed data at location
i in the sequence. Let Dh = {dl, ¯ ..,dk, ll,...,lk-t}
be a particular set of observed deformations and dis-
tances corresponding to set of candidate features. We
will refer to Dh as a candidate hypothesis. We can
rank candidate hypotheses by evaluating the likelihood
p(Dh ]Q). It remains to define the "generative" proba-
bility model p(Dh [Q).

Models for p(Dh ]Q) can be defined to varying levels
of complexity depending on both (1) the independence
structure of the model, and (2) the functional forms 
the component probability distributions. In this paper
we illustrate the concept with a simple model which as-
sumes feature independence and uses simple paramet-
ric distributions. However, in general, the model could
incorporate much more complex dependencies such as
pattern dependence on global "hidden" scale and de-
formation variables (see Smyth, Heckerman and Jor-
dan (1996) for a discussion of how to efficiently con-
struct and utilize such models using graph-theoretic
formalisms). For our simple model, we have:

p(DhlQ)

= p(dl,..., &:, 11,..., lk-llql,..., q~:)
k-1

= p(d lq ) l’I p(d , l lq4)
4=1

(assuming local features

are generated independently)
k-1 k-1

= 1-[ p( 41q4) rI p(z41q 
4=I 4=i

(assuming deformations and
distances are conditionally independent).

The models p(di ]q4) and p(li Iqi) are chosen based on
prior knowledge of how the features are expected to be
deformed and "spread out." Again we illustrate with
some relatively simple models. In this paper we use an
exponential model for local deformation distances:

p(d4 IQ) = ;~e-~’’~’,

which imposes a monotonically decreasing prior belief
on deformation distance, i.e., the smaller the deforma-
tion, the more likely the observation came from Q. hi

Figure 2: A simple query consisting of 2 feature shapes.
The horizontal line at the bottom indicates al, or
equivalently, the degree of horizontal elasticity which
is allowed between the 2 features.

is chosen to reflect the degree of expected deformation:
large hi allows less deformation, small hi is more per-
missive.

The inter-feature distance model for li = (x4, y~) 
a joint density on temporal and amplitude elasticity
between features. One could for example use bivariate
mixture models on xi and y~ to express complex be-
liefs on global shape patterns. Here we use a simpler
model. We assume that Yi (amplitude) obeys a uni-
form distribution and is conditionally independent of
x~ given q~. We further assume that x4 obeys a log-
normal distribution, or equivalently that log x4 has a
Normal distribution with mean #/and variance e~. #/
determines how far away features are expected to be
and ~4 determines how "elastic" these distances are
(e.g., see Figure 2).

Given these particular models, it is straightforward
to show that

1 log x4 - P4logp(Dh IQ) +
4 -

modulo a few extra conditions where this density is
zero. Thus, the probabilistic model naturally defines a
distance metric which integrates both local and global
evidence weighted appropriately according to prior be-
lief. For example, as the A’s are increased, fidelity to
local feature shape becomes more important than the
distances between features.

Searching for High Likelihood Query
Matches

Local Feature Matching

Local feature matching is performed by placing the
start of the segmented feature at each breakpoint in
the segmented reference sequence and computing the
local distance for each location. We use a simple
robust method for computing local deformation dis-
tances. Consider having placed a feature at a partic-
ular reference breakpoint: say there are l breakpoints
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in the feature and m breakpoints in the part of the
reference sequence which does not extend beyond the
end of the feature. We vertically project all l + m
breakpoints to the "other sequence" to get l + m ver-
tical "projection" distances. The overall deformation
distance is defined as the standard deviation of these
vertical projection distances. We have found this to be
a robust and efficient way to locally match piecewise
linear features. The output of this scanning process is
a list of roughly K distances, where K is the number of
segments in the reference sequence. For a query with
Qf features, this process is repeated for each feature,
resulting in a table of size Q/× K.

Finding Global High-Likelihood Queries

Once we have built the table, we must then search it to
find the best possible match for our compound query.
The size of the search space scales exponentially with
the number of features in the query so we rely on a
variety of heuristic search techniques, including greedy
ordering and branch-and-bound.

Search Complexity

Let NR, NQ, and Nj be the number of data points
in the (unsegmented) reference sequence, query sub-
sequence, and feature subsequences, respectively (as-
sume for simplicity that all features have the same
number of underlying data points). In a similar man-
ner, let KR, KQ, and K1 be the number of seg-
ments in the segmented reference sequence, query sub-
sequence, and feature subsequences, respectively. Let
s = NR/KR -- NQ/Kq - Nj/K] be the scaling factor
resulting from segmentation (assumed the same across
reference, query, and feature sequences for simplicity).
Q/ denotes the number of features in query Q (thus,
Q/ = KQ/K] = Nq/N] in this simplified model).

The time complexity of finding the best match for
a feature in a reference sequence using "brute force"
correlation on the raw data (aka sequential scanning)
is O(NRNj). The complexity of sequential scanning

¯
on segmented data is O( 82 ), where s > 1, and
typically s >> 1. Finding the distance tables to
set up a query search requires running each of the
above searches Q/ times. Exhaustive query search on

the distance tables takes O(N~f) and O((NR/s)Qs)

for the unsegmented and segmented data respectively.
The application of heuristic search techniques can re-
duce these 1times by a factor of ~ where 1 - a is the
fraction of the search space elimmated by the heuris-
tics. Thus, for unsegmented data and brute-force
search, the overall time complexity of matching a query
scales as O(NRIV/+ g~’ ), whereas for segmented data
with heuristic query search has a time complexity of

NRN + For large s and small the
savings are substantial. The experimental results sec-
tion (below) provides empirical run-time data on real
data sets.

Figure 3: Results of matching the query in Figure 2
with the data in Figure 1, showing the 2 best matches
found.

Experimental Results

Due to space limitations we can only present a small
subset of our experimental results. Generally, the
methods work as one might expect: the matching is
relatively insensitive to the exact values of ~ and ~ and
it is quite straightforward to specify query templates
and prior distributions. In all of the experiments be-
low, Ai is set such that the local deformation has a
50% chance of being less than 0.25 ymax where yma× is
the maximum vertical extent of feature i. The #i and
cr~ parameters are chosen differently for each experi-
ment and the uniform distribution on vertical elasticity
between features is made broad enough to essentially
make any vertical offsets irrelevant.

As mentioned earlier, the Space Shuttle Mission

~0 ,~0 ~0 ,0~ ,,~0 ,~ ,~
8econ~

Figure 4: Result of matching a complex query with 4
features on the Shuttle data in Figure 1.
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Figure 5: (a) 24 years of daily U.S. 5-Year Trea-
sury Constant Maturity Rate reports, originally 8749
points. (b) segmented into 400 segments using the
multi-scale merging algorithm. (Axes in units of days
for both figures)
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Figure 6: A relatively simple query consisting of 2 fea-
ture shapes with ai shown horizontally at the bottom.
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Data Archives consist of multiple sensors which are
archived once per second for each multi-day shut-
tle mission. We are investigating the use of fast
query matching to support Shuttle mission operations,
specifically to facilitate exploration of the vast mission
archives for diagnosis, trouble-shooting, and prediction
tasks. Figure 2 shows a simple query on the sensor
record in Figure 1. The query consists of a steep valley
followed by a gentle slope some time later. The mean
distance between the two features is 48 minutes. Fig-
ure 3 shows the 2 best matches which were found: note
that the "elasticity" as encoded by the relatively large
value of ~ in Figure 2 allows for considerable flexibility
in how far away the features are which can be matched.
Figure 4 shows the result of matching a more complex
query with 2 peaks separated by 2 linear segments.

Another example of the method is provided on the
US Daily 5-Year Treasury Constant Maturity Rate.
Figure 5 shows the original and segmented data, Fig-
ure 6 shows a particular query, a "corner" followed by a
peak. Figure 7 shows the three best matches obtained,
again showing the flexibility of the approach.

~
7e

Figure 7: Results of matching the query in Figure 6
with the data in Figure 5, showing the 3 best matches
found, with the best at the top. The distance measures
are shown alongside, normalized so that a distance of
0 is a perfect match. Axes are in units of days.
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Table 1: Experimental and estimated computation times for different search strategies and representations on
different sequence data sets and queries. Numbers with asterisks indicate that these quantities were calculated
rather than obtained from experimental results. The artificial data were simulated as segmented waveforms, so
there is no corresponding raw data set to apply sequential scanning for these sequences.

Number of Number of Sequential Segment Exhaustive Heuristic
Name of Segments Features Scanning Matching Table Search Table Search
Data Set m/~ in Query Q (seconds) (seconds) (seconds) (seconds)
Artificial 20O 1 2.31 0 0
Artificial 400 1 4.27 0.07 0.06
Artificial 800 1 6.28 0.ii 0.11
Artificial 2OO 2 5.01 148.28 0.22
Artificial 400 2 8.54 " 598.61 0.27
Artificial 8OO 2 12.17 2304.55 0.49
Artificial 200 3 7.78 1728" 0.44
Artificial 400 3 13.08 13824* 0.48
Artificial 800 3 19.84 110592* 0.61
Shuttle 43 1 26603 0.92 0.05 0.05
Shuttle 43 2 53200* 1.45 4.94 0.16
Shuttle 43 3 79800* 2.76 9.97 0.39

Treasury 400 1 912 3.98 0.17 0.08
Treasury 400 2 2081 6.78 571.1 0.29
Treasury 400 3 3014 11.22 23000* 0.49

Experimental evaluation of pattern matching sys-
tems are somewhat difficult to carry out in a rigorous
manner. Researchers tend to use different sequence
and query data sets and there is no clear objective
"gold standard" for measuring the quality of a partic-
ular scheme. An ideal state of affairs would be the
widespread use of systematic evaluations on data sets
which are common across different studies.

Table 1 summarizes computation times for finding
the single best query over a variety of queries and se-
quences. From the table it is clear that segment match-
ing can be much faster than sequential scanning of
the raw data. For complex queries (multiple features),
heuristic search universally provides multiple order of
magnitude speed-ups over exhaustive search.
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