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Abstract

Autonomous navigation for mobile robots performing
complex tasks over long periods of time requires effec-
tive and robust self-localization techniques. In this
paper we describe a probabilistic approach to self-
localization that integrates Kalman filtering with map
matching based on the Hough Transform. Several sys-
tematic experiments for evaluating the approach have
been performed both on a simulator and on soccer
robots embedded in the RoboCup environment.

1 Introduction

Self-localization is a crucial feature for autonomous
navigation of mobile robots performing complex tasks
over long periods of time. Indeed several practical ap-
plication domains require mobile robots to know their
position within the environment, in order to effectively
and reliably accomplish their tasks.

The use of a particular kind of sensor usually affects
the design choices for the localization method. A typi-
cal configuration for a mobile robot is having a relative

positioning system (e.g. motor encoders), which pro-
vides an estimate of the displacement of the robot from
the previous pose, and a range sensor (e.g. ultrasonic
sonars, laser range finders, vision systems), which re-
turns a set of 2D points, in the local coordinates of the
robot, corresponding to the visible surfaces of objects
close to it. This configuration is suitable for applying
localization methods that are based on model match-
ing or map matching (see [2] for a survey).

Among the several existing methods for robot self-
localization, map matching has been extensively stud-
ied in the past years and the proposed approaches can
be divided into two groups depending on the repre-
sentation of the reference map: 1) set of points (raw
map); 2) set of geometric features (geometric map).

The first group includes algorithms performing map
matching by using all the points captured by the sensor
device, without any geometrical assumption on these
data. A common feature for these approaches is that

matching tends to be computationally hard, and in
some cases the proposed methods require heavy opti-
mization to implement an effective real-time localiza-
tion task on a mobile robot. In [5] a local search in
the robot’s pose space is performed in order to find
the best overlap between the current scan and the ref-
erence map. In the Markov Localization described in
[4] there is an explicit representation of the probability
distribution of the robot’s pose in the environment and
every sensor points is used for updating this distribu-
tion according to the reference map. The second group
of methods make use of geometric features instead of
raw points: therefore they requires a preprocessing in
order to extract features (or natural landmarks) from
the sensor data. Most of these methods deals with
lines, segments, corners and the reference map is thus
represented as a set of these features. The main draw-
back of these kind of methods is that they rely on the
availability of features in the environment.

The probabilistic approach to self-localization [4] is
based on estimating the most likely pose of the robot
given all the information on the environment com-
ing from the sensor devices. The task is usually per-
formed by matching range data against a given refer-
ence model (a map) of the environment, in order to
determine the absolute pose of the robot in this map.
Information coming from map matching are then inte-
grated with odometric information in order to increase
the reliability and the precision of localization.

In this paper we describe an approach to self-
localization in which map matching is performed in the
domain obtained by applying the Hough Transform to
range data. This method, originally developed for the
RoboCup games [6], applies to any environment that
can be represented by a set of segments (polygonal
environment) and it provides for a solution to the po-
sition tracking problem, assuming that the robot has
at every time an initial guess of its pose. The work
described in [7] follows our approach using an omnidi-
rectional camera installed on the robot. In this setting,
since the robot is able to see at every time all the en-
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vironment in which it must act, the method provides
for a global localization.

The robotic soccer environment provided by the
RoboCup organization [1] is an interesting setting for
testing solutions for self-localization, and in particular
in the F-2000 League, where global positioning sensors
are not allowed and thus localization can be based only
on sensors that are mounted on the robot. We have
successfully tested this method in the RoboCup envi-
ronment within the ART team [8] during the official
competitions by making use of vision based line ex-
traction procedures performing as a range data sen-
sor. The main features of the method are robustness
and reliability in a very dynamic environment. The
contribution of this paper is twofold: first we extend
the approach described in [6] by introducing a proba-
bilistic viewpoint that allows us to address the prob-
lem of integrating the Hough map matching process
with odometric data; second, besides the good results
of the method demonstrated during the official games,
we have developed a set of systematic experiments that
are described in details in section 4.

2 Hough Transform

In this section we present the Hough Transform and
highlight the properties that will be useful for devel-
oping our localization method.

The Hough Transform is a robust technique for find-
ing lines fitting a set of 2D points [3]. It is based on
a transformation from the (x, y) plane (a Cartesian
plane) to the (θ, ρ) plane (the Hough domain).

The transformation from (x, y) to (θ, ρ) is achieved
by associating every point P (x, y) with the following
curve in the Hough domain

ρ = x cosθ + y sinθ (1)

At the same time, a point in the Hough domain corre-
sponds to a line in (x, y). Notice that this is a unique

and complete representation for lines in (x, y) as long
as 0 ≤ θ < π.

Given a set of sensor data S = {(xi, yi) | i = 1, .., n},
let us define the following functions:

hS
i (θ, ρ) =

{

1 if ρ = xicosθ + yisinθ

0 otherwise

HTS
c (θ, ρ) =

n
∑

i=1

hS
i (θ, ρ)

The function HTS
c (θ, ρ) will be called the Hough

Transform of the sensor data S. In the following sec-
tions, however, we will make use of a discrete represen-
tation of this function that we denote with HTS(θ, ρ)

and that is obtained by generating a discrete grid of
the (θ, ρ) plane (let δθ and δρ be the step units) and
by defining HTS(θ, ρ) as the number of points (x, y)
whose corresponding curve (1) lies within the interval
[θ, θ + δθ] × [ρ, ρ + δρ].

Observe that it is possible to consider the discrete
Hough Transform of S as a voting space for points in
(x, y), in which every point in (x, y) “votes” for a set
of lines (represented as points in (θ, ρ)), that are all
the lines passing through that point.

The Hough Transform has a number of properties
that are useful for self-localization: 1) given a set of in-
put points, a local maximum of HT (θ, ρ) corresponds
to the best fitting line of these points; 2) in presence
of points originally belonging to several lines, no clus-
tering is needed since local maxima of HT (θ, ρ) corre-
spond to the best fitting lines for each subset of points
relative to each line; 3) the Hough Transform is very
robust to noise produced by isolated points (since their
votes do not affect the local maxima) and to occlusions
of the lines (since point distances are not relevant);
4) measuring displacement of lines in the Cartesian
plane corresponds to measuring distance of points in
the Hough domain.

An interesting property, that will be useful in the fol-
lowing sections, is in the relation between the transfor-
mations of the sensor readings when the robot moves.

Property 1. Given the Hough Transform of a
set of sensor readings S, HTS(θ, ρ), and a rota-
tion/translation (Tx, Ty, θR) of the robot (we assume
| θR |≤ π), the Hough Transform of S with respect
to the new pose of the robot will be HTS(θ′, ρ′) such
that:
if 0 ≤ θ + θR < π then

θ′ = θ + θR

ρ′ = ρ + Tx cos(θ + θR) + Ty sin(θ + θR)

if θ + θR ≥ π then

θ′ = θ + θR − π

ρ′ = −(ρ + Tx cos(θ + θR) + Ty sin(θ + θR))

if θ + θR < 0 then

θ′ = θ + θR + π

ρ′ = −(ρ + Tx cos(θ + θR) + Ty sin(θ + θR))

It is important to notice here that if θR = 0 (i.e.
the robot does not rotate) then θ′ = θ (i.e. θ does
not change), and conversely if Tx = Ty = 0 (i.e. the
robot does not translate) then ρ′ = ρ (i.e. ρ does not
change). In other words, robot’s alignment can be di-
vided in two separate steps: first determining the ori-
entation with a null translation, and then determining
the translation with a null rotation.
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The Hough Transform can be extended for detect-
ing circles from a set of points by using the following
parametric curve:

(x − α)2 + (y − β)2 = r2

If we assume that r is known (and thus constant),
we have to determine only two parameters α and β

corresponding to the center of the circle. The Circle
Hough Transform for the sensor data S will be denoted
with CHTS(α, β).

3 Hough Localization

In this section we introduce the Hough Localization
method, obtained by developing the framework pro-
posed in [6]. Hough Localization is based on a match-
ing between the Hough representation of a known map
of the environment and a local map built by the robot’s
sensors.

The task of estimating the most likely pose of the
robot in the environment can be addressed by eval-
uating the probability that the robot is at a certain
location, given all the sensor readings.

We assume that at every time-step t the following
data are available to the robot: data from the rela-
tive positioning system At and data from the range
sensor St. We also denote with p(l) the probability
distribution of the robot’s pose, with l = (x, y, θ) ∈
ℜ2 × [0, 2π).

Localization can be expressed as the task of com-
puting the probability distribution p(l | At, St) from
the previous distribution p(l | At−1, St−1), the current
sensor readings At and St, and a reference map M.

This task is usually performed in two steps:

1. Prediction. Predicting the new pose of the robot
by dead reckoning from the previous position
(that is computing p(l | At, St−1) from p(l |
At−1, St−1) and At).

2. Update. Updating the robot pose with the re-
sults of a map matching process between St and
M (that is computing p(l | At, St) from p(l |
At, St−1), St, and M).

Hough Localization is based on map matching be-
tween sensor data and a reference map that, under the
assumption that the environment can be represented
by a set of segments, is performed in the Hough do-
main.

The overall Hough Localization method consists in
the following steps:

1. extracting range information from the environ-
ment in the form of a set of point S in the (x, y)
plane,

2. generating the discrete Hough Transform
HTS(θ, ρ) of such points,

3. determining the local maxima of HTS(θ, ρ) (for
instance by a threshold),

4. finding correspondences between local maxima
and reference points,

5. measuring the displacement between local max-
ima and the corresponding reference points in the
Hough domain (that corresponds to the displace-
ment between the predicted and the actual pose
of the robot),

6. integrating map displacement with odometric in-
formation.

The critical step of this procedure is the fourth one,
that is finding the correct correspondence between lo-
cal maxima and reference points. Indeed errors in as-
signing correspondences usually lead to large position-
ing errors that are then difficult to recover.

In this article we focus the attention on the position

tracking problem, in which an initial guess of the po-
sition of the robot is available before performing the
map matching process. Position tracking is usually
adopted when a bounded error assumption can be rea-
sonably made. This assumption means that the posi-
tioning error of the robot is within a certain threshold,
that usually depends on the characteristics of the en-
vironment. For example in the RoboCup environment
these thresholds can be up to 50 cm and 45 degrees,
and this allows the robot to deal with some of the col-
lisions taking place during the games.

In the general case, in which it is not possible to rely
on any information about the current position of the
robot (global localization), a different technique must
be integrated with the Hough Localization. In [6] we
describe specific solutions for global localization in the
RoboCup environment based on landmark recognition
and active localization.

3.1 Position tracking

Position tracking is usually addressed by representing
the probability distribution of the robot’s pose p(l) as
a Gaussian, whose mean lk is the most likely position
of the robot and the covariance matrix Pk represents
the variance of this information.

Under the bounded error assumption, the line corre-
spondence problem can be easily addressed by adopt-
ing a closest matching approach. Given a refer-
ence point (θM, ρM) and a local maximum of HTS

(θS , ρS), a match will be considered if and only if
(θM − θS)2 + (ρM − ρS)2 < δ.

In other words, the HT grid can be partitioned in a
number of regions (one for each reference point in M),
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Figure 1: Map matching in the Hough domain

such that a matching will be considered only if a local
maximum of HTS is within the corresponding region.

Consider the example shown in Fig. 1, where the
robot faces a corner. The solid segments a, b represent
the map model and the set of points a’, b’ represent
data coming from sensor device. The four segments
are also displayed in the Hough domain: a, b (indi-
cated by a circle) are the reference points, while a’,

b’ (indicated by a cross) represent the local maxima
of the Hough Transform applied to the set of input
points. Under the bounded error assumption, the cor-
respondence problem is solved in this case by assigning
a′ to a and b′ to b. For the Property 1 described in
section 2, the displacement between the estimated and
the actual pose of the robot is determined by first com-
puting the orientation ∆θ (with ρ constant) and then
the translation ∆x, ∆y (with θ constant).

The computational complexity of the map matcing
process is O(nk), where n is the number of points re-
turned by the range sensor and k is the number of
segments in the map M. Indeed, since a local search
around each reference point is performed, HTS is com-
puted only in a limited region around the reference
points. This complexity bound makes the method
suitable for real time implementation (typical compu-
tation time is below 10 ms on a Pentium CPU).

3.2 Integrating map matching and

odometry

The map matching method described above provides
for a correction of the estimated position of the robot
that must be integrated with odometric information.
A standard technique for this integration (that is suit-
able when the probability distribution of the pose of
the robot is represented by a Gaussian) is using an
Extended Kalman Filter [5].

We can describe the dynamics of the robot, with
internal state lk = (xk, yk, θk)T , input from odome-

try uk = (δk, αk)T and output zk = (x̂k, ŷk, θ̂k)T , like

follows

lk+1 = lk + Bkuk + Wkw

zk = lk + v

where

Bk = Wk =





cos θk 0
sin θk 0

0 1





The vectors w = (wδ, wα)T and v = (vx, vy, vθ)
T

are random variables representing respectively noise
in odometric data and noise in the map matching pro-
cess. For these random variables we assume a Gaus-
sian white noise with zero mean and covariance matri-
ces Qk and Rk.

Extended Kalman filtering is performed in two
steps:

1. Prediction. An estimated pose l−k+1
of the robot

is computed from the previous pose and odometry and
the covariance matrix is updated.

l−k+1
= lk + Bkuk

P−

k+1
= Pk + WkQkWk

T

2. Correction. The pose of the robot is corrected
by the result of the map matching process. Indeed
zk+1 represent the new pose of the robot according to
map matching.

K = P−

k+1
(P−

k+1
+ Rk)−1

lk+1 = l−k+1
+ K(zk+1 − l−k+1

)

Pk+1 = (I − K)P−

k+1

As we will see in section 4, extended Kalman filter
provides for an improvement in precision and stabi-
lization of the robot’s pose.

4 Experiments

In this section we describe several experiments for eval-
uating the precision and the robustness of the Hough
Localization: first experiments that make use of a sim-
ulator in which we could test the effectiveness of the
approach under controlled conditions, and then exper-
iments with real robots. The accuracy of a localization
method usually depends on the precision of the range
sensor. If we consider an ideal range sensor, the noise
introduced by the Hough method is due only to the
discretizazion of the Hough grid. Therefore, the grid
intervals δθ and δρ characterize the accuracy of the
Hough localization method itself and must be tuned
according to the precision of the range sensor.
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Figure 2: Vision range simulator

4.1 Experiments with a simulator

We are using a simulator for mobile robots that in-
cludes a mathematical model of several different er-
rors that occurs during robot navigation and sensor
perception. In particular, because of our application
oriented to robotic soccer, we emulate a vision range
sensor that is able to extract points belonging to the
lines in the RoboCup game field (see Fig. 2)1.

The following errors are considered in the simula-
tor: 1) odometric error: the position of the robot is
affected by a random noise, such that the position er-
ror increases over time; 2) sensor noise: sensor data
are affected by a random noise that increases with the
speed of the robot; 3) systematic error: sensor data
are affected by a systematic error that corresponds to
usual errors in the calibration of the camera; 4) robot

bumps: random movements of the robot; 5) false pos-

itives and occlusions: points that do not belong to a
line and occlusions due to objects (other robots) that
are in the field.

The models of the environments considered in our
experiments are formed by sets of segments: in the
RoboCup environment we have segments represent-
ing the boards and the lines drawn in the field, and
one circle drawn in the field; in an office environment
segments represent walls of the corridors. These seg-
ments are represented as points in the Hough domain
for lines, and the circles are represented as points in
the Hough domain for circles. Observe that the walls
are real obstacles for the robot, while the other lines
and the circle are drawn in the field and do not corre-
spond to obstacles. However, the vision range sensor
that we are using on our robots [6] is able to extract
range information from both of them and thus we con-
sider them also in the simulator.

With the use of a simulator it is possible to know

1We are grateful to Kurt Konolige for his permission to ex-

tend the Pioneer simulator.

exactly the actual pose of the robot at every time and
to evaluate the position error as the difference be-
tween the actual position and the estimated one. In
Fig. 3 we display two typical results of our experi-
ments: in the first experiment (Fig. 3a) we have con-
sidered only odometric errors, while in the second one
(Fig. 3b) three bumps of the robot have been sim-
ulated. The three lines on the graphs (Fig. 3a, 3b)
represents the odometric error (red), the error with
the Hough Localization and without the Kalman filter
(blue), and the error with the Hough Localization and
the Kalman filter (bold green). The temporal analysis
shows that: 1) Hough Localization provides an upper
bound to the localization error, while odometric er-
ror generally increases over time; 2) odometric error
increases smoothly, while Hough Localization updates
the robot’s position sharply; 3) the use of a Kalman fil-
ter provides for smoothing the robot position updates,
while keeping the bound on the localization error.

4.2 Experiments with the robots

Hough Localization has been implemented in our
robots by making use of a vision based range sen-
sor (see [6] for details on this sensor) in two different
real environments: during the official RoboCup soccer
competitions and within the corridors of our lab.

A first qualitative evaluation of the method has been
performed during the RoboCup games, by using a
monitor displaying the robot pose and by a visual in-
spection of its position in the field and the estimated
position. Furthermore, we have performed more sys-
tematic experiments for evaluating the precision of the
Hough Localization.

The first kind of experiments follows a classical ap-
proach [5]. We chose a number of reference positions
in the environment, then we drove the robot on a path
and we measured several times the distance between
the actual position of the robot and its internal esti-
mation. The results in evaluating the position error
in the two operation fields are summarized as follows:
average = 13cm, maximum = 29cm, variance = 8cm.

The above procedure attempted to measure an aver-
age precision of the self-localization method, but such
values are not fully adequate to evaluate our method
since they do not consider many sources of errors aris-
ing in the actual operation (collisions with obstacles,
occlusions) and they may depend on various experi-
mental conditions: type of range sensor, noise in the
environment, choice of the path, robot velocity, etc.
Moreover, since the samples are acquired only in pre-
defined positions, and when the robot is not moving, it
is not possible to monitor the effect of the localization
method during robot navigation. For proving also the
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a) b) c)

Figure 3: Position error: a) simulator without bumps, b) simulator with bumps, c) real robot.

robustness of a localization method we need a more de-
tailed analysis of the robot position error during the
execution of its tasks. We have thus implemented a
global vision system, that makes use of a fixed camera
positioned outside the game field for measuring the ac-
tual position of the robot. The images contain a global
view of the field and they are analyzed for recognizing
a special marker put on the robot and for determining
its pose in the field.

In this setting, as in the experiments with the simu-
lator, we are able to monitor the robot’s position error
during navigation and thus evaluate the robustness of
the self-localization under real conditions. In Fig. 3c)
we show a representation of two trajectories computed
during a normal activity of one of our soccer robots.
The green trajectory has been computed by the in-
ternal localization method of the robot, while the red
one has been computed by the tracking system of the
global vision device. Note that this setting has not
been used for evaluating the accuracy of the method,
since it is affected by the errors of the global vision
system in computing the position of the robot (the
average position error of the global vision system is
about 16 cm). Instead it is very useful for evaluat-
ing the robustness of our localization method, in fact
we can show that the position error is always limited
within a certain threshold.

5 Conclusion

Hough Localization presented in this article is based
on a geometric representation of the reference map:
lines and circles. This representation is suitable for
the RoboCup environment, but also in office-like en-
vironments the availability of straight walls is usually
guaranteed. With respect to other map matching tech-
niques, the advantages of using the Hough Localization
are: 1) it is computationally efficient, since position
tracking is linear in the number of sensor points; 2) the

Hough Transform and thus the line extraction process
is very robust to occlusions and false positives.

The probabilistic approach to self-localization has
been essential for an optimal integration of a robust
map matching process based on the Hough Transform
and odometric information. The experiments we have
performed have proven that the use of an Extended
Kalman Filter is relevant for both reducing the over-
all localization error and for smoothing the position
updates.
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