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Abstract

Diffuse WHO grade II gliomas are diffusively infiltrative brain tumors characterized by an

unavoidable anaplastic transformation. Their management is strongly dependent on their

location in the brain due to interactions with functional regions and potential differences in

molecular biology. In this paper, we present the construction of a probabilistic atlas mapping

the preferential locations of diffuse WHO grade II gliomas in the brain. This is carried out

through a sparse graph whose nodes correspond to clusters of tumors clustered together

based on their spatial proximity. The interest of such an atlas is illustrated via two applica-

tions. The first one correlates tumor location with the patient’s age via a statistical analysis,

highlighting the interest of the atlas for studying the origins and behavior of the tumors. The

second exploits the fact that the tumors have preferential locations for automatic segmenta-

tion. Through a coupled decomposed Markov Random Field model, the atlas guides the

segmentation process, and characterizes which preferential location the tumor belongs to

and consequently which behavior it could be associated to. Leave-one-out cross validation

experiments on a large database highlight the robustness of the graph, and yield promising

segmentation results.
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Introduction

Diffuse WHO grade II gliomas (DLGG) are pre-malignant brain tumors characterized by a

continuous growth, a migration along the white matter tracts and an unavoidable anaplastic

transformation [1]. They affect people in their thirties or forties [2–4]. Two types of tumors are

observed depending on their growth speed and the age at the time of diagnosis [5]. An

improved knowledge on their natural history has led to shift from a “wait and see” policy to

more aggressive therapeutic strategies, with early surgery as the first option, in order to delay

malignant transformation while preserving the quality of life of the patients [6, 7].

The management of these tumors is highly dependent on their location. First, several studies

have suggested a variability in terms of molecular biology among DLGG with regards to the

tumor location [8–11], with a higher rate of 1p deletion in the anterior part of the brain (in par-

ticular in the frontal lobe) [8] and a lower rate in the insula [9], or the absence of IDH1 muta-

tion within the insula [10] and its presence for tumors located within the frontal lobe [11].

These differences among DLGGs regarding molecular abnormalities could be one of the expla-

nations to the variability in terms of date of occurrence, growth speed and thus, age at the time

of the firsts symptoms or at diagnosis. Second, the dynamical interactions between DLGG and

the brain may also vary depending on the eloquence of the areas in which the tumor is located.

Indeed, it was shown that slow-growing DLGG might induce cerebral plasticity, explaining the

absence of neurological deficit for most patients despite a voluminous tumor, even in the so-

called functional regions [12, 13]. Nonetheless, a recent atlas of resectability of DLGG demon-

strated that some cerebral areas had low compensatory abilities, constituting a “minimal com-

mon brain” among patients [14]. Consequently, the extent of the surgical resection (and thus

the median survival) is correlated with the glioma’s location, with a better tumor removal in

non-eloquent areas rather than in eloquent ones and in compensable regions rather than non

compensable ones [15, 16]. Finally, prognosis can differ according to tumor location. In a

recently published series on more than 1000 DLGG patients, frontal locations were associated

with a better prognosis compared to other locations, and this could not be entirely explained

by the possibility of better resection [4].

Interestingly, it has been suggested that DLGG have preferential locations within the brain,

with 82.6% of them located within functional areas in a study analysing 132 DLGG [17]. The

supplementary motor area and the insular lobe seem to be their most frequent locations [4, 17,

18]. Nonetheless, to the best of our knowledge, there is no probabilistic map of DLGG locations

available in the literature.

The aim of this paper is the introduction of a probabilistic atlas computed on a homoge-

neous series of patients with a DLGG. The idea is to produce a statistical and compact repre-

sentation of the tumors’ preferential locations in the brain to facilitate subsequent location-

dependent analyses. We will achieve this using binary maps indicating the positions of the

tumors obtained by manual segmentation of a series of MRI images. Those maps are registered

in the same reference coordinates. A statistical measure evaluates the tumors’ relative position

and proximity, and enables to construct a complete graph where each node is a tumor and the

arcs’ strength corresponds to the proximity measure. We then aim at reducing the graph’s size

to a handful representative nodes situated in the densest areas (i.e. areas where tumors prefer-

entially appear) using unsupervised clustering with unknown number of populations. The

quality of the clustering is evaluated using conventional cluster validation methods and cross

validation. The interest with regards to a better understanding of the origins of DLGG and

their interaction with the central nervous system will be discussed on the basis of this original

atlas, as well as possible clinical applications allowing the optimization of the therapeutic

management.
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The potential and clinical relevance of this atlas are illustrated through two different applica-

tions. The first one highlights the interest of location specific studies and how they can be facili-

tated by our atlas through a comparison between tumour location and the patient’s age. We

show how the cluster configuration of our atlas allows for simplified location specific statistical

analyses and provide preliminary results suggesting a possible link between age and location.

Our second application highlights how this atlas can be integrated in DLGG segmentation

methods and improve their performance by exploiting the knowledge of preferential locations.

Knowing the size and extent of the tumor is of key importance for follow up and therapy plan-

ning. Currently, the size of a DLGG is approximated by using manual segmentation, a time

consuming and tedious task subject to inter expert variability. Automatic tumor segmentation

is a difficult task, due to the tumors’ heterogeneous shapes and appearances, overlapping inten-

sities with the surrounding healthy tissue and fuzzy boundaries.

A popular approach for their segmentation is to rely on learning statistical classifiers to sep-

arate tumor voxels from healthy voxels. The Support Vector Machines (SVM) classifiers have

been extensively studied for this purpose [19–21]. However, this kind of methods have encoun-

tered limited success due to the underlying assumption that all voxels are independent and

identically distributed (i.i.d), meaning that all voxels are segmented independently from their

neighbors. Neighborhood dependent features or morphological filters have been considered to

introduce spatial information with limited success. More recently, methods have modeled the

spatial dependencies via the use of random fields [22–25]. In this setting, a learned classifier is

coupled with a regularization term that penalizes segmentation discontinuities on a defined

local neighborhood. The main drawback of those methods is that they encode the spatial

dependencies in a local manner, lacking global information on the brain structures’ boundaries.

Gering et al. [26] adopted a multilayer MRF approach where an intensity based voxel wise seg-

mentation is progressively refined by incorporating high-level neighboring information such

as the distance between the different brain structures. The tumor is detected as a deviation to

healthy voxels intensity. User interaction is required for initialization. Corso et al. [27] intro-

duce more global information by coupling Gaussian Mixture Model classification with a multi

level graph structure, where the edges of the graph have an affinity that characterizes the simi-

larity between the neighboring nodes.

Atlas-based segmentation methods are endowed with global properties, based on a healthy

brain’s expected structures. Kaus et al. [28] alternate statistical classification based on intensity

difference with registration of the data with an anatomical atlas, where the tumor voxels are

reclassified as healthy. This assumes strong homogeneity in the tumor appearance. Prastawa

et al., Moon et al. [29, 30] use a registered probabilistic atlas in which probabilities for tumor

and edema are encoded as prior information, based on contrast enhancement. Spatial and geo-

metric constraints are added to avoid false detections. In [31, 32] the tumors are detected as

outliers with respect to the normal brain tissue characteristics of a registered healthy atlas. Spa-

tial constraints are modeled via Markov Random Fields [31] or level sets [32]. In [33], we pro-

posed a MRF based coupled tumor segmentation and registration framework where atlas based

prior knowledge is introduced through the registration task.

Our method combines local and global informations. Tumor detection is based on a learned

classifier and spatial constraints are enforced using a Markov Random Field model, while the

statistical atlas of uneven repartition in the brain adds global prior information on the most

probable location of tumor voxels. The method is tested on a challenging clinical database with

variable quality and poor resolution, and yields promising results that demonstrate the clinical

potential of the atlas.

The remainder of this paper is organized as follows: section 2 describes the methodology

towards mapping DLGG’s preferential locations in the brain and its application for tumor
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segmentation. Experimental validation and obtained results are part of section 3 while discus-

sion and perspectives conclude the paper.

Materials and Methods

Database Construction and Preprocessing

We conducted a retrospective study at a single institution on a series of 210 DLGG patients.

This study was reviewed and approved by the Institutional Review Board (Institut Regional du

Cancer de Montpellier - Val d’Aurelle, ID number ICM-URC-2015/35). The patient informa-

tion was anonymized and de-identified prior to analysis. Patients aged over 18 at diagnosis

were included if they fulfilled the following criteria: surgery for a DLGG performed by one of

the 3 neurosurgeons of the neuro-oncology unit (HD, LB or YY) between January 1st, 2006

and August 30th, 2012; FLAIR weighted MRI images performed before any oncological treat-

ment (chemotherapy or radiation therapy) available and exploitable. Exclusion criteria were as

follows: no histological diagnosis available; low-grade gliomatosis cerebri; tumor volume over

150 cm3 or multicentric; DLGG located in the spinal cord or in the brainstem; delay>3 years

between the first MRI performed (at diagnosis) and the first MRI available. The age at diagno-

sis (i.e. at the time of the first MRI performed), the age at the time of the first symptoms and at

the time of the first MRI available were collected for each patient. For incidental tumors

(n = 16) the age at the time of the first symptoms was considered to be the age at the time of

the first MRI.

The MRI performed at diagnosis was collected for each patient. When that MRI was not avail-

able, a later MRI could be used if the patient had not yet received any oncological treatment at

the time when it was performed (biopsy possible). The OSIRIX1 software was used to perform

the image manual segmentation on the FLAIR weighted sequences for each patient. Segmenta-

tions were performed by HD and AD. A region of interest (ROI) was defined for each patient,

determining for each voxel of each slide of the FLAIR sequence if it belongs to the ROI (i.e. to the

tumor) or not. The complete database and expert segmentations are available online at http://db-

gliomas-gradeii.net/ and on figshare at http://dx.doi.org/10.6084/m9.figshare.1550871.

Due to our patient selection constraints for atlas construction, all images are acquired in a

clinical setting and have therefore variable quality (often low resolution) and progression of the

disease. This makes all image processing tasks (tumor segmentation, deformable registration)

particularly challenging.

Preprocessing involves intensity regularization for the segmentation task. One of the main

issues with MRI imaging is that the intensities of the same anatomical tissues can be very differ-

ent from one image to another, and even within the same image. Many algorithms have been

developed to correct the intensity inhomogeneity [34]. We adopt a simple regularization process:

Ireg ¼
I �MedðIÞ

IQRðIÞ
ð1Þ

whereMed(I) is the median intensity of the image and IQR(I) is the interquartile range. Those

values are computed without taking into account the background pixels.

Probabilistic Atlas Construction

A High anatomical variability exists between the brains of different individuals. In order to

compare the tumors’ positions in the brain, we need to compensate such variability and bring

all the MRI images in the same reference coordinate space. To this end, we perform affine reg-

istration towards the same reference pose on all the volumes. While deformable registration
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would yield better correspondences, the presence of the tumor alters the quality of the registra-

tion. The most straightforward approach to deformable registration in such a setting, which we

used in a previous work on a much smaller database [35], is to mask the pathology while per-

forming the registration. It has been shown that it can lead to important errors in registration

[33] and therefore cannot be used reliably on a large database. Existing methods developed spe-

cifically for registration in the presence of tumours [33, 36] currently lack reliability and scal-

ability to be used systematically on our large database, notably due to the variable quality of

our data. Let us consider N images Ii(x), i 2 [1, . . ., N] featuring a DLGG, and the healthy refer-

ence pose A(x). All images are affinely registered to the reference pose. We callMi(x) the corre-

sponding binary tumor segmentation map obtained by manual segmentation, after affine

registration.

Registration brings all the tumors (segmentation maps) in the same coordinate system. The

next step is to build a graph expressing the statistical relationships between the tumors’ posi-

tions. Using an arbitrary distance measure, we can build a complete graph G where the nodes

correspond to the tumors and the edges’ strength corresponds to the distance between the

tumors. The nodes’ probability of being at the center of a preferential location increases with

the amount of tumors being at proximity (node centrality in the network). As a distance mea-

sure, we adopt the euclidean distance between the centers of gravity of the tumors, computed

as the mean coordinate among all tumor voxels. This measure has the advantage of being inde-

pendent from the size of the tumor and of being more robust to registration errors than the use

of surface based distances. This strongly reduces the impact of using affine registration over

deformable registration. We will now consider d = d(Mi,Mj), the set of distances between all

possible pairs of tumors.

The complete graph obtained with this distance measure is shown in Fig 1, where the color

and thickness of the edges illustrate the distances values (from thick and red (low distance) to

thin and blue) while the size of the nodes increases with their centrality.

This graph already suggests some areas with a high density of tumors (red edges) and others

where we seldom find tumors. To confirm those observations and identify preferential areas,

we aim at reducing the dimensionality of the graph by regrouping close tumors in clusters. If

there exists indeed preferential locations, we should obtain compact and well separated clus-

ters. To perform such a clustering, we need to identify (i) the number of clusters K, (ii) the cen-

ters of the clusters �c
1
; . . . ; �ck , (iii) the remaining nodes’ assignments li, i 2 [1, . . ., N] to the

different clusters c1, . . ., cK. Popular clustering algorithms such as K-means have two main

drawbacks: they are very sensitive to initialization and can easily get trapped in a local mini-

mum, while the number of clusters needs to be predefined. To tackle these issues, we make use

of a recently proposed unsupervised clustering method [37] that is able to overcome the afore-

mentioned limitations of conventional methods like K-means. This method automatically

determines the optimal number of clusters and is independent from initialization.

min
k

min
c1 ;...;cK

min
�c1 ;...; �cK

X

N

i¼1

X

K

i¼1

dðli; cjÞdð�cj ;MiÞ þ a
X

K

i¼1

mð�ciÞ

 !

ð2Þ

Where δ(.,.) is the Kronecker delta function. First, the nodes assignments should be determined

so as to minimize their distance to the closest center (first term). The second term is a penalty

introduced in order to avoid the trivial solution of selecting all the nodes as clusters. It is

defined as the mean distance value between the considered node and all the remaining nodes:

mðMiÞ ¼
1

N

X

N

j¼1

dðMi;MjÞ ð3Þ
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This term enables the nodes with the highest centrality (i.e with the highest amount of close

tumors) to be selected as centers. We control the relative importance of the 2 terms using the α

coefficient. For each α value, we evaluate the quality of the clustering using the 3 following

indexes:

The Dunn index [38] is very commonly used for cluster evaluation. It compares the biggest

distance intra cluster (cluster “diameter”) to the smallest distance inter cluster. The formulation

proposed in [38] is very sensitive to noise and outliers as the distances between all nodes are

computed. Here, we follow the more robust graph theoretic approach of [39] to define the

diameter and distance inter cluster. Each cluster is represented as a Minimum Spanning Tree

(MST). Given the set of nodes V j that belong to the cluster cj, a spanning tree is the minimal

subgraph to the complete graph that connects all nodes. The weight of the spanning tree corre-

sponds to the sum of the weights of all edges in the tree. The MST G
MST

j ¼ ðV j; E
MST

j Þ is the

spanning tree of minimal weight. The cluster diameter is then defined as the maximum edge

Fig 1. Network representation of the whole data-set before clustering superimposed to the mean registered image. The nodes are located in the
center of gravity of the tumors and bigger nodes have bigger network centrality (i.e. they are strongly connected to many other nodes). The edges colors and
strength represent the distance between nodes (from red and thick (short distance) to blue and thin). For visibility reasons, arcs corresponding to a distance
greater than 35 are not displayed.

doi:10.1371/journal.pone.0144200.g001
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weight among all edges in the MST graph.

D ¼ min
i2½1:K�

min
j2½1:K�;j6¼i

dð�ci ; �cjÞ

maxk;k02EMST
j

dðMk;Mk0Þ

( )( )

ð4Þ

A high Dunn index corresponds to compact and well separated clusters (high dinter and low

dintra), i.e. to a good clustering. As a result, we aim at finding a clustering that maximizes the

Dunn index.

The Davies-Bouldin [40] index defines a measure of similarity between clusters:

Ri;j ¼
si þ sj

dð�ci ; �cjÞ
ð5Þ

and then computes the maximum similarity for each cluster:

DB ¼
1

k

X

k

i¼1

max
j2½1:k�;j6¼i

Ri;j ð6Þ

where σi is the average distance of all points in cluster ci to its center. A good clustering corre-

sponds to a low DB index (little similarities between different clusters). Like the Dunn index,

DB identifies compact and well separated clusters.

Last, we compute the Silhouette index [41]. It computes for each node a score of confidence

with respect to its cluster assignation.

sðMiÞ ¼
bðMiÞ � aðMiÞÞ

maxðaðMiÞ; bðMiÞÞ
ð7Þ

a(Mi) is the average distance betweenMi and all the remaining elements assigned to the same

cluster while b(Mi) is the average distance betweenMi and all the elements in the closest clus-

ter. The Silhouette index takes values between -1 and 1. If the value is close to 1, the node has

been assigned correctly. A value close to zero suggests that the node is equally far away from 2

clusters, while a silhouette index close to -1 infers that the node has been misclassified. To eval-

uate the quality of the clustering, we compute the global silhouette index:

GS ¼
1

K

X

K

j¼1

1

nj

X

nj

i¼1

sðMiÞ ð8Þ

The highest GS corresponds to the best clustering, where the individual Silhouette indexes are

closest to 1.

We select the clustering result (i.e. α value) that corresponds to the best indexes value.

Atlas Application: Tumor Segmentation and Characterization with
Position Priors

The probabilistic atlas constructed through clustering provides interesting insight on the loca-

tions where tumors are likely to appear and on the tumors’ location dependent properties.

Considering a new image I featuring a tumor, assigning it to a cluster could enable to predict

its future behavior and spatial repartition based on the cluster properties as well as provide

powerful spatial prior information for automatic segmentation.

In this section, we consider that the atlas has been constructed as a K clusters graph. For

each cluster ci, we now consider the spatial extension of all tumors within this cluster through

their associated binary segmentation maps. We build a distribution map as P(x|ci), i 2 [1: K]
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describing the conditional probability of tumors appearances depending on their location

(with respect to the reference frame coordinate system). This can be done simply by counting

the number of tumors in the corresponding cluster appearing at each voxel voxel. Considering

there are N tumors in cluster ci, we defined P(x|ci) as:

PðxjciÞ ¼
1

N

X

j2½1:N�

MjðxÞ ð9Þ

To compensate for the possible small amount of tumors per cluster, all probability maps are

smoothed using a Gaussian filter. Examples of such probability maps are shown in Fig 2.

We formulate the problem of segmentation and characterization as a labeling problem

where we seek to assign a characterization label yx 2 C ¼ fc
1
; :::; ckg and a segmentation label

ox 2 S ¼ f0; 1g to each voxel of the image. The characterization label’s role is to determine

Fig 2. Examples of cluster probability maps describing the spatial repartition of tumors in the cluster. The maps are superimposed to the mean
registered image.

doi:10.1371/journal.pone.0144200.g002
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which preferential location the tumor belongs to by assigning it to one of the sparse graph’s

clusters while the segmentation label aims at separating tumor (ωx = 1) and background voxels

(ωx = 0). We adopt a Markov Random Field (MRF) model on a graph G ¼ ðV; EÞ, where the

graph nodes V correspond to the image voxels x and the graph’s edges E define a first order

neighborhood systemN by connecting a node to its 6 immediate neighbors. The optimal label-

ing l = [θ,ω] is recovered by minimizing the MRF energy:

EðlÞ ¼
X

x

VxðlxÞ þ
X

x

X

y2N ðxÞ

Vx;yðlx; lyÞ ð10Þ

Vx(lx) is the unary cost and describes the likelihood of assigning a specific label to voxel x,

while Vx, y(lx, ly) describes the pairwise interactions between two neighbouring voxels. The

unary and pairwise costs will be details in the subsequent subsections.

Detection. Our first step towards tumor segmentation and characterization is the con-

struction of a classifier that will distinguish tumorous and healthy pixels. We learn such a clas-

sifier using the boosting algorithm Gentle Adaboost [42] and a set of features extracted from

the image. The training set is made of an ensemble of pairs

fx
i
; yig 2 R3 � f�1; 1g; i 2 ½1 : N�, xi is an observed voxel from a training volume and yi is its

corresponding label. The idea behind boosting is that a strong classifier can be created from an

ensemble of weak classifiers. Each pair is associated to a feature vector f(xi) and a weight

Di ¼
1

N
. At each iteration t, a weak classifier ht(xi) is constructed as a decision stump in order to

minimize the training error
PN

i¼1
Diðhtðxi

Þ � yiÞ
2
. The weights are then updated as Di =

Di exp(−yi ht(xi)), putting the emphasis on misclassified sample. Eventually, the strong classi-

fier is computed as a linear combination of the weak classifiers, yielding a score of confidence

H(I(x)) for each location of the image to be segmented given the intensity map.

The features used for classification rely on intensity, texture and symmetry. The main fea-

ture differentiating healthy and tumorous tissues is the intensity enhancement of tumor pixels

on FLAIR images. We exploit this characteristic by using 9 × 9 × 5 intensity patches centered

on the pixel of interest. The underlying idea is also to get information about the neighborhood

of the pixels since there exists overlapping intensities between tumor and background. Rotation

invariant intensity statistics are also used, as we computed the median, standard deviation and

entropy of intensity patches of size k × k × 3, where k = [3, 5, 7], all centered on the pixel of

interest. Gabor filters [43] are particularly useful for distinguishing objects of different textures.

The filters are used on 2 scales and 10 orientations in order to detect the main structures of the

brain (such as the skull). The brain’s hemispheres have the interesting property of being

roughly symmetrical. This can be taken advantage of in our case, since the tumor introduces

dissymmetry between the 2 hemispheres. Thanks to affine registration, the symmetry plane of

all images is roughly equivalent to the approximated reference pose’sP. For each pixel x in the

left half of the image, we compute a symmetry measure as follows:

SðxÞ ¼
1

N

X

N sðxÞ

IðxÞ �
1

N

X

N sðxÞ

Iðx
P
Þ

Sðx
P
Þ ¼ �SðxÞ

ð11Þ

where xP is the symmetric of x with respect toP,N sðxÞ is a neighborhood of x and N the

number of pixels inN sðxÞ. We use a neighborhood to compensate the fact that the symmetry

plane is approximate.

Pairwise Potentials. The MRF energy’s pairwise potential acts as smoothing priors,

imposing spatial consistency of the labellings. We adopt a classic Potts model, penalizing

A Probabilistic Atlas of DiffuseWHOGrade II Glioma Locations in the Brain

PLOS ONE | DOI:10.1371/journal.pone.0144200 January 11, 2016 9 / 24



neighboring nodes that are assigned different labels:

Vx;yð½yx;ox�; ½yy;oy�Þ ¼

0; if yx ¼ yy and ox ¼ oy

b; if yx ¼ yy and ox 6¼ oy

1; otherwise

ð12Þ

8

>

>

>

<

>

>

>

:

where β is a constant parameter imposing the strength of the penalization. Based on the

hypothesis that there is only one tumor per patient, the characterization label has to be the

same for all grid nodes. Setting the penalization to infinity imposes the same characterization

label on all nodes.

Unary Potentials. The unary potential represents the nodes likelihoods and seeks the

most likely label configuration. It is composed of three terms:

Vxð½yx;ox�Þ ¼ VS;xðoxÞ þ VC;xðyxÞ þ VC;S;xðyx;oxÞ ð13Þ

The segmentation unary potential VS, x(.) seeks the most likely segmentation configuration

based on the classification likelihoods recovered from the boosting classification decisions. We

follow the approach of [44] and define it as:

VS;xðoxÞ ¼ �wx logPtmðIðxÞÞ � ð1� wxÞ logPbgðIðxÞÞ ð14Þ

where the prior probabilities are computed from the boosting classification score as:

PtmðIðxÞÞ ¼ ð1þ exp ð�2HðIðxÞÞÞÞ
�1

PbgðIðxÞÞ ¼ 1� PtmðIðxÞÞ
ð15Þ

The role of the characterization term VC, x(.) is to identify the closest cluster the tumor to be

segmented belongs to. In order to identify the most likely cluster, we measure the degree of

non overlap of pixels with a high boosting classification score H(I(x)) with the center of each

cluster.

VC;xðyxÞ ¼ maxð0;HbinðIðxÞÞ �Myx
ðxÞÞ ð16Þ

whereMθx
(.) is the binary map associated to the center of the corresponding cluster andHbin(.)

is the boosting score converted into a thresholded (with threshold T) binary map:

HbinðIðxÞÞ ¼
1; if HðIðxÞÞ > T

0; otherwise
ð17Þ

(

Basically, VC, x(.) counts the number of pixels with a boosting score beyond a given value that

do not overlap with the center of the cluster. The value of θx that minimizes VC, x is the closest

cluster (highest overlap with the cluster center).

The coupling term VC, S, x(.,.), linking the segmentation and characterization, is the key ele-

ment of our framework. The selected cluster gives information on where the tumor voxels are

expected to appear and not to appear, according to the spatial distribution of tumors in the

cluster. This term plays the part of a spatial position prior and is defined as:

VS;C;xðyx;oxÞ ¼ �wx logPðxjyxÞ � ð1� wxÞ log ð1� PðxjyxÞÞ ð18Þ

This term ensures that the segmentation labels are consistent with the location corresponding

to the assigned type of tumor: tumor detections that are not in accordance with the expected

spatial position are penalized.
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The MRF optimization is done using Fast PD [45], an optimization method based on linear

programming, which offers a great compromise between speed and performance.

Second Application: Correlation with Patient’s Age: Statistical Analysis

Patients’ characteristics, including age at the time of the first symptoms and age at MRI diagno-

sis (i.e. age at the time of the first MRI), were described using percentages for categorical vari-

ables, and mean, standard deviation, median and range for continuous variables. Ages in each

cluster (at the time of the first symptoms and at MRI diagnosis) were described with boxplots.

An analysis of variance (ANOVA) and a Bonferroni correction for multiple tests were used to

compare the mean ages of each cluster. Statistical analysis was performed using the SAS (Statis-

tical Application System) v9.3 software.

Results

Two hundred and ten patients were included, among them 97 women (46.2%) and 113 men

(53.8%). The median age at the time of the first symptoms, at the time of the first MRI and at

the time of the MRI analyzed were 37 years (range 15-70), 37 years (range 17-70) and 37 years

(range 17-70), respectively. The mean age at the time of the first symptoms, at the time of the

first MRI and at the time of the MRI analyzed were 38 years. A surgical resection of the tumor

was performed for 202 patients (96.2%) and a biopsy for 8 of them (3.8%). The median and the

mean tumor volumes were 44.7 cm3 (range 0.1-147.9 cm3) and 52.5 cm3, respectively. The

median and the mean delays between the first MRI performed (i.e. at diagnosis) and the MRI

analyzed were 37 days (range 0-2.8 years) and 115 days, respectively. The initial symptoms

were epilepsy in a majority of patients (86.2%), a neurological deficit (speech disturbance,

visual deficit or cognitive impairment) in 2.4%, and were unknown in 1.9%. The diagnosis of

DLGG was incidental for 9.5% of patients (the brain imaging was performed for another dis-

ease or for symptoms that cannot be related to the DLGG).

The image size varied from 144 to 576 in the (x, y) plane and 12 to 213 in the z plane, and

the voxel resolution from 0.4 × 0.4 to 1 × 1mm2 in the (x, y) plane and 0.9 to 10 mm in the z

plane. The tumor size ranged from 0.3 to 180 cm3. The reference pose used for registration is a

256 × 256 × 24 FLAIR image of a healthy brain, with resolution 0.9 × 0.9 × 5.5.

Sparse Graph Validation

In order to select the best clustered graph, we performed clustering of the complete graph for α

values ranging from 0.3 to 7 producing clustering results involving 5 to 49 clusters. We com-

puted the 3 indexes for all the values α. Combining the indexes after normalization as Ic = (D.

(1 − DB).GS)1/3, we observed a global maximum for α = 2.1, corresponding to a 11 clusters

graph. Fig 3 shows the different indexes values and their combination, while Fig 4 shows the 11

clusters graph (i.e. the best clustering). We can observe some symmetry in the graph topology.

Five out of the 11 clusters are located within the left hemisphere (clusters 1, 4, 5, 6 and 11)

while six are located within the right hemisphere (clusters 2, 3, 7, 8, 9 and 10). Clusters 1 and 2

are located in the parietal lobe (left and right parietal lobes, respectively). Clusters 4 and 7 are

located within the left and right temporal lobes, respectively, while clusters 8, 9 and 11 are

located within the insula. The remaining clusters involve the frontal lobes, with clusters 6 and

10 located in the left and right anterior frontal lobes, respectively, and cluster 3 located within

the right prefrontal lobe. The anatomical repartition of clusters is summarized in Table 1 and

the positions of the centers of each cluster in the MNI atlas [46, 47] are shown in Fig 5. Posi-

tions in the MNI atlas are obtained by non-rigid registration [48] of the FLAIR reference pose

to the MNI atlas.
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Next, we performed Leave-One-Out Cross Validation to assess the quality of our clustering.

For 210 experiments (one per sample), we removed one sample and learned the optimal

graph’s topology on the remaining 209 nodes. We then studied the impact of the 210th sample

on the structure of the graph and the quality of the clusters. For each of the 210 experiments,

we computed the 3 indexes. In most cases (207 samples, 98.5% of the data), the graph was a 11

nodes graph which corresponds to the graph obtained with the full data-set. For 3 samples, the

optimal number of clusters was 10, which was due to the fact that they belonged to a loose clus-

ter (center sample or close to center sample) that was merged with its closest neighbor when

the sample was removed.

We then studied the robustness of the graph by analyzing the influence of each sample. For

each clustering obtained by cross validation, we evaluated the impact of the 210th sample on

the structure of the graph and the quality of the clusters. To evaluate how well the clustering

represented the data, we tried to assign each removed sample to a cluster. We used three crite-

ria to do so:

1. The distance from the center of the cluster. The sample has to be assigned to the closest clus-

ter and should be as close to the corresponding center as the nodes constituting the cluster.

Fig 3. Cluster validity indices with respect to the value of α (a, b, c, d) and the number of clusters (e). Dunn index (a), Davies Bouldin index (b),
Silhouette index (c) and combined indices (d, e).

doi:10.1371/journal.pone.0144200.g003
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To determine if the distance to the cluster center follows the cluster’s distance distribution

or if it is an outlier we use rely on the distribution’s quartiles:

dðMi; �ckÞ ¼ min
j2½1:K�

dðMi; �cjÞ and dðMi; �ckÞ � Q
3
ðckÞ þ 1:5ðIQRðckÞÞ ð19Þ

where Q3(ck) and IQR(ck) are respectively the third quartile and interquartile range of clus-

ter ck’s distance distribution.

Fig 4. Visualization of the complete clustered graph superimposed to the mean registered image. The numbers correspond to the number of nodes in
each cluster.

doi:10.1371/journal.pone.0144200.g004

Table 1. Anatomical location of the different clusters.

Anatomical location Number of clusters Percentage of data

Parietal lobe 2 (symmetric) 12%

Supplementary Motor Area (frontal lobe) 1 9%

Temporal lobe 2 (symmetric) 18%

Frontal lobe 1 9%

Anterior frontal (frontal lobe) 2 (symmetric) 15%

Insula 3 (2 symmetric clusters) 37%

doi:10.1371/journal.pone.0144200.t001
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Fig 5. Positions of the cluster centers on the MNI atlas. The clusters are organized in numerical order (from cluster 1 to 11).

doi:10.1371/journal.pone.0144200.g005
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2. The individual Silhouette index. The global silhouette index is indicative of the quality of the

clustering. The individual index tells how well the sample fits in its cluster. Considering the

sample belongs to the closest cluster, we compute the corresponding silhouette index. If the

index is close to 1, there is no doubt about the fact that the sample belongs to this cluster. A

value close to zero does not necessarily mean that the clustering is bad. Indeed, the main

drawback of the silhouette is that it can penalize large clusters (large diameter) when com-

pared to smaller ones. To avoid penalizing large clusters, we also compare the individual

index to the distribution of silhouette values:

skðMiÞ ¼ max
j2½1:K�

sjðMiÞ and skðMiÞ � Q
1
ðckÞ � 1:5ðIQRðckÞÞ ð20Þ

where Q1(Ck) and IQR(ck) are respectively the third quartile and interquartile range of clus-

ter ck’s silhouette index distribution.

3. The last criterion verifies the consistency between the clusters selected by the first two criteria:

argmin
k

dðMi; �ckÞ ¼ argmax
k

skðMiÞ ð21Þ

Using those criteria, we manage to classify 88% of the whole data-set without affecting the

quality of the cluster (mean distance intra cluster, mean silhouette index).

We also studied the topology correspondences of the graphs with respect to the original

graph G0. This was only possible for the 207 samples that yielded a 11 clusters graph. Using the

algorithm presented in [49], we seek a matching between the nodes and arcs’ strength of the

respective graphs. We observed a complete match for 70% of the graphs, and a one node differ-

ence for 26%. The remaining graphs differed from 2 nodes (9 cases) and 4 nodes (1 case). In

the case of partial matching, the graphs were still very similar as the maximum distance

between the different cluster centers was 12.6 which corresponds to the mean intracluster dis-

tance of tight clusters. Fig 6 illustrates partial and complete matches, the worst matching case

(4 different samples) is illustrated in Fig 6c. We can see that the graphs are still very similar in

the case of partial match.

Fig 6. Examples of graphmatching results. (a) Complete match, (b, c) Partial match. Positive matches correspond to blue edges and mismatched
samples to red edges. The nodes’ locations correspond to the coordinates of the cluster centres of each clustering. The green nodes have been translated
along the x axis for visualisation purposes.

doi:10.1371/journal.pone.0144200.g006
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Segmentation results

The segmentation was evaluated on the 210 volumes through Leave One Out Cross Validation.

For each sample, an atlas is constructed using the data’s optimal indexes value and a boosting

classifier is learned by randomly selecting 35 volumes among the 209 training volumes. Experi-

ments showed that the potential assigning a cluster to the image (Vclus) had to be given a much

bigger importance than the others in order to properly label the whole training set to the right

cluster (especially if the tumor is small). T was set at 1.5, λ at 10000, γ at 2 and β at 1.

We evaluate the quality of our segmentation framework by using the manual segmentations

as ground truth. Let us define M the ensemble of pixels labeled as tumor manually, and A the

pixels automatically labeled. For each image, we compute the Dice coefficient, False (FP) and

True (TP) Positive rates and the Mean Absolute Distance between contours (MAD):

D ¼
2 k A \M k

k A [M k þ k A \M k

TP ¼
k A \M k

k M k

FP ¼
k A k � k A \M k

k A k

MAD ¼
1

2

1

nA

X

x2A

dminðx;MÞ þ
1

nM

X

x2M

dminðA; xÞ

 !

ð22Þ

where nA and nM are the number of voxels in A and M respectively and dmin(x,M) =

inf(d(x, y)|y 2M) is the smallest distance of a point x to any point inM. The distance d(.,.)

used here is the euclidean distance.

Results are shown using boosting classification, boosting with pairwise regularization, and

boosting with pairwise regularization and spatial prior. Table 2 shows the mean and median

scores for the different configurations. Boxplots of the values are shown in Fig 7, while visual

examples of segmentation results are illustrated in Fig 8. We observe an increase of the Dice

score (+ 3%) as well as a strong decrease of the false positive rate (- 9%) with respect to the reg-

ularized method. The MAD score provides the most interesting evaluation since it is not biased

by the size of the tumor (contrarily to the other measures). We can observe a strong improve-

ment of the MAD score using the probabilistic atlas. A decrease of the true positive rate is

observed, that is mostly associated to small and poorly detected tumors. In that case, the

selected cluster may be inadequate and cause a decrease in the quality of the segmentation.

Correlation between Tumor Topography and Patient’s Age

The ages at the time of the first symptoms and at the time of MRI diagnosis are described for

each of the 11 clusters in Tables 3 and 4 and Fig 9 (box-plots). The analysis of variance found

no significant difference in terms of age at the time of the first symptoms or age at the time of

Table 2. Mean andmedian (in parentheses) values of the different scores andmethods for tumor
segmentation.

Method Dice True Positive False Positive MAD

Boosting 50 (55)% 77 (83)% 59 (58)% 22 (22) mm

Boosting regularized 66 (74)% 70 (78)% 29 (21)% 9.5 (6) mm

Our method 69 (77)% 66 (74)% 20 (12)% 6 (3.5) mm

doi:10.1371/journal.pone.0144200.t002
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Fig 7. Boxplots of the Dice score (a), True Positive rate (b), False positive rate (c), and MAD score (d) between the automatic andmanual tumor
segmentation for the three different methods.

doi:10.1371/journal.pone.0144200.g007
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Fig 8. Visual Segmentation results. (a) boosting score, (b) Boosting classification (thresholding), (c) Pairwise MRF, (d) MRF with spatial prior.

doi:10.1371/journal.pone.0144200.g008
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MRI diagnosis (p = 0.73 and p = 0.72, respectively). Nevertheless, patients whose MRI belongs

to cluster 3 seem to be younger than the others, with a median age at 33,0 years at the time of

the first symptoms and at 33.1 years at the time of the MRI diagnosis. When comparing this

group of patients (n = 18) with all the others (n = 192), we found no significant difference as

regards to age, with p = 0.11 for the age at the time of the first symptoms and p = 0.91 for age at

the time of MRI diagnosis, respectively. However, it is likely that actual differences exist since

the 95% confidence intervals for the difference between both mean ages were very unbalanced

around the zero value: [−0.99; 9.48] for the age at the time of the first symptoms and [−0.74;

9.79] for the age at the time of the MRI diagnosis.

Discussion

In this paper, we introduced a probabilistic atlas that identifies the preferential locations of

DLGGs in the brain. This atlas is based on a homogeneous series of non-treated DLGG, which

is, to our knowledge, the biggest series of “pure” DLGG. We analyzed MRIs only if they had

Table 3. Mean andmedian ages at the time of the first symptoms for each cluster.

Age at the time of the first symptoms (in years)

Cluster Nsamples (%) Mean Standard Deviation Median Min Max

1 9 (4.3) 39.1 12.2 40.4 20.5 61.4

2 17 (8.1) 39.3 10.7 39.8 23.1 62.8

3 18 (8.6) 34.2 8.6 33.0 22.3 52.4

4 13 (6.2) 39.4 7.5 38.6 28.6 52.7

5 19 (9.0) 37.2 10.3 37.3 15.9 56.5

6 12 (5.7) 34.7 10.8 34.5 21.0 51.7

7 25 (11.9) 40.7 10.0 41.2 20.3 63.2

8 19 (9.0) 35.6 10.5 36.6 18.5 53.9

9 30 (14.3) 39.0 12.6 35.8 22.0 70.0

10 19 (9.0) 38.6 11.2 37.9 17.7 59.1

11 29 (13.8) 39.1 12.1 37.3 18.2 67.1

doi:10.1371/journal.pone.0144200.t003

Table 4. Mean andmedian ages at the time of MRI diagnosis for each cluster.

Age at the time of MRI diagnosis (in years)

Cluster Mean SD Median Min Max

1 39.5 12.5 40.4 20.7 61.4

2 39.3 10.7 39.8 23.1 62.8

3 34.4 8.8 33.1 22.3 52.7

4 39.7 7.4 38.6 28.9 52.9

5 37.4 10.2 37.3 17.3 56.6

6 36.2 10.7 35.1 21.0 56.4

7 41.0 10.2 41.2 20.3 63.2

8 35.8 10.6 36.7 18.5 54.0

9 39.6 12.7 37.2 22.0 70.3

10 38.6 11.2 38.0 17.8 59.1

11 40.2 12.2 37.4 18.2 67.1

doi:10.1371/journal.pone.0144200.t004
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been performed before the patient had received any oncological treatment. Because the MRIs

in DICOM format and with FLAIR sequences were necessary for our analysis, we could not use

the first MRI performed (i.e. the MRI at diagnosis) for some patients (n = 122). However for

these patients the median delay between the first MRI and the MRI analyzed was short (125

days), and was over a year for 19 patients only. As DLGG are slowly growing tumors, this delay

is unlikely to cause dramatic changes in the tumor volume or to bias the determination of the

tumor center of gravity.

The atlas provides a precise description of the tumors locations and spatial extension in

each cluster (prior probability maps and clusters positions). The insula is undoubtedly a pre-

dominant location for the DLGG as more than a third of the tumors are situated in this area

(37% of the data). This result, as well as the quasi-total absence of tumors in or near the occipi-

tal and prefrontal lobes, is in accordance with what was observed in [17]. The proposed atlas

and complete database are available for download at http://db-gliomas-gradeii.net/.

Several applications for this atlas are imaginable. The proposed atlas constitutes a robust

method for correlations between DLGG topography and their characteristics. The patient’s age

at diagnosis and first symptoms was considered in this paper, and a study with respect to the

tumors’molecular biology is currently ongoing.

We were not able to show any variability regarding both the age at the moment of the first

symptoms or the age at MRI diagnosis according to the tumor location. Such variability has

been recently suggested by Gerin et al, who identified two types of tumors among DLGGs, the

first one occurring during teenage years with a very slow growth, and the second one occurring

in early adulthood with a slow growth, [5]. In our series there is a trend towards a younger age

for patients with a tumor belonging to the cluster 3 involving the SMA compared to the other

locations, but it did not reach significance. However, it is likely that there is actually a difference

with regard to the age since the 95% confidence intervals of the difference between mean ages

of the “SMA group” and the “non-SMA” group, even though they contain the value zero, are

unbalanced towards zero ([−0.99; 9.48]) for the age at the time of the first symptoms and

Fig 9. Patient’s age at the time of the first symptoms (a) and MRI diagnosis (b) for each cluster.

doi:10.1371/journal.pone.0144200.g009
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[−0.74; 9.79] for at the time of MRI diagnosis, respectively). The small effective in the “SMA

group” (n = 18) could partly explain our lack of statistic power. If such a difference does exist

for DLGG involving the SMA, it would reinforce the fact that this area has specific biological,

architectonic and functional properties, with particular interactions between glial cells and

neurons that could, maybe, explain in parts earlier gliomatogenesis [17].

This study should be pursued with a larger database in order to establish whether those ten-

dencies are confirmed. Furthermore, we have now designed a pipeline for correlating the posi-

tion of the tumor with any parameter through the use of the probabilistic atlas. It is

straightforward to extend the study to investigate the correlation of other parameters (molecu-

lar biology for instance) to the tumor location.

Furthermore, it would be interesting to couple this atlas with information obtained from func-

tional imaging and study the relationship between tumors’ position and brain functions. This

could enable to identify compensable regions and predict the future functional reorganization of

the brain depending on the location of the tumor. All of this would be extremely useful for sur-

gery planning. Eventually, the same method could also be applied to other kinds of lesions, per-

haps by changing the distance measure for one that is more adapted to the type of lesion.

We presented in this paper an application as a spatial position prior for tumor detection

and segmentation. We managed to efficiently detect and characterize (i.e. assign to a cluster)

the tumors from a sizable dataset and despite some unclear boundaries and heterogeneous

appearances. As stated in the introduction, DLGG have different behaviors depending on their

location. We could be able to infer the evolution of the tumor depending on the cluster it is

assigned to.

Obtaining the best possible tumor segmentation is not the main focus of this paper. The

proposed method was used to highlight the clinical relevance of the probabilistic atlas. We

therefore used simple unary costs (boosting) while much more elaborated approaches from the

literature could have been considered. It is therefore difficult to compare our results with the

current state of the art from the BRATS challenge [50]. On top of that, we are using a very dif-

ferent and challenging database (monomodal data, variable quality, low resolution) due to our

clinical setting.

Segmentation can be harder for small tumors, that do not offer an important contrast and

are sometimes even difficult to detect visually. The impact of the spatial prior on the segmenta-

tion quality is directly dependent on the accuracy of the cluster assignment as well as how well

the tumor fits in the cluster. As stated above, 12% of the data could not be represented by any

cluster and therefore should not be assigned to any. The segmentation results would most likely

be increased by the introduction of a label identifying outlier tumors, possibly by identifying if

the tumor is equally distant to two or more clusters.

Despite the fact that we are already working on a large data-set, the quality and precision of

the graph as well as the clusters probability distributions (i.e. the prior probability maps), could

benefit from an increase of the size of the data set. Currently, we evaluate the segmentation’s

quality with respect to a manual segmentation by comparing the pixels detected as tumor to

the pixels manually labeled as tumors. Manual segmentation is, unfortunately, a subjective

approach and dependent on the operator [28]. Results could differ with another operator, espe-

cially in the case of DLGG where boundaries of the tumors can be very fuzzy.

The registration step also leaves room for improvement. First, the fact that all registrations

are done towards an arbitrary reference pose introduces a bias in the atlas’ structure. We should

get better results using population registration methods [51] that register all the images

together without the use of a reference pose. Second, the use of an affine registration scheme

maintains the different brains anatomy but lacks precision in the matching of the anatomical

structures. Increased precision would be obtained by aligning all volumes through a
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deformable registration scheme that takes into account the missing correspondences induced

by the presence of the tumor [33]. Due to the systematic processing of a potentially large scale

database, deformable registration methods have to be made fully reliable before being used in

our context.
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