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Abstract

Our hypothesis is that building ensembles of small sets of strong classifiers constructed
with different learning algorithms is, on average, the best approach to classification
for real-world problems. We propose a simple mechanism for building small het-
erogeneous ensembles based on exponentially weighting the probability estimates of
the base classifiers with an estimate of the accuracy formed through cross-validation
on the train data. We demonstrate through extensive experimentation that, given the
same small set of base classifiers, this method has measurable benefits over commonly
used alternative weighting, selection or meta-classifier approaches to heterogeneous
ensembles. We also show how an ensemble of five well-known, fast classifiers can
produce an ensemble that is not significantly worse than large homogeneous ensem-
bles and tuned individual classifiers on datasets from the UCI archive. We provide
evidence that the performance of the cross-validation accuracy weighted probabilistic
ensemble (CAWPE) generalises to a completely separate set of datasets, the UCR time
series classification archive, and we also demonstrate that our ensemble technique can
significantly improve the state-of-the-art classifier for this problem domain. We inves-
tigate the performance in more detail, and find that the improvement is most marked
in problems with smaller train sets. We perform a sensitivity analysis and an ablation
study to demonstrate the robustness of the ensemble and the significant contribution
of each design element of the classifier. We conclude that it is, on average, better to
ensemble strong classifiers with a weighting scheme rather than perform extensive
tuning and that CAWPE is a sensible starting point for combining classifiers.
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1 Introduction

Investigation into the properties and characteristics of classification algorithms forms
a significant component of all research in machine learning. Broadly speaking, there
are three families of algorithms that could claim to be state of the art: support vector
machines; multilayer perceptrons/deep learning; and tree based ensembles. Neverthe-
less, there are still good reasons, such as scalability and interpretability, to use simpler
classifiers such as decision trees. Thousands of publications have considered variants
of these algorithms on a huge range of problems and scenarios. Sophisticated theories
into performance under idealised conditions have been developed and tailored models
for specific domains have achieved impressive results. However, data mining is an
intrinsically practical exercise and our interest is in answering the following question:
if we have a new classification problem or set of problems, what family of models
should we use given our computational constraints? This interest has arisen from our
work in the domain of time series classification (Bagnall et al. 2017) and through
working with many industrial partners, but we cannot find an acceptable answer in
the literature. Large-scale comparative studies of classifiers attempt to give some indi-
cation (e.g, Fernández-Delgado et al. 2014), but most people make the decision for
pragmatic or dogmatic reasons.

Our first hypothesis is that, in the absence of specific domain knowledge, it is in
fact better to ensemble classifiers from different families rather than intensify compu-
tational efforts into selecting and optimising a specific type. Our second hypothesis is
that the best way of combining a small number of effective classifiers is to combine
their probability outputs, weighted by an accuracy estimate derived through cross-
validation on the training data, raised to the power four to magnify differences in
competence. We call this weighting scheme the cross-validation accuracy weighted
probabilistic ensemble (CAWPE). The algorithm has the benefit of being very simple
and easy to implement, trivially parallelisable, incremental (in that new classifiers
can be added to the ensemble in constant time) and, on average, provides state-of-
the-art performance. We support the last claim with a series of experiments on two
data archives containing over 200 datasets using over twenty different classification
algorithms. We compare classifiers on unseen data based on the quality of the deci-
sion rule (using classification error and balanced classification error to account for
class imbalance), the ability to rank cases (with the area under the receiver operator
characteristic curve) and the probability estimates (using negative log likelihood).

The algorithms we compare against can be grouped into three classes: heteroge-
neous ensembles; homogeneous ensembles; and tuned classifiers. The first of these
classes is in direct competition with our approach, while the latter two are examples
of attempts to improve individual types of classifiers.

The heterogeneous ensemble algorithms most similar to our approach involve
alternative weighting schemes (Kuncheva and Rodríguez 2014), ensemble selection
algorithms (Caruana and Niculescu-Mizil 2004) and stacking techniques (Džeroski
and Ženko 2004). We compare CAWPE to nine variants of these heterogeneous ensem-
bles that all use the same base classifiers and the same estimate of accuracy found
through train set cross-validation. We demonstrate that CAWPE provides a small, but
significant, improvement on all of them.
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To put the performance of CAWPE in a wider context we also compare it to homo-
geneous ensembles and tuned single classifiers. We choose classifiers to compare
against from among those often considered to be state of the art: random forest; sup-
port vector machines; neural networks; and boosting forests. Using data derived from
the UCI archive, we find that a small ensemble of five untuned simple classifiers (logis-
tic regression, C4.5, linear support vector machine, nearest neighbour classifier and
a single hidden layer perceptron) combined using CAWPE is not significantly worse
than either state-of-the-art untuned homogeneous ensembles, nor tuned random forest,
support vector machine, multilayer perceptron and gradient boosting classifiers.

To avoid and correct for any danger of dataset bias, we repeat the core experiments
on a completely separate repository, the UCR archive of time series classification
problems (Bagnall et al. 2018), and draw the same conclusions. We show that the
CAWPE scheme can provide a small, but significant, improvement to the current
state-of-the-art time series classification algorithm.

We then address the question as to why CAWPE does so well. We compare CAWPE
to choosing the best classifier and find that the CAWPE approach is significantly better.
It is most effective for data with small train set size. CAWPE consists of four key
design components: using heterogeneous classifiers; combining probability estimates
instead of predictions; weighting these probabilities by an estimate of the quality of
the classifier found on the train data; and increasing the differences of these weights
by raising them to the power α, the single parameter of the classifier. On their own,
none of these components are novel. Our contribution is to demonstrate that when used
together, the whole is greater than the sum of the parts. To demonstrate this we perform
an ablation study for the last three design components of CAWPE and show that each
element contributes to the improved performance. We perform a sensitivity analysis
for the parameter α and show that CAWPE is robust to changes to this parameter,
but that the default value of α = 4 we decided on a priori and use in all experiments
may be improved with tuning. The exponentiation through the parameter α allows
for the amplification of small differences in accuracy estimates. This facilitates base
classifiers that show a clear affinity to a given problem to provide a larger contribution
to the ensemble while still allowing it to be overruled when enough of the other
base classifiers disagree. It provides a mechanism to balance exploiting information
found from the train data (through high α) and mitigating for potential variance in the
accuracy estimate (through lower α).

In summary, the remainder of this paper is structured as follows. Section 2 pro-
vides a brief background into ensemble classifiers, concentrating on the algorithms
most similar to CAWPE. Section 3 describes the CAWPE classifier and motivates the
design decisions made in its definition. Section 4 describes our experimental design,
the datasets used, and the evaluation procedure. Section 5 contains our assessment of
the CAWPE classifier. We compare CAWPE to its components (Sect. 5.1), other hetero-
geneous ensemble schemes (Sect. 5.2), homogeneous ensemble schemes (Sect. 5.3),
and tuned state-of-the-art classifiers (Sect. 5.4) on 121 UCI datasets. We also present
a reproduction study of the performance gain between CAWPE and its base clas-
sifiers on the UCR time series classification datasets (Sect. 5.5), and compares its
performance to the standard benchmark classifier in that domain. Section 6 provides
a deeper analysis into the CAWPE scheme. We explore the differences in perfor-
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mance between combining a set of classifiers with CAWPE and picking the best of
them based on the train set of any given dataset (Sect. 6.1). To better understand the
nature of the improvements, we also carry out an ablation study that builds up from
simple majority voting to CAWPE (Sect. 6.2), and perform a sensitivity analysis of
CAWPE’s parameter, α (Sect. 6.3). Finally, we conclude in Sect. 7. Our conclusion is
that it is, on average, better to ensemble the probability estimates of strong classifiers
with a weighting scheme based on cross-validated estimates of accuracy than expend
resources on a large amount of tuning of a single classifier and that the CAWPE scheme
means that classifiers can be incrementally added to the ensemble with very little extra
computational cost.

2 Background

We use the following notation. A dataset D of size n is a set of attribute vectors with an
associated observation of a class variable (the response), D = {(x1, y1), . . . , (xn, yn)},
where the class variable has c possible values, y ∈ {1, . . . , c} and we assume there are
m attributes, xi = {xi,1, . . . , xi,m}. A learning algorithm L , takes a training dataset
Dr and constructs a classifier or model M . To avoid any ambiguity, we stress that
all model selection, parameter tuning and/or model fitting that may occur with any
classifier are conducted on the train set, which may or may not require nested cross-
validation. The final model M produced by L by training on Dr is evaluated on a test
dataset De. A classifier M is a mapping from the space of possible attribute vectors
to the space of possible probability distributions over the c valid values of the class
variable, M(x) = p̂, where p̂ = { p̂(y = 1|M, x), . . . , p̂(y = c|M, x)}. Given p̂, the
estimate of the response is simply the value with the maximum probability.

ŷ = arg maxi∈{1,...,c} p̂(y = i |M, x).

An ensemble E is a collection of classifiers E = {M1, . . . , Mk} built by a set of
(possibly identical) learning algorithms L = {L1, . . . , Lk} which train on (possibly
different) train data D = {D1, . . . , Dk}. An ensemble algorithm involves defining the
learning algorithms L, the data D used by each learning algorithm to produce the
models E and a mechanism for combining the output of the k models for a new case
into a single probability distribution or a single prediction.

Key concepts in ensemble design are the necessity to inject diversity into the ensem-
ble (Dietterich 2000; Opitz and Maclin 1999; Geurts et al. 2006; Hansen and Salamo
1990) and how to combine the outputs of the models, be that through some form of
voting scheme (Kuncheva and Rodríguez 2014) or meta-classification (Wolpert 1992).
An ensemble needs to have classifiers that are good at estimating the response in areas
of the attribute space that do not overlap too much. That being said, there is no sin-
gle precise definition or measure of diversity accepted throughout the literature, with
dozens of different candidates having been proposed (Kuncheva and Whitaker 2003;
Tang et al. 2006). Further, it has been argued that diversity is a necessary but not itself
sufficient condition of a strong ensemble (Didaci and Roli 2013), with conditions of
minimal performance of the base classifiers and suitable combination methods playing
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a role. Broadly speaking, diversity can be engineered by either changing the training
data or training scheme for each of a set of the same base classifier to form a homoge-
neous ensemble or by employing different classification algorithms to train each base
classifier, forming a heterogeneous ensemble.

2.1 Heterogeneous ensembles

Heterogeneous ensemble design focuses on how to use the output of the base classi-
fiers to form a prediction for a new case. i.e., given k predictions {ŷ1, . . . , ŷk} or k

probability distributions { p̂1, . . . , p̂k}, how to produce a single prediction ŷ or proba-
bility distribution p̂. There are three core approaches: define a weighting function on
the model output (weighting schemes); select a subset of the models and ignore other
output (ensemble selection schemes); or build a model on the training output of the
models (stacking) (Re and Valentini 2011).

2.1.1 Weighting schemes

The family of techniques most similar to our approach are weighted combination
schemes, which estimate a weight w j for each base classifier and then apply it to their
predictions. Base classifier predictions multiplied by some weight are summed,

si =
k

∑

j=1

w j · d(i, ŷ j )

where

d(a, b) =
{

1, if a == b

0, otherwise

then the class with the highest weighted prediction is chosen

ŷ = arg maxi∈{1,...,c} si .

Based on the framework described by Kuncheva and Rodríguez (2014), we concentrate
on four weighting schemes, which are described as following on from one another
when relaxing assumptions about base classifiers’ performance.

1. Majority vote (MV): w j = 1 for all base classifiers.
2. Weighted majority vote (WMV): w j is set as an estimate of the accuracy of the

base classifier found on the train data.
3. Recall (RC): Rather than a single weight w j , a separate weight is assigned to each

class wi, j . This weight is set to be the proportion of cases correct for that class on
the training data (the true positive rate/recall/sensitivity).
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4. Naive Bayes combiner (NBC): The Naive Bayes combiner uses the conditional
distributions to form an overall distribution, assuming conditional independence.

p̂(y = i |{ŷ1, . . . , ŷk}) = p̂(y = i |ŷ1) · p̂(y = i |ŷ2), . . . , p̂(y = i |ŷk)

where the probability estimates are derived directly from the train cross-validation
confusion matrix. The final prediction is the index of the maximum probability.

2.1.2 Ensemble selection

A popular approach is to use a heuristic to select a subset of classifiers. Also referred to
as an overproduce and choose strategy or ensemble pruning, it was initially proposed
for ensembles of diverse neural networks (Partridge and Yates 1996), but later became
generalised to other classifier types (Giacinto and Roli 2001). The approach became
known to a wider audience after a landmark paper by Caruana and Niculescu-Mizil
(2004), which describes the algorithm we implement and call ensemble selection (ES).

Given a set of base classifiers, ES uses forward selection to progressively build the
ensemble, selecting the classifier at each stage that gives the largest improvement to
the ensemble’s performance, or stopping when no improvement can be made. This
process has a large potential for overfitting, and so this is mitigated through three
strategies: selecting with replacement allows for the incorporation of good models
multiple times, instead of being forced to select poor models sooner that may by
chance improve ensemble performance on the current set; initialising the ensemble
with a subset of the best classifiers in the pool gives a strong and reasonable start
to the process; and lastly, repeating the selection process multiple times on bagged
subsamples of the set of base classifiers before aggregating into a final ensemble gives
the inter-relationships between different sets of models more chances to be recognised.

2.1.3 Stacking

The third popular approach to building heterogeneous ensembles is stacking (Wolpert
1992). This involves taking the output of the base classifiers on the train data, then
applying another learning algorithm to determine how to best combine the outputs to
predict the class value. Thus the cross-validation on the train data produces a set of
predictions or probabilities for each case from all ensemble members and a further
classifier is then trained on this output. New cases are classified by first producing the
output of the base classifiers, then passing these outputs to the meta-classifier to form
a prediction. The first stacking algorithm to gain widespread usage was stacking with
multi-response linear regression (SMLR) (Ting and Witten 1999). Two extensions
to SMLR were proposed by Džeroski and Ženko (2004). These were stacking with
multi-response linear regression on extended features (SMLRE) and stacking with
multi-response model trees (SMM5).
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2.2 Homogeneous ensembles

Homogeneous ensemble design focuses more on how to diversify the base classifiers
than on how to combine outputs. Popular homogeneous ensemble algorithms based on
sampling cases or attributes include: Bagging decision trees (Breiman 1996); Random
Committee, a technique that creates diversity through randomising the base classi-
fiers, which are a form of random tree; Dagging (Ting and Witten 1997); Random
Forest (Breiman 2001), which combines bootstrap sampling with random attribute
selection to construct a collection of unpruned trees; and Rotation Forest (Rodriguez
et al. 2006), which involves partitioning the attribute space then transforming in to the
principal components space. Of these, we think it fair to say Random Forest is by far
the most popular. These methods combine outputs through a majority vote scheme,
which assigns an equal weight to the output of each model.

Boosting ensemble algorithms seek diversity through iteratively re-weighting the
training cases and are also very popular. These include AdaBoost (Adaptive Boost-
ing) (Freund and Schapire 1996), which iteratively re-weights based on the training
error of the base classifier; Multiboost (Webb 2000), a combination of a boosting
strategy (similar to AdaBoost) and Wagging, a Poisson weighted form of Bagging;
LogitBoost (Friedman et al. 1998) which employs a form of additive logistic regres-
sion; and gradient boosting algorithms (Friedman 2001), which have become popular
through the performance of recent incarnations such as XGBoost (Chen 2016). Boost-
ing algorithms also produce a weighting for each classifier in addition to iteratively
re-weighting instances. This weight is usually derived from the the training process
of the base classifier, which may involve regularisation if cross-validation is not used.

3 The cross-validation accuracy weighted probabilistic ensemble
(CAWPE)

The key features that define the weighting scheme we propose in the context of other
commonly used weighting schemes such as those described above are that, firstly, we
weight with accuracy estimated through cross-validation instead of a single hold-out
validation set, secondly, we extenuate differences in accuracy estimates by raising
each estimate to the power of α and thirdly, we weight the probability outputs of the
base classifiers instead of the predictions. To clarify, prediction weighting takes just
the prediction from each member classifier,

p̂(y = i |E, x) ∝
k

∑

j=1

w j d(i, ŷ j )

whereas probability weighting weights the distribution each classifier produces,

p̂(y = i |E, x) ∝
k

∑

j=1

w j p̂ j (y = i |M j , x). (1)
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Fig. 1 Illustration of the different effects of combination and weighting schemes on a toy instance classifi-
cation. Each stage progressively pushes the predicted class probabilities further in the correct direction for
this prediction

Figure 1 gives an overview of the components of CAWPE that make it different to
majority voting.

Our approach is based on the idea of building a smaller number of effective classi-
fiers and combining the output rather than learning a huge number of weak classifiers.
The rationale for using the probability estimates rather than the predictions is that they
will contain more information than a point estimate, and with fewer classifiers we need
to capture all information available. With 500 base classifiers the voting mechanism is
less important than with 5 classifiers, since averaging over 500 votes is likely to have
lower variance than averaging over 5 votes.

The construction of the CAWPE ensemble involves estimating the classification
accuracy of each base classifier on the train data through a ten-fold cross-validation,
then constructing a model of each base classifier on the whole train data. Classifying
a new case, described in Algorithm 1 and Eq. 1, requires obtaining a probability
estimate of each class from all the base classifiers, weighting these by the cross-
validation accuracy raised to the power α (the only parameter of the approach), then
either normalising if probability estimates are required or returning the index of the
maximum probability if a prediction is needed.

As α increases, the weightings of classifiers found to be stronger on the training data
relative to the rest are increased, until the ensemble becomes functionally identical to
the single best classifier in training. Conversely, when alpha is 0 all members will be
equally weighted. Therefore, on a high level, the α parameter defines the degree to
which the base classifiers’ error estimates should be trusted in guiding the ensemble’s
output. Set α too high, and all but the best classifier’s outputs are diminished. Set α

too low, and the competitive advantage that the best individual is estimating it has is
potentially wasted. The quality of the error estimate is key to this process, of course,
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Algorithm 1 CAWPE classify(A test case x)
Output: prediction for case x

1: Given a set of classifiers < M1, . . . , Mk >, an exponent α, a set of weights wi , and the number of
classes c

2: { p̂1, . . . , p̂c} = {0, . . . , 0}
3: for i ← 1 to k do

4: for j ← 1 to c do

5: q̂ j ← p̂((y = j |Mi , x)

6: p̂ j ← p̂ j + wα
i

· q̂ j
return arg max j=1...c p̂ j

thus the use of cross-validation as opposed to a single validation set as used in a number
of previous works (Kohavi 1995).

The optimal value of α will therefore allow the strongest classifiers to steer the
ensemble, but enable them to be overruled when sufficiently outvoted. This value will
be dependent on the relative performances and distribution of probabilistic outputs
of the base classifiers on the given dataset. To keep in line with the general ethos of
simplicity, we remove the need to tune α and potentially overfit it by fixing α to 4 for
all experiments and all component structures presented. We chose the value 4 fairly
arbitrarily as a sensible starting point before running any experiments. In Sect. 6 we
revisit the importance of the α parameter and whether it could benefit from tuning, as
well other design decisions we have made.

4 Experimental design

The UCI dataset archive1 is widely used in the machine learning and data mining
literature. An extensive evaluation of 179 classifiers on 121 datasets from the UCI
archive, including different implementations of notionally the same classifier, was
performed by Fernández-Delgado et al. (2014). It is worth mentioning there have
been several problems identified with the experimental procedure used in this study
(see Wainberg et al. 2016 for a critique). Firstly, some algorithms were tuned, others
were used with the built in default parameters, which are often poor. For example,
random forest in Weka defaults to 10 trees. Secondly, for some of the tuned algorithms,
there was an overlap between validation and test datasets, which will have introduced
bias. Thirdly, the data were formatted to contain only real valued attributes, with the
categorical attributes in some data sets being naively converted to real values. We
retain this formatting in order to maintain consistency with previous research but
this may bias against certain types of classifier. Comparisons between heterogeneous
ensembles should be entirely unaffected, since they are all built on the same base
classifier prediction information. We have no prior belief as to the impact of the
formatting on other base classifiers and in order to avoid any suggestion of a priori
bias, we use the exact same 121 datasets. A summary of the data is provided in Table 5
in the “Appendix”.

1 http://archive.ics.uci.edu/ml/index.php.

123

http://archive.ics.uci.edu/ml/index.php


A probabilistic classifier ensemble weighting scheme 1683

The UCR archive is a continually growing collection of real valued time series
classification (TSC) datasets.2 A recent study Bagnall et al. (2017) implemented 18
state-of-the-art TSC classifiers within a common framework and evaluated them on 85
datasets in the archive. The best performing algorithm, the collective of transformation-
based ensembles (COTE), was a heterogeneous ensemble of strong classifiers. These
results were our primary motivation for further exploring heterogeneous ensembles
for classification problems in general.

We aim to use this data to test the generality of some of the core results obtained on
the UCI archive, serving as an independent collection of data with entirely different
characteristics and separate from the problems with the UCI data described previously.
A summary of this data is provided in Table 5 in the “Appendix”.

Experiments are conducted by averaging over 30 stratified resamples. Data, results
and code can all be found at the accompanying website for this research.3 For the UCI
data, 50% of the data is taken for training, 50% for testing. Therefore there is no overlap
in train or test data as previously observed by Wainberg et al. (2016) and the data can be
used in a similar manner to Wainer and Cawley (2017) without introducing bias. The
UCR archive provides a default train/test split. We perform resamples using the number
of train and test cases defined in these default splits. We always compare classifiers
on the same resamples, and these can be exactly reproduced with the published code.
Resample creation is deterministic and can be reproduced using the method
Experiments.sampleDataset(directory,datasetName,foldID), or
alternatively the initial train/test split and all resampled folds can be downloaded.
This means we can compare two classifiers with paired two sample tests, such as
Wilcoxon signed-rank test. For comparing two classifiers on multiple datasets we
compare either the number of datasets where there is a significant difference over
resamples, or we can do a pairwise comparison of the average errors over all resam-
ples. All code is available and open source. The experiments can be reproduced (see
class vector_classifiers.CAWPE). In the course of experiments we have gen-
erated gigabytes of prediction information and results. These are available in raw
format and in summary spreadsheets. For comparing multiple classifiers on multiple
datasets, we follow the recommendation of Demšar (2006) and use the Friedmann test
to determine if there are any statistically significant differences in the rankings of the
classifiers. However, following recent recommendations by Benavoli et al. (2016) and
García and Herrera (2008), we have abandoned the Nemenyi post-hoc test originally
used by Demšar (2006) to form cliques (groups of classifiers within which there is
no significant difference in ranks). Instead, we compare all classifiers with pairwise
Wilcoxon signed-rank tests, and form cliques using the Holm correction (which adjusts
family-wise error less conservatively than a Bonferonni adjustment).

We assess classifier performance by four statistics of the predictions and the proba-
bility estimates. Predictive power is assessed by test set error and balanced test set error.
The quality of the probability estimates is measured with the negative log likelihood
(NLL). The ability to rank predictions is estimated by the area under the receiver oper-
ator characteristic curve (AUC). For problems with two classes, we treat the minority

2 http://www.timeseriesclassification.com.
3 http://www.timeseriesclassification.com/CAWPE.php.
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class as a positive outcome. For multiclass problems, we calculate the AUC for each
class and weight it by the class frequency in the train data, as recommended by Provost
and Domingos (2003).

5 Results

We demonstrate the benefits of the CAWPE scheme through a sequence of experiments
to address the following questions:

– Does CAWPE improve heterogeneous base classifiers (Sect. 5.1)?
– Is CAWPE better on average than alternative heterogeneous ensemble schemes all

using the same base classifiers and error estimates (Sect. 5.2)?
– Is CAWPE better on average than homogeneous ensembles (Sect. 5.3)?
– How does CAWPE compare to tuned versions of classifiers commonly considered

state of the art (Sect. 5.4)?
– Do the results generalise to other data (Sect. 5.5)?

Throughout, we make the associated point that CAWPE is significantly better than
its components when they are approximately equivalent. CAWPE has a single param-
eter, α, which is set to the default value of 4 for all experiments. We stress that we
perform no tuning of CAWPE’s parameter α: it simply combines classifier output using
the algorithm described in Algorithm 1. We investigate the sensitivity of CAWPE to
α in Sect. 6.3.

We present results in this section through critical difference diagrams which display
average rankings. A full list of the average scores for each classifier is provided in
Table 6 in the “Appendix”, while further spreadsheets are available on the accompa-
nying website.

5.1 Does CAWPE improve heterogeneous base classifiers?

Ensembling multiple classifiers inherently involves more work than using any single
one of them. As a basic sanity check, we assess whether applying CAWPE to a random
set of classifiers improves performance. We randomly sampled 5 out of 22 classifiers
available in Weka and constructed CAWPE on top of them. Over 200 random configu-
rations, CAWPE was significantly more accurate than the individual component with
the best average rank on 143 (71.5%), and insignificantly more accurate on a further
34 (17%), over the 121 UCI datasets. CAWPE was never significantly worse than the
best individual component. Note that many of these sets contain components that are
significantly different, with average accuracies across the archive ranging between
81.4 and 62.7%.

To avoid confusion as to the components of any CAWPE instantiation, we con-
tinue the evaluation with two sets of base classifiers. The first, simpler set contains
well known classifiers that are fast to build. These are: logistic regression (Logistic);
C4.5 decision tree (C4.5); linear support vector machine (SVML); nearest neighbour
classifier (NN); and a multilayer perceptron with a single hidden layer (MLP1). These
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6 5 4 3 2 1

1.7314 CAWPE-S
3.6281 MLP1
3.6488 NN3.7149SVML

4.0992C4.5

4.1777Logistic

6 5 4 3 2 1

1.8306 CAWPE-A
3.2851 RandF
3.4752 RotF3.6405XGBoost

4.1736MLP2

4.595SVMQ

Fig. 2 Critical difference diagrams CAWPE-S with its base classifiers (left), and CAWPE-A with its base
classifiers (right). Ranks formed on test set accuracy averaged over 30 resamples

classifiers are each distinct in their method of modelling the data, and are roughly
equivalent in performance. We call this version CAWPE-S.

The second set of five classifiers are more complex, and generally considered
more accurate than the previous set. These are: random forest (RandF); rotation forest
(RotF); a quadratic support vector machine (SVMQ); a multi layer perceptron imple-
mentation with two hidden layers (MLP2); and extreme gradient boosting (XGBoost).
We call CAWPE built on this second set of advanced classifiers CAWPE-A.

In Fig. 2 we compare CAWPE-A and CAWPE-S against their respective base clas-
sifiers in terms of accuracy. In both cases, CAWPE is significantly better than all
components. CAWPE also significantly improves of all the base components in terms
of balanced accuracy, AUROC, and log likelihood.

The improvement is not particularly surprising for CAWPE-S, since the benefits of
ensembling weaker learners are well known. It is perhaps more noteworthy, however,
that learners often considered state-of-the-art such as random forest, rotation forest and
XGBoost, are improved by inclusion in the CAWPE-A ensemble. This improvement is
achieved at a computational cost. The CAWPE scheme will require more computation
than using a single classifier, since a cross-validation procedure is required for each
base classifier. If a ten-fold cross-validation is used, as we do in all our experiments,
CAWPE requires approximately 50 times longer to train than the average training
time of its five base classifiers. In terms of time taken to predict a new test case,
CAWPE simply needs five times the average prediction time of the base classifiers.
We have experimentally verified this is the case, but exclude results for brevity (see
the associated webpage). This constant time overhead is easy to mitigate against: it is
trivial to distribute CAWPE’s base classifiers and even the cross-validation for each
classifier can easily be parallelised.

5.2 Is CAWPE better on average than alternative heterogeneous ensemble

schemes?

We compare the particular weighting scheme used in CAWPE to well known alterna-
tives. We compare CAWPE-S and CAWPE-A to the weighting, selection and stacking
approaches described in Sect. 2. In each comparison, all ensembles use the same set
of base classifiers, so the only source of variation is the ensemble scheme. Algorithms
such as ensemble selection were originally described as using a single validation set
to assess models. However, cross-validation will on average give a better estimate of
the true error than a single hold-out validation set (Kohavi 1995). Given that CAWPE
uses cross-validation error estimates and that these estimates are already available to
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Fig. 3 Critical difference diagrams for ten heterogeneous ensemble classifiers on 121 UCI data built using
logistic, C4.5, SVML, NN and MLP1 base classifiers. The weighted ensembles are: majority vote (MV);
weighted majority vote (WMV); recall (RC); Naive Bayes (NBC) and our scheme (CAWPE). The selection
ensembles are: pick best (PB); and ensemble selection (ES). The stacking schemes are: stacking with multi-
response linear regression (SMLR); stacking with multi-response linear regression on extended features
(SMLRE); and stacking with multi-response model trees (SMM5)

us, we also use these for all ensembles. Hence, we are purely testing the ability of the
ensembles to combine predictions with exactly the same meta-information available.

Figure 3 shows the summary ranks of ten heterogeneous ensembles built on the
simpler classifier set on the 121 UCI datasets using four performance metrics. CAWPE-
S is highest ranked for error and in the top clique for both error and balanced error. It
is significantly better than all other approaches for AUC and NLL. It has significantly
lower error than all but SMLR, and significantly lower balanced error than all but
NBC.

Figure 4 shows the summary ranks of the same ten heterogeneous ensembles on the
121 UCI datasets using the more advanced classifiers. The pattern of results is very
similar to those for the simple classifiers. CAWPE-A is top ranked for error and in
a clique with majority vote and weighted majority vote. For balanced error, it is not
significantly different to NBC and is significantly better than the others. For both AUC
and NLL, it is significantly better than all the other methods. Considering the results
for both CAWPE-S and CAWPE-A, it is apparent that the CAWPE scheme is more
consistent than other approaches, since it is the only algorithm in the top clique for all
measures for both sets of classifiers. We think this suggests that the CAWPE scheme
on this data is the best heterogeneous ensemble technique, at least for the simple and
advanced component sets studied.

Given the ensembles are using the same base classifiers and accompanying error
estimates, and these are all good classifiers in their own right, we would expect the
actual differences in average error to be small, and this is indeed the case (see Table 6
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Fig. 4 Critical difference diagrams for ten heterogeneous ensemble classifiers on 121 UCI data built using
random forest (RandF), rotation forest (RotF), support vector machine with a quadratic kernel (SVMQ), a
two layer multilayer perceptron (MLP2) and extreme gradient boosting (XGBoost) base classifiers

in “Appendix”). Nevertheless, the weighting scheme used in CAWPE is significantly
better than nearly all the other methods using the four metrics.

In conclusion, CAWPE makes sets of approximately equivalent classifiers sig-
nificantly better, and is competitive with or generally better than commonly used
weighting, selection and stacking schemes when the number of classifiers is small.
Given how simple CAWPE is, we believe it is a sensible starting point for any attempt
at combining small numbers of base classifiers on an arbitrary problem. The question
then is, should you heterogeneously ensemble at all, or rather should you focus efforts
into improving a single model?

5.3 Is CAWPE better on average than homogeneous ensembles?

We examine how CAWPE-S compares to five homogeneous ensembles that each
employ 500 duplicates of the same base classifier. CAWPE-A, which includes RandF
and XGBoost in its base classifier set, is significantly better on all four performance
metrics than both them and all the homogeneous ensembles evaluated here (see Fig. 2,
the results are available on the accompanying website). However, this improvement
requires roughly 50 times the computational effort of XGBoost or Random Forest
alone. We are more interested in assessing how the simpler and faster CAWPE-S
compares with homogeneous ensembles.

Figure 5 shows the results of five ensembles each with 500 base classifiers and
CAWPE-S. We observe that CAWPE-S is significantly more accurate than AdaBoost,
LogitBoost and Bagging, and not significantly worse than Random Forest and
XGBoost. With minimal effort using standard classifiers we have produced an ensem-
ble that is not significantly worse than state-of-the-art homogeneous ensembles.
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Fig. 5 Critical difference diagrams for CAWPE (built using logistic, C4.5, SVML, NN and MLP1 base
classifiers) against 5 homogeneous ensemble classifiers on 121 UCI data

Table 1 Summaries of train times for CAWPE-S and the homogeneous ensembles

Classifier CAWPE-S LogitBoost RandF XGBoost Bagging AdaBoost

Mean 524.9 302.2 111.9 46.8 22.7 7.8

Median 13.7 8.9 6.9 2.1 0.7 0.06

All times are in seconds, and are averaged across the 121 UCI data

Table 1 summarises the train times of CAWPE-S and the homogeneous ensembles
in seconds. CAWPE on this simpler component set has a much larger mean train
time than RandF and XGBoost. This largely comes down to the logistic regression
component, which takes a relatively much longer amount of time on datasets with
larger numbers of classes. The median times are closer, however XGBoost especially
still achieves predictive performance not significantly different to that of CAWPE-S
in much shorter times on average.

These timings should be interpreted with the understanding that XGBoost is a
highly optimised library, while the logistic and MLP1 implementations in particular
are relatively straight forward and unoptimised implementations in Java. The fact that
CAWPE-S has a median train time within the same order of magnitude as XGBoost
while not being significantly less accurate is, we think, a positive result.

5.4 How does CAWPE compare to tuned classifiers?

In Sect. 5.1 we showed the ensemble scheme outperforms its set of base classifiers.
However, finding the weights requires an order of magnitude more work than build-
ing a single classifier because of the ten fold cross-validation across the different
components. Given it is widely accepted that tuning parameters on the train data
can significantly improve classifier accuracy (Bagnall and Cawley 2017), perhaps a
carefully tuned classifier will do as well as or better than CAWPE built on untuned
classifiers. To investigate whether this is the case, we tune an SVM with a radial
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Table 2 Tuning parameter ranges for SVMRBF, random forest, MLP and XGBoost

Classifier Total Parameter Range

SVMRBF 1089 Regularisation C (33 values) {2−16, 2−15, . . . , 216}
Variance γ (33 values) {2−16, 2−15, . . . , 216}

Random forest 1000 Number of trees (10 values) {10, 100, 200, . . . , 900}
Feature subset size (10 values) {√m, (log2 m + 1), m

10 , . . . , m
3 }

Max tree depth (10 values) {0, m
9 , m

8 . . . , m}

MLP 1024 Hidden layers (2 values) {1, 2}
Nodes per layer (4 values) {c, m, m + c,

(m+c)
2 }

Learning rate (8 values) {1, 1
2 , 1

4 , . . . , 1/(27)}
Momentum (8 values) {0, 1

8 , 2
8 , . . . , 7

8 }
Decay (2 values) {true, f alse}

XGBoost 625 Number of trees (5 values) {50, 100, 250, 500, 1000}
Learning rate (5 values) {0.01, 0.05, 0.1, 0.2, 0.3}
Max tree depth (5 values) {2, 4, 6, 8, 10}
Min child weight (5 values) {1, 3, 5, 7, 9}

c is the number of classes and m the number of attributes
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Fig. 6 Average ranked errors for a CAWPE-S and b CAWPE-A against four tuned classifiers on 117 datasets
in the UCI archive. The datasets adult, chess-krvk, miniboone and magic are omitted due to computational
restraints

basis function kernel (SVMRBF), XGBoost, MLP and a random forest and compare
the results to CAWPE-S and CAWPE-A. We tune by performing a ten-fold cross-
validation on each train resample for a large number of possible parameter values,
described in Table 2. This requires a huge computational effort. We can distribute
resamples and parameter combinations over a reasonably sized cluster. Even so, con-
siderable computation is required; we were unable to complete a full parameter search
for 4 datasets (within a 7 day limit): adult; chess-kvrk; miniboone; and magic. To
avoid bias, we perform this analysis without these results.

Figure 6 compares CAWPE-S and CAWPE-A to tuned versions of MLP, XGBoost,
RandF and SVM. On average, CAWPE-S, containing the five simpler untuned base
classifiers (Logistic, C4.5, SVML, NN and MLP1), is significantly better than the
tuned MLP and not significantly worse than tuned versions of XGBoost, SVMRBF
and Random Forest (Fig. 6a). The highest ranked tuned classifier is SVM, but it is
still ranked lower than CAWPE-S. This despite the fact that CAWPE-S is two orders
of magnitude faster than the tuned SVM and at least one order of magnitude faster
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than tuned Random Forest, MLP and XGBoost. Sequential execution of CAWPE-S
for miniboone (including all internal cross-validation to find the weights) is 5 hours.
For TunedSVM, ten-fold cross-validation on 1089 different parameter combinations
gives 10,890 models trained for each resample of each dataset. For the slowest dataset
(miniboone), sequential execution would have taken more than 6 months. Of course,
such extensive tuning may not be necessary. However, the amount and exact method
of tuning to perform is in itself very hard to determine. Our observation is that using
simple approach such as CAWPE-S avoids the problem of guessing how much to tune
completely.

If we use CAWPE-A, containing the more advanced components (RandF, RotF,
SVMQ, MLP2 and XGBoost), we get a classifier that is significantly more accurate
than any of the individuals (Fig. 6b). CAWPE-A takes significantly longer to train
than CAWPE-S, but it is still not slower on average than the tuned classifiers. We are
not claiming that CAWPE-A is significantly faster than tuning a base classifier in the
general case, because this is obviously dependent on the tuning strategy. CAWPE-A
involves a ten fold cross-validation of five classifiers, so it is going to be comparable in
run time to one of these single classifiers tuned over 50 parameter settings. However,
our experiments demonstrate that tuning a single base learner over a much larger
parameter space does not result in as strong of a model, on average.

Our goal is not to propose a particular set of classifiers that should be used with
CAWPE. Rather, we maintain that if one has some set of classifiers they wish to apply
to problem, ensembling them using CAWPE is generally at least as strong as other
heterogeneous ensemble schemes when we have a relatively small number of base
classifiers, that it significantly improves base classifiers that are approximately equally
strong, and that the degree of improvement is such that state-of-the-art level results can
be achieved with minimal effort. Once a classifier is trained and the results are stored,
ensembling is very quick. To perhaps belabour the point, we ensembled the four tuned
classifiers using the parameter ranges given in Table 2 and the resulting classifier was
significantly better than the components in a manner reflecting the patterns observed
in Sect. 5.1.

5.5 Does the CAWPE performance generalise to other datasets?

Our interest in heterogeneous ensembles originated in time series classification (TSC)
problems, where we ensemble over different representations of the data in a style
similar to CAWPE (Lines et al. 2016). TSC involves problems where the attributes
are ordered (not necessarily in time) and all real valued. The UCR repository for
TSC contains problems from a wide range of domains such as classifying image
outlines, EEG and spectrographs. There are currently 85 datasets, with diverse data
characteristics. A full list of the 85 datasets is listed in the “Appendix” in Table 5.

Traditionally, dynamic time warping distance (with window size set through cross-
validation) (Ratanamahatana and Keogh 2005) with a 1-nearest neighbour classifier
(referred to as just DTW henceforth) has been considered the benchmark algorithm for
this type of problem. In recent years, a range of bespoke algorithms have been proposed
in high impact journals and conferences. The experimental evaluation in Bagnall et al.
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Fig. 7 Average ranked errors for DTW against a CAWPE-S and its components and b CAWPE-A and its
components on the 85 datasets in the UCR archive

(2017) found that of 18 such algorithms, only 13 were significantly better (in terms of
accuracy) than DTW.

Our goal is to test how well the results observed for CAWPE on the UCI data
generalise to other data, by testing whether CAWPE significantly improves over its
components on the UCR archive also. To do so, we ignore the ordering of the series and
treat each time step in the series as a feature for traditional vector-based classification.
The UCR datasets generally have many more features than the UCI data. This has
meant we have had to make one change to CAWPE-S: we remove logistic regression
because it cannot feasibly be built on many of the data. Since DTW is a 1-nearest
neighbour classifier, it always produces 0/1 probability estimates. Because of this, we
omit a probabilistic evaluation using AUC and NLL, as it has little meaning for DTW.

Figure 7 shows the critical difference diagrams for accuracy of CAWPE-S, CAWPE-
A, their respective constituents, and DTW. Both sets of base classifiers are significantly
improved by CAWPE once more. These results closely mirror those on the UCI datasets
presented above. Furthermore, neither of the CAWPE versions are significantly worse
than DTW and both have higher average rank. This should be considered in the context
that neither classifier takes advantage of any information in the ordering of attributes.
Despite this, CAWPE-A has a higher average rank than 9 of the 18 bespoke time series
classification algorithms evaluated in Bagnall et al. (2017), and is not significantly
worse than 11 of them. CAWPE, a simple ensemble using off the shelf components
and a simple weighting scheme, has been made as accurate as complex algorithms
that use a range of complicated techniques such as forming bags of patterns, using
edit distance based similarity, differential based distances, compression techniques
and decision trees based on short subseries features.

Using standard classifiers for TSC is unlikely to be the best approach. The best per-
forming TSC algorithm in Bagnall et al. (2017), significantly more accurate than all
the others, was the Collective of Transformation-based Ensembles (COTE) (Bagnall
et al. 2015). It has components built on different representations of the data. COTE
uses an ensemble structure that is the progenitor of CAWPE. The latest version of
COTE, HIVE-COTE (Lines et al. 2016) uses weighted majority voting for five mod-
ularised classifier components defined on shapelet, elastic distance, power spectrum,
bag-of-words and interval based representations, and is significantly more accurate
than the previous version, flat-COTE, and all of the competing algorithms. HIVE-
COTE exploits the diversity of the representations through an ensemble scheme. We
address the question of whether CAWPE is the best ensemble scheme for HIVE-COTE.

123



1692 J. Large et al.

Fig. 8 Average ranked errors for
4 variants of HIVE-COTE on the
UCR datasets
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3.4235HIVE-COTE(vote,a=1)

Figure 8 shows how HIVE-COTE performs when we incrementally add in the
CAWPE combination scheme methods. The left most version, weighted majority vote,
is the classifier used in Lines et al. (2016). Raising the weight to the power of four
significantly reduces error. Switching to using probabilities is significantly better than
either weighted voting scheme. Using CAWPE (probs, a = 4 in Fig. 8) is significantly
better than all variants. It is not just a matter of tiny improvements in accuracy improv-
ing the ranks. The overall mean accuracy over all problems for HIVE-COTE using
CAWPE is 87.16%, whereas the accuracy reported in Lines et al. (2016) using WMV
is 85.97%. An overall improvement of over 1% for such a simple change is hugely
valuable. For context, the average accuracy of DTW is 77.7%.

6 Analysis

We perform a more in-depth analysis of results to determine whether there are any
patterns in the results that indicate when and why CAWPE performs well. We compare
various facets of performance against choosing the best component on any given
dataset (Sect. 6.1). We then perform an ablative study of CAWPE (Sect. 6.2), and a
sensitivity study of its parameter, α (Sect. 6.3).

6.1 CAWPE versus pick best exploratory analysis

Given CAWPE ensembles based on estimates of accuracy obtained from the train data
and gives increasingly larger weights to the better classifiers, it seems reasonable to ask,
why not just choose the single classifier with the highest estimate of accuracy? Figure 3
demonstrated that it is on average significantly worse choosing a single classifier than
using the CAWPE ensembles. When comparing algorithms over entire archives, we
get a good sense of those which are better for general purpose classification. However,
differences in aggregated ranks do not tell the whole story of differences between
classifiers. It could be the case that CAWPE is just more consistent that its components:
it could be a jack of all trades ensemble that achieves a high ranking most of the time, but
is usually beaten by one or more of its components. A more interesting improvement
is an ensemble that consistently achieves higher accuracy than all of its components.
For this to happen, the act of ensembling needs to not only cover for the weaknesses
of the classifiers when in their suboptimal domains, but accentuate their strengths
when within their specialisation too. Figure 9 shows the scatter plots of accuracy for
choosing the best base classifier from their respective component sets against using
CAWPE. This demonstrates that CAWPE has higher accuracy than Pick Best on the
majority of problems, and that the differences are not tiny.

Figure 10 shows the counts of the rankings achieved by CAWPE built on the simpler
(a) and advanced (b) components, in terms of accuracy, over the 121 UCI datasets.
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Fig. 9 Accuracy of a CAWPE-S and b CAWPE-A versus picking the best component

(a) (b)

Fig. 10 Clustered histograms of accuracy rankings over the 121 UCI datasets for a CAWPE-S and b

CAWPE-A and their respective components. For each classifier, the number of occurrences of each rank
being achieved relative to the other classifiers is shown

CAWPE is the single best classifier far more often than any of its components, and is in
fact more often the best classifier than second best. Both versions of CAWPE are never
ranked fifth or sixth, and very rarely ranked fourth, demonstrating the consistency of
the improvement. This suggests that the simple combination scheme used in CAWPE
is able to actively enhance the predictions of its locally specialised members, rather
than just achieve a consistently good rank.

For clarity we restrict further analysis to the CAWPE-S results. Comparable results
for CAWPE-A are available on the accompanying website.

Comparing overall performance of classifiers is obviously desirable; it addresses the
general question: given no other information, what classifier should I use? However,
we do have further information. We know the number of train cases, the number of
attributes and the number of classes. Does any of this information indicate scenarios
where CAWPE is gaining an advantage? The most obvious factor is train set size,
since picking the best classifier based on train estimates is likely to be less reliable
with small train sets.

Table 3 breaks down the results of CAWPE-S compared to Pick Best by train set
size. With under 1000 train cases, CAWPE-S is clearly superior. With 1000–5000
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Table 3 CAWPE-S versus pick best split by train set size

#Train cases #Problems #CAWPE-S WINS Mean error difference (%)

1–100 28 21 1.49

101–500 46 36 0.71

501–1000 12 11 1.51

1001–5000 23 11 0.16

>5001 9 2 0.02

The three datasets with the same average error have been removed (acute-inflammation, acute-nephritis and
breast-cancer-wisc-diag). If there is a significant difference within a group (tested using a Wilcoxon sign
rank test) the row is in bold

Fig. 11 The difference in average errors in increasing order between CAWPE-S and picking the best
classifier on each dataset. Significant differences according to paired t-tests over folds are also reported.
CAWPE-S is significantly more accurate on 46, the best individual classifier on 18, and there is no significant
difference on 57

cases, there is little difference. With over 5000 cases, CAWPE-S is better on just 2 of
9 problems, but there is only a tiny difference in error. This would indicate that if one
has over 5000 cases then there may be little benefit in using CAWPE-S, although it is
unlikely to be detrimental. Analysis shows there is no detectable significant effect of
number of attributes. For the number of classes, there is a benefit for CAWPE-S on
problems with more than 5 classes. CAWPE-S wins on 62% of problems with five or
fewer classes (53 out of 85) and wins on 85% of problems with 6 or more (28 out of
33). This is not unexpected, as a large number of classes means fewer cases per class,
which is likely to introduce more noise into the estimate of error.

Despite using the same classification algorithms, not all of the differences between
pick best and CAWPE-S are small in magnitude. Figure 11 shows the ordered dif-
ferences between the two approaches. The largest difference in favour of CAWPE-S
(averaged over 30 folds) is 4.42% (on the arrhythmia dataset) and in favour of pick
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best 4.5% (on energy-y1). This demonstrates the importance of the selection method
for classifiers; it can cause large differences on unseen data.

This analysis indicates that CAWPE-S is likely to be a better approach than simply
picking the best when there is not a large amount of training data, there are a large
number of classes and/or the problem is hard. Overall, CAWPE requires almost no
extra work beyond pick best and yet is more accurate.

6.2 CAWPE ablative study

CAWPE belongs to the family of ensemble schemes broadly categorised as weighted
output combination. We found in Sect. 5 that both CAWPE-S and CAWPE-A are
significantly better than the most common instantiations of this type of ensemble;
majority vote and weighted majority vote. The major design components of CAWPE
are the fact it uses the probabilistic outputs of its base classifiers and the emphasising
of differences in weights by using α set to 4. Figure 8 has already shown that that both
of these factors result in significant improvement of the TSC algorithm HIVE-COTE.
Here we wish to delve further into the contribution that each factor of CAWPE has
on its performance. For brevity, we perform all analysis using the CAWPE-S set of
simpler classifiers.

We split CAWPE based on these two factors, building up from majority vote to
CAWPE: the use of the base classifiers’ probabilities (probs) or predictions (preds);
and the extent to which we make use of the base classifiers’ cross-validation accuracy
to weight their contribution: none at all (a = 0); standard weighting (a = 1); and
extenuated weighting (a = 4). Figure 12 details the results of a comparison between
all combinations of these factors. To better ground these results in the context of
the previous comparison to other heterogeneous ensembles in general in Sect. 5.2,
we reuse and define new labels relevant to combinations of these factors of weighted
output combination. These are: majority vote (MV: a = 0, preds); majority confidence
(MC: a = 0, probs); weighted majority vote (WMV: a = 1, preds); weighted majority
confidence (WMC: a = 1, probs); exponentially weighted majority vote (EWMV:
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4.57MV(a=0-preds)

(a) ACC (b) BALACC

(c) AUC (d) NLL

Fig. 12 Critical difference diagrams of the stages of progression from a simple majority vote up to CAWPE,
on the 121 datasets of the UCI archive using the CAWPE-S variant
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a = 4, preds); and finally exponentially weighted majority confidence (CAWPE:
a = 4, probs).

These diagrams confirm some suspicions. Firstly, for equal values of α, it is always
better to use probabilities instead of predictions. For AUC and NLL, the performance
metrics most relevant to probabilistic output, the use of probabilities is better even
regardless of the value of α. Secondly, the use of a weighting scheme, and then further
increasing the value of α to 4 also always provides improvement on average.

The improvement from increasing α to 4 is consistent, too, providing in some
instances surprising improvements in absolute accuracy. When directly comparing
CAWPE (α = 4, probs) to WMC (α = 1, probs), CAWPE wins on 86 datasets and
loses on 28. The largest reduction in error was 4.49% on the flags dataset, with the
largest increase in error being 1.65% on plant-shape.

Figure 13 displays scatter plots to demonstrate these findings. Against differences
in error between CAWPE and WMC, it plots a four dataset characteristics: the num-
ber of instances; number of attributes; number of classes; and class imbalance. For
this purpose, the class imbalance of a dataset is informally calculated as the average
difference between each class’ actual proportional representation in the dataset, and
its expected value, 1/c. These confirm visually that there is no obvious relationship
between the improvement α provides and any of these characteristics.

setubirttAforebmuN(b)secnatsnIforebmuN(a)

(c) Number of Classes (d) Average Class Imbalance

Fig. 13 Four plots of the difference in error between CAWPE (α = 4, probs) and WMC (α = 1, probs),
against different dataset characteristics. Above zero CAWPE wins, below zero WMC wins. Trend repre-
sented by solid black line, R2 reported in top-right corner
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6.3 CAWPE sensitivity analysis

Section 6.2 has shown that exaggerating the weights of classifiers using α gives a
significant increase in performance over standard weighted averaging of probabilities,
even with all else being equal. As stated at the end of Sect. 3, the value of α was
fixed to 4 for CAWPE for all experiments reported throughout the previous sections.
This value was decided on while developing HIVE-COTE. Having performed our
experiments with α = 4, we were interested to find out how sensitive the performance
of CAWPE is to this single parameter.

Figure 14 depicts what happens if we fix α to progressively higher values over both
dataset archives and both base classifier sets used throughout, the basic set (Logistic,
C4.5, SVML, NN and MLP1) and the advanced set (RandF, RotF, SVMQ, MLP2 and
XGBoost). To keep everything on the same scale and to appropriately highlight the
actual differences in accuracy, the average accuracy of each α value is expressed as
the difference between itself and using α = 0, i.e. no weighting of the base classifiers.
Even across the two different archives and base classifier sets, the test performances
of different values of α show a fairly consistent pattern, rising steadily until around
five to seven before tapering off or eventually falling again. Ultimately as α tends to
infinity, we know that the ensemble becomes equivalent to picking the best individual,
at which point the line has fallen far below 0 on these graphs. While not included for
the sake of space and clarity, the results for the other three test statistics (balanced
error, AUC, and NLL) follow an effectively identical pattern.

These results give us an understanding of the surprisingly consistent properties
of α overall. However, given some particular set of base classifiers, their relative
performances and ability to estimate their own performance on the training set could
vary to different extents depending on the individual dataset provided. As such, the
amount that we want to extenuate the differences between the classifier could change
from dataset to dataset. It is therefore natural to wonder whether the alpha parameter
could be tuned. To do this in a completely fair and unbiased way, we would need to

A-EPWAC(b)S-EPWAC(a)

Fig. 14 Mean train (squares) and test (triangles) accuracies over the 121 UCI (dashed line) and 85 UCR
(solid line) datasets as the alpha parameter changes, expressed as the difference to equal weighting (α = 0)
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3 2 1

1.7025 CAWPE(ConTie)
1.8595 CAWPE(alpha=4)

2.438CAWPE(RandTie)

3 2 1

1.8529 CAWPE(alpha=4)
1.9176 CAWPE(ConTie)

2.2294CAWPE(RandTie)

RCU,S-EPWAC(b)ICU,S-EPWAC(a)

3 2 1

1.7562 CAWPE(alpha=4)
1.9959 CAWPE(ConTie)

2.2479CAWPE(RandTie)

3 2 1

1.6706 CAWPE(alpha=4)
1.9176 CAWPE(ConTie)

2.4118CAWPE(RandTie)

RCU,A-EPWAC(d)ICU,A-EPWAC(c)

Fig. 15 Critical difference diagrams over test error of CAWPE on the UCI and UCR archives as it stands
(alpha = 4), and against two tuning schemes for the alpha parameter: resolving ties in error estimates
randomly (RandTie); and conservatively picking the lowest alpha amongst the ties (ConTie)

perform a further nested level of cross-validation. However, we can find a much faster
(but possibly biased) estimate of the ensemble’s error by using exactly the same folds
as the base classifiers once more, and simply recombining their predictions.

However, as Fig. 15 shows, tuning alpha over the range {0, 1, . . . 15,∞} appears to
offer little to no benefit when doing so with simple and sensible tuning rules such as
picking the α with the best accuracy estimate, and resolving ties (which can be quite
common in this scenario) either randomly (RandTie) or conservatively, by choosing
the smallest tied value of α (ConTie). ConTie tends towards more evenly averaging
the base classifier’s outputs, both to counteract any potential overfitting by the base
classifiers and, as shown in Fig. 14, the tendency for higher values of α to increasingly
lead to higher estimates of the ensemble’s own performance incorrectly.

One could imagine many more complex tuning schemes potentially having a posi-
tive effect, such as sticking to the default value of 4, and only deviating if another value
significantly improves accuracy over the cross-validation folds. However, considering
both this analysis of α and the findings of the previous section, and remembering our
initial guiding principle of simplicity, we believe we can reasonably fall back to fixing
the value of α.

7 Conclusions

The key message of this paper is simple: forming heterogeneous ensembles of approx-
imately equivalent classifiers produces on average a significantly better classifier (in
terms of error, ordering and probability estimates) than a wide range of potential base
classifiers, and that when we use a weighted probabilistic combination mechanism,
ensembles of simple classifier can be at least as good as homogeneous ensembles,
heterogeneous ensembles or tuned classifiers. The CAWPE method we propose is sig-
nificantly better than many equivalent methods and, if the number of classifiers being
ensembled is relatively small, represents a sensible starting point. CAWPE is quick,
simple and easy to understand. The CAWPE of five simple untuned classifiers is not
significantly worse than heavily tuned support vector machines, multilayer perceptron,
random forest and XGBoost. CAWPE is significantly better than similar heterogeneous
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schemes based on predictions rather than probabilities. Clearly, CAWPE is not always
the best approach, but given the short time it takes to build the simple classifiers we
have used to test it, it seems a sensible starting point.

CAWPE has limitations or areas where it is untested. Firstly, as the train set size
increases, the value in ensembling, as opposed to just picking the best, reduces. How-
ever, picking best rather than ensembling requires a similar amount of work, and
ensembling is unlikely to make things worse. Secondly, with a larger pool of classi-
fiers, it may be better to select a subset rather than use all classifiers using some ES
type algorithm. We have not tested this, because unless we choose the overproduce
and select methodology of including multiple copies of the same learning algorithm,
there are not that many learning algorithms that would be considered equivalent. Our
approach is to use fewer very different base classifiers, then combine their output in
a way that retains the maximum information. Thirdly, it may well be possible that
advanced classifiers such as boosting, deep learning and support vector machines can
be designed to beat CAWPE, but if this is the case it is not trivial, as we have shown.
Finally, the data we have used has only continuous attributes. We made this decision
based on the fact that we wanted to extend previous research and because we come to
this problem from time series classification, where all data is real valued. It may be
that the variation in classifier performance on nominal data is such that the ensembling
does not benefit. However, given that CAWPE is classifier neutral, it seems unlikely
that the pattern of results would be much different.

Ultimately we hope to drive a better understanding of what classifier to use for a
new problem and how best to use it. With current technology, our conclusion is that,
rather than expend extra computational time tuning a single classifier, it is better to
ensemble different classifiers from different families of algorithms, and that the best
way of doing this is to weight the probability estimates from each base classifier with
an exponentiated accuracy estimate derived from the train data.
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