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Thirteenth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri U.S.A., October 17-18, 1996 

A PROBABILISTIC EXAMINATION OF mE ULTIMATE STRENGm OF 

COLD-FoRMED STEEL ELEMENTS 

Benjamin Schafer\ Mircea Grigoriu2, & Teoman Pekoz3 

ABSTRACT 

This paper investigates the ultimate strength of cold-formed steel plates in uniform 
compression and pure bending with the goal of determining the statistical characteristics 
(mean and variance) of the ultimate strength. Plate thickness, longitudinal residual stress 
magnitude, and imperfection magnitude are considered as random variables. Based on 
existing data appropriate distributions are determined for these three random variables. 
Using ABAQUS for the strength prediction, two methods: Monte Carlo simulation and 
Taylor series approximation, are employed to determine statistical characteristics of the 
plates. The results are compared to the deterministic approach of the AISI Cold-Formed 
LRFD Specification. 

1 INTRODUCTION 

The sensitivity of some cold-formed steel members to imperfections results in a relatively 
wide range of scatter when the ultimate strength of cold-formed steel members are 
evaluated experimentally. As a result of this variability, it is important to perform a 
probabilistic examination in addition to the usual deterministic approaches. While it is 
impossible to address all cold-formed steel members for any conceivable loading, it is 
possible to examine the probabilistic behavior of cold-formed steel elements. Since typical 
members can be idealized as a composition of different elements, a study of the elements 
themselves allows an insight into member strength. Comparison of the probabilistic results 
to existing specifications may highlight the shortcomings of existing approaches and also 
serve to show the actual variability that exists in the strength prediction of typical cold
formed steel elements and members. 
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To lay a foundation for comparison, a deterministic approach is presented first. This 
approach is typical of the specifications and codes used throughout the world for strength 
prediction of cold-formed steel. Next, the random variables: thickness, residual stress 
magnitude, and imperfection magnitude are discussed and appropriate distributions are 
determined. With that established, the details of the model for an element in pure 
compression and pure bending are presented. With the problem fully defined, Monte Carlo 
simulation and Taylor series approximation are used to determine the mean and variance 
of the ultimate strength of the elements. With the statistical characteristics of the elements 
known discussion and comparisons are made to the deterministic approach. 

2 DETERMINISTIC APPROACH 

Before beginning a probabilistic examination of cold-formed steel members the 
deterministic approach of the AISI Specification[ 1] is presented. In order to examine the 
capacity of a cold-formed steel member the strength of the component elements must be 
determined. For instance, a hat-shaped member in flexure (with the top in compression) 
consists of the component elements shown in Fig. 1. Where the numbering refers to: (1) 
stiffened element under uniform compression; (2) stiffened elements under stress gradient; 
(3) unstiffened elements under uniform tension. 

1 
2 

Figure 1: Hat Section and Definition of Cold-Formed Steel Elements 

Each component element is typically investigated as a separate plate. Therefore, element 1 
can be considered as a simply supported plate under uniform compression. Element 2 is 
considered as a simply supported plate under a linear stress gradient, tension stress on the 
bottom, compression stress on the top. The ultimate strength of these plates is "determined 
by using an effective width approach. A plate with an effective width acting at the yield 
stress of the material is found such that it has the same strength as the actual plate which 
fails with a nonlinear stress distribution. 

2.1 Stiffened Element in Pure Compression 
The ultimate strength of a stiffened element in pure compression is determined by first 
calculating the elastic buckling stress and then using Winter's equation to determine the 
effective width. Winter's equation is an empirical correction to Von Karman's earlier work. 
The expression accounts for the· experimental scatter Winter observed in his and others 
tests. The equations presented below use the same expressions as in the AISI Specification 
but are rewritten in a more convenient form for the purposes of this study. The ultimate 
load a plate may carry in pure compression (Pult) can be expressed as: 



Pult = APer 

for Fer < 2.2Fy 
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A = ~(1- 0.22· ~J!L. 
VFy VFy Fer 

Per = Ferwt 

where Fer is the linear elastic buckling stress. Using such an approach the width to 
thickness ratio (wit) completely determines the ultimate strength for a particular set of 
material properties. Fig. 2 shows how the yield strength, ultimate strength as predicted by 
AISI, and elastic buckling strength compare for different wit values (E=2.03XlOsMPa, 
Fv=345MPa). It is clear that for wit values above 100 the ultimate strength increases little. 
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2 
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Figure 2: Element in Uniform Compression 
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Figure 3: Element in Pure Bending 
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2.2 Stiffened Element under a Stress Gradient 
For elements under a stress gradient, the AISI Specification uses an effective width 
procedure similar to that of an element in pure compression. The elastic buckling load is 
calculated for the entire element, with the plate buckling coefficient suitably modified to 
account for the loading. Winter's equation is then used to determine an effective width for 
the entire element. This information is used to determine effective portions for the 
compression zone of the element. Figure 3 shows how the yield strength, and nominal 
strength as predicted by AISI, compare for, different J..lt values (E=2.03xlOsMPa, 
F:v=345MPa). 

3 PROBABILISTIC MODEL 

In order to perform a probabilistic examination of cold-formed steel elements the random 
and deterministic parts of the problem must be determined. Two component elements 
selected for further study and the possible parameters investigated are shown in Fig. 4. All 
the parameters listed could potentially be considered random variables. In some cases the 
variation would be small or not of interest. In order to focus the investigation, only three 
quantities: plate thickness (T), residual stress magnitude (R), and imperfection magnitude 
(I) are considered random. Thickness is selected as a random quantity, primarily because 
of a provision in the AISI Specification discussed below. Residual stresses are selected for 
study, because while it is generally agreed that they influence the strength, no agreed upon 
magnitude exists for typical cold-formed steel members. Imperfections are considered 
because cold-formed steel members are known to be imperfection sensitive, but the exact 
mechanisms that cause these imperfections are not known. Hence, a deterministic 
procedure is not particularly meaningful when examining imperfections. All other 
quantities are deterministic. Thus, for the purposes of this study, when investigating the 
ultimate strength of a particular element only the variation from T, R, and I contribute to 
the variation present in the ultimate strength. 

STIFFENED ELEMENTS UNDER STIFFENED ELEMENT UNDER 

UNIFORM COMPRESSION: STRESS GRADIENT: 

I~I& :: 
I· I 

Possible Parameters to be considered: Possible Parameters to be considered: 
• length of plate • fl/f2 - ratio of applied stress 

width of plate • length of plate 
• thickness of plate • height of plate 
• modulus of elasticity • thickness of plate 
• yield stress • modulus of elasticity, yield stress 
• . magnitude of residual stresses • magnitude of residual stresses 
• magnitude of imperfections • magnitude of imperfections 
• distribution of imperfections • distribution of imperfections 
• distribution of residual stresses • distribution of residual stresses 
• plate boundary conditions • plate boundary conditions 

Fignre 4: Component Elements (plates) for Investigation 



3.1 General Inpnt Parameters 

3.1.1 Thickness 
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The statistical characteristics of the thickness of cold-formed steel has been previously 
investigated[2]. Galambos et al. report that the thickness (n exceeds the design thickness 

S,S 1 1.2 
thickness {mml 

Figure 5: Probability Density Function for T 

(td) by 6% and the coefficient of variation 
(standard deviation/mean) of T1td is 
reported as 0.053. The AISI specification 
states that if the delivered thickness is 
95% of the design thickness then the 
section is adequate. As a result, for 
comparison to the AISI Specification, it is 
appropriate to assume that T is 
approximately equal to td. For this study 
the nominal thickness of interest will be 
Imm. Therefore, the random variable T 
will be assumed normally distributed with 
mean of Imm and standard deviation of 

0.053mm as shown in Fig. 5. ApproximatingT as a normal distribution is a reasonable and 
simplifying assumption. However, it should be remembered that the normal distribution is 
defined from [-00,+00]. Therefore, negative values of T are possible. Of course, in this case 
the probability content is negli~ible for negative realizations of T. 

3.1.2 Imperfections 
The magnitude and distribution of imperfections in cold-formed steel sections has only 
seen limited study. Imperfections are a function of the thickness of the sheet, the forming 
process, shipping, handling, installation and other factors. A simplified method for 
modeling imperfection distributions (often used in analytical solutions) is to assume a 
distribution equal to one of the buckling (eigen)modes. In this analysis, the first mode is 
used as the distribution of the imperfection. In order to determine imperfection 
magnitudes, studies for C-shaped sections and trapezoidal sections are exarnined[3,4]. The 
maximum deviation on each measurement line as estimated from graphs is recorded in 
Appendix Table Al. A histogram of the imperfection data and a lognormal distribution 
fitted to the data are shown in Fig. 6. Based on this examination the random Variable I is 
assumed to have a lognormal distribution with a mean of 0.73mm and a standard deviation 
of 0.0424mm. 

3.1.3 Residual Stress 
The creation of residual stresses is a complex process, storing of the coils, the rolling of 
the member, final straightening, etc. all contribute to the creation. Nonetheless, efforts 
have been made to characterize residual stresses. Collected data[4,5,6] on residual stresses 
are shown in the Appendix Table A2. Typical residual stress distributions have tension on 
the outside, and compression on the inside. of the plate thickness. The stresses are higher 
at the corners, and the net stress or membrane stress is generally close to zero. A 
histogram of the absolute value of the' surface residual stress in the flat regions and a 
uniform, probability density function are plotted in Fig. 7. From this limited data it is 
concluded that the net residual stress can be considered zero in the flat sections; tension 
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on top, compression on bottom, as observed by Weng[5]. The higher state of residual 
stress in the small comer areas is neglected in this analysis. For this study, R is assumed to 
be uniformly distributed over a range of 0 to 55%Fy. 

1.5 r----.-----r---..----....-----, 

0.5 

max. imperfection (mm) 

Figure 6: Histogram and Probability Density Function for I 
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Figure 7: Histogram and Probability Density Function for R 

3.1.4 Material Properties 
To model elastic perfectly plastic behavior the modulus of elasticity, Poisson's ratio, and 
the yield stress are sufficient. For this study all of these parameters are considered 
deterministic with E=2.03x1Q5Mpa, v=O.3, and F,,=345MPa. For virgin steel (no residual 
stress) a typical tensile coupon is essentially elastic perfectly plastic. However, tensile 
coupons taken from cold-formed steel elements generally exhibit nonlinear behavior. This 
nonlinear stress-strain behavior is largely due to the residual stresses existing in the 
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section. Therefore, by including residual stresses in the model the nonlinear portion of the 
stress-strain diagram is actually captured. In addition, because the residual stresses are 
random, the variation inherent in the material behavior is also partially captured. One 
factor not considered in this study, is 'the variability of the yield stress of the material. In 
general, the yield stress is expected to be greater than the design yield stress, in this 
analysis it will be assumed equal and deterministic. This assumption introduces a certain 
degree of conservatism in to the analysis. 

3.2 Stiffened Element Under Uniform Compression 

3.2.1 Length 
The length of an element in a cold-formed steel section is generally much larger than the 
width. For plates with length to width ratio (lIW) greater than 4 the elastic buckling stress 
is reliably estimated by a single buckling coefficient value. Analysis is conducted using a 
plate with lIW equal to 4 to avoid the effect of length on the solution. 

3.2.2 Width 
The width to thickness ratio (wit) of the plate is important for determining the ultimate 
load the plate may carry. In order to fully examine the behavior of stiffened elements under 
uniform compression, a continuum of different wit ratios should be investigated. For 
solutions by simulation, computation of the statistical characteristics at a variety of wit 
values is prohibitive because of the number of computer runs required. However, if Fig. 2. 
captures the overall behavior adequately, then any element with a wit greater than 50 is 
significantly effected by local buckling, and thus of interest. As an example, and for 
simplicity, wit shall be taken as 100. 

3.2.3 Boundary Conditions 
The boundary conditions of the plate have an important role in determining the ultimate 
strength. The AISI Specification assumes that a stiffened element under uniform 
compression can be modeled as a simply supported plate. This assumption is generally 
conservative, simple, and justified by the fact that at failure significant yielding occurs at 
the edges of the plates, thus limiting the rotational stiffness in these comer regions. 
Modeling a simply supported edge leads to ambiguity in the boundary conditions. The 
moment on all the edges should remain zero, but how does this translate into restrained 
degrees of freedom? Two possible solutions are: the lateral sides are free to displace in the 
plane of the plate, but they must remain straight (Case 1), and the late!:al sides are 
completely free to displace in the plane of the plate (Case 2.) 

ABAQUS was ,used to analyze the following problem: What is the ultimate load in 
uniform compression for the two cases? Given: l=400mm, w=100mm, T=lmm, 
E=2.03X105MPa, Fy=345MPa, R=27.5%Fy, l=O.72mm. Fig. 8 shows the two cases and 
analysis results. Case 1 corresponds to a plate connected to a "stiff" web, this model is 
typically used to examine the problem analytically[7,8]. Case 2 corresponds to a plate 
connected to a weak, or slender web. The behavior and ultimate strength of these two 
members is quite different. The AISI specification uses the same procedure for analysis of 
the elements regardless of whether it is connected to a stiff or slender web. Case 2 is 
selected for this study. 



Case 1: Connected to Stiff Web 

_1--1 
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Case 2: Connected to Slender Web 
2 

pulr. = 2. 661;,r P"lr. = 2.19 1;,r 
Figure 8: Comparison of Plate Boundary Conditions 

3.3 Stiffened Element Under Stress Gradient 

3.3.1 Ratio of Applied Stresses 
A stiffened element under a stress gradient covers loading from pure compression to pure 
tension. However, it is typical that the stiffened element referred to is a web of a member, 
rather than an element under arbitrary load. For webs, the stress distribution is that of 
tension on one side, compression on the other. The most basic of this type of loading is 
pure bending, and therefore for this analysis the pure bending case is investigated. 

3.3.2 Height 
In order to fully examine the behavior of stiffened elements under pure bending, a variety 
of different hit ratios should be investigated. As Fig. 3 demonstrates the most interesting 
elements in pure bending are influenced by local buckling in the compression region. In 
order to investigate a typical element which is susceptible to buckling in bending, hit is 
selected as 200. 

3.3.3 Boundary Conditions 
The AISI specification assumes that a simply supported plate is adequate for evaluating 
the element strength. If the lateral (unloaded) sides are forced to stay straight it is 
analogous to a flexural member with strong flanges. If the lateral sides are free to wave 
this corresponds to a slender flange. For this analysis, the lateral sides are assumed free to 
wave in the plane of the plate. The loaded edges are restricted to only move linearly across 
the edge. 

4 PROBABILISTIC MODEL: SOLUTION METHODOLOGIES 

4.1 Monte Carlo Simulation 
Thickness (1), residual stress (R), and imperfection magnitude (1) are selected as random. 
Using the distributions of Figures 5-7, realizations of T, R, and I are generated. Analysis is 
conducted for a sample of T, R, and I. The results are recorded (in this case the ultimate 
strength at failure), a new sample of T, R, and I is selected, and another analysis is 
conducted. If enough samples are used and the process is "stahle" then the generated 
sample mean and variance of the simulation give a reliable approximation of the actual 
mean and variance ofthe process. 
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4.2 Taylor Expansion 
With ABAQUS as a tool, the ultimate strength becomes a scalar field in T, R, and I that 
can be sampled pointwise. A Taylor expansion of an unknown function is possible in this 
situation, because the derivatives necessary for the expansion can be readily approximated 
by central differences. Thus, it is possible to determine a functional form for the ultimate 
strength of the element. If the ultimate strength is denoted as U, then for a second order 
expansion this results in an equation of the following form: 

U = aT + bR + c/ -+ dT2 + eR2 + fl2 + gTR + hRI + jTI + k 

Where, a through k are determined by the Taylor expansion. Since the distribution of the 
random variables T, R, and I is known, the m~an and variance of U can be readily 
calculated. (In fact, any moment of U can be generated.) 

5 PROBABILISTIC MODEL: RESULTS 

5.1 Plate in Uniform Compression 

Monte Carlo Simulation 
The greatest difficulty in using MC simulation is determining the necessary number of 
samples. Of course more is better, but the analysis time for each sample is on the order of 
a few hours. (Analysis for this work is conducted on a V AXstation-4000-60 using 
ABAQUS version 5.3-1.) The mean of the ultimate strength multiplier through 100 
samples of T, R, and I is shown in Figure 10. The output from the analysis is A, the 
ultimate strength of the plate is Pult = APcr • 2"1.----~-~--~-~---, 

After only a few samples it is clear that T is 
the most influential parameter of the problem. 
The AISI Specification for the ultimate 
strength is a function of T. Simulation of the 
ultimate strength via the AISI Specification 
using 500 samples of T is shown in Figure 9. 
After 100 samples the AISI simulation settles 
down considerably. This is and indication that 
100 samples is an adequate amount for the 
MC simulation. 

Figure 10 visually demonstrates the 

= 2.0S 

"il 
1. 2 

i 1.95v-
~ 1.9 

~ 
." 1.85 

l.K{~1 --;I;"";;-----,2'*'IK"""1 -....,3*'IKI,...----,,4'*"KI-~5(XI 
number of samples 

Figure 9: Results for AISI Simulation 

convergence of the strength multiplier A. Numerically, it is found that the MC simulation 
gives a mean for A of 2.17 and a variance of 0.048. In addition to examining the mean and 
standard deviation of A, how the random variables T, R, and I are related to A is also 
investigated (Figures 11-13). For the 100 samples, it is clear by looking at Figure II, that 
thickness is well correlated with the final answer. Conclusions about the effect of residual 
stress and imperfection are not as straightforward. However, if a linear regression is 
performed on the thickness data (fit a straight line to data in Figure 11) the residuals reveal 
that large imperfections and residual stresses do decrease the strength (as is intuitively 
expected). 
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Figure 10: Average of Strength Multiplier A. 
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Figure 11: Sample Results for Thickness 
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Taylor Expansion 
To calculate the central differences necessary for the derivatives in the Taylor expansion 
step sizes for T, R, and I are needed. The data from the Me simulation is examined in 
order to determine the step sizes. Figure 11 shows that the strength is approximately linear 
in T. Therefore, a linear regression is performed on T and the residuals for R and I are 
examined .. This reveals that the residuals of I are roughly linear. Therefore I is also 
regressed and the R residuals are recalculated. By studying the residuals, regions around 
the mean which are linear with respect to the variables can be determined. Based on this 
analysis, the following step sizes are selected: 

!l.t = 0.053 (one standard dev.), !1r = 7.5, !1i = 0.4257 (one standard dev.) 

With the step sizes known a functional form can now be readily determined. Analysis is 
completed on ABAQUS to determine the required points for the central difference 
calculation. The expansion leads to the following expressions for A: 

First Order Expansion: 
A = 2.64T - 0.OO333R - 01411 -0.257 

Second Order Expansion: 
A = 30.9T - 0.0564R + 1.481 -14.2T2 + 8.89 X 10-5 R2 

+ 0.055212 + 0.0503TR - 0.00157 RI -1.66TI -14.2 

With the functional forms known, the mean and variance of A. can be readily calculated. 
For the fIrst order expansion the mean of A. is 2.19 and the variance is 0.0484. For the 
second order expansion the mean of A is 2.18 and the variance is 0.2394. 

5.2 Plate in Pure Bending 

Taylor Expansion 
Investigation of elements under stress gradient are conducted using Taylor expansion. The 
step sizes for the random variables are selected the same as in the uniform compression 
case. The output from the analysis is a, the ultimate flexural strength of the element under 
stress gradient is: 

M ult =aMy • 

The fIrst and second order expansions lead to the following expressions for a: 

First Order Expansion: 
a = 0.811T - 0.00053R - 0.009411 - 015682 

Second Order Expansion: 
a = 0.946T-0.00271R+0.2251 + 1.78 x 10-5 R2 

+ 0.00126TR -7.83 x 10-5 RI - 0.233TI - 0.28 

With the functional forms known, the mean and variance of a can be readily calculated. 
For the fIrst order expansion the mean of a is 0.633 and the variance is 0.0020. For the 
second order expansion the mean of a is 0.638 and the variance is 0.0105. 
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6 DISCUSSION AND COMPARISON TO AISI SPECIFICATION 

6.1 Plate in Uniform Compression 
For the case studied, the nominal A value determined using AISI is 1.94. (i.e. the ultimate 
strength is 1.94Pcr). Figure 14 shows a histogram of the Me simulation results and a 
normal distribution fit to those results. Investigation of the Me simulation data reveals 
that 13 of the 100 members are predicted to have a strength less than the AISI prediction. 

In order to evaluate the Taylor series approximation, and for later use, a distribution for A 
is needed. Based on Figure 14 it is concluded that a normal distribution adequately 
captures A. Since the Me simulation and the Taylor expansions have different means and 
variances the percentage of expected understrength members will vary for the different 
methods. Figure 15 shows the expected percentage of understrength elements based on 
the Me simulation results. For the Me simulation (now fitted to the normal distribution) 
the expected percentage of understrength members is 14.5%, for the first order Taylor 
expansion it is 6.1 %, for the second order Taylor expansion it is 31.2%. The large 
variability in the Taylor expansion results is due to the step sizes selected for calculating 
the derivatives. 

Relying primarily on the Me simulation results for discussion: the nominal AISI prediction 
lies approximately one standard deviation below the expected average. The percentage of 
understrength members may at first seem larger than expected, but this is without 
consideration of resistance factors. For a resistance factor of 0.85, typical for 
compression, the probability of an understrength member is 0.84%. 

2.5;,.-------.------.-------, 

29 
2 

3 

Figure 14: Histogram and Distribution for A, 

6.2 Plate in Pure Bending 
A similar analysis to that conducted for the uniform compression case is also conducted 
for the pure bending example. For the example element in pure bending the nominal AISI 
a value determined is 0.604 (i.e. the ultimate strength is 0.604My). Figure 16 shows the 
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assumed distribution of a and the expected percentage of understrength members using 
the mean and variance from the fIrst order Taylor expansion. The expected percentage of 
understrength elements in pure bending is 25.5% for the fIrst order expansion and 37.1 % 
for the second order expansion. For a resistance factor of 0.9, those values become 2.3% 
and 17.9% respectively. The prediction of elements under a stress gradient is less 
conservative than for elements in uniform compression alone. 

UNIFORM COMPRESSION 

2r---------~----------_r----------, 
1.8 

A. 

Nonnal PDF, mean 
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Figure 15: AISI Comparison to A. 
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Figure 16: AISI Comparison to (J( 
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6.3 Example: Flexural Strength of a Hat Section 
The analysis of elements in pure compression and bending are of interest primarily because 
when placed together the elements approximate the behavior of cold-formed steel 
members. The example mentioned previously is that of a hat section, as in Fig. 1. Consider 
a section as shown in the inset of Fig. 17. For this hat section in bending, the web and 
tension flanges are not prone to buckle. If they are con~idered deterministic, then the 
variability in the ultimate strength is dependent on the compression flange only. Using the 
same procedure as the AISI Specification it is found that for this section (E=2.03X105MPa 
and Fv=345MPa) the flexural capacity Mn may be expressed as: 

Mn = 0.211.,3 -1.481.,2 +4.611.,+0.90 kNm 

With the functional form of Mn now known and the distribution of A. known (from the MC 
simulation performed on a' plate in uniform compression) Mn can be readily solved by 
simulation. Samples of A. are generated using a normal distribution characterized by the 
mean and variance found from the MC simulation. Figure 17 shows a histogram of Mn 
after 1000 samples. The flexural capacity prediction of the AISI Specification is 5.81kNm. 
The simulation yields a flexural capacity with mean 6.08kNm and standard deviation 
0.27kNm. It is fOlmd that 147 of the 1000 samples (14.7%) have a flexural strength less 
than that predicted by the Specification. If a resistance factor of 0.9 is used no 
understrength members are observed in the sample of 1000. The resistance factor 
significantly decreases the probability of understrength members, because in the example 
the variance in the capacity is rather small. For cases with greater uncertainty the 
resistance factor would not have such a dramatic effect. In addition, the Specification was 
shown'to be less conservative for slender webs, therefore members dominated by these 
elements could be expected to be less conservative than the example presented. 
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Figure 17: Histogram for Hat Section Example 
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7 CONCLUSIONS 

Based on an examination of existing literature in cold-formed steel, typical distributions 
for thickness, residual stress and imperfection magnitude are determined. Using ABAQUS 
general models for the strength of a simply supported plate in uniform compression and 
pure bending are developed. Probabilistic analysis of the ultimate strength is conducted by 
MC simulation and Taylor expansion for the plate in uniform compression and Taylor 
expansion for the plate in pure bending. Analysis by MC simulation indicates that the 
ultimate strength is approximately normally distributed. Analysis by Taylor expansion 
yields similar mean values but different variances for the members studied. The variance 
from the Taylor expansion is influenced by the selection of step size for use in the central 
difference approximation of the derivatives. 

A comparison of the statistical results to the AlSI Specification indicate that the 
Specification is less conservative in its prediction of a plate in pure bending than in pure 
compression. Ignoring resistance factors, the expected probability of an understrength 
member is -15% for an element in pure compression and -25% for an element in pure 
bending. However, for the flexural member example problem, with the resistance factor 
included, no understrength members were observed in a sample of 1000. In the future, a 
Specification procedure that treats the inherent variability of the inputs in cold-formed 
steel strength prediction directly, and yields a probability based answer to the user may 
prove useful - for now, Winter's empirical correction factor still appears viable albeit in 
some cases quite conservative. 
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APPENDIX 

a e : T bl Al I mpe ection D ata 
Magnitude of MaximlDll Imperfection (mm) 

Specimen Line 1 LineZ Line 3 Line 4 LineS 
Kwon CHI-5-800 0.35 0.35 0.55 0.75 1.25 

C-Section CHl-6-800 0.55 0.35 0.38 0.75 0.75 
t=1.10mm CHI-7-400 0.90 0.75 0.60 0.45 0.55 

CHI-7-600 0.50 0.30 0.38 0.50 0.70 
CHl-7-800 0.55 0.70 0.90 1.20 1.30 
CH2-7-800 0.35 0.25 0045 0.80 0.95 
CH2-7-1000 0.25 0.50 0.70 0.90 0.60 
CH2-8-1000 0.75 0040 0.20 0.80 1045 

CH2-IO-IOO< 0045 0.45 1.30 0.80 0.50 
CH2-12-100< 0.90 0.75 0.80 0.80 1.15 
CH2-14-100< 0.75 0.65 0.60 0.50 0.50 

Bernard ST22 0.60 0.50 0045 0.25 0.25 
Trap. Sect. 0.80 0.65 0.60 0045 0.20 
t=0.595mm IST43 1.20 1.10 0.70 0.30 

1.80 1.50 1.10 0.30 
IST44 0.70 0.60 0.40 0.55 0.35 

0.90 0.60 0.30 0.10 
IST46 2.30 1.70 1.20 0.60 0.40 

2.30 1.70 1.20 0.60 0.30 
Overall Average - 0.72 Overall Standard Deviation = 0.43 

Table A2· Residual Stress Data 
FLATS CORNER 

Residual Stress as %fy Residual Stress as %fy 
Specimen Outside Inside Net Outside Inside Net 

Ingvarsson Ul 4 -3 I 56 -38 18 
(C-Section) U2 I -2 -I 50 -31 19 

Weng RFC13 22 -24 -2 54 -41 13 
(C-Section) RFCI4 53 -53 0 80 -56 24 

PBCI4 24 -24 0 53 -47 6 
R13 53 -53 0 70 -59 II 
RI4 53 -44 9 71 -62 9 

P3300 21 -21 0 42 -40 2 
P4100 17 -20 -3 40 -40 0 
DCI2 23 -23 0 46 -50 -4 
DCI4 26 -28 -2 53 -40 13 
Pll 35 -37 -2 61 -53 8 
PI6 32 -41 -9 60 -54 6 

Bernard R41O-1 13 -13 0 3 0 3 
(Trapezoid R412-1 -5 6 I -4 2 -2 

Section) R412'2A -3 4 I -2 2 0 
R412-2B 12 -10 2 8 -4 4 

mean 22.41 -22.71 -0.29 43.59 -35.94 7.65 
st. dev. 18.53 18.51 3044 26.35 22.14 7.87 
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