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Abstract

Methods for automatic image interpretation based on the use of deformable template
models have proved very successful. Whatever deformable template scheme is used, one
of the basic requirements is a method for assessing the likelihood that a particular model
instance is the correct interpretation of a given image. We describe a Bayesian ‘fitness’
measure which combines the likelihood of the model shape with the evidential support in
a principled way. Image search is carried out by minimising the fitness measure using
multi-scale quasi-Newtonian optimisation. We have previously compared the perform-
ance of different fitness measures. Here we give results for the new method and show
that, by making optimal use of the image evidence, it achieves more accurate interpreta-
tion than the best of the methods we have previously tested.

Introduction

Flexible template models have been used successfully for many applications
of automatic image interpretation[1,2,3,4]. The template embodies a priori knowledge
of the typical shape and shape variability of the modelled object(s). A number of
modelling methods have been employed to represent structures of interest. Lipson et
al [1] model vertebral cross-sections using a simple ellipsoidal template, Bajcsy and
Kovavic [2] use a 3-dimensional voxel representation of an anatomical brain atlas,
whilst Staib and Duncan [3] parameterize the left ventricle of the heart in echocardio-
grams usin fg] an elliptic Fourier decomposition its closed boundary. Generally, image
search for flexible template models is performed by moving and deforming the tem-
plate so as to minimise some energy function, or fitness measure, which has been de-
fined to correspond to the best fit with the image. The fitness measure typically favours
matching the model to strong edge evidence in the image. However, little attention
has been tl:uaicl to making proper use of the evidence. For example, it is often implicit
that all of the supporting evidence extracted from the image is independent and of
equal reliability; neither assumption is, in general, realistic. In this paper, we attempt
to tackle this problem in a more principled way by defining a Bayesian fitness measure
for use with flexible template models.

Our fitness measure combines both grey-level evidence and a priori knowledge of
shape probability to produce a likelihood estimate that a given model instance is the
correct interpretation. It can therefore be used with any shape modelling method for
which an estimate of shape probability is available. In order to obtain the fitness
measure, we build statistical models of the grey-level evidence extracted from the
image, and the object shape parameters. The models are built using ‘training data’ ga-
thered from a number of example images. The shape models are Point Distribution
Models (PDMs), based on the work of Cootes et al. [4].
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During image search, the fitness measure is minimised using a standard quasi-New-
tonian optimisation algorithm. We use a multi-resolution search strategy, performing
the optimisation on each level of an image pyramid in turn. We present results for
trans-axial Magnetic Resonance images of the lower abdomen (male). These images
are particularly difficult to interpret because they are ‘cluttered’ and the contrast be-
tween structures of interest is poor. We have run multiple-trial experiments compar-
ing the accuracy of interpretation obtained using the new fitness measure with that
achieved using alternative approaches and show a significant improvement in per-
formance.

The Bayesian Fitness Measure

The likelihood of a flexible template instance being the correct fit to the image evi-
dence may be expressed using Bayes’ Theorem :

1
P(F|E) = P(E | F)P(F) (1)
P(FPE|F) + P@)PE|B)

where P(¥F|E) is the probability of the foreground (or correct) state F given image evi-
dence E, P(E|¥) is the probability of observing evidence E in the foreground state ¥,
P(F) is the prior probability of observing the foreground state ¥, P(E |®) is the prob-
ability of observing evidence E in the background state (ie any state other than the fore-
ground state), and P(®) is the prior probability of observing the background state 8.
The foreground model summarises the distribution of grey-level evidence observed
when the model represents the correct solution; the background model summarises
the distribution of grey-level evidence observed when the model is not at the correct
solution.
Similarly, the likelihood of a flexible template instance being an example of the model
shape is given by :

PSINPE) @
P(S)

where P(¥F|S) is the probability of the foreground state ¥ given shape S, P(S|¥) is the
probability of observing shape § in the foreground state &, P(F) is the prior probability
of observing the foreground state &, and P(S) is the prior probability of observing shape
S. We assume that P(S) and P(¥F) are constants ie all shape states are equally probable
and there is always the same chance of finding a foreground model. Then,
P(S|F)P(E|F)

P(F|S) =

P(F|E,S) = P(F|E)P(F|S) e 3)
We can replace the probabilities in equation (3) by probability densities, giving :
P@|E,S) « — PSIPPEID -

B

PE|F) + "G p(E|B)
In order to estimate P(¥|E,S) we need to model each of the terms in equation (4).
p(E|¥) and p(E | B) may be determined by modelling the grey-level evidence observed
for examples of the foreground and background states respectively. Both models can be
obtained by performing a statistical analysis of grey-level data from a training set of
images, each annotated with the correct interpretation. p(S|¥) is equal to the prior
probability of observing shape S for a correct interpretation . We obtain a value pro-
portional to p(S|¥F) by building a parameterised model summarising the probability
distribution for each of the shape parameters. Again, this is achieved by performing a
statistical analysis of a number of training examples. Finally, we assume that the ratio
of the Bayesian priors, p(B) : p(F) is constant, and equal to 1. We make this assumption
on the grounds that it will be approximately true when the model instance is near the
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correct solution. This means that towards the convergence of image search, we will be
able to extract a final model probability which is reasonably accurate.

When investigating the behaviour of the fitness measure and in image search, it is con-
venient to deal with log probabilities because they allow a large dynamic range to be
accommodated. Thus, we use a fitness measure given by :
f=-In(p(F|ES) + C (5
= ~in((E|F)) + In(-p(E|F)-p(E|B)) - In(p(S|F) + ¢ ©)
where C is a constant which we take to be zero.

Modelling Shape

We show how to obtain a value for p(S|¥) for a Point Distribution Model (PDM).
PDMs model the shapes of variable objects by representing each object as a set of la-
belled points. Each point corresponds to a particular location on the object. The model
consists of the mean positions of these points over a training set of examples and the
main modes of variation describing how the points move about their mean positions. A
shape instance may be calculated as :

s = §+ Pb, )

where s = (X0, Y0, X1, Y1, -» Xt Yies s Xm=1» ¥im-1) T, (% yx) is the position of point k, §
represents the mean shape, Py is a 2m x t; matrix of the t; unit eigenvectors of the cova-
riance matrix of S, and by = (bs7 bs2 ... by, )Tis a set of shape parameters

We estimate p(S | F) for a PDM as follows. Firstly, we assume a normal distribution in
each of the shape parameter values bs. For a shape instance s, this gives a probability
density:

Iy b;

o M2 3 My= ) — (8
p(s|F) x e ;-1’1‘1' )

where M; is the Mahalanobis distance, and \Ay; is the eigenvalue corresponding to the
Jjth eigenvector.

Modelling the Foreground Evidence

We obtain a value for p(E|¥) by modelling the grey-level evidence observed for
examples of the foreground state. We gather training data for the model as follows :

» For each model point in each member of the training set, we extract a
profile from the image, of length n, pixels, centred on the model point,
and perpendicular to the model boundary.

» For each example in the training set, we concatenate the profiles to give
a single grey level vector F=(Fq, F, .... F,, ) as shown in Figure 1.

Each vector is thus of length n = n, x ny, pixels, where n,, is the number
of points in the shape model.

Since each model point corresponds to the same structure in every training image, we
expect the extracted profiles to be similar in every example. We build the grey-level
modelfrom the training data similarly to Cootes et al. [5]. We calculate a mean profile,
F, and construct an n? covariance matrix Sg. This gives a second order statistical de-
scription of the expected grey-level evidence. The variation about the mean is de-
scribed by Py, the eigenvectors of Sy corresponding to the tg (< n) largest eigenva-
lues. We can thus express an instance of the foreground profile model as :

F = F + Pgby )
where by is a set of 7r parameters describing the profile model.
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etc ?
Figure 1 : Gathering of Grey-Level Evidence for the Foreground Model —
Grey-Level Profiles Gathered Perpendicular to the Model Boundary at each
Model Point are Concatenated Together

The difference between our approach and that of Cootes et al. lies in our use of concat-
enated training profiles. Whereas Cootes builds an individual profile model for each
shape model point, we build a single, concatenated profile model. We do this because
there is a difficulty in combining probabilities generated for the individual models to
give a single foreground evidence probability. The grey-level profile data gathered
from different model points may be correlated, particularly for nearby points. We can-
not therefore simply assume independence of the individual model probabilities -
doing so will give us an incorrect estimate of overall model probability. A solution to
the problem is to use a single profile model, which implicitly takes care of any correla-
tion. This allows us to obtain a more principled estimate of model probability.

If we assume that the original foreground profile data follows a normal distribution,

the probability density function for observing a foreground grey-level model instance

F is given by :

IF b2
it

p(F|F) « e™Mer?; Mg, = (10)

ot M
j=1

where Mg, is the Mahalanobis distance of the multi-variate normal probability den-
sity function, A is the eigenvalue corresponding to the jth eigenvector, A5; > Afj+ 1,
and tr is the number of eigenvectors used in the model. Mg, thus gives a fitness

measure for the grey-level evidence explained by the foreground model.

However, unless we have a very large number of training examples, fF will normally be
less than #. This means that we are modelling the grey-level evidence using a basis set
which does not span the observation space; there are in principle (n—tr) unmodelled
dimensions. If we reconstruct a grey-level profile from a valid interpretation using
equation (9), we find that the reconstructed profile is slightly different from the orig-
inal. This difference or unexplained evidence is caused by the model truncation, and
must be accounted for if we are to accurately calculate a probability for a foreground
model instance. Cootes et al. [5] do this by estimating the contribution of unexplained
evidence to the foreground model probability; we choose tobuild a simple single~para-
meter unexplained evidence model.

We define the unexplained evidence as a vector uy of length n, given by :

U = F!abs _ Fmod (11)
where F°* is the grey-level intensity vector for the concatenated profile, and F™ is
the grey-level intensity vector as it is best expressed in terms of the foreground model.

We make a number of measurements of ug; in order to obtain a representative sample,
we measure uy for examples not originally used to train the foreground model. The
procedure for obtaining 7, measurements of up is as follows. For each example in the
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original training set, we train a foreground model using the other n; ~1 examples. We
then measure uy for the example using the ‘leave one out’ model.

Since we expect the unexplained evidence to be largely uncorrelated, we assume that
we can only extract one unexplained evidence model parameter reliably. This implies
that the variance in every dimension of the unexplained evidence model space is the
same. We can use the n, unexplained evidence examples to estimate this variance Ay, :

1
U nn-tr) g‘ ! 12)
where ;; is the grey level intensity of the ith pixel of the jth example.

Taking the unexplained evidence into account, the Mahalanobis distance for the full
n-dimensional observation space MF is given by :

g ;- n b};"

Me=D % 2 7 (13)
=t a1 T

= Mg, + My, (14)

where M, is the contribution to the total Mahalanobis distance from the unexplained

evidence.
Since we have used only zr modes in our model, we have no knowledge of bg; OF Ay for

Jj >tr. However, it can be shown (see Cootes et al [5]) that

> by =R: (15)
J=tp+1
where R} is given by :
Ry = (B - F)'(F™ - F) - bib; (16)

Since we assume the variance for all dimensions of the unexplained evidence model to
be equal to iy, , My, may be written as :

K -

M, =
U ;LUF

i 1
If we assume a multi-variate normal distribution, the probability density of observing
foreground evidence F may therefore be expressed as :

P(F|F) o eur*Neplt 5

Modelling the Background Evidence

We obtain a value for P(E|®) by modelling the grey-level evidence observed for
examples of the background state. In order to build the model we must define what we
mean by ‘background’. The proper definition of background is ‘every possible model
configuration in the image except the foreground state’. However, it is impractical to
gather training data for such a model. Instead, we define a subset of all possible back-
ground states : ‘those states of the model close to, but not at, the correct model state’. This
definition allows us to discriminate between the foreground and background states for
model instances near the correct answer. We therefore train the background model as
follows :

» For each training image, we generate a number of random model poses,

- with values of x, y, scale and rotation near, but not at, the correct model

pose for the image. In each case the correct shape parameters are used,
though they could also have been varied.
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¢ An area of pose-space close to the correct (foreground) model configur-
ation is excluded from the background model. The amount of excluded
Bose—space is determined by the inherent inaccuracy in position of the
DM shape model points due to the limited number of shape modes
used to construct the shape model.

* For each member of the randomly generated training set of model con-
figurations, we extract profiles from the corresponding image, and train a
concatenated profile model as for the foreground.

An example of the profile grey-levels for a background instance can, by analogy with
(9), be reconstructed from :

B =B+ Pgby (19)
where by is a set of /g parameters .
Aswith the foreground model, we also model the training set background evidence not
explained by the background model, gathering examples of the unexplained background
evidence on a ‘leave one out’ basis as before, and calculating a parameter A, which we
take to be the variance for all dimensions of the unexplained evidence model.

By analogy with equation (18), the probability density of observing grey-level back-
ground model instance B is given by :

P(B] m) o e—(MUB+MEH)'J2 (20)
where Mj, is the Mahalanobis distance for the explained evidence background model:
ig ng
My, = Z T @1)
J=1

Agj is the eigenvalue corresponding to the jth eigenvector, and My, isthe Mahalanobis
distance for the unexplained evidence background model :

2
M i )

B lUB

(all other symbols have analogous meanings to those used for the foreground model)

Results with Real Images

Combining equations (6),(18) and (20) we obtain a grey-level evidence fitness
measure, fg, given by :
fo = Mg, + My, + In(Mg, + My, + Mg, + My,) (23)

Finally, including the shape evidence gives us an overall fitness measure, f:
f=f+M, (24)

We have performed experiments on a set of real images to investigate the behaviour of
f;- We used a PDM representing some of the structure visible in a trans-axial Magnetic
ﬁesonance image of the lower abdomen (male), approximately mid-way through the
prostate gland (see Figure 3 a)). The PDM, trained on 40 examples, uses 79 model
points to represent the structure of the prostate, a T-shaped structure called the sym-
phasis pubis and the skin. 7-pixel profiles for building both foreground and back-
ground models were extracted at each model point in each training set image.

Figure 2 gives results for the components of f; vs. x displacement of the model in the
image, keeping all other model pose and shape parameters at their correct values. Fig-
ure 2a) plots the Mahalanobis distance for the explained evidence models (egns
(10),(21)); 2b) plots the Mahalanobis distance for the unexplained evidence models
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(eqns (17),(22)), and 2c) shows f, itself (eqn (23)). We see that f; is dominated by our
estimate of the unexplained eviflence. This also appears to give a smoother, more ro-
bust estimate of model fitness than the explained evidence contribution. The import-
ant features to note about the shape of f; are : i) the foreground contribution to the
function has a sharp minimum at the correct model instance ii) conversely, the back-
ground contribution to the function has a much less pronounced maximum at the same
position iii) the foreground model is calculated to be more probable than the back-
ground model for a small region around the correct answer.
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Figure 2: a) Mahalanobis Distance for Explained Evidence Model vs. x, b) Mahalano-
bis Distance for Unexplained Evidence Model vs. x, c) Combined Grey-Level Fitness
Measure f, vs. x d) f; vs. x Flotted for 4 Levels of a Gaussian Image Pyramid

Varying Image Resolution

We also plot fg as a function of x displacement for grey-level models generated at each
level of a Gaussian image-pyramid. Figure 2 d) shows results for a 4-level pyramid.
The specificity of the function at the correct solution increases as we increase the res-
olution of the model. We therefore have a method of controlling how strongly peaked
our fitness measure is at the correct solution. We believe this can be used to improve
the speed and robustness of our search method in two ways. Firstly, a highly smoothed
lower-resolution image will be less noisy, giving a search-space less subject to local
minima, and increasing the likelihood of the optimiser finding a global minimum. Se-
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condly, as the image smoothing is increased, the fitness function becomes less like a
8—function in nature; this increases the speed of the optimiser.

Image Search

The current search method used for image search with PDMs is known as an Active
Shape Model (ASM). This method finds the best fit of a PDM to an example image [6],
given an initial estimate of model pose and shape. The model is gradually deformed to
fit the observed data, and the global shape constraints of the model are enforced by
ensuring that the model shape parameters remain within sensible limits. It has also
been shown how models may be built of the expected grey-levels at each point in the
PDM [5,7]. During ASM search, the suggested displacement for each model point is
determined by finding the best local fit of its grey-level model to the image evidence.

Figure 3 : a) Example Labelled Abdominal MR Image Showing Modelled
Structures, b) Model Start Position Shown in Gaussian Pyramid Level () (ie
original image), c)After Search in Gaussian Pyramid Image Level 3 (ie 1/54
original area), d) After Search in Gaussian Pyramid Level 2 (ie /1 original
area), e) After Search in Gaussian Pyramid Level 1 (ie 1/4 original area), f)
After Search in Gaussian Pyramid Level 0 (ie original area)

This has been shown to improve the performance of the search method over simple
edge-based techniques [8]. Finally, a multi-resolution version of the ASM with grey-
level models has been implemented [9]; a grey-level model for each model point is
trained at each level of a gaussian image pyramid. The search starts at the coarsest
image resolution, and progresses by moving to finer and finer resolutions until it con-
verges on a final solution. For comparison with our fitness measure, we may define an
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overall fitness measure for an instance of the ASM as :
im
fasu = D M; 25)
i=1
where M; is the total Mahalanobis distance for the individual profile model describing
the foreground grey-level data observed at model point i given by:

M = ‘Z‘b_‘z' + AR?
=25 v A E (26)
and R} = (R~ F(F™ - F) - b, @

(other symbols have analogous meanings to those used previously; see [5] for further
details).

We also wish to use an iterative method of finding a correct interpretation of a given
image by minimising the fitness function. We cannot however use the ASM algorithm
because the concatenated profile models we have used are not appropriate to that
formulation. We use a quasi-Newtonian optimisation algorithm, (NAG routine
EO4JAF [10]) which makes no assumptions about the problem domain. Although the
algorithm is about 50 times slower than the iterative approach of the Active Shape
Model, the separation of fitness measure and search strate%r makes the overall ap-
proach more generic, allowing it to be applied to any form of flexible template model.
No attempt hasbeen made to automate the search through scale-space. The optimisa-
tion is simply performed at each image pyramid resolution in turn, starting with the
coarsest resolution.

We tested our method using the 2D trans-axial Magnetic Resonance images of the
abdomen. Figure 3b)-f) shows the results of an example optimisation for an unseen
example.

We performed a series of experiments comparing the Bayesian fitness measure and
search strategy to that of a multi-resolution ASM which uses local grey-level models
and an automatic scale-space search strategy. We tested each method on 20 training
set images, for various initial model positions. Initially, the model was instantiated
with its correct pose parameters, and with shape parameters set to their mean training
set values. We then randomly displaced the model pose parameters from their correct
values by the the following amounts :

x : by up to the amount given by the x ordinate of Figure 4

y : by up to the amount given by the x ordinate of Figure 4
scale : up to +5%, (except for Ax=0, when Ascale also =0)
rotation : up to +0.5¢, (except for Ax=0, when Ascale also =0)

Figure 4 shows the results obtained. The following observations may be made.

 Use of the quasi-Newtonian optimiser with the original Active Shape
Model fitness measure significantly improves its search performance over
that of the multi-resolution ASM.

» The Bayesian fitness measure combined with the quasi-Newtonian opti-
miser produces a still further improvement in search performance.

* The combination of quasi-Newtonian optimiser and unexplained fore-
Emund evidence fitness measure gives very similar results to those given
y the overall fitness measure f. This is not surprising, as the unexplained
evidence term dominates f, and the background model fitness term acts
only to normalise the overall expression.



42

-
o

multi-resolution ASM, original fitness measure (eqn 25)

o8
i

quasi-Newtonian optimiser, original fitness measure
quasi-N; ian optimiser, xplained fit

gven by eqn 17

quasi-Newtonian optimiser, combined fit measure given
by eqn 24

limit on achievable results

4 ¢ Bp O

fowedatdsi ynod [epopy uESpy

0
(L A M AR [ X L V. £ A A
Displacement from Correct Position
Figure 4 : Showing Search Results for Various Fitness Function / Optimisation Method

Combinations for an Example PDM (error bars plotted as 1 standard error)

Conclusions

We have described a Bayesian probabilistic fitness measure which may be applied to
flexible template models. The fitness measure, combined with a non-problem-
dependent optimisation routine, has been shown to give a significant improvement in
search performance for an example modelling technique (the Point Distribution
Model) over the search method currently used (multi-resolution ASM). The measure
attempts to combine shape and grey-level evidence in a truly probabilistic way, allow-
ing the direct comparison of the fitness of different models. Further work may include
automating the search through scale-space ie incorporating the model resolution as a
parameter of the optimisation, and also improving the efficiency of our method.
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