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Abstract: The technology of fault diagnosis helps improve the reliability of wind turbines. Difficulties
in feature extraction and low confidence in diagnostic results are widespread in the process of deep
learning-based fault diagnosis of wind turbine bearings. Therefore, a probabilistic Bayesian parallel
deep learning (BayesianPDL) framework is proposed and then achieves fault classification. A parallel
deep learning (PDL) framework is proposed to solve the problem of difficult feature extraction of
bearing faults. Next, the weights and biases in the PDL framework are converted from deterministic
values to probability distributions. In this way, an uncertainty-aware method is explored to achieve
reliable machine fault diagnosis. Taking the fault signal of the gearbox output shaft bearing of a wind
turbine generator in a wind farm as an example, the diagnostic accuracy of the proposed method
can reach 99.14%, and the confidence in diagnostic results is higher than other comparison methods.
Experimental results show that the BayesianPDL framework has unique advantages in the fault
diagnosis of wind turbine bearings.

Keywords: wind turbine bearing; fault diagnosis; uncertainty; BayesianPDL

1. Introduction

Condition monitoring and fault diagnosis technologies for wind turbines have received
more and more attention. According to the report of the Global Wind Energy Council, by
the end of 2019, the total installed capacity of wind turbines has reached 651 GW [1]. Wind
turbines have been under severe and extremely complex working conditions for a long
time [2], resulting in a high component failure rate. Wind turbine bearing failures lead
to long downtimes due to maintenance, and are prone to secondary failures, resulting in
huge economic losses [3,4]. Therefore, fault diagnosis of bearings is of great significance
for improving the operational productivity of wind turbines [5]. Currently, vibration
signals are considered as an important source of information for monitoring the condition
of bearings.

Huge amounts of data are generated during the operation of wind turbines [6]. How
to mine effective fault information from massive data has become an urgent problem to be
solved. Data-driven fault diagnosis models, e.g., multi-layer perceptron [7], rough set [8],
Dempster–Shafer theory [9], support vector machine (SVM) [10], and deep learning [11],
provide a new research direction for solving the above problems. Li et al. [12] proposed a
local feature learning method based on backpropagation for rolling bearings fault diagnosis.
Xu et al. [13] proposed an improved chaotic particle swarm optimization support vector
machine method for fault diagnosis. The shallow learning machine is prone to overfitting
during the training process, which leads to slow training speed and poor diagnostic effects.
Deep learning provides a solution to solve the above problems. In order to solve the
problems of insufficient extrapolation for the fault diagnosis of bearings in real wind
turbines, a multi-scale convolutional neural network with bidirectional long short-term
memory was designed by Xu et al. [14]. Kong et al. [15] proposed an enhanced sparse
representation-based intelligent recognition method for planet bearing fault diagnosis in

Sensors 2022, 22, 7644. https://doi.org/10.3390/s22197644 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197644
https://doi.org/10.3390/s22197644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22197644
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197644?type=check_update&version=2


Sensors 2022, 22, 7644 2 of 17

wind turbines. The proposed method makes the model highly interpretable. Xu et al. [16]
proposed a fault diagnosis of the rolling bearing of wind turbines based on the variational
mode decomposition and deep convolutional neural networks. A small sample fault
diagnosis method for a wind turbine gearbox based on optimized generative adversarial
networks was proposed by Su et al. [17]. Although the above method has achieved a good
diagnostic effect, the output of the diagnostic result is the label of the class with the largest
probability value, so it cannot give a certain degree of confidence for this classification
result. Confidence in diagnostic results is challenged.

In manufacturing, we are interested in identifying any faulty machine accurately
as early as possible. However, as with classification problems, traditional deep learning
networks produce diagnostic outputs that are overconfident and unconfident. There are
usually two kinds of mistakes, false negatives, and false positives. If the machine in normal
operation is classified as a faulty machine, it is called a false negative. If the faulty machine
is considered to be operating normally, it is called a false positive. In the first case, although
production costs may be increased, the production can be resumed quickly. In the second
case, huge losses in cost, time, and substandard products during production should be
avoided. Fortunately, one can use the prediction uncertainty to fine-tune the decision of
whether a machine is faulty or not. By quantifying the uncertainty, the confidence of the
classification output is reflected.

Bayesian deep learning provides a novel way to make neural networks with uncer-
tainty, giving diagnostic results with confidence [18]. Zhou et al. [19] applied the Bayesian
deep learning to the fault diagnosis of bearings to achieve reliable diagnostic results,
while verifying the transfer learning of neural networks. Maged et al. [20] exploited the
prediction uncertainty information of Bayesian deep learning to improve fault detection.
Tang et al. [21] used a Bayesian optimization algorithm to optimize the convolutional neu-
ral network and achieved certain results. Pérez-Pérez et al. [22] proposed a wind turbine
uncertain model based on sensor data and an adaptive neuro-fuzzy inference system
method. The above methods all use Bayesian deep learning to predict the uncertainty in
the fault diagnosis process, but the traditional deep learning framework is not specially
optimized. The traditional deep learning framework cannot identify the fault features of
wind turbine bearings well, and there is a situation in which fault feature identification is
lost during the identification process.

In summary, a probabilistic Bayesian parallel deep learning framework is proposed
to achieve fault multiple classifications with high confidence. It solves the problems of
difficulty in fault feature extraction and low confidence in diagnostic results of wind turbine
bearing. To effectively extract the fault features of the wind turbine bearing, a parallel deep
learning (PDL) framework is proposed. A Bayesian probability model is embedded in the
PDL framework. The weights and biases in the PDL framework are then transformed from
deterministic values to probability distributions to assess the confidence of the diagnostic
results. The contributions of this paper are summarized as follows:

(1) The PDL framework is constructed to enhance the feature learning ability. Multiple
parallel fusion residual blocks (PFRBs) are parallelized, which can enable the fault
diagnosis performance. The PDL framework can adaptively select the number of
PFRBs according to the characteristics of the dataset.

(2) A probabilistic Bayesian parallel deep learning framework fault diagnosis method
is proposed under the framework of probabilistic Bayesian deep learning for the
uncertainty perception of faults.

(3) Taking the fault signal of the gearbox output shaft bearing of a wind turbine in a
wind farm as an example, it is proved that the proposed method has high accuracy
and confidence in the diagnosis results. It exhibits excellent performance in the fault
identification of wind turbine bearings.

The rest of this paper is as follows: Section 2 introduces the theoretical background
and implementation of the Parallel deep learning framework. Section 3 details the overall
implementation of the BayesianPDL framework. In Section 4, we conduct an experimental
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study on the fault signal of the gearbox output shaft bearing of a wind turbine in a wind
farm, and compare the BayesianPDL framework with other methods in terms of fault
diagnosis performance and confidence in the diagnosis results. Finally, the conclusions
work of the research are discussed in Section 5.

2. Parallel Deep Learning Framework

When the wind turbine fault data are collected, due to the complex environment,
the collected data signals contain a lot of redundant information and serious interference.
Therefore, a parallel deep learning framework is proposed.

The PDL framework consists of multiple PFRBs: each PFRB consists of two fused
residual blocks. Figure 1 shows the PDL framework. Feature maps are initially identified
by a convolutional layer and pooling layer. The fault features information on the front
layer is identified by PFRBs. The problem of network degradation is solved by shortcut
connection. The fault features are fused in the attention feature fusion layer to achieve
feature augmentation. The fault features are fitted in the fully connected layer to obtain
fault diagnosis results.
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Figure 1. Parallel deep learning framework.

2.1. Parallel Fusion Residual Block

The fused residual block consists of two convolutional basic units and a max-pooling
layer, and the convolutional basic unit is composed of a convolutional layer and a batch
normalization layer. Different activation functions are used by different convolutional basic
units. The PFRBs consist of two fused residual modules, as shown in Figure 2. Multiple
PFRBs are parallelized and form the main PDL framework.

The output of a parallel fused residual block is:

XPFRB
1 = X(n,1) + X(n,2), n = 1, 2, . . . , N (1)

where XPFRB
1 represents the output of a PFRB. X(n,1) and X(n,2) represent the output of the

first fused residual block and the second fused residual block of the nth PFRBs, respectively.
N is the number of PFRBs.
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2.2. Attention Feature Fusion Layer

After the features are subjected to convolution, pooling, and other operations in PFRBs,
the semantic information of the features can be effectively improved. It is necessary to
distinguish fault features and noise before feature fusion. Focus on fault features and
suppressing noise through an attention mechanism. The attention value of the fault feature
is expressed as follows:

A((K, V), ϕ) =
∆

∑
i=1

exp
(

XT
i ϕ/
√

δ
)

∑j exp
(

XT
i ϕ/
√

δ
)vi (2)

where A stands for attention value. (K, V) = [(k1, v1), (k2, v2), . . . , (k∆, v∆)] represents ∆
th input information. K represents attention distribution, and V represents aggregated
information. ϕ is the task query vector. δ represents the input dimension.

The high attention values of fault features are obtained under the action of the attention
mechanism. High attention values have higher fusion weights, so feature augmentation is
achieved when features are fused. Noise has a lower attention value. During feature fusion,
the noise fusion weight is low, so it will not enhance.

The features extracted by each PFRBs are fused at the attention feature fusion layer
according to different fusion weights. In this way, the feature augmentation of the internal
network is realized. The output of the attention feature fusion layer is expressed as:

XPMBF = Fusion




A(1,1)X(1,1) + A(1,2)X(1,2)

A(2,1)X(2,1) + A(2,2)X(2,2)

. . . . . .
A(n,1)X(n,1) + A(n,2)X(n,2)

, ξ

, n = 1, 2, . . . , N (3)

where XPMBF is the output of the parallel fusion residual structure. ξ is the fusion weight.

3. Proposed Method

In this study, an uncertainty-aware approach is explored in a probabilistic Bayesian
deep learning framework for reliable machine fault diagnosis. Traditional deep learning
has the problems of difficulty in fault feature extraction and low performance in fault
diagnosis. Therefore, a probabilistic BayesianPDL framework is designed for the bearing
fault diagnosis of wind turbines. The overall process of the proposed method is shown in
Figure 3.

The general steps are summarized as follows:
Step 1: Signal acquisition by sensors. The raw signal is preprocessed using the

CWT method.
Step 2: According to the characteristics of the fault signal, select the appropriate

number of PFRBs. This can eliminate noise interference components in the monitoring
signal of wind turbines and capture more useful low-frequency fault features.

Step 3: BayesianPDL framework makes the posterior parameter distribution approximate
to the variational distribution through variational inference, making the network uncertain.
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Step 4: The training dataset trains the training network. The test dataset evaluates the
confidence of the decisions given by the diagnostic model, resulting in a confident diagnosis.

Sensors 2022, 22, 7644 5 of 17 
 

 

fault diagnosis of wind turbines. The overall process of the proposed method is shown in 
Figure 3. 

A probabilistic Bayesian Parallel deep learning framework

Data collection site

Data acquisition and data preprocessing
Health condition 1

Health condition N

training

validation

test
Dataset

CWT

Application of the proposed model

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω Attention 
feature 
fusion 

Fully 
Connected 

layerParallel fusion residual blockData

1x

2x

nx

/μ σ

/μ σ

/μ σ

ω

ω

ω

ω

/μ σω

/μ σω

/μ σ

/μ σ

ω

ω

/μ σ

/μ σ

/μ σ

/μ σ

ω

ω

ω

ω

/μ σω

/μ σω

/μ σ

/μ σ

ω

ω

/μ σ

/μ σ

/μ σ

/μ σ

ω

ω

ω

ω

/μ σω

/μ σω

/μ σ

/μ σ

ω

ω

/μ σ

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

Feature 
extraction layer

ω

ω

ω

ω

ω

Proposed method

180
20.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0.0%

1
0.1%

178
19.8%

0
0.0%

1
0.1%

0
0.0%

1.1%

0
0.0%

0
0.0%

180
20.0%

0
0.0%

0
0.0%

0.0%

0
0.0%

5
0.6%

0
0.0%

175
19.4%

0
0.0%

2.8%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

179
19.9%

0.6%

0.6%

2.7%

0.6%

0.6%

0.0%

0.9%
100% 98.9% 100% 97.2% 99.4%

99.4%

97.3%

99.4%

99.4%

100%

99.1%

0

1

2

3

4

0 1 2 3 4

 
Figure 3. Fault diagnosis process of BayesianPDL framework. 

The general steps are summarized as follows: 
Step 1: Signal acquisition by sensors. The raw signal is preprocessed using the CWT 

method.  
Step 2: According to the characteristics of the fault signal, select the appropriate num-

ber of PFRBs. This can eliminate noise interference components in the monitoring signal 
of wind turbines and capture more useful low-frequency fault features. 

Step 3: BayesianPDL framework makes the posterior parameter distribution approx-
imate to the variational distribution through variational inference, making the network 
uncertain. 

Step 4: The training dataset trains the training network. The test dataset evaluates the 
confidence of the decisions given by the diagnostic model, resulting in a confident diag-
nosis. 

3.1. A Probabilistic Bayesian Parallel Deep Learning Framework 
Figure 4 shows a probabilistic Bayesian parallel deep learning framework that uses 

weight distributions instead of point estimation in traditional deep learning. This gives it 
advantages for small dataset processing and network uncertainty. The model parameters 
during training, i.e., weights and biases, are parameterized to provide a probability dis-
tribution over all parameters, which is called the posterior distributions. The posterior 
distribution helps Bayesian neural networks capture uncertainty in network weights dur-
ing classification [23]. It can make the prediction result have a higher confidence. 

Figure 3. Fault diagnosis process of BayesianPDL framework.

3.1. A Probabilistic Bayesian Parallel Deep Learning Framework

Figure 4 shows a probabilistic Bayesian parallel deep learning framework that uses
weight distributions instead of point estimation in traditional deep learning. This gives
it advantages for small dataset processing and network uncertainty. The model parame-
ters during training, i.e., weights and biases, are parameterized to provide a probability
distribution over all parameters, which is called the posterior distributions. The posterior
distribution helps Bayesian neural networks capture uncertainty in network weights during
classification [23]. It can make the prediction result have a higher confidence.

We define the model likelihood p(y| f ω). Set dataset X = {x1, . . . , xN}, Y = {y1, . . . , yN},
[X,Y]∈D. To find the posterior distribution over parameters, the simple rules of probability,
i.e., Bayes’ rule need to be used here:

p(ω|D) =
p(D|ω)p(ω)

p(D)
(4)

where p(D|ω) represents the likelihood of data for a specific weight collection ω. p(D) is
the marginal likelihood. p(ω) is the prior distribution.
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where KL represents Kullback–Leibler divergence. [ ]( | ) log ( | )q p D
θ ωθ ω  is likelihood 
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3.2. Variational Inference

p(D) is difficult to calculate. Therefore, a simple distribution is used to approximate
the posterior distribution, and the concept of approximation is introduced:

p(ω|D) ≈ qθ(ω|θ) (5)

The weights ω are sampled from a Gaussian distribution based on the parameter
θ:ω ∼ N(µθ , σθ).

Therefore, we need to find the minimum value between p(ω|D) and qθ(ω|D) :

θopt = argmin
θ

KL[qθ(ω|θ)||p(ω|D)]

= argmin
θ

KL[qθ(ω|θ)||p(ω)]−Eqθ(ω|θ)

[
log qθ(ω|θ)

p(D|ω)p(ω)

] (6)

where KL represents Kullback–Leibler divergence. Eqθ(ω|θ)[log p(D|ω)] is likelihood cost.
Find the minimum value of KL approximately equal to maximizing the evidence lower
bound (ELBO), namely:

LELBO(D, θ) = Eqθ(w|θ)[log p(D|ω)]−KL[q(ω|θ)||p(ω)] (7)

Approximate ELBO as an unbiased Monte Carlo estimator. Here, the tractable opti-
mization object, i.e., maximization w.r.t.θ, becomes:

LELBO(D, θ) ≈
n

∑
i=1
− log p(D|ωi) + log q(ωi|θ)− log p(ωi) (8)

3.3. Uncertainty Analysis

Aleatoric uncertainty measures the amount of noise inherent in the data. Epistemic
uncertainty in the weights can be reduced by observing more data [24]. This uncertainty
induces prediction uncertainty by marginalizing over the (approximate) weights poste-
rior distribution.

To capture this uncertainty, we can sample multiple times from the distribution of
model parameters to get T models, and use these T models to make predictions on the
same sample. For a pixel i of the input features belonging to the category c, the model will
output a prediction vector fi. To avoid the integration of the weights, we approximate by



Sensors 2022, 22, 7644 7 of 17

two Monte Carlo sampling. This can be approximated using two Monte Carlo integrations
as follows:

p(y = c|x, X, Y) ≈ 1
T

T
∑

t=1

1
1+exp(− f ωt (x))

≈ 1
T

1
N

T
∑

t=1

N
∑

n=1

1
1+exp(− f ωt (x))

(9)

where T samples masked model weights ωt ∼ qθ(ω), qθ(ω) is the Dropout distribution.
The uncertainty of this probability vector p can then be summarised using the entropy

of the probability vector:

H(p) = −∑C
c=1 pc logpc

≈ −∑C
c=1

1
T

1
N

T
∑

t=1

N
∑

n=1

1
1+exp(− f ωt (x)) × log

(
1
T

1
N

T
∑

t=1

N
∑

n=1

1
1+exp(− f ωt (x))

)
(10)

To sum up, the loss function of the training model is:

Lx = ∑
i

log
1
T

1
N ∑

t
∑
n

exp

(
f ω
i,c + σω

i εn,c − log ∑
c′

exp
(

f ω
i,c′ + σω

i εt,c′
))

(11)

where f ω
i is the output when the network parameter is ω. In order for BayesianPDL

framework to capture perceptual uncertainty, accidental uncertainty is captured by an
additional addition of noise σ.

4. Case Studies and Results
4.1. Experimental Setup

In the experiment, the CTCWT135 vibration acceleration sensor was used to collect
fault signals from the gearbox bearings of a wind turbine at a wind farm. This sensor
is a dynamic range of ±10 g (peak), a sensitivity range of 500 (±10%) mV/g, and a
measurement frequency responses range of 0.1 Hz to 10,000 Hz. The sampling frequency is
set to 25,600 Hz, and the gearbox output shaft bearing type is NU2326. The sensor is fixed
with a double-ended stud and installed on the gearbox wall directly above the bearing
(12 o’clock). Figure 5 shows the vibration signal acquisition site.
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This experiment used five datasets and a total of five bearing states, including normal,
inner race defect, ball defect, outer race defect, and cage defect. Among them, the inner
ring failure is spalling, the failure of the ball and cage is worn, and the outer ring failure
is electrical corrosion. Because the fault occurs at different times, the data are collected
at different speeds. Detailed information on the dataset setting is shown in Table 1. As a
time–frequency domain conversion method, CWT can effectively transform 1D vibration
signals into 2D time–frequency maps which can be directly used by the convolution
layers. Complex Morlet wavelet (cmor3-3), as a widely used WBF, is utilized in signal
preprocessing. The bandwidth parameter and center frequency of the CWT are set to 3,
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and the length of the scale sequence is set to 128. The time–frequency feature maps are
generated from the vibration signal, as shown in Figure 6.

Table 1. Rolling bearing fault dataset.

Labels Fault Location Rotating Speed Dateset (Training/Validation/Test)

0 Normal 1482 600/200/180
1 Inner race 1717 600/200/180
2 Ball 1326 600/200/180
3 Outer race 1788 600/200/180
4 Cage 1831 600/200/180
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The data samples are divided into a training dataset, validation dataset, and test
dataset using the holdout cross-validation. The training dataset is used for the training
model. The validation dataset is used to adjust and optimize parameters. The test dataset
is used to evaluate the diagnostic performance of the BayesianPDL framework. To reduce
the contingency of the experimental results, the results obtained are the average of five
experimental results.

The hyperparameters of the fused residual block are set as shown in Table 2, which
consists of a convolutional layer, a batch normalization layer, and a max-pooling layer.
For other parameter settings, the range of section depth is set to [1, 3], the range of initial
learning rate is set to [1E-2, 1], the range of momentum is set to [0.8, 0.99], and the range
of L2 regularization is set to [1E-10, 1E-2]. To make up for the lack of data volume, let the
limited data generate more data, increase the number and diversity of training samples, and
improve the robustness of the BayesianPDL framework. Commonly used methods include
rotation reflection, flip, zoom, shift, scale, contrast, and so on. The rotation transformation
method was selected in this experiment.

Table 2. Fusion residual block hyperparameters settings.

No. of Layer Layer Parameters

Conv1_1 Convolution layer 1_1 64 convolution kernels with the size of [3,3].
Stride: [2,2]. Padding: same.

BN Batch Normalization layer Scale is 64.

Conv2_1 Convolution layer 2_1 64 convolution kernels with the size of [3,3].
Stride [2,2]. Padding: same

BN Batch Normalization layer Scale: 64.

MaxPooling MaxPooling layer Pooling size: [3,3]. Stride: [2,2].
Padding: [0,0,0,0].

4.2. Experimental Results and Discussion

To obtain the best number of PFRBs, the proposed method can extract fault features
from the noise background. The signal-to-noise ratio (SNR) is applied to represent the
degree of noise added to the pure signal. The function of SNR is expressed as

SNR = 10lg
(Psignal

Pnoise

)
(dB) (12)
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where Psignal represents the power of the original signal. Pnoise represents the power of the
added noise signal.

Figure 7 shows six different noisy signals. It can be found that different noisy signals
have different amplitude characteristics. It can be seen from the figure that, as the SNR
decreases, the vibration signal is obviously submerged in the noise.
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The accuracy of the BayesianPDL framework tested under different numbers of PFRBs
in different noise environments, as shown in Figure 8. The BayesianPDL frameworks with
different numbers of PFRBs are trained using six kinds of noise signals. Each noisy signal
is used to obtain the training dataset, the validation dataset and the testing dataset.
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As the SNR gradually increases, the accuracy of the BayesianPDL framework is
getting higher. As the number of PFRBs increase, the accuracy of the proposed method
also increases. When the number of PFRBs is 3, the accuracy of fault diagnosis reaches the
highest.

Take SNR = 0 dB as an example, and observe its training curve. Figure 9 shows the
convergence curve of the network training process when the number of PFRBs is 3. It can
be intuitively found that the convergence curves of training and testing have a good fitting
effect. The curve stops converging when the accuracy reaches 99.14%. From the testing
curve, it is found that the proposed method is satisfactory.
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Figure 9. BayesianPDL framework training process. Figure 9. BayesianPDL framework training process.

When PFRBs is 3, the uncertainty distribution of the network is shown in Figure 10.
The probability density of the uncertainty distribution proposed method is significantly
reduced due to the heavily disturbed noise on the signal at low SNR. This reduces the
confidence of the diagnostic results and reduces the diagnostic accuracy. At higher SNR,
the probability density is highly uniform with higher confidence. As SNR increases, so does
the confidence of BayesianPDL, which gives high confidence in the diagnosis. Therefore,
when the number of PFRBs is 3, the diagnostic results have the highest confidence and the
highest accuracy, thus obtaining the optimal Bayesian PDL.
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To further evaluate the predictive power of the model, receiver operating character-
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To further evaluate the predictive power of the model, receiver operating characteristic
(ROC) curves of different fault labels are as shown in Figure 11. As a result, the BayesianPDL
framework has a high fault detection capability. Figure 12 shows the outer ring fault features
identified by the BayesianPDL framework. The input time–frequency feature map as shown
in Figure 12a, and the features identified map by the BayesianPDL framework as shown in
Figure 12b. The fault features of the outer ring are represented by feature (1) and feature (2),
respectively, and the feature (2) is not obvious. However, the BayesianPDL framework can
effectively identify fault features, such as feature (3) and feature (4), during the diagnostic
process. This demonstrates that the proposed method has a strong feature extraction ability
in the process of wind turbine bearing diagnosis.
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Figure 12. The outer ring fault features identified by BayesianPDL framework. (a) input feature map;
(b) identified feature map. (1) and (2) is the fault feature of the input. (3) and (4) is the identified
fault feature.

In this experiment, EEMD, VMD, STFT, and ST are used to preprocess the raw signal,
respectively. The preprocessed signal is used as the input to the optimal BayesianPDL
framework. The CWT method significantly improved the feature resolution of the input
BayesianPDL framework and achieved higher fault diagnosis accuracy. Table 3 shows the
comparison results using other preprocessing methods as input to the optimal Bayesian-
PDL framework. Among them, the input of the BayesianPDL framework is the raw
one-dimensional vibration signal, and its fault diagnostic accuracy is the lowest. The CWT
method significantly improved the feature resolution of the input BayesianPDL framework,
and achieved higher fault diagnosis accuracy.

Table 3. Test results using different data preprocessing methods.

Methods Testing Accuracy

BayesianPDL 96.54% ± 0.3168
EEMD-BayesianPDL 97.93% ± 0.1799
VMD-BayesianPDL 98.01% ± 0.1997
STFT-BayesianPDL 97.56% ± 0.3752

ST-BayesianPDL 97.48% ± 0.2688
Proposed method 99.14% ± 0.0401

Comparing the literature [13,25] and traditional machine learning fault diagnosis
methods with optimal BayesianPDL, the input signal of different diagnostic methods is the
raw vibration signal. Among them, the PSO-SVM method and the CMCPSO-SVM method
were obtained through the literature 13. The AETF-SVM method was obtained through
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the literature 25. Figure 13 shows the average diagnostic accuracy of different diagnostic
methods. Compared with other diagnostic methods, the method proposed has the highest
accuracy. However, the other methods are all non-probabilistic diagnostic models (the
network is deterministic). When the diagnostic process with the confidence level cannot be
obtained, this results in unreliable diagnostic results.
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In the Bayesian deep learning framework, the Bayesian process can be flexibly trans-
ferred to other types of deep learning models. Compare the convergence performance
of the optimal BayesianPDL framework with GoogleNet, ResNet-18, and Inception-V3
methods. The accuracy convergence curves of the raw signal input for different diagnostic
methods are shown in Figure 14. It can be seen from the four convergence curves that the
proposed method has the fastest convergence speed, the smallest curve fluctuation, and the
best convergence effect. There are many fluctuations in the other three methods during the
training process, which indicates that there may be problems such as gradient explosion
during network fitting. The convergence curve of GoogleNet still has large fluctuations
after the diagnosis, resulting in a diagnostic result of only 97.21%.
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The uncertainty contributions of different diagnostic models are as shown in Figure 15.
The proposed method has a higher probability density. This indicates higher confidence in
the diagnostic results of the proposed method. The F1-score of the different fault labels is
represented in Figure 16. It can be seen that the method proposed has the highest F1-score
and thus the best quality of the model. The confusion matrix of the four models is shown
in Figure 17. For each type of label, the method proposed has high diagnostic accuracy.
Therefore, the BayesianPDL framework has superior diagnostic capability to other signal
analysis methods.
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The training time of the optimal BayesianPDL framework is compared with that
of GoogleNet, ResNet-18, and Inception-V3, methods. The efficiency of raw vibration
signal input into different diagnostic methods is shown in Table 4. As the number of
PFRBs increases, the training time of the BayesianPDL framework continues to increase.
However, the accuracy is highest when the BayesianPDL framework has three PFRBs.
Other diagnostic methods have a long training time due to the complex network structure.
The proposed method has high accuracy and the shortest training time.

Table 4. The diagnostic performance of the different methods.

Methods Testing Accuracy Training Time (s)

Proposed method (one PFRB) 98.15% ± 0.1136 1954
Proposed method (two PFRB) 98.91% ± 0.1039 3018

Proposed method (three
PFRB) 99.14% ± 0.0401 3780

GoogleNet 97.21% ± 0.0719 5982
ResNet-18 99.08% ± 0.0724 5540

Inception-V3 98.12% ± 0.0439 6078
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The training time of the optimal BayesianPDL framework is compared with that of 
GoogleNet, ResNet-18, and Inception-V3, methods. The efficiency of raw vibration signal 
input into different diagnostic methods is shown in Table 4. As the number of PFRBs in-
creases, the training time of the BayesianPDL framework continues to increase. However, 
the accuracy is highest when the BayesianPDL framework has three PFRBs. Other diag-
nostic methods have a long training time due to the complex network structure. The pro-
posed method has high accuracy and the shortest training time. 

Table 4. The diagnostic performance of the different methods. 

Methods Testing Accuracy Training Time (s) 
Proposed method (one PFRB) 98.15% ± 0.1136 1954 
Proposed method (two PFRB) 98.91% ± 0.1039 3018 

Proposed method (three PFRB) 99.14% ± 0.0401 3780 
GoogleNet 97.21% ± 0.0719 5982 
ResNet-18 99.08% ± 0.0724 5540 

Inception-V3 98.12% ± 0.0439 6078 

Figure 17. Confusion matrix for different methods.

T-SNE (T-distributed stochastic neighbor embedding) is a nonlinear dimensionality
reduction algorithm, which can map the data in the high-dimensional space to the low-
dimensional space and retain the local characteristics of the data set. For the visualized
data, the spacing between similar data sets is small and the spacing between heterogeneous
data sets is large.

High-dimensional features are mapped to two-dimensional space by the T-SNE algo-
rithm, as shown in Figure 18. The changes in data points within the optimal BayesianPDL
framework are visually displayed by the T-SNE algorithm. As data points are entered,
they cross each other and are distributed chaotically. With the continuous deepening of
feature extraction, data points in PFRBs begin to be fitted and classified, and some features
are separated. In the attention feature fusion layer, the data points are fused according to
different attention values to achieve feature augmentation inside the network. The fault
points are classified at the fully connected layer. All types of faults are classified clearly
and the diagnostic results are obtained.
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5. Conclusions

Fault diagnosis of wind turbines plays an important role in improving the reliability of
wind turbines. To address the problems of difficult feature extraction and low confidence of
diagnostic results in traditional deep learning for wind turbine bearing faults, a probabilistic
Bayesian parallel deep learning framework fault diagnosis method is proposed. Instead of
implementing manual feature extraction and selection, the proposed method directly uses
raw vibration signals to carry out fault diagnosis in an end-to-end way, greatly reducing
the reliance on human expertise and manual intervention. In a nutshell, the advantages of
the proposed wind turbine fault diagnosis that should be highlighted are:

(1) A structure of PFRBs is constructed to enrich high-level feature data. The fault feature
extraction ability of the PDL framework is improved without increasing the network
parameters. Through the attention mechanism, useful information is identified by the
network in the extracted features.

(2) Based on the PDL framework, the hyperparameters of the network are parameterized,
providing the probability distribution of all hyperparameters, which makes the neu-
ral network uncertain. A probabilistic BayesianPDL framework diagnostic method
specially applied to wind turbines bearing faults is designed.

(3) Compared with other non-probabilistic models, the proposed method has a higher
diagnostic performance. Compared with other probability models, the diagnostic
results of the proposed method have higher accuracy and confidence.
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