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Abs t rac t 
Potential ly, the advantages of marker-passing 
over local connectionist techniques for associa­
t ive inference are (1) the abi l i ty to differen­
t iate variable bindings, and (2) reduction in 
the search space and/or number of processing 
elements. However, the latter advantage has 
mostly been realized at the expense of accu­
racy and predictabi l i ty. In this paper we con­
sider a class of associative inference to which 
marker passing is often applied, variously called 
abductive inference, schema selection, or pat­
tern completion. Analysis of marker seman­
tics in a standard semantic net representation 
leads to a proposal for more str ict ly regulated 
marker propagation. An implementat ion strat­
egy employing an augmented relaxation net­
work is out l ined. 

1 I n t r oduc t i on 
Both marker-passing and local connectionist1 models 
have been applied to a class of inference we call recog­
nition. The essence of the task is to find a construal 
for some set of input evidence, by retr ieving enough ad­
di t ional structure from the knowledge base to " f i l l in 
the gaps" and thereby infer an explanation for the in­
put. The construal should be the most plausible, co-
herent explanation that can be found wi th in a relatively 
instantaneous uni t of t ime. A natural language process­
ing example is interpret ing gooseneck lamp as a lamp 
whose shaft is a gooseneck, and pool table lamp as a 
lamp hanging over a pool table, in each case by find­
ing the schemata that best relate the indiv idual con­
cepts. The task of interpret ing part ial ly obscured visual 
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N00039-88-C-0292, the Office of Naval Research under grant 
N00014-80-C-0732, and the Sloan Foundation under grant 
86-10-3. 

1 In local connectionist models, each node represents a con­
cept, whereas in distributed models, concepts are represented 
by a pattern of activation over multiple nodes [Hinton et 
al. 1986]. We do not discuss here the advantages and disad­
vantages that marker-passing and local connectionist models 
share by virtue of employing local representations. 

patterns has also been cast as a problem of selecting 
schemata that best account for the input evidence [Mc­
Clel land and Rumelhart 1981]. Various authors view the 
same or similar tasks as pat tern completion, abductive 
inference to explain the occurrence of part icular combi­
nations of concepts, schema selection and composition, 
concretion [Wilensky et al . 1988], or classification-style 
realization [Mark 1982, Schmolze and Lipkis 1983]. 

W i t h marker-passing models, input is given by simul­
taneously placing origin markers on several concepts in a 
semantic network. The system then propagates markers 
outward f rom the concepts of or igin, effectively doing a 
parallel intersection search for relational paths between 
the concepts. W i t h local connectionist models, input is 
given by raising the activation of several nodes, causing 
activation to spread to neighboring nodes and eventually 
highl ight ing the relational paths. The pr imary difference 
is that connectionist models propagate only numeric ac­
t ivat ion, rather than symbolic informat ion.2 

No clear winner has emerged between marker-passing 
and connectionist models. A l though local connectionist 
models can technically be regarded as numeric marker 
passing, researchers have exploited the connectionist re­
str ict ion by analyzing act ivat ion propagation more care­
ful ly than marker propagation, giv ing connectionist sys­
tems more precise search characteristics. On the other 
hand, symbolic markers retain the advantage of handling 
variable bindings, that is, the binding of general con­
cepts and roles to part icular occurrences. B ind ing is a 
serious problem in connectionist systems, since current-
approaches require too large a network to be practical. 

In this paper, we examine another potent ial advantage 
of marker passing, which is reduction in the search space 
and/or number of processing elements, by restr ict ing the 
search to localized areas of the network. Marker-passing 
models have not yet realized this advantage; those which 
do restrict marker propagation rely on arb i t rary assump­
tions that lead to inaccurate search. This paper analyzes 
how marker propagation should be regulated so as to re­
duce search in a motivated fashion. The proposal, like 
several other recent proposals, is a hybr id model that 
at tempts to synthesize advantageous aspects of marker-

2One aspect of marker passing that has no parallel in con­
nectionist models is that it is often used as a heuristic for 
generating possible inferences, with an evaluation stage that 
selects the best ones. Our analysis excludes evaluation stages. 
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passing and connectionist techniques. 2.2 S e n s i t i v i t y t o n o t a t i o n a l v a r i a n t s 

2 Issues 

2.1 M a r k e r p r o p a g a t i o n a n d resou rce l i m i t s 

The main issue this paper addresses is how to regulate 
marker propagation to make computat ion feasible. For 
sequential implementations, marker passing is a theory 
of search, and the goal is to reduce the search space. For 
parallel implementations, the goal is to reduce the num­
ber of processing elements. ( In this paper we use "prop­
agat ion" to mean creating a new marker on a neighbor­
ing concept, as opposed to moving the same marker f rom 
concept to concept. Markers created by propagation are 
non-origin markers.) 

Exist ing models do not l im i t propagation in a satisfac­
tory way. The reason is that most marker-passing ap­
proaches depend on an "over-propagation" strategy to 
ensure finding the desired concepts or paths; i.e., mark­
ers are propagated to relatively large distances in all d i ­
rections, so that the chance of missing a desired path 
is small. (Because extensive propagation tends to find 
too many remote connections, special filters are used 
to eliminate spurious paths, based on heuristic evalu­
ation.) The problem is that it is not clear how much 
over-propagation is sufficient, and so either the search 
is susceptible to arb i t rary failure, or it makes excessive 
resource demands. For example, some systems restrict 
propagation by presetting the number of links a marker 
can be propagated [e.g., Hirst 1987], but because num­
ber of links does not reflect semantic distance in a well-
defined way, no preset l imi t guarantees the desired path 
can always be found w i th in that number of l inks. More 
sophisticated techniques employ numeric activations on 
markers. The simplest such method is to assign lower 
activation for markers that are farther f rom the point 
of origin [e.g., Norvig 1987], using different decrements 
for each l ink type, and inh ib i t ing propagation below a 
threshold. Another method, used by Hendler [1986], en­
sures that a more constant number of nodes is searched 
by making the propagated act ivat ion inversely propor-
t ional to branching factor. However, the search regions 
are st i l l determined using number of links and branching 
factor as a rough approximat ion of semantic distance. 

Several ways of managing over-propagation schemes 
have been proposed. Charniak [1986] allows activation 
to decay exponential ly over t ime, to remove old markers. 
Ant i -promiscui ty rules [Charniak 1986b] do not permit 
propagation in the case of concepts w i th branching fac­
tor above some threshold, w i th the rationale that such 
concepts are too general to provide much evidence any­
way. Other systems assume that resource l imi tat ions can 
be overcome w i th massive parallelism, and perform ex­
haustive marker propagation assuming one processor for 
every concept [e.g., Fahlman 1979], like in local connec­
tionist models. This should be a last resort, however, as 
the number of concepts is quite large for real domains. 
Finally, Alshawi [1987] suggests an indexing scheme that 
keeps track of "clusters" of markers to improve search 
times for large numbers of markers; again, however, no 
effort is made to reduce the number of markers. 

Semantic nets are subject to notat ional variat ion, be­
cause the same proposit ional informat ion can be rep­
resented in many ways (e.g., intermediate abstraction 
levels can be introduced arb i t rar i ly ) . The effect of nota­
t ional variants is to alter the network's indexing. How­
ever, search should not be affected arbi t rar i ly by changes 
in indexing. In a sense, connectionist and proposi­
t ional models represent extremes in sensitivity to net­
work structure, and semantic nets should fal l somewhere 
in between. Connectionist models rely entirely upon net­
work structure to direct search. Marker-passing search 
is also guided by network structure, but the structure 
should be regarded as providing heuristic rather than 
conclusive indexing. Like proposit ional models, this frees 
the investigator f rom the connectionist requirement that 
concepts be defined by a comprehensive set of indexes to 
related concepts, by providing a language for abstract 
concept definitions, w i th a uni form semantics for nota­
t ional variants. The extra degree of freedom must be 
accompanied by a search strategy that minimizes sen­
si t iv i ty to the notat ional variants. As far as we know, 
l i t t le if any work has addressed this issue, except by per­
forming exhaustive search. 

2.3 Usage o f a c t i v a t i o n 

Some models employ numeric activation levels on mark­
ers. There are two kinds of usage: control l ing propaga­
tion (as in §2.1 above), and measuring belief. The latter 
usage equates activation wi th certainty. Alshawi [1987] 
uses a set of "context factors" that influence activation 
in different ways, in effect giving functions for combining 
evidence sources (for language interpretat ion). Charniak 
[1986] has a weak form of belief, by comput ing a "path 
strength" f rom the activations of markers on a path, such 
that the inference mechanism only considers paths wi th 
strengths of the highest order of magnitude. 

Whi le both usages seem appropriate at the intui t ive 
level, it is not feasible to empirically verify whether par­
ticular methods work for large conceptual domains, wi th­
out a complete theory of acquisit ion. Neither do the 
methods of comput ing activation appear to be based on 
probabil istic models that would provide better motiva­
t ion. The dist inct ion between the two usages is some­
times blurred. Moreover, belief measures tend not to 
be well-defined, and several authors have pointed out 
the need to formalize such measures [Cheeseman 1985, 
Pearl 1988]. Charniak [1986] also suggests that prior 
probabil i t ies (not activation) should be used to define 
belief measures. 

3 F o r m a l D e f i n i t i o n s 

To reduce arbi t rary propagation, what marker propaga­
t ion represents must be defined more precisely than in 
existing models. Our analysis proceeds as follows: First, 
what a marker represents is defined, followed by what 
propagation and intersection represent. The next section 
examines desirable propagation characteristics. Finally, 
an implementat ion strategy is discussed. 

The approach differs from path-based formalizations, 
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which characterize the semantics of paths rather than 
markers [e.g., CharniaJk 1986, Norvig 1987]. Path se­
mantics assume a path has already been found, and do 
not help constrain propagation. 

To maximize the scope of our analysis, we assume a 
fair ly standard semantic net: a simplif ied K L - O N E style 
net w i th conceptual IS-A and subpart hierarchies used 
as a term-defining language.3 The representation is com­
patible w i th or translatable into most existing models. 
A part ia l semantics is given in Appendix A. 

3.1 C a v e a t 

To analyze propagation, we formalize concepts as pred­
icates that apply to occurrences, rather than predicates 
that apply to individuals. Concepts occur when they 
help construe input evidence. For example, X in light-
bulb(X) represents an occurrence of the generic l ight 
bulb concept, and Y in light-bulb-1{Y) represents an oc­
currence of an indiv idual l ight bulb concept.4 The reason 
is that we are interested in determining when concepts 
are wor th searching, i.e., l ikely to help construe the in­
put. Thus, we prefer a uni form notat ion for describing 
occurrences of concepts, regardless of whether they are 
generic or indiv idual since either type may part icipate in 
the construal. If instead, we allowed concepts to pred­
icate individuals, as in light-bulb(LIGHT-BULB-l), we 
would need the explicit (meta-) predicates 

Generic-Occurrtnce{X,light-bulb), and 
indiv-occurrence(Y,LIGHT-BULB-J). 

3.2 M a r k e r s 

Markers represent hypotheses being considered by the 
interpreter or inference mechanism. This is true in any 
marker-passing model, regardless of whether it is explic­
i t ly noted. A hypothesis has at least two components 
(which may be impl ic i t or expl ic i t ) : a proposit ion, and 
an estimate of the chance of intersection. Many models 
also include a belief measure. 

The first component is a proposit ion about the oc­
currence of a concept. For example, a marker on 
the gooseneck concept in Figure 1 hypothesizes that 

gooseneck(io). For concepts w i th conceptual sub­
parts ("schemata"), an occurrence of the concept im­
plies occurrence of i ts subparts; thus, a marker on lamp 
hypothesizes 

The second part of a marker's hypothesis is an esti­
mate of the chance that the marker lies on a propaga­
tion path that w i l l intersect another path. (Thus, part of 
the hypothesis is impl ic i t l y represented by the location 
of the marker.) In many marker-passing implementa­
tions, the estimate is impl ic i t ly binary: the interpreter 
believes that intersection is l ikely or unlikely, and accord­
ingly places or does not place a marker [e.g., Fahlman 

*I.e., IS-A and subpart relations carry no assertional force. 
4Thus, we have at least a tri-part ontological distinction 

between generics, individuals, and occurrences. This is the 
sort of distinction where connectionist models are hampered 
by the aforementioned variable binding problem. 
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1979, Hirst 1987, Norvig 1987]. To facil i tate analyzing 
propagation, we shall allow estimates to be real numbers 
between zero and one, to denote degree of belief that in­
tersection wi l l occur. Deriv ing estimates is discussed in 
§4. 

3.3 P r o p a g a t i o n 

Propagating a marker represents generating a hypoth­
esis. The new hypothesis depends upon the source 
marker's hypothesis, and the semantics of the l ink prop­
agated over. Transformation functions are given by ex­
ample, for the classes of links in our model: 

Downward IS-A: Propagating down an IS-A link spe­
cializes the hypothesis. For example, propagating a 
marker f rom lamp to gooseneck-lamp transforms h1 into 

We wri te h1 ►—► h2 to indicate the propagation path, 
which is impor tant because the variables in the two hy­
potheses are not independent. The dependency arises 
f rom predicating the same concept occurrences; i.e., h2 

hypothesizes that the occurrence in h1 of the lamp con­
cept is specifically an occurrence of the gooseneck lamp 
concept, so h2 entails h1. Because propagation is against 
the direction of impl icat ion, Charniak [1986] calls this an 
abductive assumption. 

Upward IS-A: Propagating up an IS-A l ink abstracts 
the hypothesis. The transformation is the reverse of 
downward transformation, and the same dependency 
holds. 

Downward subpart: Propagating across a conceptual 
subpart l ink f rom part to whole also specializes the hy­
pothesis. For example, propagating a marker from light-
bulb to lamp transforms 

I 

into h1 above. Again the dependent variables mean that 
h1 implies ho. Thus, h0 is also an abductive as­
sumption; this is why we call propagation f rom part to 
whole "downward" . 

Upward subpart: Abstracts the hypothesis, w i th the 
same dependency. 

For semantic nets w i th associative relations, i.e., re­
lations between concepts that are not conceptual part-
wholes, propagation involves similar transformation of 

6Henceforth, the existential will be left out. 



hypotheses. However, the dependency between the hy­
potheses cannot be expressed clearly. For this reason, we 
treat an associative relation between two concepts as an 
abbreviat ion for a th i rd concept that acts like a " f rame" 
w i th the two concepts as subparts.6 The propagation 
rules above then hold. 

3.4 I n t e r s e c t i o n 

An intersection represents a meta-hypothesis about per­
forming unif icat ion. Intersection occurs when two mark­
ers propagated f rom different origins are placed on the 
same concept. For example, suppose the path ho »-> 
h1-«► h2 intersects at gooseneck-lamp w i th another path 
h3 -> h4: 

The intersection suggests uni fy ing i1 = i 5 , i2 = i6, etc. 
Unif icat ion, if performed, represents collapsing two oc­
currences of a concept. 

4 Desirable Propagat ion 
Character ist ics 

Having derived the above definitions from the semantics 
of the representation, we would like to optimize propaga­
t ion. We make the assumption that the interpreter has 
no information about the connectivity of the semantic 
net prior to searching because (1) it should be as in-
sensitive as possible to notat ional variants, and (2) any 
acquisition strategy for concept formation dynamically 
changes a semantic net's connectivity. Given this con­
straint, the only informat ion that can be util ized to guide 
propagation is the information derivable from knowledge 
stored at the concept nodes where markers already are. 
Consequently, propagation for each origin marker must 
be optimized independently of other origin markers (un­
t i l intersection). 

4.1 D e d u c t i v e p r o p a g a t i o n 

Deductive (upward) propagation cannot be restricted. 
When an origin or non-origin marker is created, up­
ward propagation to all its ancestors in the IS-A and 
subpart hierarchies must follow immediately. The rea­
son is that the occurence of a concept also implies the 
occurence of all concepts standing for more pr imit ive 
feature/role combinations (Appendix A) . Intersections 
through any of these ancestral levels must be equally 
detectable; in the absence of connectivity information, 
all ancestors must be simultaneously marked. Immedi­
ate complete upward propagation is also employed by 
Mar t in and Riesbeck [1986]. 

Deductive propagation is not as expensive as it may 
appear, since it applies only to term-defining IS-A and 
subpart relations. Searching assertional IS-A and sub­
part relations can be treated as a special case of abduc-
tive propagation.7 

6An example is the assertional IS-A in Appendix A. 
7Minimizing the deductive IS-A and subpart closures is 

4.2 U t i l i t y m a x i m i z a t i o n f o r a b d u c t i v e 
p r o p a g a t i o n 

To regulate abductive (downward) propagation, our ap­
proach is to ensure that propagation occurs in the order 
that , given the information possessed by the interpreter 
at any point in t ime, the next propagation maximizes the 
chance of intersection. Under the unknown-connectivity 
assumption, the best estimate that can be made for the 
likelihood of intersection involving a given marker is pro­
port ional to the posterior probabi l i ty of the marker's 
proposition. The reason is as follows: For any single 
origin marker, the interpreter does not know which links 
connect the concept to more nodes, by the connectiv­
i ty assumption. Using the max imum entropy assump­
t ion, we assume an equal distr ibut ion of nodes for all 
links. Given this, intersection chances are maximized by 
choosing the propagation that creates the marker w i th 
the most probable proposition, given the input evidence. 

This does not guarantee maximizing the objective 
probabil i ty of finding an intersection, i.e., the probabil­
i ty that is defined as the frequency of finding intersec­
tions relative to the frequency of propagations, anywhere 
in the net, and involving any origin marker. Maximiz­
ing objective probabil i ty is not possible when there is 
missing information, as w i th the connectivity assump­
t ion. The approach does however maximize subjective 
probabil i ty under the connectivity assumption, i.e., the 
probabil i ty that is computed by assigning uni form distr i ­
butions where unknown, following max imum entropy.8 

4.3 M a r k e r p r o b a b i l i t i e s 

The "probabi l i ty" of a marker's proposit ion really refers 
to the posterior probabil i ty given all the input evidence. 
When an origin marker wi th proposition ho is created 
in response to an input, its posterior probabi l i ty p(ho) 
reflects the degree of confirmation provided by the input 
evidence Co. (W i th reliable evidence indicators, p(h0) 
wi l l essentially be 1.) 

For the abductive case (where a marker wi th proposi­
t ion h1 derives from origin ho such that h1 entails ho), 
the posterior probabil i ty is 

Posterior probabilities for the deductive case require 
explicit normalization factors.9 

4.4 Necess i t y o f f requenc ies 

To compute the conditional probabil i ty term, the fre­
quency of occurrence for each concept must be known. 
Assuming that / ( c n i ) is the frequency of occurrence of 
the concept that the marker h i is on, 

Requiring frequency information is equivalent to requir­
ing weighted IS-A or subpart links, because it is the rel-

an efficiency argument for distinguishing terminological and 
assertional uses. See the semantics of assertional IS-A in 
Appendix A. 

8 Discussions of objective vs. subjective probabilities can 
be found in Walpole and Myers [1978] and Cheeseman [1985]. 

9Pearl [1988] discusses normalization in simple taxonomic 
belief hierarchies. 
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ative frequency ratios that must be derivable. The same 
information could thus be stored as ratios on links be­
tween concepts. 

Frequencies are the only assertional knowledge in our 
representation, i.e., they assert how often concepts occur 
in dealing w i th the external world (everything else up 
to this point is used for defining terms). Theoretically, 
frequencies should be acquired by counting whenever a 
concept occurs in a construal. 

4.5 I n s e n s i t i v i t y t o n o t a t i o n a l v a r i a n t s 

Deductive propagation is insensitive to intermediate lev­
els of abstraction since complete upward propagation 
occurs at once. For abductive propagation, sensitivity 
to notat ional variants is minimized by ty ing the order 
of propagation to the frequency of concept occurrence 
(rather than number of l inks). This ensures the same 
order of propagation for notational variants, except that 
extra intermediate levels may be inserted. 

4.6 E f fec t o f i n t e r s e c t i o n 
If an intersection occurs and results in unif ication, then 
the two coll iding markers are merged, and the posterior 
probabilit ies of al l hypotheses involving the unified con­
cept occurrences must be revised, by taking the com­
bined input evidence f rom both origins as support for 
the hypotheses. Prior to intersection, hypotheses de­
rived f rom the two origins are treated as being inde­
pendent; however, when the variables in the hypotheses 
are unified, the hypotheses become dependent. That is, 
given input evidence e0 and e1 for origins fto and ft], 
p(h1) = P(hi\eo,e1) should be computed for each af­
fected hypothesis h i, because it is no longer assumed that 
P{hi\eo,e1) = P(hi\eo). Propagation proceeds from the 
merged marker as before. 

4.7 C o n f l a t i n g u t i l i t y a n d b e l i e f 

If a marker's posterior probabi l i ty is also used as a 
belief measure—a reasonable first approximation—then 
the two usages of activation can be conflated in one nu­
meric measure. Roughly speaking, the inferences that 
should be made are the subset of hypotheses after some 
period of propagation that end up wi th the highest pos­
terior probabilit ies, say, above a threshold of 0.5. No 
evaluation stage is required, as a result of constraining 
propagation to discover the most probable concepts first. 

Things become more complicated upon closer analy­
sis. Some of the issues are: (1) When should the search 
cease? (2) How can posterior probabilit ies be efficiently 
normalized as evidence accumulates? (3) How can search 
be biased to "commi t " , i.e., to "over-estimate" the more 
likely prior probabil it ies, and "under-estimate" less likely 
ones, as a default effect? Whi le we have no conclusive 
answer to these questions, a strategy we are pursuing is 
outl ined below. 

5 Implementa t ion Strategy 
If the last three points are not considered, then a se­
quential implementation of most-probable-first search is 
straightforward. However, because of those points, and 
in order to exploit parallelism, an extension to the model 

is proposed. There are two obvious ways to parallelize 
marker passing: processor-per-concept and processor-
per-marker. Having discussed how to localize the re­
gions searched, we adopt the processor-per-marker ap-
proach, to reduce processor requirements. (This is equiv­
alent to cost-per-marker under sequential simulation.) 
Furthermore, we assume that markers propagate au­
tonomously at variable speeds, and thereby implement 
most-probable-first search. 

The first step is to ensure that the basic formulat ion is 
compatible w i th the analysis above. To do this, we use 
an imaginary model, where for each origin marker ho, 
each potential abductive marker h,, and each t ime point 
t,, the value of c (h o , h, t) is a real number between zero 
and one. For this model to f i t the analysis, the function 
c should have these characteristics: 

By restrict ing propagation such that a hypothesis h does 
not propagate unless c (h o , h, t) > thr, we get the approx­
imation shown in Figure 2b. The model does not find 
intersections below threshold but is otherwise accurately 
most-probable-first. For comparison, the way that dis-
crete binary marker-passing models propagate is shown 
in Figure 2c. 

The advantage of formulat ing the model this way is 
that it can be implemented using a technique that fits 
our desired propagation characteristics, and also appears 
to be suited to handling the three issues brought up at 
the end of the previous section. In this technique, the 
dependencies between hypotheses are used to link the 
markers, forming a new net, which instantiates parts of 
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the semantic net's structure. The marker net is an aug­
mented relaxation network where the activation of each 
marker represents c(h0, h, t). The fol lowing incremental 
algor i thm is used: 

1. Update the act ivat ion of each marker as a function 
of its previous activation and the activations of its 
immediate neighbors. 

2. Discard the markers w i th very low activation. 

3. Augment the marker net by propagating markers 
above threshold. 

4. Repeat. 

Figure 3: Augmented relaxation network algori thm. 

Non-linear activation functions can be designed to give 
the curves in Figure 2b. ( In the case where an intersec­
tion results in unif ication, the activation function should 
give similar curves, modified to reflect evidence combina­
tion.) Moreover, the model suggests possible approaches 
to the more diff icult issues: (1) Cease searching when 
relaxation settles, i.e., when the activation no longer 
changes significantly w i th each i terat ion. Hypotheses 
below threshold are not worth searching. (2) At tach 
inhibi tory normalization links to markers w i th no ances­
tors, so as to normalize the activations of al l descendants; 
introduce inhibi tory disjointness links between sibling 
markers w i th mutual ly exclusive hypotheses, such that 
the sum of their activations is not permitted to exceed 
that of their common parent. (3) Bias the activation 
functions to distort the bel ief /ut i l i ty settl ing points so 
as to "over-commit" above a threshold probabi l i ty and 
"under-commit" below i t . 

6 D iscuss ion 

We have suggested how to restrict marker propagation 
more accurately than in existing models, based upon a 
probabilistic analysis, and we have explained the usage 
of activation more precisely. It remains to be shown 
whether the assumptions made under our analysis just i fy 
the suggested extensions. 

The augmented relaxation network is similar in spirit 
to dynamic connectionist nets [e.g., Berg 1987]. Chun 
and M imo [1987] have also suggested combining marker 
passing and relaxation. However, in our model more 
emphasis is placed upon maintaining the symbolic prop­
erties of semantic networks than in others, since we feel 
that ease of manipulat ing the knowledge representation 
is one of the advantages of symbolic A I . Hendler [1987] 
suggests combining marker passing w i th microfeatures, 
using a "defining characteristic" l ink, but does not use a 
term-defining hierarchy to represent microfeature com­
binations at varying levels of abstraction. 

A comparison wi th "pure" recognition models illus­
trates the hybr id advantage. Hobbs et al. [1988] cast a 
number of natural language interpretat ion problems as 
abductive inference in a theorem-prover, but noted that 
some way to control the potential ly explosive search is 
necessary. As symbolic models make increasing use of 

parallel techniques for efficient computat ion, connection-
ist work has moved toward addressing structured repre­
sentations, tradit ional ly a symbolic strength [Feldman 
1986]. Shastri [1988] presents a connectionist model 
that handles the single-schema subcase of the recogni-
t ion problem using a hierarchical representation, but st i l l 
lacks the means to handle variable binding. 

An open question is how to decide whether to perform 
unification when an intersection occurs. Moreover, mul­
t iple intersections may suggest mutual ly exclusive unifi­
cations, so discrimination cri teria are needed. 

Another issue involves relaxing the assumption that 
the interpreter has no a priori information about the 
semantic net's connectivity. In this case, a global opt i­
mization strategy might be used to restructure the net­
work or provide addit ional indexing weights to improve 
the worst case search cost. 

An implementation called FRESCO is under develop­
ment [Wu 1987]. It is being applied to analyzing noun 
compounds such as gooseneck lamp, w i th parallel parsing 
and semantic interpretat ion. 
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group at TU Munich. 

A R e p r e s e n t a t i o n Semant i cs 
Since knowledge representation terminology is often con­
fusing, the semantics of the assumed representation is 
sketched here: 

1. A concept cn is a one-place predicate (wi th an as­
sociated frequency of occurrence 0 < f(cn) < 1). 

2. An occurrence / of the concept is a constant such 
that cn(l) holds. 

3. A (terminological) IS-A relation between two con­
cepts cn1 and cn2 means (Vx)[cni(z) —> cn 2 ( t ) ] . 

4. A pr imit ive conceptual subpart relation between 
two concepts cn\ and cn2 means (V i ) [cn i ( i ) —► 

where rl is a two-place pred­
icate. 

5. A defined conceptual subpart relation between two 
concepts cn1 and cn2 must correspond to another 
subpart relation s between two concepts cn3 and 
cn4, such that cn1 IS-A cn3, and cn2 IS-A cn4 

it means | 
where r/12 is a two-place predicate, and 

r/34 is the two-place predicate in s. 
Addi t ional constraints for t rans i t iv i ty and disjointness 
have been left out, but are assumed; also, a more general 
form of quantif ication is lacking. Assertional IS-A is a 
non-primit ive associative relation: 

• An assertional IS-A between two concepts cn1 and 
cn2 is itself a concept cn12 w i th defined subpart rela­
tions to cn1 and cn2. The ratio f ' (cn1 2) / f (cn1) indi­
cates the salience of cn2 to cn 1 , and f (cn12)/f '(cn2) 
the salience of cn1 to cn2. 
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