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ABSTRACT

A probabilistii approach to low-level vision algorithms results in algorithms

that are easy to tune for a particular application and modules that can be used for

Amany applications. Several routines that return likelihoods can be combined into a

single more robust routine. Thus it is easy to construct specialized yet robust low-

level vision systems out of algorithms that calculate likelihoods. This dissertation

studies algorithms that generate and use likelihoods.

Probabilities derive from likelihoods using Bayes' rule. Thus vision algorithms

that return likelihoods also generate probabilities. Likelihoods are used by Markov

Random Field algorithms.

This approach yields facet model boundary pixel detectors that return

likelihoods. Experiments show that the detectors designed for the step edge model

are on par with the best edge detectors reported in the literature. Algorithms are

presented here that use the generalized Hough transform to calculate likelihoods for

object recognition.

Evidence, represented as likelihoods, from several detectors that view the

same data with different models are combined here. The likelihoods that result are

used to build robust detectors out of several specialized ones. Results are shown here

for combining boundary detectors that assume several levels of noise and combining

detectors of several sizes. - -
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The gains in clarity of design, flexibility of use, and the robustness of the

resulting algorithms justify a probabilistic approach to low-level vision problems.
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Preface

This thesis is designed on the assumption that it be read through in entirety and

in order. However several of the sections can be read separately.

Chapter 1 describes the motivation for this work and lays some of the

groundwork for it. Chapter 2 describes work on building domain models for low-

level vision problems. A domain model is characterized as the interface between the

algorithm designer and an algorithm user. This section addresses the problem of

deriving priors from an intuitive model.

Chapter 3 describes the construction of limited support boundary pixel detectors

that yield likelihoods and probabilities. Efficient algorithms for a class of boundary

detectors are derived here and experiments testing such detectors are in this chapter.

Chapter 3 often refers back to the work in chapter 2. Some of the work in chapter 3

has been published separately from the work in chapter 2 (Sher 1986b) (Sher 1987a)

and most of it stands on its own.

Chapter 4 describes probabilistic feature detection algorithms for the domain of

object recognition. Objects are modeled by templates here. A class of algorithms

using the Hough transformation are developed that yield probabilities for the

presence of objects. Occlusion of multiple objects in a scene is modeled with a

Markov random field. The work in this chapter also can stand on its own and will be

published separately when experiments testing these algorithms are done. Thus

efficient feature detectors that return probabilities exist for boundary pixel detection

xi
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xii

and object recognition. This chapter refers to chapter 2 but does not directly depend

on chapter 3 and can be read without it.

Chapter 5 describes merging several specialized feature detectors to yield a

robust feature detector. The feature detectors from chapters 3 and 4 can be combined

using this theory. Experiments have been done using the boundary detectors from

chapter 3 to combine detectors that assume various levels of noise and to combine

detectors that use large and small support'. An early version of the evidence

combination work appeared in (Sher 1986d) and (Sher 1985a). More advanced

work including some experiments has appeared in (Sher 1987b). Chapter 5 depends

greatly on chapters 1, and 2 for definitions. The priors derived in sections 2.3 and 3.1

are useful here.

Chapter 6 gives an overview of the previous work that is relevant to this thesis.

Because this paper straddles computer vision and decision theory much

terminology must be introduced that is unfamiliar to at least part of my audience. If

more terminology than is necessary has been introduced, I would appreciate having

tmy kind readers point out any possible improvements. At the end of this paper in

appendix A is a glossary. It is provided to help keep track of the terminology. At the

beginning of the paper is an index of defined terms that shows where in the paper

each term is defined. These tools should help the reader handle the mass of

indigestible terms.

'Boundary detectors that look at large and small windows.

k.4-:
pW'
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CHAPTER 1

Motivation

Currently a great variety of tools are available for low-level vision tasks. For

tasks such as image reconstruction and edge detection many tools are available. The

algorithms in this dissertation should ease certain aspects of low-level vision tool

* management.

'. Most of the tools in low level vision are algorithms that attempt intermediate

..* steps towards a goal. As an example, in computer vision systems a boundary

detection algorithm is not intended to display outlines pleasing to the human eyes .

Output from such algorithms is input to higher level routines such as shape

recognition programs or surface reconstruction programs.

1. Probabilities

All low-level vision tools make mistakes. Significant error rates must be

accepted when finding object boundaries from limited support (often called edge

detection). Thus the error characteristics of low-level vision algorithms need to be

considered.

Consider some applications for boundary pixel detection. Relaxation and

regularization algorithms suffer more from missing a boundary pixel than from extra

Compared to data analysis and image presentation systems where the data is directly presented to a human.

I•
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boundary pixels. If a boundary pixel is missed, regularization algorithms assume

image characteristics change slowly across the boundary with disastrous results.

Hough transform techniques often work effectively when the set of boundary pixels

detected is sparse. However the cost of using the Hough transform is proportional to

the number of boundary pixels detected (Sher 1985b).

If several tools require the same type of information (such as positions of

boundaries) it is better to have a single shared routine than have each tool use its own

version. But a boundary pixel detector that returns a true/false decision at each pixel

can not suit both regularization techniques and Hough transform routines. Take for

example the one dimensional slice shown in figure 1.

*, intensity/'\

Figure 1 Slice through an image with an ambiguous boundary

A boundary pixel detector that is used as a first stage before regularization should

report a boundary in the center of figure 1. A boundary detector that is used by a

V Hough transform line detection routine should report that figure 1 has no boundaries

in it.

The traditional solution for satisfying differing requirements among

intermediate level routines has been low-level detectors that generate numbers such

as edge strengths rather than true/false decisions (Ballard and Brown 1982c).

* Strengths describe the confidence of the low-level vision algorithm that an event

would occur for example a boundary passing through a pixel. For example, in figureH 1 the detector returns a low edge strength. Figure 2 shows a 0 edge strength.

I..,
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intensityA

Figure 2 Slice through an image with an edge strength of 0

Figure 3 shows a high edge strength.

intensity

Figure 3 Slice through an image with a high edge strength

Often, the output of an edge detector that returns strengths is thresholded before

the intermediate level application sees it. If an edge strength is higher than the

threshold, a boundary is reported to the application. For each intermediate level

application the threshold is found by experimentation on typical images. If the

boundary detector is changed, a new threshold needs to be found for each application.

If all boundary pixel detectors output the probability of a boundary pixel, then

the boundary pixel detector could be improved without finding new thresholds.

Currently thresholds need to be recomputed whenever the boundary detector is

changed because the relationship between the strengths returned by established

boundary detectors (such as the Sobel and the Kirsch edge detectors (Ballard and

Brown 1982a)) and the probability of an edge is currently unknown. If the error

sensitivities of the intermediate level routines are known, thresholds can be

determined by an application of decision theory. This dissertation discusses low-

level vision algorithms that return probabilities.

SQ
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2. Decision Theory

Decision theory is the statistical theory of decision making under uncertainty.

An advantage of algorithms that generate probabilities is that results from decision

theory can applied to such algonthms. Decision theory assumes there is a set of

possible states of nature, E, and a set of possible actions that can be taken, A. Each

action, aeA when taken under a state of nature 0Oe has a certain cost for the

decision maker. Of course, the decision maker wants to minimize her costs. But she

does not know the state of nature, only some observed data, o. o and some

knowledge about the structure of the problem yields a probability distribution over 8.

This probability distribution is the posterior distribution over 8. Decision theory

assumes the decision maker picks the action that minimizes the expected cost derived

from the posterior distribution (Berger 1980c).

In computer vision the observed data is the image or images being processed.

For boundary detection the set of possible configurations of boundaries in the image

is . The number of boundary configurations in an image is approximately 2 to the

power of the number of pixels in the image. It is impossible to calculate or store a

probability distribution over such a large set.

Each pixel in the image either has a boundary passing through it or not. For

each pixel, p, there is a marginal probability distribution over

Ep = f boundary, --boundar4. In this dissertation 9,p is called a feature and the

elements of 8p are the labels for the feature. The total number of states in such

distributions is linear in the number of pixels in the image rather than exponential in

it. Thus, instead of one unmanageable decision problem, there are N (number of

pixels) interelated decision problems each with a small set of states of nature.
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NHence for each pixel p there is a decision space e® and an action space Ap=Ep 2 .

The decision (action) ap is to choose an element of Op to report. For example in a

boundary detection problem Ep ={boundary, -bounda4 and there are four possible

combinations of true states of nature and reported states of nature documented in

figure 4.

State of Nature Reported State Cost

boundary boundary 0
boundary --boundary c,

-,boundary boundary Cp
-,boundary -,boundary 0

Figure 4 Situations using a Boundary Detector

Note that there is zero cost associated with reporting the correct state3 but there is a

cost, cn, for reporting -boundary when there is a boundary (the cost of a false

negative ) and there is a cost cp for reporting boundary when there is no boundary

(the cost of a false positive).

Figure 4 descibes a decision problem. A strategy (algorithm) for making,4".

decisions has probabilities, p. for the false positive state occurring and Pn for the

false negative state occurring. Equation 1 uses these two probabilities to determine

the expected cost for a strategy.

P (boundary)pncn+P (-,boundary)pp c, (1)

Given a model that contains the probabilities and costs in equation 1, our decision

maker can choose a strategy with a minimal expected cost.

2
The set of actions are isomorphic to the set of states because the purpose of perception is to estimate the state of nature.

'If there is a non-zero cost for reporting the correct state of nature, there is an equivalent decision problem with a zero cost

for being correct. For more details see (Berger 1980a).

[•.!
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How much has been lost by splitting the problem into a set of Op (making a

decision at each pixel) instead of using the set 0 of boundary configurations

(deciding all the boundaries at once)? A theorem of decision theory says if the cost

for reporting a wrong configuration is the sum of the costs of the errors made at each

pixel then the union of the cost minimizing elements of each Ep corresponds to the

cost minimizing element of 8 (Berger 1980a).

But, for most intermediate-level vision algorithms, the costs of several mistakes

is not the sum of the costs of the individual mistakes. However it is still necessary to

break up the space of configurations because of the difficulty of managing probability

distributions over sets with cardinality larger than the number of atoms in the

K !universe. It is a research issue to find the most effective way to split up the space of

configurations for low-level vision problems (Morgera 1987).

Another way decision problems for low-level vision can be simplified is by not

using all the observed data. In particular if a phenomena is restricted to a small part

of the image such as a boundary pixel then one might consider the data in the image

far from the feature to be irrelevant to the decision. Thus the decision about the

presence or absence of a boundary pixel uses only a small region of the image (a

window) about the boundary pixel. Section 2.2 discusses this simplification.

3. Likelihoods

Often it is easier to state and solve the image generation problem than the vision

problem (which is why computer graphics can generate realistic images that current

image understanding systems can't analyze). For example the statement that a signal

is corrupted by uncorrelated Gaussian additive noise is a description of a probability

distribution over observed signals and thus a description of how observed signals are

generated. It is easier in many models to get the probability of the observed data

given a labeling for a feature than to derive the probability of a feature labeling

I,
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directly from the observed data. The models described in chapter 2 have this

property.

The probability that an image o is observed when a feature f has label I is the

likelihood of I for o. L/o I 1)=P(o I label(f)=l) is shorthand notation for this

likelihood. priorI(l), the Likelihoods and priors derive from a domain model, a set of

assumptions about the relationship between the state of nature and the observed data.

prior probability, is the probability that f has label 1, using only the information in the

domain model, ignoring the information in the observed image. A likelihood

V. generator is an algorithm that uses a domain model M to estimate the likelihood of I

for o. Thus Lj(o I I&M) is notation for the output of a likelihood generator. Given a

* likelihood generator for M and a prior estimate of the distribution of f s labels then

one can build using Bayes' Rule (equation 2) a feature detector for f that yields

Pf/l I o&M), the probability that f has label I given the observed data and domain

model.

PL I o&M)= L/o I I&M)prioril)

- P L(o I l,&M)prior(l,) (2)

PE V

The feature detector thus derived is called here a Bayesian feature detector for model

M.

The set of likelihoods for a feature f given an observation o contains more

information than (2) uses. The denominator in (2)

F, Lf(o I I,&M)priorf(l,) (3)

5' is the probability that o would occur given domain model, M. If the probability is too
0, low then the model being used probably is not correct. I use this information

combined with a priori information about the reliability of the model to derive an

,,. evidence theory in chapter 5.
,,,
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Likelihoods are used by Markov Random field algorithms to encode information

about the observed data. Thus a likelihood generator can be used as input for the

algorithms described in (Marroquin 1985), (Geman and Geman 1984),

(Chellappa 1981a), (Hansen and Elliot 1982), (Cohen and Cooper 1987) and

(Chou 1987).

Another use for likelihoods is derived from a classical statistical approach to

decision problems. Some work solves estimation problems by reporting the label

whose likelihood is maximized (Good 1983c) (Andrews and Hunt 1977c)

(Shvaytser and Peleg 1985). This approach avoids considering prior probabilities for

the feature labels and the cost of errors in estimation. However if the costs of all

* errors are not equal, maximum likelihood estimation may lead to costly errors

(Sher 1986c).

Another classical approach to decision theory is hypothesis testing

(Good 1983a). Hypothesis testing is used when there are two hypotheses (labelings)

that must be decided between, a null hypothesis and an alternate hypothesis.

Consider the null hypothesis a negative result and the alternate hypothesis a positive

result. Hypothesis testing involves finding an algorithm whose false positive rate is

guaranteed before the data is seen to be less than a specified rate cc. ac is called the

size of the test4. Given a set of algorithms whose size is 0t the test that minimizes the

false negative rate 1-[3 is chosen. 3 is called the power of the test. It is a theorem of

statistics that a likelihood ratio test maximizes P for a given cm. Thus classical

approaches to decision problems also call for calculation of likelihoods.

Hypothesis testing is used in vision algorithms that make binary decision

(decisions between two mutually exclusive states of nature). For example in (Li and

U'. 
4
Also known as the level of significance for the test.

* U

SA
L1



9

Dubes 1985) a hypothesis testing approach (using likelihood ratios) was taken to

template matching. Here the decision was between the template matching and the

match failing. In general, hypothesis testing is not useful for deciding between

multiple hypotheses. Some work attempts to extend the hypothesis testing approach

to handle multiple hypothesis decision problems (Ferguson 1967) but no such

extension has gained universal acceptance. Since perception problems usually

involve multiple hypotheses, the hypothesis testing is not a popular approach in

vision research.

0,V
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CHAPTER 2

Models

In section 1.3 equation 2 computes posterior probabilities for features from

likelihoods and prior probabilities. Where do the prior probabilities come from?

How can likelihoods be computed from observed data? The answer to these

O questions lies in the domain model.

A feature detector tries to label features given an image of a scene. A camera

(or other data gathering device) is aimed at a scene. The output of a camera is an

image. Figure 5 is an example of a scene and an image.

Figure 5 Definition of Image and Scene

image camera

scen

A feature is a relationship between the scene and image. An example of a feature is a

1

• ! 10



boundary pixel, which is a pixel that measures light' reflected from two objects. A

domain model for a feature detector serves several purposes.

(1) It defines the feature.

(2) It provides prior probabilities for the feature. Eg. expected frequency of

boundary pixels.

(3) It describes how the scene gets translated into an image and thus guides the

construction of a likelihood generator. For example, a model could say that

an image is corrupted with Gaussian additive noise of standard deviation Y.

Section 3.2 uses such information to construct likelihood generators.

This chapter shows how domain models are constructed and how such models

yield prior probabilities. Algorithms that yield likelihoods are derived from domain

models in chapters 3 and 4.

1. Primitive and Required Statistics

Domain models bridge the gap between the user of a vision system and the

designer. A user supplies a model of the world, the imaging device and the features

to be extracted. The designer writes routines that derive likelihoods or probabilities

for feature labels from the model and the image. A user expresses her model in terms

of statistics familiar to her. A designer can build a likelihood generator if certain

statistics are made available to him. The statistics the designer requires often are not

those the user supplies.

For example a user can generally describe the objects that are likely to appear in

images. For an automated factory these objects are components of the manufactured

items, the assembly line and the robot arm. For aerial images some objects are

'A pixel is really a measurement of the light hitting a region of the photosensitive part of a camera.
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houses, roads, trees, and fields. Another parameter a user is likely to supply is the

optics of the camera. Statistics that the user can supply to the designer are called here

primitive statistics.

Assume a limited support boundary pixel detector is being designed. If the

designer is given:

(1) The ideal (noiseless) windows that correspond to boundaries and non-

boundaries.

(2) The level and type of noise corrupting the image.

(3) The prior probabilities of boundaries passing through a pixel.

The designer can use techniques from chapter 3 to build a boundary detector. The

statistics he uses are called the required statistics because the designer requires them

to do his job. A domain model maps primitive statistics into required statistics.

2. Simplifications

A domain model is a mechanism for encoding the user's knowledge of the

world in a form that yields required statistics. However the world a user describes is

a complex place (see figure 6).

-,.:
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ODEL

Figure 6 A Designer Confronted with a Complex User Model

Deriving a likelihood generator or priors from a model that is natural from the user's

point of view can be difficult or impossible. Often the user's model must be

simplified to be useful. Some of the common simplifications are:

Independence

One such simplification is an unwarranted assumption of independence. For

example in house scenes garage doors are often highly correlated with kitchen

windows. Using this correlation complicates the job of a door and window

detector. A much simpler detector results if the positions of doors and windows

are independent. So a common simplifying assumption is that the distribution of

positions for an object in a scene is independent of the other objects. This

simplification degrades the quality of the detector. But without this
simplification building a detector might be impossible or require other equally
destructive simplifications. A research issue is finding the degree degradation

from such simplifications.

FDi
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Isotropy

Another way to simplify a model is to assume an isotropy. An isotropy is a set

of states with the same probability. An example is the assumption that all

orientations are equally likely for objects (Witkin 1981). Thus at each position

the probability of an object over orientations is uniform. This simplification was

introduced by Laplace (Berger 1980a). Another common assumption is to

assume that objects can occur at any point in the scene with equal probability.

This assumption eases the derivation of a likelihood generator since the

generator behaves the same at each point of the image. It also eases the user's

job of specifying a model since otherwise a probability distribution over

* positions must be supplied for each object. The more common applications of

maximum entropy (Shastri 1985) (Skilling and Gull 1985) are equivalent to

certain isotropy assumptions. It should be easier to measure the results of an

unwarranted isotropy assumption since the anisotropy is easily measured.

Approximation

An approximation assumption is the use of an approximation to a function

instead of the function itself. An example of such a simplifying assumption is

the discretization assumption. This assumption is that events (like objects being

present) occur at discrete points in space instead of occurring continuously

through space. This assumption eases building likelihood generators by

reducing integrals to mere sums. This simplification is well known and its

behavior is addressed in the numerical analysis literature about computing

integrals and in the vision literature about discretizing gray levels (Andrews and

Hunt 1977d) and discretizing accumulator arrays when using the Hough

transform (Shapiro and lannino 1979) (Maitre 1986).

ZINH M MM u I Mz
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Projection

Projecting a problem into a smaller space and modeling it in that space often is

useful. For example in vision it is often simpler to try to model the image as a

corruption of an image of 2 dimensional objects instead of modeling the 3

dimensional scene Such a projections turn scenes like figure 5 into scenes like 7.

Projection need not degrade the model or detector. Often a projection paves the

way for other simplifications.

Low Probability

It is often convenient for the designer of a likelihood generator to ignore certain

low probability events. For example when building a boundary pixel detector it

inconvenient to model at a pixel the low probability event of three or more

objects intersecting. A boundary detector designed thus, fails on comers where

3 objects meet. Section 2.3 discusses calculating the probability of such an

event. Ignoring low probability events makes a detector behave unpredictably

when these events occur. Chapter 5 shows how to merge a detector for low

probability events into a detector that ignores these events.

These are some of the common simplifications that are applied to models.

Chapters 5 and 4 use all these techniques. Stating the simplifying assumptions when

building detectors is useful because those assumptions may be relaxed in further

work. For example it is common to start work in boundary detection on the I

dimensional problem (thus assuming an image is a set of uncorrelated 1 dimensional

signals) and then adjust the detector to handle 2 dimensional images. (Canny 1986)

(Boie, Cox, and Rehak 1986) (Sher 1986b).

3. Derivation of Priors

This section derives a required statistic, the prior probability of a boundary

intersecting a pixel, from a simplified set of primitive statistics.
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Here are some simplifying assumptions that ease the derivation. The first is to

project the scene into 2 dimensions. Thus the scene is modeled as a 2 dimensional

entity. A scene consists of a set of two dimensional objects overlaying a background.

Two dimensional objects are laid atop each other as in figure 7.

* camera

scenle
image

Figure 7 Example of Simplified Model

For many scenes this assumption is safe.

Other simplifying assumptions made here are that all positions are isotropic.

Thus objects are equally likely anywhere, and the placements of objects are

independent events. Another simplifying assumption, which is relaxed later in this

section, is that a sufficiently large number of objects are placed in the scene so that

placing a new object does not change the expected number of boundary pixels. Thus

the scene is so cluttered that adding a new object covers up as many boundary pixels

as it adds. Markov chain theory can be used to prove that this state is approached by

a scene with a large number of objects.

Primitive statistics that a user could supply are the average size and perimeter of

objects. Thus the average number of pixels an object covers is c and the average

number of pixels on the boundary of an object is p. Placing a new object on the scene

covers all the boundary pixels below it and adds on average p new boundaries to the

IM
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scene. Thus if b is the prior probability that a boundary passes through a pixel then

the expected number of boundaries added by a new object is the left side of equation

'.v % 4.

p-cb=O (4)

cb is the expected number of boundary pixels covered by a newly placed object. We
~.1

assume, in the scene, the expected change in the number of boundary pixels resulting

from placing an object is 0. Thus the prior probability that a pixel is a boundary must

be P-. Given our assumptions, this formula is a source of prior probabilities for

C

boundary pixels. For example if the objects in the scene are 10 by 10 pixel squares

the probability of a boundary passing through a pixel is 0.36. If the objects are 100

by 100 pixel squares the probability of a boundary is 0.0396.

Another interesting statistic is the number of windows on the image with 3

objects in them. A window is a subimage as in figure 8. Windows are usually

rectangular.

I..
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window

image

Figure 8 Small Window on an Image

In windows with more than two objects simple edge detectors are likely to fail. Two

of the most common ways 3 objects can participate in a window are shown in figure

9.

b

C 
b

*a a

Figure 9 3 objects (a, b, c) in one window

1One way 3 objects can participate in a boundary is if two boundaries intersect (the

left side of figure 9). The probability of two boundaries intersecting in a pixel is b2

jV
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since the two intersecting boundaries are laid down independently. Thus the

probability of two boundaries intersecting at least once in a N pixel window (at least

once) is 1-(l-b 2 )N. This probability is a lower bound on the prior probability that 3

objects occur simultaneously in a window. If the objects are 10 by 10 squares and the

window is 5 by 5 then the probability of a comer is 0.97; the scene is so cluttered that

a 5 by 5 edge detector is not likely to succeed on many windows. If the objects are

100 by 100 squares then the probability of a comer in a 5 by 5 window is 0.038.

Thus for any particular window of the image an edge detector is unlikely to fail from

a comer.

If scenes are not cluttered, the assumption that placing a new object in the scene

* does not change the expected number of boundary pixels fails. Aerial images often

have few objects placed against a neutral background. Adding a new object adds

more boundaries to these scenes. Assume the expected number of objects in an NxN

image is E. Let f=EIN2 . Ignoring occlusion the probability of a boundary falling on

a pixel is fr. However occlusions delete fpf(c-p) boundaries. Thus the probability

that a boundary passes through a specified pixel is fp(1-f(c-p)). If objects are 10 by

10 squares and f--0.001 (thus a bit less than 0.1 of the image contains objects and the

rest background) then the probability of a boundary is 0.033696.

Thus prior probabilities can be derived from the sinmple models described here.

It is a research problem to derive prior probabilities for required statistics from more

sophisticated models.

trI
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CHAPTER 3

Boundary Detection

This section describes a model for boundary pixel detection, using

simplifications a la section 2.2. This model yields an efficient algorithm for

boundary detection. This algorithm has been implemented and tested. The results of

these tests are reported here.

The purpose of a boundary pixel detector is to detect which pixels measure light

from exactly 2 objects. If a pixel measures light from 3 or more pixels it is called a

corner pixel. Because of noise, it is impossible to determine with certainty which

pixels are boundary pixels. Thus a boundary pixel detector need determine for each

pixel the probability a boundary passes through it. Section 1.2 supports deciding

where the boundaries are on a pixel by pixel basis.

Thus a boundary pixel detector tries to determine a probability distribution over

a set of labels at each pixel. In the literature several labeling schemes have ben used

for boundary pixel detection. The simplest is to use the set in equation 5.

L= (boundary, -,boundary 1 (5)

Algorithms that assign this labeling are often called undirected edge detectors.

Object boundaries often are smooth and thus have well defined tangents and normals.

Higher level routines use information about the normals of the boundaries. Thus a

labeling scheme that uses a set of angles, A to get equation 6 is often useful.

20
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L=A u {-,boundary) (6)

Boundary pixel detection (often called edge detection) is an important first stage

in many low-level vision systems. It can be a first step in segmenting an image by

split and merge segmentation (Furst and Caines 1986) (Nazif and Levine 1984).

Boundary pixel detection often is used as input to a template matching system for

object detection (Ballard 1981) (Turney, Mudge, and Volz 1985) or image line and

circle detection (Zucker, Hummel, and Rosenfeld 1975) (Hough 1962).

1. Models for Boundary Detection

S Section 1.3 equation 2 shows that the probability distribution of boundary pixels

can be derived from prior probabilities for the labels and likelihoods of labels from

- the image.
..-

Pfl I o&D )= Lfo II&D)priorf(l)

I LO I 1,&D )priorfl-,) (2)
Pe V

- '. These are the required statistics for boundary detection. These probabilities are

derived from more primitive statistics with the model refined here.

1.1. Priors for Boundary Pixel Detection

Section 2.3 uses a simplified model to derives prior probabilities for the labels of

equation 5 from the expected digitized area and perimeter of silhouettes of objects in

[ •the image. The digitized area of a silhouette is the number of pixels that measure

light from the object. The digitized perimeter of an object is the number of pixels

that measure light from an object that also measure light from another object or

background. Both of these concepts are illustrated in figure 10.

I
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XXX XX

digitized ama digitized perimeter

Object outline is shown by dashed lines.

Crossed boxes are the pixels included in the digitized area

and perimeter respectively.

Figure 10 Example of Digitized Area and Perimeter

The priors for the labels of equation 6 can be derived from the model of section

2.3 by assuming isotropy of orientation, thus boundary pixels are equally likely at all

orientations. On the other hand the user can supply the orientations of the boundaries

on the objects expected in the scene and the probabilities that each object appears at

each orientation. Those probabilities yield the prior probability for each possible

orientation of a boundary pixel.

1.2. The Facet Model

Thus the prior probabilities for each label can be calculated using the reasoning

from section 2.3. To apply equation 2 the likelihoods for each label given the data,

Lf(a I I&D), need be calculated. This chapter contains algorithms that yield

likelihoods given an image and primitive statistics.

Two important models in the edge detection literature are the step edge model

and the facet model. The step edge model assumes that an image consists of a set of

A
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piecewise constant regions corrupted by linear blur and Gaussian additive noise. This

model lies at the basis of Canny's (Canny 1986) and Nalwa's (Nalwa and

Binford 1986) edge detector. The facet model (Haralick 1980) assumes that an

image is piecewise polynomial with small gradient corrupted by linear blur and

Gaussian additive noise and digitization. The degree of the polynomials is specified

in the domain model. A facet model with 0 degree polynomials is close to the step

edge model. Haralick's work often uses a cubic polynomial approximation

(Haralick 1986a). Haralick has also developed detectors using the step edge model

(Haralick 1984). Here a windowed facet model is derived using simplifying

assumptions about objects' shapes and reflectance maps. The degree of the model

• depends on the size of the window and the degree of simplification introduced into

the model.

The first assumption is that objects are opaque and large compared to the

wavelength of light. Thus if one object completely occludes another no light from

the other object gets to the image as in figure 11.

b

camera

image

a totally occludes b

Figure 11 Example of occlusion

Without these assumptions boundaries are not well defined.

.I b
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This section accepts the simplifying assumptions from section 2.3 for cluttered

scenes. All the light in the scene is assumed to be reflections from objects (if

necessary postulate a large object in the background). Internal reflectances (light

reflected from one object onto another and then to the camera or light reflected from

an object onto itself and then to the camera) and shadows are considered low

probability events and thus ignored in our model. When these assumptions are

violated a detector derived from this domain model behaves unpredictably. Thus if

shadows are actually not low probability events then the detector can make frequent

mistakes. Using the evidence combination theory in section 5 to combine such a

detector with a detector that knows about shadows mitigates this problem.

(Horn 1986) discusses in detail how light is reflected from an object and how

light from objects is formed into an image by a camera. Suffice to say that if

(1) objects have Lambertian reflectance

(2) their surface normals are slowly varying

(3) the lighting changes slowly over the scene

then the light entering the camera is a piece-wise slowly varying function with each

piece corresponding to the light reflected from an object. The camera introduces blur

to the image and Gaussian additive noise. Shadows, sharp corners on objects and

non-Lambertian reflectances cause this domain model to fail.

Small windows on an image often behave more 'regularly and are easier to

model than an entire image. In a small window a slowly varying region can be

approximated closely by a polynomial of small degree. Thus a window whose pixels

measure light from a single object is modeled by a polynomial of small degree. If a

0.: window measures light from two objects it is modeled by two small degree

polynomials with pixels on the boundary interpolating the two polynomials. Thus

given this set of simplifying assumptions the facet model of Haralick is true for small

I -
t0~d
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windows. Section 3.2 derives a likelihood generator for boundary pixels from this

model.

1.3. Linear Boundaries

To derive a likelihood generator for a facet model for small windows several

more statistics need be derived from the model.

In the model in section 3.1.2 objects have slowly varying surface normals. The

projections of objects into silhouettes have boundaries with little curvature since the

curvature of the boundary is a smooth function of the surface normals of a path on the

surface of the object as illustrated by figure 12. If the object is locally smooth then

* the path (dashed curve in figure 12) that is the edge of the object that the camera sees

4
is projected into a smooth curve on the image.

approxmatio assuption

I

Edge of what the camera sees is dashed.

! Figure 12 Relationship of Surface Normals to Boundaries

Thus boundaries between toobjects are locally smooth. One can assume boundaries

between two objects are linear in small windows. This assumption is an

~approximation assumption.

IN'
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In section 2.3 the probability that more than two objects intersect in a window is

calculated for a model. For small windows this probability can be small. Thus for

small windows one can use the low probability simplification to only consider the

cases where one or two objects' images fill a window.

Thus a small window is assumed to be entirely filled with a polynomial digitized

and corrupted by blur and noise or we assume there are two polynomials with a linear

boundary between them digitized and corrupted by blur and noise. To calculate the

likelihood one more parameter need be supplied. This parameter is the prior

probability distribution for the polynomials that are yielded by object images. These

parameters can be derived from probability distributions over object reflectances,

_ lighting conditions, surface orientations, and surface curvatures. Thus if the user

supplies these distributions the mathematics in (Horn 1986) yields the distribution of

polynomials. Now our model supplies enough required statistics to build a likelihood

generator for boundary pixel detection.

2. Likelihood Generator

This section derives an algorithm for generating likelihoods for boundaries from

the facet models described in section 3.1. We assume that the feature label I

represents a probability distribution over image windows before noise. For example

vif I is that a window contains no boundaries in the step edge model1 then I represents

a distribution over constant functions on that window. If I is a vertical boundary then

it represents the sum of a constant function on the left side of the window with a

constant function on the right side of the image whose intensities are independently

selected from a known distribution. Thus to each label I corresponds to a set of

functions {f} and a probability distribution over it. Section 3.1 describes a model

$4
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that yields such a mapping.

Assuming a blur function B and a correlation matrix for the Gaussian additive

noise C the likelihood of a label I given a window on the observed image W is

approximated by equation 7. This equation is an application of probability theory

and the formula for Gaussian additive noise.

L (W I I)=fKe ' (W-B ))C(W - B( ))T dP(Ai) (7)
i

Equation 7 assumes that W and B (fj) are vectorized. Equation 7 is an approximation

since the effect of discretization on W is ignored. Equation 7 can be simplified into a

more usable form in equation 8.

L(W I )=KeWCWT feWCB(L )T - 11 BUI)CBI )T dP( A) (8)

For facet models each member of {4 can be characterized as a weighted sum

of a small set of functions. For example when I is a window with no boundaries in

the step edge model then all A are of the form (A where 1 is the unit constant

function. Similarly when I is the window with no boundaries in the facet model of

degree 1 then all the f are of the form ctl+px+yy. If I is a vertical boundary in the

center of the window in the step edge model then 4 is of the form al+p3r where I is

the unit constant function on the left side of the window and 0 on the right, and r is

the unit constant function on the right side of the window and 0 on the left (see figure

13).

Remember that the step edge model is a 0th order facet model.

4.-
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1 1 0 0

1 1 0 0

S1 1 0 0

0 0 1 1

0 0 1 1

0 0 1 1
0 0 1 1

r

Figure 13 Basis

Call the functions whose weighted sums span the basis of 1. Thus in the facet

1, model a label, I is a probability distribution over sets of scalars { J. aJ is

translated by the basis of 1, {b into A.

Equation 8 is modified to take the basis of I into account in equation 9.

WCB~y.a¢b')T--h~l')C(Y ,lbj)I T

L(W I I)=Ke-2WCW T e dP( a (9)

If B is a linear function the sum inside B can be distributed in equation 9 yielding

equation 10.

"T aj WCB (' )T -thy "-ja B(b4)CB(bj)T

L(WII)=e- 'hWCW Tfej j k dP{Cj.) (10)

Equation 10 shows that L(W I) can be computed from WCWT and WCB(b5)} and

prior knowledge about 1. Thus the likelihood of I is a function of the autocorrelation

r4-
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of the window and the correlation 2 of the window with the blurred basis of 1.

When P(I I W) is calculated from L(W 11) and L(W I-1-- ) using Bayes' law the

term dependent on WCWT drops out of the formula. Thus the probability distribution

over the labels depends only on the correlations not the autocorrelation WCWT.

However the evidence combination theory of chapter 5 requires that L(W It) be

calculated and uses the autocorrelation of W.

In the step edge model if I is that there is no edge in the window then its basis is

the unit constant function. Assuming no blur the likelihood of an edge is a function

of W's autocorrelation and the correlation W with the unit constant function. For a

4 vertical central boundary in the step edge model the basis is 1,

log LA(W I1) is the sum of a constant, the autocorrelation of W and a function F

of the correlations of W with the elements of the blurred basis of 1. F has been found

experimentally to be smooth and locally near quadratic for the step edge model with

uncorrelated noise and no blur. Thus F can be calculated accurately by table lookup

and interpolation. The functional form of F indicates that it should be smooth in

more complex models that include correlated noise, linear blur and higher order

polynomials. However the larger the basis of I the more convolutions are required to

compute a likelihood and the more difficult the interpolation (because interpolation in

high dimensional spaces is difficult).

I For the experiments in section 3.5, F was computed by table lookup.

4 2
'he unnormalized correlation mediated by the covariance matrix C. Similarly, in this dissertation. WCW

r 
is referred to

as the autocorrelation of W.

i.

4
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3. Efficient Computation of Likelihoods

Section 3.2 describes the functional form of the likelihood of a label I and an

algorithm that calculates likelihoods from a probability distribution on the scalars of

1. This section provides methods for increasing the efficiency of this algorithm.

The algorithm of section 3.2 requires correlating the image with a windowed,

discretized and blurred basis for 1. Thus any technique that speeds correlations

speeds this algorithm. Correlations can be implemented by convolutions. For large

window sizes convolutions are speeded by the Fourier transform (Ballard and

Brown 1982b).

In the likelihood generation algorithm the image is correlated by many functions

and the work of transforming the image is amortized over all the correlations. Thus

the cost of using the Fourier transform for correlation for the likelihood generator is

nearly half the time required for correlating a single image since only the

multiplication by the transformed function and the inverse transformation is required

for the correlation with each function. However for small windows it is faster to

compute the correlation for each window directly. (Sher 1985b) discusses the choice

of algorithm for correlation on multiprocessors.

For boundary detection the basis of one label often is an offset version of part of

the basis for another label. For example in figure 14 the template on the right, (b), is

an offset version of the template on the left (a). 14a is part of the basis of a centered

edge. 14b represents a part of the basis for having no edge in the center of the

window (since the boundary does not pass through the center pixel).

'4
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-I _ I
-

(a) centered (b) offset

pixel boundaries shown by dashed boxes

Figure 14 Two Templates for the Same Edge

* The likelihood computed from 14a for the window one pixel to the left approximates

the likelihood computed for 14b. Thus only the likelihoods for boundaries through

the center pixel need to be calculated. Likelihoods for boundaries that pass through

another pixel in the window are calculated as for a boundary passing through the

center of an offset window. This technique speeds up likelihood generation

substantially.

Another efficiency gain can be found if equation 10 is separable for the

correlations. L(W I1) is the product of a function of the autocorrelation of W and a

function F of the correlations of W with the basis. F is separable if F is the product

of functions of each correlation as in equation 11.

F({ WCB(b5} )=Fjfj(WCB(b5)) (11)

F can be separable if the probabilities of the scalars (that the bases are multiplied by)

are independent so that equation 12 is true and the b are orthogonal in the sense of

equation 13.

0l
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.VB (bf)CB(b )-O (13)

As an example when I and r are used as a basis, the scalar corresponding to I is

proportional to the reflectance of the object on the left side and the scalar

corresponding to r is proportional to the reflectance of the object on the right side of

the window. These reflectances are independent under the assumptions made here.

Hence the probability distributions for these two scalars are independent.

F is separable if the probabilities of the scalars are independent and the basis is

0orthogonal. A basis is orthogonal if any two elements have a correlation of 0. Under

no blur and with independent noise and no discretizaion I and r have a correlation of

0. Thus they are an orthogonal basis. However if after discretization the boundary

passes through a pixel (rather than between two pixels as in figure 13) then the

discretized I and r both contribute light to the boundary pixels. Thus the discretized I

and r have a positive correlation. If the boundary occurs between pixels then even

discretized I and r have a correlation of 0.

When the probability distribution is independent and the basis is orthogonal F is

separable and can be computed as the product of a set of functions of single

correlations. Separability allows efficient and accurate computation of the likelihood

of features.

4. The Flexibility of the Likelihood Generation Algorithm

The algorithm of 3.2 was designed with a facet model in mind. However this

algorithm can be used to generate likelihoods for any feature described by a

probability distribution over the scalars for a basis. Many simplifying

Ii1118 1
) 1 1 1 1 1 1
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approximations were required to derive a facet model, from an image model of the

type documented in (Horn 1986). One could directly derive a basis for boundary

.1 ,detection from the model in that book.

First a simplifying assumption of local planarity is required for the interior of

objects. Such an assumption is common in shape from texture work (Ikeuchi 1980)

(Swain 1985). Also calculations are simplified if the scene is observed

orthographically. A scene is viewed orthographically if the camera has infinite focal

length. Such imaging is approximated by using a long range lens on the camera.

A window that does not fall over a boundary under these assumptions observes a

region of an object of uniform reflectance. Thus it should have uniform graylevel.

The basis for this type of window is 1, and the probability distribution is calculated

from the probability distribution over lightings and reflectances for objects and the of

surface normals at pixels in the image. The probability distribution of lightings and

reflectances of objects need to be supplied by the user. Given an assumption of

isotropy of surface normals for objects (Witkin 1981) calculates a probability

distribution for 3d orientations in the image under orthography.

Near boundaries the assumption of local planarity fails. In a small region of the

image the normals of the part of the object projected into the region changes rapidly.

Figure 15 shows why local planarity works except near boundaries. 15a does not

contain a boundary and the surface orientation changes slowly. 15b does contain a

boundary and the surface orientation changes quickly there.

0.
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b

object

a

camera- - - -

dashed lines demark regions a and b

arrows show surface normals

Figure 15 Surface Normals Change Quickly Near Boundaries

A basis for a central vertical occlusion boundary has the occluded object

modeled by a uniform graytone with a probability distribution for its intensity. The

occluding side is modeled by the side of a cylinder under unit reflectance, and

lighting. The radius of the cylinder is determined by the average radius of curvature

of the objects in the image. If there is a large variance in radii of curvature several

cylinders may be used as a basis. The probability distribution over the scalars is

determined by the distribution of lighting reflectance products. The probabilities of

scalars for each side are independent since the reflectances of the two objects are

independent.

Using the basis described here an occlusion boundary detector that is superior to

a facet model detector can be built, if the user supplies a sufficiently accurate model.

5. Experiments

Experiments have been run to test the likelihood generators described in section

3.2, by determining error rates and comparing them to established algorithms. The

algorithm tested here is the algorithm derived in 3.2 for the step edge model. We find

k
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likelihoods for boundaries of four orientations shown in figure 16.

1. honzontal HI. vertical

M. diagonal IV. slash

Figure 16 4 Orientations for Boundaries

For small windows, finding likelihoods for only these 4 orientations is sufficent to

build an oriented boundary detector. The technique described in section 3.3 for taking

windows with non-central edges into account was used for these results.

The prior probability of a boundary pixel in these experiments was set

(somewhat arbitrarily) to 0.1. Boundaries in all 4 directions were considered equally

probable. This prior was used both for applying Bayes' law to the likelihoods of the

boundaries and when taking into account the likelihood of boundaries that pass

through the window but not the central pixel.

3 kinds of aliasing were considered in the detector,

(1) each object contributes 50% of the light for each boundary pixel

I ( N/5 1
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(2) the left object contributes 100% of the light for each boundary pixel

(3) the right object contributes 100% of the light for each boundary pixel

Evidence combination techniques from section 5 are used to combine the results from

these 3 kinds of aliasings.

Likelihood generators have been built for window sizes of 5x5, 7x7 and 9x9.

5.1. Results with Artificial Images

To test these likelihood generators, they are applied to test images generated by

a package of graphics routines. This package was written by Myra Van Inwegen and

is described in an upcoming technical report (Sher and Inwegen 1987). This

* graphics package is used for testing because it generates images with known noise

levels and known boundary positions. Other parameters that are specified are the

distribution of object graylevels and-positions.

The likelihood generators have been applied to four test images generated by

this package. One is an image of two circles shown in figure 17. It tests the response

of a boundary pixel detector to curvature, angle, noise, and contrast.

_--1i
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Figure 17 Two Circle Image

Three more challenging and complex images have been tested. They are as follows:

(1) Circles with gray-level uniformly distributed between 0 and 254, with

uniformly distributed positions and normally distributed radii, placed on a

black background: figure 18.

1
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Figure 18 Circles Image

(2) Rectangles with gray-level uniformly distributed between 0 and 254, with

uniformly distributed positions and normally distributed lengths and widths

and uniformly distributed orientations, placed on a gray background: figure

19.

E!
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Figure 19 Rectangles Image

(3) Rectangles and circles with gray-level uniformly distributed between 0 and

254, with uniformly distributed positions and normally distributed shapes,

placed on a gray background: figure 20.

o.,
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Figure 20 Combination of Circles and Rectangles Image

The software that generates these images also generates the positions of the

boundaries. There is software that counts how many mistakes (false positives and

negatives) are made in boundary determination. False negatives are when a boundary

that is in the image is missed. False positives are boundaries that are reported where

there is no boundary there.

One tricky point is that multiple reports of boundaries are usually considered a

bad result (Canny 1983). However systems that report a boundary only once

sometimes have a high false negative rate because they report an edge one pixel off

from where it really is. This error has low enough cost to be ignored. So the false

negatives that are next to positives (true or false positves) and are parallel with them.

Thus a false negative for a vertical boundary is not counted if there is a reported

boundary to the left or right of it. Similarly a false negative for a horizontal boundary

*I is not counted if there is a positive above or below it.

4"j
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Artificial images are useful becaust' the ground truth is known and error rates

can be computed. It would take sophisticated equipment to make laboratory images

with this property. Another convenient property of artificial images is that one

parameter of the image such as the noise level or the distribution of objects' gray-

* levels can be varied without varying any other parameter.

5.1.1. Angle and Orientation

The two circle image (figure 17) is a particularly good image to test the effect of

boundary orientation, curvature and contrast on boundary detection. Figure 21c

shows the result of using a 5x5 operator tuned to standard deviation 12 additive

*noise 3 on image 17 with standard deviation 12 noise added to it. Figure 21d shows

the result of using a 7x7 operator tuned to standard deviation 12 noise on image 17

with standard deviation 12 noise added to it. Figure 21e shows the result of using a

9x9 operator tuned to standard deviation 12 noise on image 17 with standard

deviation 12 noise added to it. The images are black at pixels with greater than 50%

probability of having a boundary and white at points less than 50% probability. Note

that the larger operators are more sensitive to orientation and less sensitive to noise.

,',

'.

O'
1

he images in this paper always range from 0 to 254 in gray level. The standard deviation of the noise is also reported in
graylevels.
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a. Image b. Image with a=l2noise
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/

horizontal boundaries vertical boundaries

450 boundaries 1350 boundaries

Figure 22 Oriented response for likelihood generator

5.1.2. Sensitivity to Noise

This section measures the response of the likelihood generator to expected and

unexpected levels of noise.

Figures 23, 24, and 25 applies the 5x5, 7x7 and 9x9 operators tuned to standard

deviation 12 noise to image 18 with too little, just right and too much noise

0 respectively. The 5x5 operator output is black when there is greater than 50%

0
UM-
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probability of a boundary. Note that with too little noise the detector misses

boundaries that are there. With too much noise the detector detects boundaries that

are not there.

4.

a: image with o-- noise

.( (/ \ ,

b: 5x5 operator c: 7x7 operator d: 9x9 operator
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i. image with a=-8 noise
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Figure 24 a=12 operators applied to image with correct (a= 12) amount of noise
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a: image wich a---16 noise

b: 5x5 operator c: 7x7 operator dL 9x9 operator
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Figure 26 False Positive Rate Charts for Operators Applied to Artificial Images
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Figure 27 False Negative Rate Charts for Operators Applied to Artificial Images

Figures 28, 29, and 30 charts the total errors for operators applied to the images from
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figures 18, 19, and 20 respectively. Figure 31 charts the total errors from all the

images.
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Figure 28 Total Error Rate Charts for Operators Applied to Circles Image
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Figure 29 Total Error Rate Charts for Operators Applied to Rectangles Image
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Note that the 5x5 operator actually improves as the noise level grows in figure

23 b, f, and j. Thus the operators here are tuned to a=-12 noise and too little or too

much noise reduces its accuracy. This effect is much less pronounced in the larger

operators because they are much less sensitive to noise. The statistics charted in

figure 28a also show that the a=12 operator has minimal error at a=12 noise (at least

for the 5x5 and 7x7 operators).

However figure 31a does not have the error rate for the o=-12 operator

minimized at a=12. There are two effects competing here. The operator expects

a-=12 noise. However images with less noise are easier to interpret even for tuned

operators. In the circles and rectangles images there are a large boundaries between

0 objects with close gray-levels, thus the tuning effect dominated and the error rate was

minimized for a=12. In the combined image there are few weak edges so the error

rate was minimized for the minimal noise image. Thus for images with large

boundaries between objects with close gray-levels the tuning of these operators is

important. For images without such the operator's errors increase monotonically

with the noise level.

5.2. Results with Laboratory Images

Artificial images are fine for taking statistics. However the statistics computed

from artificial images are relevant to the operation of the operator in so far that the

artificial images accurately reflect properties of real images. For example artificial

images popularly used to test edge detectors often have objects with few evenly

spaced gray-levels in them (Lunscher and Beddoes 1986b) (Lunscher and

Beddoes 1986a). As an example a common artificial image for testing edge

W .detectors is a checkerboard with noise added to it (Zhou, Chellappa, and

Venkateswar 1986). In this image objects have only two gray-levels. All the rest of

the gray-levels result from noise. Often operators that work for such images fail
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when presented with the multiple reflectances available in real imagery

(Pavlidis 1987).

While the artificial images used here do not suffer from that problem they do

lack other characteristics of natural imagery such as smooth variance in intensity

before noise. The likelihood generators presented here have also been applied to

images taken by cameras in a laboratory environment.

Such images are more realistic but there are problems using them. Finding the

positions of the boundary pixels in the image can not be done automatically. Thus

the image and the thresholded outputs of operators is presented here. The reader

must decide for himself about the efficacy of the operators.

The two laboratory images I am using are shown in figures 32a and 33a. These

figures are built of Play DohTM , a children's modeling clay. The main advantage of

Play DohT ' is that there are no highlights on Play DohTM figures and that Play DohTM '

comes in many colors and can be molded to any required shape. These images were

taken with a MTI Series 68 vidicon camera. This camera has been found to add

approximately Gaussian noise with standard deviation between 2 and 6 to images it

takes (Sanchis 1986).

Note that there are characteristics to these images that the artificial image lacks.

The shading of objects in these images varies smoothly. The objects have dark marks

on them. Thus this picture is difficult for a boundary pixel detector. The gnome

picture is a bit blurred too.

Figure 32 shows the result of applying the standard deviation 4, 5x5, 7x7 and

9x9 likelihood generators to the blobs image. Figure 33 shows the result of applying

the standard deviation 4, 5x5, 7x7 and 9x9 likelihood generators to the gnome image.

I'
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b: 5x5 operator c: 7x7 operator d: 9x9 operator
" Figure 32 Application of Likelihood Generators to Play Doh TM Blobs

_]I Note that the operators respond to the shadow boundary. Since these are

occlusion boundary detectors these responses are false positives. The model for this

operator assumes that the lighting varies smoothly across the image. This assumption

is manifestly false at a shadow. A more sophisticated operator can be constructed by

combining these detectors with a detector for shadow boundaries using the theory in

section 5. Then combination of the shadow boundary detector and the occlusion

boundary detector would be able to detect and label both shadow and occlusion

boundaries.

0.
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Figure 33 Application of Likelihood Generators to Play DohT' Gnome

5.3. Results with Uncontrolled Images

One could object that the images of section 3.5.2 are images taken under

controlled circumstances. Because the substances and lighting conditions of a

laboratory image are highly controlled the results of these tests are not reliable

indicators of the effectiveness of these techniques under uncontrolled circumstances.

Two images taken under uncontrolled circumstances are presented in figures 34 and

36a. Figure 34 is an image of my friend Carlos Calderon. However his image

requires too much memory in the current implementation of the likelihood generator.

W
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Hence, the operators are applied to his ear (figure 35a). There is no control over the

substances my friend is made of or his reflectance functions. Figure 36a is an aerial

image of a sewage treatment plant.

Figure 34 Image of Carlos Calderon

Figure 35 shows the result of applying the standard deviation 4, 5x5, 7x7 and

9x9 likelihood generators to Carlos' ear. Figure 36 shows the result of applying the

standard deviation 4, 5x5, 7x7 and 9x9 likelihood generators to the sewage treatment

plant.
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a: Image
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b: 5x5 operator c: 7x7 operator e: 9x9 operator

Figure 35 Application of Likelihood Generators to Carlos' ear

The texture on Carlos' face is too difficult for these operators and they fail. An

operator that expects correlated noise might succeed on these images. However the

operators did pick out the boundaries that fit their models well, such as his shirt and

the edge of his hair. The aerial image in figure 36 is a better fit for the step edge

model and the results from using these operators are better.
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b: 5x5 operator c: 7x7 operator d: 9x9 operator

Figure 36 Application of Likelihood Generators to the Sewage Treatment Plant

5.4. Comparisons with Established Techniques

This section shows how the results from using a state of the art edge detector

and a detector designed in the early 70's compare to the results in sections 3.5.1,

3.5.2 and 3.5.3. The early 70's edge detector is the Sobel edge detector (Ballard and

Brown 1982a). This edge detector is used when an easily coded fast edge detector is

required for a low-level vision system. The state of the art edge detector used here

was designed by V. Nalwa (Nalwa and Binford 1986). It has a reputation as being

the best general purpose edge detector extant (Feldman 1987).

"
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Thresholding the Sobel operator at 220 minimizes the error rate of the Sobel

operator on the image in figure 18. Thus the results presented here are with the Sobel

operator thresholded at 220.

Code for Nalwa's operator was ported to the University of Rchester from

Stanford University. It was found that the errors Nalwa's operator made were

minimized when only edges less than .3 from the center of the window were accepted

and the coefficient of tanh was thresholded at 1.2 the standard deviation of the noise.

For a complete description of what these thresholds mean see Nalwa and Binfords

PAMI paper (Nalwa and Binford 1986). The results presented here follow this

regime.

5.4.1. Results For Artificial Images

Figure 37 is the thresholded output of the Sobel operator applied to the image

from figure 18 with standard deviation 12 independent Gaussian additive noise.

Figure 38 is the thresholded output of Nalwa's operator applied to the image from

figure 18 with standard deviation 12 independent Gaussian additive noise.

O,
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a: Circles Image b: Sobel Output

Figure 37 Application of Sobel to Artificial Images

a: Circles Image b: Nalwa Output

Figure 38 Application of Sobel to Artificial Images

Neither Sobel's nor Nalwa's operator finds the low contrast boundary on the left

side of the image. However neither find many false positives away from the

boundaries. Sobel's operator returns thick boundaries that cause false positives.

Nalwa's operator does not have this problem though. Nalwa's operator handles

corners well too.
'4 t
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Figure 39 compares the false positive rates for the Sobel operator Nalwa's

S. operator and the 5x5 likelihood generator on the artificial images. Figure 40

compares the false negative rates for the Sobel operator Nalwa's operator and the 5x5

likelihood generator on the artificial images. Figure 41 compares the total error rates

for the Sobel operator Nalwa's operator and the 5x5 likelihood generator on the

artificial images.
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Figure 41 Total Error Rate Comparison Chart

Nalwa's operator has a higher error rate than the 5x5 likelihood generator. But

the artificial images used to test the operators fit the model of the likelihood

generators better than Nalwa's model. Also the error cost used fits the model of the

likelihood generators. Hence these tatistics are biased for the likelihood generators.

However the bias is not great since the images here are fairly realistic and his

operator is tuned to a facet model. Hence these statistics are evidence that the

boundary detectors developed here are on par with the best extant edge detector.

Nal,,a's operator. Likelihood generators can be developed for Nalwa's model and
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the resulting operator would do better than Nalwa's on images that fit his model.

5.4.2. Results For Laboratory Images and Real Images

Figures 42 and 43 is the output of the thresholded Sobel for the Blob and Gnome

image respectively. Figures 44 and 45 is the output of Nalwa's operator thresholded

for standard deviation 4 noise on the Blob and Gnome image respectively.

a: Image b: Sobel Output

Figure 42 Application of the Sobel to the Play DohTM Blob Image

.'4'I. -

a: Image b: Sobel Output

Figure 43 Application of the Sobel to the Play DohTM Gnome Image
0.
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These images are too dim for the Sobel to be thresholded at 220. Thus Sobel's

operator only responds to the strongest gradients. The sensitivity of Sobel's operator

the brightness of the image is one of the problems using it. However Nalwa's

operator has better results.

.a: Image b: Nalwa Output

.,. Figure 44 Application of Nalwa's Operator to the Play DohT Blob Image

",11

a: Image b: Nalwa Output

Figure 45 Application of Nalwa's Operator to the Play DohT Gnome Image

Nalwa's operator does very well indeed on these images. Nalwa's operator has

a higher degree facet model than the likelihood generators tested. Nalwa's model is a

1%,
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better fit for these clay images than the step edge model. Therefore naturally Nalwa's

operator returns superior results. However a likelihood generator can be supplied for

his model and such an operator would do even better on these images. A likelihood

generator can also be tuned to boundaries between Lambertian surfaces. Such an

operator would be superior to any extant edge detector on Lambertian imagery.

Figures 46 and 47 is the output of the thresholded Sobel for Carlos' ear's and the

sewage plant's image respectively. Figures 48 and 49 is the output of Nalwa's

operator thresholded for standard deviation 4 noise on Carlos' ear's and the sewage

plant's image respectively.

a Image b: Sobel Output

Figure 46 Application of the Sobel to Carlos' ear

In some sense the Sobel does best on this image by ignoring the irrelevant

texture in Carlos' face. Thus every operator has an image where it does well.

I
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a: Image b: Sobel Output

Figure 47 Application of the Sobel to the Sewage Treatment Plant

Here again Sobel's operator does not respond to enough boundaries. Those

boundaries it responds to, it responds to too many times.
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a: Image b: Naiwa Output

Figure 48 Application of Naiwa's Operator to the Cals' ear
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a: Image b: Nalwa Output

Figure 49 Application of Nalwa's Operator to the Sewage Treatment Plant

On the aerial image Nalwa's operator's output is similar to that of the 5x5

likelihood generator. Nalwa's operator may be slightly superior on figure 49 though

it is difficult to judge. Its superiority can be attributed to its superior model.
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CHAPTER 4

Template Matching

This chapter yields a probabilistic interpretation for the medium level vision

task of template matching. It is assumed here that template matching is being used

for recognizing objects, though this analysis may be used for other types of template

matching. Template matching receives input from a low level feature detector such

as an edge detector. This chapter assumes that the input is binary. Thus for the set of

points in the visual field features are either present or absent at each point. A

template matcher looks at the subset of the visual field where it expects the features

to be present. It outputs how many of the features actually are present. If the object

represented by the template is present in the image the template matcher should

return a high output.

Consider a template for a square in the middle of the visual field. Such a

template is in figure 50.

0 0 0 0 0 0

0 1 1 1 1 0

0 1 0 0 1 0

0 1 0 0 1 0
0 1 1 I 1 0
0 10 10 0 0 10

* Figure 50 Square Template

The output of the feature detector could be figure 51.

75
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1 1 1 0 0
1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 0 I 01 11 1 1 0 1 0

1' I 1I 0 10 O . 0

Figure 51 Output of Feature Detector

The pixels of figure 51 that are matched by the template of figure 50 are in italics.

The total number of matches is 7. Section 4.2 shows how to take an output like 7 and

derive a probability.

This definition for template matching is a simplified version of the commonly

used definition. A more sophisticated version of template matching and some

algorithms to implement it are described in (Sher 1985b). Section 4.4 extends the

work here to more complex forms of template matching.

A common implementation of this kind of template matching uses the Hough

transformation. However other techniques such as convolution with the fast Fourier

transformation are available and sometimes more efficient (Sher 1985b). The

implementation of the template matcher is irrelevant to this chapter.

Often some parts of a template are considered more important than others. For

example often edge detectors become unreliable at comers. Thus the results of

matching the comers of the square in figure 50 should be less important than the

results of matching the sides. One can represent the difference in importance by

weighting the template. Consider figure 52. Here the members of the sides have a

weight of 4 while the comer members have a weight of 1. Thus each side member

contributes 4 times as much as each comer member in computing the total match.

4
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0 0 0 0 0 0

0 1 4 4 1 0

0 4 0 0 4 000000

004010 4 0 0 4 0

--- 0, 0 0 0 0 0

Figure 52 Weighted Template

When matching with the template in figure 52 a side matching (such as in position

(2,3) of figure 51) adds 4 to the total while a comer matching (such as in position

(2,2) of figure 52) adds 1 to the total. Weighted matching was used by Brown and

Sher (Brown and Sher 1982a) (Brown, Curtis, and Sher 1983a) to improve the

performance of Hough transform line finders. Clearly unweighted template matching

is a special case of weighted template matching.

1. Models for Template Matching

The models described in sections 3.1 and 2.3 yield prior probabilities for the

desired features, namely boundary pixels, and likelihoods for the observed image

given the presence of this feature. The observed data in template matching is the

output of the low-level feature detector. The feature being labeled by the template

matcher is the presence of an object at a particular point p in the image and the labels

of the feature are 1 - present and 2 - absent. Thus the model must supply prior

probabilities for objects being present or absent at the points in the image, and the

probabilities of observed output from a low-level feature detector given the presence

or absence of objects at positions in space.

Given positional isotropy the prior probability of an object being at a position is

the expected number of objects in the image divided by the number of positions. The

, O. expected number of objects in an image is a primitive statistic easily elicited from a

user. Thus given the simplifying assumption of positional isotropy, the prior

S •
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probability of an object being at a position can be derived from a primitive statistic.

When object 0 is present at p, at each element of the template T(O,p) there

should be a 1 in the feature detector output. If the input to the template matcher has a

0 at T(O,p)[i] when 0 is present at p then the input has an error. Also, if 0 is absent

from p, T(O,p)[i] should be 0 or else it is an error. Figure 53 illustrates when an

error occurs in the input to the template matcher,

-'.
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1 1 1 1

1 0 0 1 TEMPLATE

1 0 0 1

1 1 1 1

'i l ', o ', i ', '

0 1 errors if object present

Ir - - "1

1 0 0

: 0 : 1 I
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0 1 o errors if object absent
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placed around errors

Figure 53 Errors in Input to a Template Matcher

The likelihood of an observed input from the low-level feature detector given an
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object is present is the probability that the misses in the template match would occur.

The likelihood of an input from the low-level feature detector given the object is

absent is the probability that the erroneous hits would occur.

1.1. Independence Assumption

To simplify the mathematics, errors in the input are assumed to be independent.

This assumption is relaxed in section 4.6. From this independence assumption section

S4.2 derives likelihoods of objects being present and absent as a function of weighted

template matches.

If errors in the input are correlated between pixels then taking a pixel-wise sum

* (as template matching does) is bound to lose information because it is not clear

whether several highly correlated pixels caused the N matches or several uncorrelated

pixels caused the N matches. Several highly correlated pixels should not count as

highly as several uncorrelated pixels. (To understand why correlated pixels should

count for less consider the case of two perfectly correlated pixels. When ever one

reports a feature so does the other. There is only one pixel worth of information in

this pair.) Thus a template match is only sufficient if errors are independent.

For example consider a two pixel template. It contains position one and two as

in figure 54.

IPiI 0'7

S Figure 54 Two adjacent pixels

'., The independence condition applied in this chapter is if 0 is true (the object is

present) the presence of a 1 (in the input) at P1 is independent of the presence of a 1

at P2. Thus if the probability of 1 at P1 is p I and the probability of 1 at P2 is P2 the

probability that both are 1 isp IP2. When 0 is false the same condition applies. This

NNVN
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property is sometimes called conditional independence and i: a common assumption

for research in evidence combination for vision (Bolles 1976) (Peari 1985b).

Thus this chapter assumes that errors are uncorrelated between pixels. However

this assumption is rarely satisfied since most feature detectors' behavior is locally

highly correlated. Future work will concentrate on developing algorithms for object

detection that take these correlations into account.

1.2. Parameters of the Model

Given conditional independence the feature detector (for example edge detector)

can be modeled separately at each pixel. A template matcher is trying to determine if

4object 0 is present at position p in an image. If 0 is present the feature detector

should return 1 at the pixels being matched. Two reasons for the feature detector to

return 0 are a false negative reported by the feature detector (the feature (eg. edge) is

present in the image but because of noise it was not detected) and occlusion (the

feature is not present in the image because of an occluding object). When the object

is not present the feature detector should return 0 at the matched pixels. There are

two reasons for it to return 1. It could return a false positive (the feature detector was

deceived into reporting a feature by noise) and an extraneous detection (another

object could present the feature to the detector even though O0 is absent).

Section 4.2 calculates likelihoods for the object being present and absent from

this model. Thus if the user supplies the expected number of objects in the image and

the probabilities of false positives, false negatives, occlusions, and extraneous

detections then she has supplied enough primitive statistics to generate an object
detector. Reasoning similar to that of section 2.3 can be used to calculate occlusion

and extraneous object rates from the expected digitized areas and perimeters of

objects. False positive rates and false negative rates are functions of the input feature

detector supplied by the user.

il
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There has been some work studying the effect of other sources of errors.

(Shapiro and Iannino 1979) studied the effect of quantization noise on line detection

through template matching. (Maitre 1986) studied the effect of uniformly distributed

false positives on line detection and showed that the effect is not uniform over the

output array.

2. Likelihoods for Objects

Consider, on a pixel by pixel basis, the likelihood of the input pixels when the

object is present. Call the probability of a false negative at pixel i, p? and the

probability of an occlusion, p9. Call the total probability that pixel i is 0 when it is

supposed to be 1, Ii=pi+p?. Let S I be the set of pixels matched by the template that

are 1, and So be the set of pixels matched by the template that are 0. The likelihood

of the input given 0 is described by expression 14.

[es- . i= i
[ i~~So(i[ ies (-i t (4

Similarly the likelihood of the object being absent is calculated from the probability

of a false positive at pixel i, p ' and the probability of an extraneous event at i, pf in

expression 15. Call the total probability that pixel i is I when it is supposed to be 0

,X i =P i +Pf i

t~~SJIdESO

Taking the logs of the two likelihoods thus getting a sum in equations 16 and 17

shows that these likelihoods are functions of a template matching operation. (S is the

set of all pixels matched by the template.)

0.
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F, I(Pi, 7,ln(l-3i

Y, 1n(1i)n(i 4 + n1-i 
(1)

(17)

Both equations 16 and 17 show that the likelihoods for the object being present and

absent are functions of weighted template matches. Thus the application of two
templates to an image one template having pixel i weighted with In(l-P3i)-In(O3i) and

the other template weighted with In(ai)-In(l--ai) yields the likelihoods of the object

being present and absent. In the special case that all the pixels have the same

probabilities of false positives, negatives, occlusions, and extraneous detections, all

the weights are the same and the likelihoods can be calculated directly from the

simpler kind of template matching described at the beginning of this chapter.

For many purposes only the ratio of the two likelihoods is required. In

particular the probability of the object being present (computed using Bayes' rule

(equation 2)) is a function of the ratio of these two likelihoods. Also Markov random

fields model algorithms use likelihood ratios. The likelihood ratio is a function of the

difference of the two log likelihoods described in expression 16 and 17. Equation 18

computes it.

6i
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F ln(1-Pi)-n(Pi)-ln(xi)+ln(1--ai1
ieSl (18)

+ [ I sln(pi )-ln ( l'ai

This statistic can be calculated using a template whose weights are of the form in

expression 19.

ln(1-i )-ln(pi )-ln(zi )+ln(1--ai) (19)

If all the probabilities are the same at each pixel then the weighted template matches

reduces to an unweighted template match.

Call the log likelihood ratio computed in equation 18, L. The probability of the

object being present is described by equation 20.

1

I+e L P(-.,O) (20)
P(O)

Thus given the independence assumption a template match with weights as in

equation 19 yields the probability of an object being present. When the probabilities

of errors are the same at each pixel one can calculate the probability of the presence

of an object from an unweighted template match.

For example consider the case of the template in figure 50. An edge detector

makes more errors at corners than other places. Otherwise all the pixels are the same.

* pP and pe are the same for all pixels since they concern the case where the object is

absent. p0 is the same for all pixels since corners or sides should be equally subject

to occlusion. Thus the only difference between the pixels of the template is that p ' is

larger at corners than at sides. Because pn is larger at the corners the weights

assigned to the corners is smaller than the weights assigned to sides. In particular if

the probability of occlusion is 0.1 the probability of extraneous edges is 0.2 the

01



85

probability of a false positive is 0.1 and the probability of a false negative is 0.1 at

sides and 0.4 at comers the weight assigned to sides is 2.23 and the weight assigned

to comers is 0.85, resulting in a template shown in figure 55

0 0 0 0 0 0
0 0.85 2.23 2.23 0.85 0
0 2.23 0 0 2.23 0

0 2.23 0 0 2.23 0

0 0.85 2.23 2.23 0.85 0

0 0 0 0 0 0

Figure 55 Computed Template

3. Thresholds

Thresholds are used to create the input and to analyze the output of template

matching. The output of a template matcher is often thresholded to make decisions

about the presence or absence of objects. Determining such a threshold is discussed

in section 4.3.1. The output of a feature detector is often thresholded to get an array

of l's and O's. Finding the correct threshold to use in a feature detector is discussed

in section 4.3.2.

3.1. Thresholding the Matcher

This section considers how to pick a threshold for a t~mplate matcher that
minimizes the posterior cost of errors. This section describes a simple application of

decision theory (Berger 1980a). This chapter assumes that there is zero cost to

reporting the object is present when it is present and reporting the object is absent

when it is absent. Let the cost of reporting an object when it is absent (a false positive

for the matcher) be cp, and the cost for failing to report a present object (a false

s Every member of the output less than the threshold is set to 0. Every member of the output greater than the threshold is
set to I.
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negative for the matcher) be c,.

Assume that M is the set of matches from a template match. The expected cost

of declaring the object is present is the probability of the object being absent and M

matches P(--,O&M) times the cost of a false positive c.. The expected cost of

declaring the absence of the object is the probability of the object being present

P(O&M) multiplied by the cost of a false negative c,. Thus one should report an

object if the inequality in equation (21) is satisfied.

cP< P(O&M) (21)
Sc" P(-,O&M)

The inequality of equation (21) is transformed into a likelihood ratio test of classical

statistics in equation (22).

cPP(-O) P(M 10)< (22) !
c,P(O) P(M I1-,0)

Thus by picking the correct threshold one can maximize the power of this algorithm

for a specified size2 . However, the rest of this chapter takes a decision theoretic

approach (minimizing posterior expected costs) suggested by (Berger 1980a).

Section 4.2 shows that the likelihood ratio is a monotonic function of a weighted

template match with the weights chosen according to equation 19. Thus with N the

result of the weighted match equation 23 substitutes in equation 18 for the likelihood

ratio.

I 2
This sentence uses the statistical definitions for size and power

II M* -4
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: . cn(O)<e ies

c'P(O) (23)

In P(O) n(i)-n(-ai)<N

Thus there is a clear derivation of a threshold for a weighted template match. If the

error probabilities are the same at each pixel then all the weights are the same for

each pixel. Thus one can use unweighted template matching. Equation 24 is the

threshold derived for the unweighted match.

1 (0) (24)

*ln( 1-3)-ln(13)-ln(x)+ln(1--a)

If more matches than equation 24 are found then the expected cost is less when

reporting an object present, otherwise the expected cost is minimized by reporting the

object is absent.

3.2. Thresholding the Detector

Only unweighted template matching is considered in this section though the

results generalize easily enough to weighted template matching.

Often a feature detector is a two step algorithm. The first step is to calculaie a

confidence or strength that the feature is present at each point considered. The

second step thresholds the confidences to make binary decisions at each point. The

positional isotropy assumption yields that the threshold is the same for each pixel.

The pP and p' are functions of this threshold t. This section assumes the functions

pP(t) and pf(t) are known and from this calculates a formula for optimal selection of

t.

,0%
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Since t must be chosen before running the matcher, in this section the prior

expected cost is minimized over choices of t. The prior expected cost is described in

equation (25).

P(N:5T(t)& n0)cp+P (N>T(t)&O)c, (25)

Here T(t) is the optimal threshold derived in section 4.3.1. Equation 25 is a function

of pP(t) and p'(t). Thus the prior cost of using a threshold t on the matcher depends

only on the false positive and negative rates of the matcher as a function of t.

Thus all the terms of equation 25 can be derived in terms of t. Because pP(t)

and p (t) and T() are all monotonic in t the prior cost as a function of t has a unique

local minimum. This minimum can be found using binary search or Newtons'

*method to a sufficient precision. At the moment the code to determine the prior cost

minimizing threshold is under construction.

Measuring pP(t) and pn(t) for detectors is a difficult task. However code to

take statistics on these functions and approximate them and their derivatives is

available for boundary point detectors. Results from using some of this code appears

in (Sher 1987a) and sections 3.5 and 5.8.

4. Multiple Label Feature Detectors

The results of sections 4.2 and 4.3 apply to a restricted form of template

matching described at the beginning of this chapter. However more sophisticated

problems can be transformed into equivalent problems in this restricted form.

The beginning of this chapter assumes that the feature detector returns binary

decisions about the appearance or absence of a feature. Thus an edge detector returns

,. 1 or 0 depending on whether it thinks there is an edge present. Often feature

detectors would return a variety of labels. An edge detector often returns an

orientation, an optical flow detector usually returns a velocity. Formally such
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detectors return one label I of a set of labels L or possibly 0 (no label) at each point.

Consider a feature detector that has L-,----,T. A template matcher that

accepts input from such a detector has a template that looks like figure 56.

0 0 0 0 0 0

o - T T T o
0 -00 - 0

0 - 0 0 -*0
0 1 1-v~ 01
0 0 0 0 0 10

Figure 56 Template with many Labels

The input to the template matcher can look like figure 57.

* 4 T T T o
4- 0 0 -0 o
+--0 4+-0 4- 0

4- 0 -, 0 -. 0

-- T ,, 0 4 0

4- -* 0 0 0 0

Figure 57 Output of Multiple Label Feature Detector

A template matcher counts the number of non zero points in the template where the

label in the template matches the corresponding label in the feature detector output.

For figures 56 and 57 the result of template matching is 4. This type of template

matching is described in (Sher 1985b).

There is a transformation of the problem of template matching with multiple

Is labels to template matching with a single label. Thus for every multiple label

template matching problem there is a single label template that when matched to a

translated input returns the same number.

Assume there are I L I labels. Then replace each entry of the template with IL I

entries. Each of the I L I entries corresponds to an element of L. If the entry of the

0
S
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template is labeled I the entry corresponding to I in the new template is set to I and

the other entries are set to 0. Table 58 describes how each label is translated into a set

of entries for the example above and the third column of the template of figure 57 is

translated into a table in figure 59.

label set of entries
0 0 0 0 0

1 0 0 0
0 1 0 0

0 0 1 0

0 0 001
Figure 58 Correspondence of Labels to Rows

3rd Column Translation

ST 0 0 0 1

0 0 0 0 0
+- 1 0 0 0

-0 0 1 0
, 0 1 0 0

0 0 0 0 0

Figure 59 Translation of Third Column of figure 57

If this translation is applied to both the template and the output of the feature

detector then applying template matching for l's and O's on the translated output has

the same result as the template match with multiple labels.

5. Feature Detectors that Return Probabilities

This dissertation motivates feature detectors that output probabilities rather than

feature labels. However the analysis here assumes that feature labels are output by

the low-level detector. This section analyzes using the probability distribution output

by a low-level vision operator that returns probabilities.

I.
kWR
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A possibility is to report as the output of the template matcher the expected

weighted sum of votes. Summing the probabilities at each point to be matched yields

the expected weighted sum of votes. However, it is not clear that the analyses in

sections 4.2 and 4.3 are still correct when using expected weighted sums of votes.

For an example using the template of figure 50 (Reprised).

0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 1 0 J

0 1 0 0 1 0
0 1 1 1 1 0

0 10 0 10 10 0LO

Figure 50 Square Template (Reprised)

Figure 60 is the output of a feature detector that returns probabilities.

0.8 0.97 0.56 0.33 0.23 0.01

0.75 0.25 0.21 0.44 0.34 0.2
0.56 0.15 0.53 0.01 0.89 0.01

0.63 0.43 0.72 0.32 0.77 0.12

0.89 0.66 0.61 0.72 0.43 0.1

0.71 0.12 0.21 0.11 0.32 0.12

Figure 60 Output of a Probabilistic Feature Detector

The expected weighted sum of votes from figure 60 is 5.90. Using a threshold of .5

,9 probability to decide which points are features gives results in 5 votes.

% Intuitively the expected weighted sum of votes should be a more useful statistic.

For example consider figure 61.

.. I
S_
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.- 0 0 0 0 0 0
0 0.49 0.49 0.49 0.49 0
0 0.49 0 0 0.49 0
0 0.49 0 0 0.49 0

10 0.49 0.49 0.49 0.49 0

0 0 0 0 0 0

Figure 61 Output of a Probabilistic Feature Detector

If one used a threshold of 0.5 probability then 0 votes would be reported by the

matcher when matching the template in figure 50. However the expected weighted

sum of votes from this output is 5.88. 5.88 is a better representation of the evidence

for the existence of an object than 0.

* 6. Modeling Multiple Objects

The previous sections of this chapter consider the problem of using a single

template at a single position. However usually template matching is used to find

many objects that can occur at a variety of positions. Thus template matching returns

an array of results from matching a template over a grid of positions. Also results

from matching several templates (corresponding to several objects) can be available.

This section discusses object recognition using an array of results from template

matches.

Assume that the input to the template matcher comes from an edge detector.

Thus a template of an object is a set of pixels on the boundary of the object. Assume

that there is a set of objects, 0 (such sets are { square, triangle, circle ) and { wrench,

screwdriver, hammer )) and a set of positions for objects, Q such that given object,

oie 0 and position, qje Q, oi(qj) means that there is an oi at position qj. Note that a

shape can occur at many positions so oi(qj)&oi(qk) can be true.

For example the template in figure 62 is a template for a square object in the

middle of the image.

Em
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0 0 0 0 0 0S0 1 1 1 0 0

0 1 0 1 0 0
0 1 1 1 0 0 -

1 0 10 0 0 0 10
1=0 10 0 0 0 10

Figure 62 Small Square Template

The template in figure 63 is a template for a square on the right side of the image.
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 1 1 1

0 0 0 1 0 1
101 0 0 1 1 1

Figure 63 Small Square on the Right Side Template

The template in figure 64 is the template for a triangle in the upper left comer of the

image.

1 1 1 0 0
1 0 1 0 0- 0

1 1 0 0 0 0
1 0 0 0 0 50
0 0 0 0 0 0

0 0 .0 -0 0 01

Figure 64 Triangle Template

To simplify the problem assume that oi(qj) is independent of ok(q,). Thus

objects are dropped on the world at random with respect to other objects. Also

assume that the probabilities of false negatives and positives are independent at each

pixel. Thus if oi(qj) does not add extrinsic edges or occlude edges from ok(qt) then

the determination of ok(qt) from the input data is independent of oi(qj).
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Call the set of objects that occlude or add extrinsic edges to the boundary of

ok(q,), the neighborhood of ok(q1 ), N(ok(qt)). For example both the objects of figure

63 and figure 64 are in the neighborhood of the object in figure 62 because they

overlap it. But the object in figure 64 is not in the neighborhood of the object in figure

* 63.

If the label of every element neN(ok(q,)) was known then one could compute

how likely it is that a pixel of the template of ok(qt) would be occluded by a member

of N(o k(qt)) given that ok(ql) was present or how likely it is that a pixel of the

template has an extrinsic edge added from N(ok(q)) when ok(qt) is absent.

A system that determines the probabilities of each element of a set from its

r1 neighborhood defines a Markov random field on the events O(Q). Recently many

algorithms have been proposed for interpreting data modeled by Markov random

fields. Causal Markov random fields can be handled as Markov chains (Ronse 1985)

(Hansen and Elliot 1982). However the fields described here are unlikely to be

causal. Techniques for finding the MAP estimate of a Markov random field using

simulated annealing were applied to vision in (Geman and Geman 1984). However

* the MAP estimate is often inappropriate for vision problems (Sher 1986c)

(Marroquin, Mitter, and Poggio 1985). In (Marroquin 1985) techniques are

developed for finding probability distributions for each element of a Markov random

field. For the fields described here this algorithm yields the probability of each object

at each position. An application of that algorithm to template matching works thus.

Calculate the posterior probability for all the objects and positions considered

assuming their neighborhoods are in a default state (usually all off). Threshold at 0.5

probability to form an estimate of which objects are at what positions. Now a state of

the neighborhood of each object position is available. Then compute the probability

of each object being at each position from their neighborhoods (adjusting the p e and

I
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p0 at each pixel). Call these probabilities P(ok(q)). If in the estimate ok(qt) is 0

change it to 1 with probability P(ok(qt)). If ok(qt) is 1 in the estimate make it 0 with

probability l-P(ok(qt)). Iterate many times. For each ok(qt) the percentage of time

ok(qt) is true approaches the probability of Ok(qt) given the Markov model and the

observed data.

Faster algorithms for estimating the state of a system modeled by Markov

random fields are being'examined by Paul Chou at the University of Rochester. Any

such algorithms developed could be applied to template matching.

7. Proposed Experiment

This section proposes a simple experiment to test the algorithms proposed in this

chapter on artificial and real data. The experiment is to implement the algorithm that

finds vertical lines of length n (n is a parameter) in edge detector output. The

template for a vertical line is shown in figure 65.

m11

11
11
11

A- 1 1

Figure 65 Template for Vertical Line of Length 6

Every point in the template pP is a constant determined by the edge detector and

threshold in use. p ' is larger at the endpoints since if the segment stops at a comer as

in figure 66 the edge detector is more likely to fail.

li 2.



96

r 0 0 1 0 01 1

0 0 1 0 01

,30 0 1 0 0
0 0 1 0 0
0 0 1 0

,0 0 1 0 0

Figure 66 Picture of comer in image

However the percentage of line segments of length n that happen to end in comers

may be small enough that p ' is practically the same for all the pixels of the template.

The rest of this section considers pn to be constant for all the pixels of the template.

Initially p0 and p" are considered constant too. p" and pP are derived from

experiments with the input edge detector. p0 and p' are derived from a model of the
image ensemble. Given these values the template can be applied to the n by I

windows of an image and for each window a probability that a vertical line segment

is there can be recovered using the mathematics derived in section 4.2. Thus an initial

estimate of the positions of line segments in the image is derived.

Next the algorithm from section 4.6 is applied to the problem. For the

preliminary experiments one may assume that the segments do not occlude each other

but only add extrinsic edges. The neighborhood of a line segment is the line

segments that intersect it. Assume that the probability of line segment L0 is being

determined and an intersecting line segment, L 1 , has been turned on. Then for each

pixel in L0 r"LI pe+pP should be set to I-pn-p ° since we have determined that the

pixel should be on even if L0 is not in the image. Thus the pixels in the intersection

of L 0 and L 1 do not contribute to computing the probability of L0 .

The algorithm in 4.6 yields the probabilities for each line segment. After

applying that algorithm one can threshold these probabilities and test the percentage

of the time they were computed correctly. This experiment can yield preliminary
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results that demonstrate the effectiveness of the algorithms in this chapter. The

results of section 4.3 can also be tested if this experiment is implemented.

0
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CHAPTER 5

Evidence Combination

Chapters 3 and 4 contain techniques for using a domain model, M, to generate

probability distributions for feature labels given the observed data. Likelihoods,

P(O If=l&M), were computed as an intermediate step towards calculating these

* probabilities.

This chapter discusses merging several competing models, M1 ,M 2 ,M 3 ...

that have likelihood generators. Each model has a probability of accurately modeling

any section of an image. Their likelihood generators yield a probability distribution

over labels for a feature. This chapter shows how each model's likelihood generator

contribute to the probability distribution over feature labels proportionately to the

probability of the model's assumptions being correct.

Thus one does not need a boundary pixel detector that also understands comers.

One can construct a likelihood generator for a model that understands boundaries and

a likelihood generator for a model that understands comers. Near a comer the results

from the comer model are used. Far from a comer the boundary model is used.

This section takes a Bayesian approach to evidence combination related to the

work of Good (Good 1950), (Good 1983b), and Bolles (Bolles 1976). Neither

Good nor Bolles have approached the problem of combining computations based on

0 several models of the same data. Wesley and Hanson (Wesley and Hanson 1982)

discuss using Dempster-Shafer theory for this kind of evidence combination for

98
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high-level vision. Reynolds, Strahman and Lehrer (Reynolds, Strahman, and

Lehrer 1985) discuss how low-level vision operators can generate input to a

Dempster-Shafer theory. However Dempster-Shafer evidence theory has problems.

It has been reduced to an interval Bayesian evidence theory in (Kyburg 1987),

(Hummel and Landy 1985) and (Grosof 1985). The Bayesian system that yields the

Dempster-Shafer theory contains an implicit independence assumption. All

assumptions are made explicit in this dissertation. In particular, there is no

independence assumption necessary for the evidence combination rules. All the rules

pderive from identities of probability theory.

1. Desiderata for Evidence Combination

The rules for combining evidence from several domain models were originally

developed with certain desiderata in mind. These desiderata are as follows.
4-..

(1) The combined detector takes a priori knowledge about the reliability of the

detectors' models into account. (Dempster-Shafer combination rules do not.)

This desideratum is important because often a specialized model is known to

be a priori unlikely. For example a comer pixel is a rare phenomenon.

However such a model can be important because the features it describes are

important.

(2) The combined detector takes a posteriori knowledge about the reliability of

the detectors' models into account. If evidence in the image indicates that a

specialized detector's model does not apply then the result of that detector

does not affect the output of the combined detector.

(3) The time required to execute the combined detector is linear in the times

S 'required to execute the specialized detectors.
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The first two desiderata are achieved by using the techniques developed in

%- sections 5.2 and 5.3. The last desideratum is achieved because the disjunction of two

models is a model. The combination of two detectors built from models M I and M 2

is a detector built from the model M 1vM 2. Thus the cost of constructing the

combination of detectors built from models M 1 , M 2 , and M 3 is the cost of combining

M1 and M 2 plus the cost of combining MIvM 2 with M 3 . Thus if the cost of

combining two detectors is constant the cost of combining n detectors is linear in n.

2. Combining Priors

Assume there are two domain models, M 1 and M 2 , either of which may

accurately model the image. A feature f with labels le L can be detected using M I or

M 2 . Following the approach of this dissertation, the feature detectors are built from a

prior probability distribution and a likelihood generator. This section shows how to

combine the prior probability distribution from M I and M 2.

The combined prior is P(f=l IM1 vM 2 ). Equation 26 uses probability theory to

express the combined prior in terms of individual priors and a priori probabilities of

the models applying.

P(f=l I M I vM2)= P(f=l&Ml vM 2)

P(MlvM
2)

P(f=1&M )+P(f=&M 2)-P(f=&M &M 2 )

P(MI )+P (M 2)-P (M &M 2)

P(f=l I MI)P(Ml)+P(f=l M 2 )P(M 2)-P(f= I M&M 2 )P(M 1 &, 2A)

P(M1 )+P (M 2)-P(M I &M 2)

The combined prior is expressed in terms of:

(1) the priors from the two models

I.W
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(2) the a priori probabilities of the two models

(3) the prior of the conjunction of the two models

* (4) the a priori probability of the conjunction of the two models

The tricky part of this rule is the conjunction of two models. The conjunction of

two models apply when two models simultaneously apply. Often the conjunction has

0 probability. For example if M 1 assumes that the noise in the image has o=4±e- and

M 2 assumes that the noise in the image has a=8±e then they both can not be

simultaneously true and P(Mt&M2 )--O. Two such models are disjoint models. In

4.' this dissertation only disjoint models are combined. Equation 27 shows the rule for

combining priors from two such models. Equation 27 is derived by setting

P (M I &M 2 )=0 in equation 26.

P P(f=1 IM1)P(M 1)+P(f= 1M 2)P(M2) (27)
P"f=II-vM2 )=P(M 1)+P(M2)

3. Combining Likelihoods

This section shows how to take two likelihood generators from domain models

M, and M 2 and get a likelihood generator for MIvM 2 . For this derivation in

equation 28 prior probabilities for the feature labels under each model (P (f=1 I M I )

and P(f=1 I M2 )) are necessary. If P(M1 &M 2) 0 then the prior probability of the

feature label under the conjunction of M I and M2 (P(f=I I M 1 &M 2)) and the output

* of a likelihood generator for the conjunction of the two models

(P(O If=I&(M 1 &M 2 ))) are needed. Equation 28 uses probability theory to derive the

rule for combining likelihoods.

0
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P(f=1& (M 1vM 2 ))

P(O 1f1 &vM 2 )= Pfl(~M)

P (O&f=1&M2)

LP(OW=I& M1 &M2 ))

P(f=I&M 1 )

P(f=1&M 2)I

P(f=1&(M&M) (28)

P (O 1f=1&M1 )P (f=1 I1M )P (M 1)

P(0 1If=1&M 2 )P (f=1 I M2 )P (M 2)

P (O 1f=1& (M I&M 2 ))P V=1 I (M I&M 2 ))P (M I&M 2

P Vf=1I M1 )P (M 0
+

P P(f=1 I1M2 )P (M 2)

P (f=1 I (M I&M2))P(M I&M 2

Equation 28 can be simplified if P (M1 &M 2 )=). The simplified version of -

equation 28 is equation 29. '[ (0 If=l&M1 )P(f=1 1M)P(M

P ( 1f~l ( I M2)= ( 1f=I&M 2)P (f=1I 1M 2)P (M2  (9
P(0~Pf~ lf=&(MvM)) 29

+

* When a model's assumptions fit the observed data well, the likelihoods

generated from that model are large. If the fit is poor, the likelihoods are small.

*L
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Assume that M I yields large likelihoods and M2 yields small ones. Also assume that

the prior probabilities are uniform. Equation 29 then reduces to taking the average of iK
the two likelihoods weighted by the prior probabilities of the two models. To

simplify further assume that M 1 and M2 are equally a priori probable.

When equation 29 is used to combine their likelihoods the large likelihoods

from M , dominate the average. Thus the combined likelihoods are similar to those

generated with M1 . Applying Bayes' law (equation 2) to the combined likelihoods

yields probabilities similar to those generated by M I. Thus when M, fits and M 2

does not the combined probability distribution over feature labels is similar to M I's

distribution. If the likelihoods from M, and M 2 are equal the combined probability

distribution is the average of the probabilities computed from M 1 and M 2 . Thus the

evidence combination rule in this section takes the fit of the model to the observed

data into account when combining evidence. Section 5.4 demonstrates this

robustness with a simple example of evidence combination.

4. A Simple Example of Evidence Combination

This section presents a simple example of evidence combination. Assume that a

coin is being flipped. There is a 50-50 chance that the coin is biased so that heads

come up 90% of the time. If the coin is not biased then it is a fair coin and heads

come up 50% of the time. Thus there are two models of the coin, Mb models the

biased coin and P41 models the fair coin. Coin flips are independent events.

The task is to determine the probability that the fifth flip of the coin is heads ,

after seeing the first four flips. The feature is the fifth flip. There are two labels for

the feature, H and T. The observed data is the first 4 flips. There are sixteen possible

observations in figure 67.

HHHH HHHT HHTH HHT"
HTHH HTHT WITH HTIT

THHH THHT THTH THTT
THH TITHT "ITH TT"

Figure 67 Coin Flip Observations

1I
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The prior probability of H from Mb is 0.9. The prior from Mf is 0.5. The coin

can not be simultaneously fair and biased so P(Mb&Mf)=O. Hence equation 27 is

used to compute the prior for the combination of the biased and fair model. This

equation takes the average of the two priors to result in a prior probability of 0.7.

Thus the prior probability of heads is 0.7.

Figure 68 is a table of the probabilities for the five distinct cases (since coin flips

are independent only the total number of heads counts).

Number Mb Mf Comb. H Comb. T Comb. H
Heads Likelihood Likelihood Likelihood Likelihood Probability

0 ('FTIr) 0.0001 0.0625 0.0224 0.0521 0.5006
1 (HITr) 0.0009 0.0625 0.0229 0.0522 0.5057

2 (HHTT) 0.0081 0.0625 0.0275 0.0534 0.5459
3 (HHHT) 0.0729 0.0625 0.0692 0.0642 0.7154

* 4 (HHHH) 0.6561 0.0625 0.4441 0.1614 0.8652

Figure 68 Table of Probabilities Computed for Coins

Note that when there are 0 heads in the observed data the likelihoods generated

by Mb are small and the probability of the combination is close to that yielded from

Mf. When there are 4 heads the likelihoods generated by Mb are large and the

probability of the combination is close to that yielded from Mb. When there are 3

heads the likelihood from Mb and that from Mf are near each other and the

probability is approximately that of the average.

5. Maximum Entropy

The previous chapters computed probabilities conditioned on some model.

Thus the algorithms yield the probability distribution over feature labels conditional

upon the assumptions of a domain model M being met and the observed data. The

techniques in the previous chapter compute probabilities conditional upon the

0 . disjunction of several models. However the user requires the probability distribution

N,.
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of feature labels conditioned only on the observed data. Such a probability is often

called a physical probability distribution.

Approximating the physical probability distribution of feature labels requires

*] considering that every one of the domain models can fail. Given a "model" for all

the models failing, the evidence combination techniques in sections 5.2 and 5.3 can

be used to combine the probabilities predicated on the models working with the

probabilities predicated on the models failing to get physical probabilities. This

section uses maximum entropy techniques to "model" the domain models failing.

This section assumes that a uniform distribution over events has the least

information in it. This assumption is derived from the maximum entropy approach to

uncertainty (Jaynes 1985) (Grandy 1985). (Loui 1984) describes some problems

with this approach. The main problem with using a uniform distribution to express

'K ignorance is the distribution changing when the labeling of a feature changes. For

example chapter 3 contains two different labelings for boundary pixels. One is in

equation 5 (reprised here) the other is in equation 6 (reprised here).

L= {boundary, -boundary } (5)

L=A u (-,boundary ) (6)
A uniform distribution over L from equation 5 places a probability of 0.5 on

-,boundary. A uniform distribution over L from equation 6 places a probability less

* than 0.5 on --boundary. But in both cases the same event is expressed by

-,boundary. However some technique need be used to express ignorance. Maximum

entropy is a popular technique and so this section accepts it in spite of its problems.

a.!. Some others who have taken this approach in image processing are (Andrews and

Hunt 1977c) (Skilling and Gull 1985) (Frieden 1985) (Herman 1985).

N,

%
'4



106

Using this principle a uniform distribution is the prior distribution for all domain

models failing. The likelihood generator for all domain models failing is a constant

function. The constant is I over the cardinality of the set of possible observations.

Thus all observations are equally probable when all domain models fail.

Note that using maximum entropy likelihood generator in Bayes' law (equation

2 (reprised here)) generates posterior probabilities equal to the prior proabilities

entered.

Lfa I I&D)priorf{l)

( a (a I 1,&D)priorf(l,) (2)
lE V

Thus these likelihoods add no information to the priors. This technique is sometimes

referred to as minimizing cross entropy (Johnson and Shore 1985).

Thus a prior and likelihood generator exists for the case of all models failing.

6. Maximum Entropy and Markov Random Fields

The maximum entropy likelihood generator can be useful with Markov Random

field models. Markov random field models supply prior probabilities that encode

properties of neighborhoods of features (Geman and Geman 1984) (Marroquin,

Mitter, and Poggio 1985). Markov random fields encode such facts as that

boundaries are continuous and in general smooth, and surfaces are smooth. Using a

Markov random field with a maximum entropy likelihood generator gets the

* constraints of the field ignoring the data in the image. Combining the maximum

entropy likelihood generator with the likelihood generator from a model using the

technique from section 5.3 yields an algorithm that uses likelihoods from the model

when the model fits the image well and uses maximum entropy when the model fails.

Using such a combination with a Markov random field allows a field that applies the

neighborhood constraints more strongly when the model doesn't fit than when it does.

V
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For example a common use for Markov Random fields is edge linking. Assume

that the maximum entropy likelihood generator generates 2.328E-10 (1/256**4) for

its likelihood. Consider pixel P in figure 69, a tentative labeling of an image modeled

with a Markov random field.

K

H indicates a boundary pixel

Figure 69 Pixels in a Markov Random Field

A Markov random field would place a high prior probability that P is a boundary

pixel. If the likelihood generator for M returns 10-14 likelihood of no boundary and

10-17 likelihood of a boundary then combining the Markov random field with M
.J. would label P as no boundary because the likelihood ratio for no boundary is 1000.

* However combining M with the maximum entropy prior reduces the likelihood ratio

%:? to near 1. Thus the prior from the Markov random field labels P as a boundary. This

is a good idea because a likelihood of 10-14 indicates that M does not fit the data and

.%- thus the likelihood ratio generated by M is garbage. On the other hand if M generates

a likelihood of 10-4 for no boundary and 10-7 for having a boundary then even with

the maximum entropy prior the likelihood ratio is 1000 against an edge. M clearly

O:
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fits the image well and should dominate the results from the Markov random field.

In the near future Paul Chou and I will test using Markov random fields with

maximum entropy for segmentation

7. Operators with Several Window Sizes

One application of the combination rule of section 5.3 is to combine operators

with different window sizes. Operators with large window sizes are less susceptible

to noise than small windowed operators because of the law of large numbers.

However when a comer where 3 objects meet occurs in a window large operators

tend to fail (see section 3.5.1.2 for a clear example of this). The larger the window of

an operator the more such comers are seen by the operator. Also the larger operators

are sensitive to orientations that are not in the model (see section 3.5.1.1). Thus there

are cases where the larger operator is more effective and there are cases where the

smaller operator is more effective. Thus a combined operator should be constructed

that has the good properties of the large and small operators.

Equation 28 assumes that the observed data is the same for the two operators

being combined. However a 5x5 operator sees 25 pixels while a 9x9 operator sees 81

pixels. The proposed solution is to extend the 5x5 operator into a 9x9 operator. The

technique that extends the 5x5 operator uses a maximum entropy assumption for the

56 unseen pixels. All possible assignments of intensities to the 56 pixels are assigned

the same probability. Thus the likelihood generated by the 5x5 operator is multiplied

by a constant to generate a 9x9 operator. The two 9x9 operators can then be

combined by equation 29.

The model for the extended 5x5 operator is that the model fails for pixels

outside its 5x5 window. The prior probability of this model applying is the

probability that the model fails in at least one of the 56 unseen pixels. If f is the

I
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probability that a model fails in a pixel then 1-(1-f) 5 6 is the probability that f fails in

at least one of the 56 pixels. The 9x9 operator assumes that its model succeeds for all

81 pixels. Thus near comers the extended 5x5 operator dominates the combination

because the model (that assumes no comers) fails in the 56 pixels. Away from

comers and other anomalies the 9x9 operator dominates.

8. Experimental Results

Two different forms of evidence combination have been tested on the likelihood

generators developed in chapter 3. Operators tuned to several levels of noise in the

image have been combined to develop an operator that behaves well for all the levels

* of noise tuned to. Operators with different window sizes have been combined to get

an operator with the advantages of both small and large window sizes.

8.1. Experiments Combining Noise Levels

This section shows the results of experiments with combinations of operators

tuned to several noise levels. Section 5.8.1.1 shows the effect of combining noise

levels on artificial data. Section 5.8.1.2 shows the effect of combining noise levels on

camera data.

8.1.1. Combining Noise with Artificial Images

The artificial images described in section 3.5.1 figures 18, 19 and 20 are used for

collecting quantitative data on the effectiveness of the evidence combination

techniques. The same 5x5 operator is applied to these images as the one in section

3.5. The operators tuned to noise a=4,8,12,16 is compared to the combination of
p

these operators on the images with o=4,8, 12,16. Figure 70 compares the tuned to the

noise level operator with the combined operator and the tuned a=12 operator on the

image from figures 18 with a=4, 12,20.
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Figure 70 Combination of Noise Levels On Artificial Images

For these images the combined operator is only slightly worse than the tuned

operator. Since the tuned operator is being combined with three worse operators in

equal proportion these results demonstrate the robustness of the evidence

combination rules.

The false positive, false negative and total error rates are shown in figures 71,

72, and 73 as a function of the standard deviation of the noise for these 4 operators.
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Figure 73 Total Error Rate for the Combined c Operator

Note that the error rate of the combined operator is close to that of the operator tuned

to the exact noise level. Thus the combined operator has the low error rate of a tuned

operator but is more flexible than any of the tuned operators.

8.1.2. Combining Noise with Camera Images

This section shows the results from experiments combining operators tuned to

several noise levels with camera imagery. The camera that took these pictures was a

Vidicon Camera with 2<(;<6. Pictures were taken of two scenes constructed from

Play Doh r ', a children's toy. In figure 74 a vidicon image of Play DohThI blobs has

the ;=1,4,8 and the combination thereof applied to it. Figure 75 has the same

operators applied to vidicon the Play Dohr -4 gnome image.
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The a-=1 operator generates many false positives on these images. Some of

these false positives actually represent structures in the image with low contrast such

as small brightness gradients from shading. Since these structures are real the al

operator has high confidence for some of these false positives and they occur in the

combination. Two techniques can be used to prevent these false positives. Since

they result from the (;=I operator a low prior probability for the ar=l operator would
prvn them. A higher degree facet model would consider windows with small

J.
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gradients as regions without boundaries. A Markov random field would remove most

of the false positives from the a=1 operator too.

The combined operator has also been tested on uncontrolled imagery. Figure 76

shows the result of the same combination on Carlos' ear. Figure 77 shows the

application of the combination to the aerial image.
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On Carlos' ear much of the fine structure in the image was reported falsely as

'4- boundaries. However on the sewage treatment plant image the combination is indeed

superior to the (Y=4 operator. This improvement occurs because the aerial image fits

the step edge model better than the other camera imagery.
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~8.2. Experiments Combining Sizes

This section shows the results of experiments combining operators with several ,

window sizes. Section 3.5 describes operators with 5x5, 7x7, and 9x9 window sizes.

: The 5x5 operators are sensitive to the level of the noise in the image. The larger '

~operators are sensitive to corners and unmodeled boundary angles in the image. The

I~i combination of the 3 operators is shown here to be robust against all these sources of

errors. It is shown to be at least as good as the best of the 3 operators.
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Section 5.8.2.1 uses artificial data to get quantitative results for the combination.

Section 5.8.2.2 shows the results of the combination on camera imagery.

8.2.1. Combining Window Sizes with Artificial Images

The results of applying the combined 5x5, 7x7 and 9x9 operator to the artificial

images from section 3.5.1. The results of using this operator on the images in figures

18, 19 and 20 appears in figure 78. In figure 78 the combined a=12 operator is

compared to the 5x5 and 9x9 a=12 operators.
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(c)
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Figure 78 Combination of Noise Levels On Artificial Images

The combined operator always has better results than the 9x9 operator. In figure

78c there are less false positives from the combined operator than from the the 5x5

operator but less false negatives than the 9x9 operator. For all these pictures there is

little degradation from the 5x5 operator to the combined one.

Figures 79, 80, 81, and 82 shows the effect of combing the 3 a=12 operators

compared to the 3 operators as a function of the noise level of the image. These

figures show that the combined operator has the robustness of an operator with a

etN , . " ' "",
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large window size but the performance of an operator with a small window size.
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8.2.2. Combining Window Sizes with Camera Images

This section shows how the combination of sizes works in real life. The

following figures show the combination of the (Y=1 and a=4, 5x5, 7x7, and 9x9

operators applied to 3 pictures taken with the CCD camera with 1 <(5<4. Figure 83 is

the application to the blobs image of this operator. It is compared there with the 5x5

and the 9x9 operators. A similar comparison for the gnome image is in figure 84. A

similar comparison is applied to Carlos Calderon in figure 85 and the aerial image in

86.
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Figure 84 Combination of Different Window Sizes on the Gnome

On the camera imagery the combination of the different sized operators does a

better job of finding occlusion boundaries than either the 5x5 or the 9x9 operator.

The combined operator picks out the important boundaries while ignoring

unimportant details found by the Rx5 operator.
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Figure 86 Combination of Different Window Sizes on the Sewage Treatment !int

Because tuned operators are being combined the advantages of robustness from the

combined operator are not illustrated here. On the aerial image the results from the

combined operator is better than that of the 9x9 or 7x7 operator but not better than

the results from the 5x5 operator. One reason for this is the lack of sophistication in

the step edge model. Considering the 5x5 operator is combined using the maximulm

entropy assumption with the 9x9 and the 7x7 operator it is good that the important

features from the 5x5 operator are preserved.
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CHAPTER 6

Previous Work

This section discusses previous work in low-level vision and evidence

combination and its relationship to this dissertation. Section 6.1 discusses earlier

work on modeling vision problems and its relationship to chapter 2. Section 6.2

* discusses work on edge detection and its relationship to chapter 3. Section 6.3

discusses work on template matching and the Hough transform and its relationship to

chapter 4. Section 6.4 discusses work on evidence combination and its relationship to

chapter 5. Since the operators developed in this dissertation can be fed into a Markov

random field to achieve results similar to probabilistic relaxation, section 6.5

discusses work on probabilistic relaxation and Markov random fields.

1. Previous Work on Modeling

Using models as a mathematical bridge between the data supplied by the users

of a system and the data required by the designer of a system is not discussed in other

works. Most probabilistic approaches to computer vision assume that required

statistics such as prior probabilities are directly available to the system designers

(Feldman and Yakimovsky 1974) (Bolles 1976). However Witken (Witkin 1981)

derives priors for edge directions on the image assuming a uniform distribution of

edge directions in the texture on the objects in the scene. Much work has been done

on direct elicitation of priors for simple events (Berger 1980b).
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Much of the work on edge detection has used the step edge model. Some work

has been done on developing sophisticated models for low-level vision by Binford

(Binford 1981). He develops a model from 3 dimensional descriptions of objects.

Haralick describes a model with piecewise polynomial surfaces with noise

added and discretized (Haralick 1980). Haralick (Haralick 1984) (Haralick 1983)

uses a low level image model based on image surface that are cubic polynomials in x

(the horizontal distance in the image) and y (the vertical distance in the image).

Haralick also has used a step edge model (Haralick 1986b). In general his models

are referred to as facet models. Section 3.1.2 yields a facet model by simplifying a

more realistic model. Section 3.2 derives a likelihood generator for boundary pixel

* detection from a simplified facet model. However the algorithm derived in section

3.2 can be used with a more sophisticated model of imagery such as that described in

3.4 similar to the Binfords model (Binford 1981).

Models of the imaging system (the camera) and the noise within it occur are

develbped by Horn (Horn 1986) Shen (Shen and Castan 1986) and Andrews and

Hunt (Andrews and Hunt 1977b). These analysis suggest that a correlated Gaussian

model for internal camera noise suffices.

Davis, Rosenfeld and Zucker (Davis, Rosenfeld, and Zucker 1975) discuss

developing models for visual tasks that are not well specified. For doing work in

shape from shading Horn (Horn 1970) develops a model of how certain kinds of

• surfaces appear given orthographic projections and specified reflectance functions.

(Witkin 1981) develops a model of how textured surfaces appear when projected.

"r He uses an isotropy assumption for edge orientations to do this.

A good survey of work on modeling for computer vision was done by Ahuja and

Schachter (Ahuja and Schachter 1981). This work focuses on modeling textured

images with autocorrelation matrices but many other models are mentioned. Rama
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Chellappa in (Chellappa 1981b) discusses autocorrelation texture models and using

• " Markov random fields to classify texture. Markov Random Fields are themselves low

level vision models. They are usually derived from ad hoc criteria or analogical

reasoning. Currently Paul Chou (Chou 1987) is examining these issues at the

University of Rochester.

2. Previous Work on Edge Detection

Edge detection has been one of the earliest and most important tasks attempted

by computer vision systems. Often edge detection is described as a problem in image

reconstruction. Edge detection discovers the contrast in a region of the ideal image

when there is an edge between two constant intensity regions of the ideal image

(Haralick 1986b). Since I am not motivated by image reconstruction this task is not

of particular interest for me. However often edge detection algorithms are used for

boundary detection. The idea is to accept as boundaries the windows that the

detector considers to have high contrast.

On one dimensional data the detectors presented in chapter 3 when thresholded

are equivalent to a thinned contrast detector thresholded by contrast. Thus ignoring

issues of a priori threshold selection and evidence combination, the techniques for

J. boundary pixel detection are functionally equivalent to matched filter techniques

(Boie, Cox, and Rehak 1986). Indeed an optimal operator for I dimensional

boundary pixel detection for the step-edge model is linear (Shen and Castan 1986).

S However this equivalence fails to hold on 2 dimensional data. Two dimensional data

requires a non-linear operator for optimal step edge prediction.

Hueckel (Hueckel 1971) considers linear operators over a disc on the image.

,. He models edges as step edges with 0 curvature uniformly distributed about a disk.

Figure 87 demonstrates the possible regions in this model.

1. -
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Figure 87 Hueckel's model

His functions only use certain specific Bessel coordinates (of an integral Fourier

transform) that he determined are useful for edge detection. He takes into account

somewhat the possibility of two randomly distributed edges in the region. A later

work generalized this model to handle a thin region with a different graytone between

two regions that meet (Hueckel 1973) as in figure 88.

THIN LINE

S

Figure 88 Hueckel's 2nd model

Thus lines on paper and the boundaries of Lambertian surfaces are modeled.

At MIT starting with Marr (Marr 1982) there has been concentration on zero

crossing edge detection. The edge detectors they locate edges at zero crossings of a

Laplacian of a Gaussian. Poggio, (Torre and Poggio 1986) and Beddoes and

I~l
I!
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Lunscher (Lunscher and Beddoes 1986b) (Lunscher and Beddoes 1986a) show that

N such an edge detector is an approximation to a spline operator that has locally

maximal output at edges. Such an operator has been shown always to create closed

contours. Such operators are related to optimal linear operators developed by Canny

(Canny 1986) and Boie, Cox and Rehab (Boie, Cox, and Rehak 1986). Since the

objective of these operators is biological verisimilitude while the objective of the

operators in this dissertation is low error rates and flexibility of use it is hard to

compare zero-crossing operators with those in this paper. Clearly zero-crossing

operators make more mistakes than the ones presented in this paper. However those

mistakes result in closed contours, if far too many of them and not at the boundaries

* (Canny 1983). For some applications this may outweigh the advantages of accuracy.

*Canny (Canny 1986) studies linear operators for edge detection. Like many

who work on linear operators he considered an edge detector to be good if it reported

strongly when there was an edge there and did not report when there was no edge.

*He also wanted a detector that only reported once for an edge. He found that these

constraints conflict when one is limited to convolution edge detectors (such behavior

arises naturally for the boundary detectors in this paper). His primary work on this

topic was with a one dimensional step edge model. He derived a convolution

operator that was similar to a zero crossing operator. He also discusses extending the

operators defined for one dimensional images to two dimensional images, and when

oriented operators are desirable. These operators have had notable success on real[0
images. Chapter 3 section 3.2 derives boundary detectors for step edges but does not

,.".- constrain the functional form of the edge detector. Thus the edge detectors from that

chapter should perform at least as well as Canny's detector.

0. Haralick has developed a body of low-level vision work using his facet model.

Haralick (Haralick 1980) describes a likelihood generator for detecting non-edges

,

"N,
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similar to the early likelihood generator developed by Sher (Sher 1985a). Later work

(Haralick 1984) (Huertas and Medioni 1986) approximates a window on the image

with a cubic function. Least squares are used to fit the image with the best cubic.

Then zero crossings in the second derivative of the cubic that correspond to large first

derivatives of the cubic are reported as edges. This work corresponds to a large class

of work on edge detection that use surface fitting.

The operators in this dissertation consider all the possible surfaces rather than

the best fit. However surfaces far from the best fit contribute little to the estimate of

the likelihood of an edge. Surfaces close to the best fit return results similar to that of

the best fit. Thus only considering the best fit may be an effective numerical

simplifying assumption for approximating the likelihood. More work can be done on

the relationship between surface fitting and likelihood generation.

Nalwa (Nalwa and Binford 1986) fits regions in the intensity image with

surfaces that are planar, cubic two dimensional polynomials in the horizontal and

vertical directions, and intensity=tanh-'(x) rotated in the image coordinates. Step

edges are modeled with tanh surfaces. The attempts to fit are ordered by increasing

computational complexity. For real images his operator is considered the best state of

the art edge detector extant (Feldman 1987). Nalwa's operator was used for

comparison with the ones presented here.

There have been some sophisticated models for edge detection that model the

image as a Markov chain with parameters varying as a Markov chain. A filter that

removes noise with such a model is a Kalman filter. Chellapa (Zhou, Chellappa, and

Venkateswar 1986) detects edges using such a filter on 1 dimensional slices of the

image.

Another approach to edge detection is to simulate parts of the human early

visual system. Zero crossing operators were originally motivated by this argument

I'
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since it was found that there were cells in the human early visual system that compute

zero crossings at various frequencies (Marr 1982). Other work that seriously studies

the human early visual system was by Fleet (Fleet 1984) on the spatio-temporal

properties of center-surrounds operators in the early human visual system. This

dissertation is not concerned with the structure of the early human visual system

since its goals are to perform a task best as possible rather than as human-like as

possible.

3. Previous Work on Template Matching

There has been some theoretical work on template matching. Ballard

(Ballard 1981) introduces the Hough transform for template matching of the form

described here. Li and Dubes (Li and Dubes 1985) analyzes a problem similar to

chapter 4's problem and generates a likelihood ratio test for deciding whether a

template is matched. Their domain is recognizing structures in thresholded

LANDSAT data. Thus both O's and l's are considered significant. Their operators

, could distinguish matched O's from matched l's and count 0 and 1 matches

separately. They analyzed this problem using classical hypothesis testing and

measure the power of their tests empirically.

Brown (Brown 1982) discusses matches generated by objects that are near the

object looked for (extraneous matches in my notation). It suggests a technique for

minimizing these matches. Experimental work on this topic is discussed by Brown,

* Curtis and Sher (Brown, Curtis, and Sher 1983b). Other work on the accuracy of

template matching (implemented by the Hough transform) for line finding is

available. (Shapiro and lannino 1979) (Maitre 1986). These works use a model of

discretization noise to determine how the space of possible lines in the image can be

discretized to get consistent results from the template matching. lsberg and Morris

(Isberg and Morris 1986) and Wernick and Morris (Wernick and Morris 1986) do a

I ... I
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classical statistical analysis of template matching when intensities are being matched

under low light levels. Their problem is to decide how many photons should be

observed before the decision is made.

4. Previous Work on Decision Theory and Artificial Intelligence

Low-level vision presents decision problems whereby a choice must be made

among several possibilities from observed evidence. Classical statistics does not

address this kind of problem.

Classical hypothesis testing involves constructing decision operators that are

guaranteed to have less than a specified false positive rate. Such operators are useful

when applied to scientific investigation since a false positive in a scientific

investigation is a disaster. The false positive rate is described in statistics as the size

of the operator. Once the size is set statisticians go about minimizing the false

negative rate. It is not easy to apply this work to multiple hypothesis decision theory,

though some work has been done in this direction (Ferguson 1967). Thus classical

hypothesis testing is not an appropriate theory for most of low-level vision.

A Bayesian approach is taken in this thesis. Bayesian decision theory allows

one to make decisions between many hypotheses taking into account the cost of

mistakes. Bayesian theories require a large amount of information to be used. The

questions about the applicability of Bayesian theories revolve about the availability

of this information. When the information required by a Bayesian theory is available

any rational person would agree that a Bayesian theory should be used

(Good 1983b). In low-level vision large amounts of data and intricate models are

available. Hence a Bayesian theory, such as the one presented in this paper, is a

plausible decision theory for low-level vision.
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For many applications maximum entropy is used to approximate exact

probabilities that can not be supplied by the user (Barth and Norton 1986). Here

isotropy assumptions equivalent to maximum entropy are used to simplify overly

complex models into tractable ones and to model the scenes for which all the

available models fail. Maximum entropy has been used to simplify image analysis in

(Andrews and Hunt 1977a), (Grandy 1985), (Skilling and Gull 1985),

(Frieden 1985), (Herman 1985), and (Jaynes 1985).

Outside artificial intelligence applications there seems always to be a preferred

model for interpreting observed data. Thus the problem of combining evidence

generated by several models does not come up. The two most popular techniques for

*combining information from several models are the Bayesian techniques

(Levitt 1985) (Pearl 1985a) and techniques that use Dempster-Shafer statistics

(Lowrance and Garvey 1983) (Wesley and Hanson 1982) (Reynolds, Strahman, and

Lehrer 1985). Dempster-Shafer techniques for evidence combination fail to satisfy

the desiderata in section 5.1. (Kyburg 1987) (Grosof 1985), and (Hummel and

Landy 1985) show that Dempster-Shafer reasoning is a restriction on convex

Bayesian interval reasoning. That restriction results from an independence

assumption encoded in the combination rules. This independence assumption allows

a Dempster-Shafer system to combine information from two models without any

prior knowledge of the probability of the two models. However Dempster-Shafer

reasoning leads to incorrect conclusions in domains where this assumption does not

hold. Thus Dempster-Shafer reasoning was rejected as inadequate for my research

project.

5. Previous Work on Probabilistic Relaxation

The algorithms developed in chapters 3 and 4 generate input for higher level

vision algorithms. Often the higher level vision algorithms use probabilistic

U.
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relaxation or neighborhood constraints. One such class of algorithms is Markov

random field analysis algorithms. Such algorithms use likelihood ratios to describe

the observed data. For example the algorithm in section 3.2 is used in (Chou 1987).

Section 4.6 generates a Markov random field for object recognition from boundary

pixels. Section 5.6 shows how maximum entropy and the evidence combination rules

might improve the performance of a Markov random field algorithm.

There has been great interest in using Markov random fields for low level

vision. Markov random fields are used for image reconstruction in (Derin et

al. 1984) (Geman and Geman 1984) and (Marroquin 1985). Markov random fields

are used for segmentation in (Hansen and Elliot 1982) (Chou 1987) (Derin and

0 •Elliott 1987) (Cohen and Cooper 1987) Markov random fields are a popular model

for textured images (Ahuja and Schachter 1981) (Chellappa 1981b) (Derin and

Elliott 1987).

Probabilistic relaxation was an early approach to taking knowledge about the

structure of neighborhoods of features into account. Smoothness and thinness of

boundaries were often encoded as parameters to a probabilistic relaxation.

Probabilistic relaxation accepted probability distributions over feature labels as input.

- ,***Some probabilistic approaches to relaxation have been discussed in (Zucker,

Hummel, and Rosenfeld 1975) (Rosenfeld, Hummel, and Zucker 1975) (Hanson.

URiseman, and Glazer 1980). None of these approaches have been particularly

* successful. One problem with these approaches is that their purpose was to derive an

estimate rather than probability distributions. Another problem is that the source of

probability distributions was not well designed. Because this work was not

,14  successful Zucker and Hummel, and Hanson, Riseman and Glazer abandoned

probabilistic approaches to relaxation (Hummel and Zucker 1980) (Hanson,

Riseman, and Glazer 1980). However for the high level vision task of labeling

..1,

r -•.,-



148

segments probabilistic relaxation has been successful. (Feldman and

h6. Yakimovsky 1974) used Bayesian reasoning to constrain the labeling of segments.

Probabilistic relaxation has been subsumed by the work on Markov random field

models.
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CHAPTER 7

Final Thoughts

This chapter concludes my dissertation. It finishes with a summarv of %hat ha%

been shown in the preceding chapters and a description of how this work Lan he

extended in the future. Thus this chapter acts as an overview of the ongoing research

* program one of whose fruits is this dissertation.

1. Summary

This dissertation presents a paradigm for designing low-level vision operators.

and systems. First a low-level vision task such as boundary pixel dcte~mon of

template matching is chosen. Once the task is chosen there is an arras of feature,,

each with a set of labels one of which is the value of the feature

Chapter 1 shows that for a feature labeling algonthm to he flexible it must return

a probability distribution over the feature labels for each feature These prohahilt-,

distributions can be used by many higher level algonthms that differ in efrr

sensitivities.

Section 1.3 motivates algorithms that yield likelihois instead ot probahilhte'

for feature labels. The advantages of likelihoods are that

(I) Given priors. Bayes" law yields probabilities for feature labels

(2) Because likelihoods do not sum to unity they contain one more degree of

freedom than probabilities. This degree of freedom is the degree of hi in the

p!
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Section 3.5.3 applies the probabilistic boundary pixel detectors to laboratory and

aerial images. Section 3.5.4 compares these results with the result of applying

established edge detectors to the artificial, the laboratory and the aerial images.

Chapter 4 derives likelihood generators for another task (besides boundary pixel or

detection). Likelihood generators are derived for template matching. Template

matching takes the thresholded output of a feature detector as input and returns

probabilities for object instances at positions. To develop a likelihood generator for

template matching an error model for the input feature detector is required.

Simplifications from section 2.2 are used by section 4.1 to generate a tractable error

model for the feature detector. With this model, section 4.2 describes a likelihood

generator that is a nonlinear function of a weighted template match. Sections 4.4 and

4.5 show the analysis in chapter 4 applies to more sophisticated forms of template

matching. Section 4.6 uses Markov random fields to model overlapping objects and

the contribution of object instances to neighboring objects. Thus Markov random

field algorithms can be used to yield probabilities for objects.

Chapter 5 shows how specialized likelihood generators such as those designed

in chapters 3 and 4 can be combined into more robust likelihood generators. The

combination rules satisfy the following desiderata.

I The combined detector takes a priori knowledge about the reliability of

", detectors into account. (Dempster-Shafer combination rules do not.)

12) The combined detector takes a posteriori knowledge about the reliability of'

the detectors into account. Thus if evidence in the image indicates that a

specialized detector's model does not apply then the result of that detector

does not affect the output of the combined detector

; The time required to execute e combined detector is linear In the tiies-

required to execute the specialized dctectors,

V
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Section 5.3 uses an identity of probability theory, equation 28, for combining

likelihoods conditioned on two different models. If all the elements of this equation

are supplied, likelihoods of feature values given the disjunction of two models can be

calculated. Thus from likelihood generators for two models a likelihood generator

can be derived that works when either of the domain models applies.

Evidence combination using likelihood generators has been applied to the

problem of boundary pixel detection in two ways. These results show the

effectiveness of evidence combination using likelihoods.

Section 5.8 shows the result of combining detectors derived and tested in

chapter 3. Detectors tuned to noise levels of '=Y-1,4,8,12,16 are available. On

artificial data with noise level a the combination of the operators tuned to

a-4,8, 12, 16 is shown to be nearly as good as the tuned operator. On laboratory

images that experiments have shown to have noise with 2<oi<6, the combination of

operators with o=1,4,8 seems to return better results than any of the individual

operators.

The combination of operators with window sizes 5 by 5, 7 by 7, and 9 by 9 was

tested and found to be superior to any of the individual operators. The operator tuned

to a=12 noise in each of the window sizes and the combination thereof was applied to d
artificial data. The combination retained the low sensitivity to extraneous phenomena

such as comers that the 5 by 5 operator has but retained the low false positive rate of

* the larger operators. The combined noise level operators for the three sizes and the

combination thereof was applied to the laboratory images and the combination has

superior results to any of the individual operators.

In conclusion, this thesis shows that it is useful to have low-level vision

operators that return probabilities. Such operators can be bhuilt for several Important

low-level vision problems and efficiently implemented. Robust operator-, can he

ALAAMLA/L_
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constructed out of several specialized operators using this approach. This work is

upheld by experiments using artificial and laboratory images.

2. Future Directions

Given the results summarized in section 7. 1, what further work needs to be done

on this approach?

There are many statistics of interest to vision system designers. Most of these

statistics are not In a form to be easily supplied by a user of such systems. Examples

4; of these are expected distribution of surface orientations, expected autocorrelation of

images. and probability of pixel measuring light from a shadowed area. A derivation

* of these and other such statistics from primitive statistics would be useful.

The theory of constructing mathematical models for vision problems needs

more work. T-he degree of inaccuracy in resulting from many common forms of

simplification is not known. Also the algebraic structure of simplifications to domain

models should be studieti with an eye towards a complete and consistent theon (it

S111pliications. Finally, here. simplifications are made on an ad hot hasis It shokuld

ht. useful to have a theory for choosing an appropriate simplitication hased on tile

~ircuimstances and purpose oft the simplitication.

Boundary pixel detection can benefit from more sophisticated models, Pic

Utrrent model does not handle these phenomena,

II Non additive noise sources such a% tog. dirt on him. broken seCnsors in the

(('l a~ray. and din. paint or camouflage etc oin objet, is

1 ) e ture on o)hicts

lI 01c1rItirtiiie in thle sLrt ake orientAtin oitf ih~ek t,- sut h ais corners

* i I ranspairent aind traindmiulct ohejCs, ,kjh is ss4atet
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(5) Reflectance functions that vary quickly, such as specular reflectance.

4> (6) Discontinuities in the lighting such as that caused by shadows and internal

g. reflection.

(7) Contextual knowledge, such as that boundaries for closed contours.

Phenomenon 2 requires only a basis to describe the texture. Specialized boundary

detectors can be constructed to handle the more common cases of phenomena 3 and

6. However solutions to phenomena 5 and I promise to be expensive. Phenomenon

4 has not been extensively addressed by vision researchers. Markov random fields

somewhat take into account the knowledge in 7 however there is much more work to

be done on this topic.

More work can be done comparing the boundary detectors here against the more

common edge detectors, such as those described in 6.2. The choices of window sizes
made here for the boundary detectors is ad hoc. It would be useful to have a theory

for choosing support for a feature detector, balancing loss of accuracy with

complexity of modeling and computational efficiency.

A more sophisticated error model for the input to template matchers would be

Lseful. In particular the correlation between failures of the feature detector from

local bursts of noise or other unmodeled phenomena should be taken into account. A

.Markov random field error model is one approach to this problem.

The template matching work in chapter 4 should be implemented and tested on

_ artificial and real data. A proposed expenment is supplied in section 4.7. More

1. phisticated template matching tasks can be tried after this experiment.

Many other applications would benefit from the approach descnbed in this

, the ,, L.ikelihood generators are available for tasks such as texture classitication

.()Aen 19 41 Other low-level vision problems such as detecting optical flow., surface

L K-f.
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orientation, and structure from flow can benefit from the flexibility that results when

probabilities are used. Until now approaches in these areas have tried to derive exact

answers such as flow fields or shapes (Horn 1970) (lkeuchi 1990) But recent

analyses (Huang and Tsai 1981) have shown that the numbers for flow derived from

these approaches are ill-conditioned. Because a probability distribution is a weaker

constraint than an exact answer i there may be robust ways to generate a probabilityi

distribution for these problems even though there are not robust techniques to get

exact answers. Another benefit of this approach for these problems is the evidence

combination here allows one to break up the problem of detecting, say optical flow.

in the general case to a set of problems where optical flow occurs under specific

conditions. such as rigid body motion (Ballard and Kimball 9X1 or planar surface,

(Alotmonos and Chou 1985).

Many previous approaches to detecting surface onentation and optical th. u,-e

constraints such as smoothness of surface onentation and optical flowA fields. Since

smcx)thness is a phenomena of local neighborhxds. a natural way to model ,uch

constraints is with a Markov random held. One can %imply encode in the field that

sharply curved or discontinuous neighborhoods are unlikely .Marko, random held,

fit naturally w:th the approach here. A Markov random field act% as a source of pnor

probabilities about arrays of feature labels Work progresse, on eftic tent algorithms,

for labeling arrays of ttatures modeled by \Markov random fields 'hou 1 DJXTh l)enn

et al. 1)X4)

.. *Mer Pkmu vnuth mnwr ss. t, Lh e ltJc emevni !i .,qn .ine 4, he.ds ihs. 4w wai . l *.
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APPENDIX A

Glossary

This work introduces lots of terminology, much of which is new to its expected

audience. Hence here is the glossary for quick reference to the more obscure

terminology. The definitive references for these terms are in the text and can be

found with help from the index of defined terms.

-Approximation Assumption

The approximation assumption is a simplifying assumption that allows an

algorithm to use an approximation of a function instead of the function itrelf.

Since real-valued functions can not be computed by a computer only

approximated, this assumption is very useful. The discretization assumption

is a common approximation assumption.

See Also: discretization assumption

Basis

For certain low-level vision problems a label for a feature represents a set of

ideal windows that with noise generate the observed data when the label is

present. For example in the step edge model the label that represents no

boundary passing through a window is the set of constant intensity windows.
. A basis for a label is a small set of windows linear combinations of which

generate the label's windows. A basis for the set of constant intensity
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windows is the unit intensity window. Note that this definition of basis is not

the linear algebra definition of basis. In linear algebra a basis is called a

- spanning set.

See Also: label

Bayesian Feature Detector

A Bayesian feature detector is an algorithm that takes an observed image and

returns a probability distribution for the labels of each feature. Chapters 3 and

4 are about building Bayesian feature detectors.

See Also: feature

* Boundary Pixel

A boundary pixel measures light reflected from two objects. A boundary'

between two objects in an image passes through a boundary pixel.

Corner Pixel

A corner pixel can either be a pixel that measures light from three or more

objects or a boundary pixel whose angle is not well defined like the comer of

a square. For the most part the comer pixels referred to in this dissertation are

pixels that measure light from three or more objects.

Designer

The designer of a low level vision system uses a domain model and primitive

statistics from the user to derive required statistics. From required statistics
'S he constructs a Bayesian feature detector.

See Also: domain model, primitive statistic, required statistic, Bayesian feature
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detector

Digitized Area

The digitized area of a region on an image is the number of pixels that contain

at least part of the region. Figure 10 shows an example of a digitized area.

XXXN XXXXX

digitized area digitized perimeter

Object outline is shown by dashed lines.

Crossed boxes are the pixels included in the digitized area

and perimeter respectively.
Figure 10 Example of Digitized Area and Perimeter (Reprised)

See Also: digitized perimeter

Digitized Perimeter

The digitized perimeter of a region are the pixels that the boundary of the

* region passes through. Figure 10 shows an example of a digitized perimeter.

See Also: digitized area

Discretization Assumption

0 . A discretization assumption assumes that events occur only at discrete

intervals. Such an assumption is that before noise the gray-level of a pixel is

integral. Another such assumption is that a boundary that passes through a
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pixel passes through the center of a pixel.

See Also: approximation assumption

Disjoint

Two domain models are disjoint if the probability of all their assumptions

being simultaneously true is 0. Examples of disjoint models in this

dissertation are a model that assumes a=4 and a model that assumes a=8, and

a model that assumes a comer occurs in a window and a model that assumes

no comer occurs in a window.

See Also: domain model

Edge Detection

Edge detection is the task of taking a window on an image and estimating

what the contrast across a boundary would be if there was a boundary in the

image. A constant intensity window could only be a low contrast boundary.

A high estimate of contrast is good evidence for the presence of a boundary.

Thus edge detectors are sometimes used for boundary detection.

Extraneous Detection

If an object is absent from the scene but another object causes some features

to have the same labels as they have when the object is present in the scene,

these feature labelings are extraneous detections. Figure 89 presents some

extraneous features.
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L

ABSEN-r PRESENT

EXTRANEOUS

Dashed object is not present

Triple line is the extraneous features

from the object on the right.

Figure 89 Source of Extraneous Features

See Also: scene

~Facet Model

i A facet model is a model that assumes before noise the image intensities are

~piecewise polynomial in the horizontal and vertical directions. The degree of

a facet model is the maximal acceptable degree for the polynomial pieces.

Figure 90 illustrates a piecewise polynomial surface.
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3dDGREE

HORIZONTAL

Figure 90 A Piecewise Polynomial Surface

See Also: model

False Negative

If a feature has two labels of the form {Ei} then reporting -E when E is

I true is a false negative. For example in boundary pixel detection reporting

-,boundary at a pixel when a boundary passes through the pixel is a false

negative.
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See Also: false positive, feature

False Positive

If a feature has two labels of the form E, then reporting E when -,E is

true is a false positive. For example in boundary pixel detection reporting

boundary at a pixel when no boundary passes through the pixel is a false

negative.

See Also: false negative, feature

Feature

A feature is a set of labels that a low level vision algorithm must pick from.

A feature generally corresponds to a state of nature of interest to the user of

the system. Bayesian feature detectors derive probability distributions over

the set of labels. An example of a feature is a boundary pixel. In this example

the feature is the set of labels, {boundary,-,bounda, that can be assigned

to a pixel. Each pixel has its own feature.

See Also: Bayesian feature detector, boundary pixel, label

Image

The image is the observed data in a vision problem. Usually it is an array of

pixels, each measuring the number of photons hitting a light sensitive area.

The vision problem can be characterized as an attempt to find out where those

photons came from.

Isotropy

Isotropy simplifies a model by assigning equal probabilities to a set of states

of nature. As an example section 2.3 assumes that the probability of an object
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centered within a pixel is equal for all pixels. Other isotropy assumptions are

that the probability of an edge is equal in all directions.

Label

A label is a state of nature. A feature is a set of labels. An example of a label

is boundary. This label can be assigned to any pixel in the image when doing

boundary pixel detection.

See Also: feature

Likelihood

If the observed data is o, the likelihood of a label I for feature f under domain

0 model M, Lf(o I I&M) is P(o If=1&M). Likelihoods and priors taken together

determines the probability distribution for f s labels under M using equation 2

and the probability P(o I M). P(o I M) shows the support in the observed data

for M, and thus is useful when deciding between domain models.

See Also: priors

Likelihood Generator

A likelihood generator is an algorithm derived from a domain model that

takes observed data o as input and outputs the likelihoods of the labels for a

feature f or an array of features fi. For example a boundary pixel likelihood

generator returns likelihoods for boundary and -,boundary for the pixels of an

image. With priors a likelihood generator can be used by a Bayesian feature

detector. Likelihood generators are also used by Markov random fields.

See Also: feature, label, Bayesian feature detector

.- , Marginal Probability Distribution

The task of boundary detection is to find which pixels of an image a boundary

passes through. A Bayesian feature detector for this problem returns a

"-=1
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probability distribution over segmentations of an image. If instead a Bayesian

feature detector returns a probability distribution for a boundary passing

through a single pixel it is reporting a marginal probability distribution

because for any particular pixel there are many segmentations that have a

boundary passing through it and many segmentations that do not. Knowing

many marginal probability distributions does not imply knowing the entire

distribution. Thus knowing the probability of a boundary at each pixel is

insufficient to determine the probability distribution over segmentations

without further assumptions.

See Also: featureI
[ '. Maximum Entropy

The entropy of a probability distribution, p (x) is shown in expression 30.

Jp(x)logp(x)dx (30)

The uniform distribution has the highest entropy. Most of the work on

maximum entropy maximizes entropy subject to a constraint. In this paper

maximum entropy is used to justify using a uniform distribution.

Domain Model

A domain model is a set of assumptions that derive from primitive statistics

the required statistics yielding a Bayesian feature detector. Many of these

assumptions are simplifying assumptions that reduce the complexity of the

world described by the user.

See Also: Bayesian feature detector, primitive statistics, required statistics

Noise
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Noise is a random phenomena that prevents pixels from accurately describing

the light reflected off of objects. Noise can result from electronic or quantum

mechanical effects. In this dissertation the noise is always modeled by a

normally distributed mean 0 variable being added to the reflected light.

Occlusion

Object 1 occludes object 2 when the light reflected from object 2 that would

hit the camera is blocked by object 1. An object is completely occluded if

none of the light reflected from it gets to the camera. It is partially occluded if

only some of the light reaches the camera.

* Orthographic Projection

An image is under orthographic projection if it is taken with an ideal camera

.r ~ of infinite focal length. Orthographic projection is approximated by using a

long range lens.

Physical Probability Distribution

This distribution is the real world (true) distribution over feature labels. In

section 5.5 the principle of maximum entropy in combination with the

evidence combination rules developed in sections 5.2 and 5.3 to derive

physical probability distributions from probability distributions conditioned

on a domain model.

See Also: feature, domain model, maximum entropy

Posterior Probabilities

A posterior distribution is the probability distribution for a feature's labels

0.- conditioned on the observed evidence (in vision the image). Bayes' Law

(equation 2) uses likelihoods and prior probabilities to derive the posterior

distribution.
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See Also: prior probabilities, likelihood

Power

The power is 1 minus the false negative rate for a test. Classical hypothesis

testing tries to select a test that maximizes power for tests of a specified size.

A test that always returns positive has a power of 1 but a size of 1 too.

See Also: false negative, size

Primitive Statistic

4A primitive statistic is a statistic that the user of a low-level vision system can

easily supply. Section 2.3 assumes that the user can supply the expected

perimeter and area of objects' projections in the scene. Thus the expected

perimeter and area of objects' projections are typical primitive statistics.

See Also: required statistic, user

Prior Probability

The prior probability distribution is the probability distribution one has for a

feature before one observes any data. Given likelihoods, Bayes' law 2

applied to a prior distribution yields a posterior distribution.

See Also: posterior distribution, likelihood, Bayes' law

Required Statistic

A low-level vision system designer uses a set of required statistics to derive

an algorithm for feature detection tuned to the domain model a user supplies.

The required statistics are derived from primitive statistics, using the model.

In section 3.2 the standard deviation of the noise in the image is a required

0.. statistic. In section 4.3.2 the false positive rate as a function of the threshold

on a feature detector is a required statistic.
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See Also: primitive statistic, designer, user

Scene

The scene is what the camera is pointed at. Figure 5 is an example of a scene.

Figure 5 Definition of Image and Scene (Reprised)

imagecameraimage

scem

See Also: image

Separable

In the context of this dissertation a function f(a,b) is separable if there are

two functions g(a) and h(b) such that f(a,b)=g(a)Qh(b) where 0 is an easy

operation such as addition or multiplication. For example if f is described by

equation 31 then f is separable.

f(a,b )=fea+ba b

f(a, b)=g (a)g (b) (31)

g (a)=Jea Da
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Size

The size of a test is the probability of a false positive from the test. In
-U,-

classical hypothesis testing the size of a test is set to be less than a specified

amount such as 0.05 or 0.01. Given a size for a test the power of the test

should be maximized. The test that always returns negative has a size of 0.

See Also: false positive, power

User

A user of a low level vision system needs probability distributions for a set of

features such as a probabilities of boundaries passing through the pixels of an

* image. The user supplies primitive statistics and a domain model. From

these the designer derives a Bayesian feature detector.

See Also: designer, domain model, primitive statistic, Bayesian feature detector

Window

A window on an image is a subset of the pixels of an image. Usually windows

are all the pixels in a rectangle, though some have used other shapes. As an

example in a 100 by 100 image the pixels with coordinates (2,3) , (2,4), (3,3)

, and (3,4) is a 2 by 2 window.

See Also: image
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