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Abstract
The modeling and simulation of stochastic reaction–diffusion processes is a topic
of steady interest that is approached with a wide range of methods. At the level
of particle-resolved descriptions, where chemical reactions are coupled to the spa-
tial diffusion of individual particles, there exist comprehensive numerical simulation
schemes, while the corresponding mathematical formalization is relatively underde-
veloped.The aimof this paper is to provide a framework to systematically formulate the
probabilistic evolution equation, termed chemical diffusion master equation (CDME),
that governs particle-based stochastic reaction–diffusion processes. To account for
the non-conserved and unbounded particle number of this type of open systems, we
employ a classical analogue of the quantum mechanical Fock space that contains
the symmetrized probability densities of the many-particle configurations in space.
Following field-theoretical ideas of second quantization, we introduce creation and
annihilation operators that act on single-particle densities and provide natural repre-
sentations of symmetrized probability densities as well as of reaction and diffusion
operators. These operators allow us to consistently and systematically formulate the
CDME for arbitrary reaction schemes. The resulting form of the CDME further serves
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as the foundation to derive more coarse-grained descriptions of reaction–diffusion
dynamics. In this regard, we show that a discretization of the evolution equation by
projection onto a Fock subspace generated by a finite set of single-particle densities
leads to a generalized form of the well-known reaction–diffusion master equation,
which supports non-local reactions between grid cells and which converges properly
in the continuum limit.

Keywords Particle-based reaction–diffusion models · Reaction–diffusion master
equation · Fock space methods · Classical many-particle systems · Galerkin
projection

Mathematics Subject Classification 60G99 · 70S20 · 60J70 · 60J60 · 92C45

1 Introduction

A great variety of chemical and biochemical phenomena on all scales hinge on the
combination of diffusion and chemical reactions; examples range from classical front
propagation [1–3], self-organization of excitable media [4–7] and pattern-forming
coatings of animals [8, 9], over the formation of morphogen gradients [10–13] and
MinE protein oscillations [14–16] in developmental biology, to spreading of diseases
[17–19] and innovations [20]. Conventionally, such processes have been modeled by
means of deterministic reaction–diffusion equations, which govern the temporal evo-
lution of concentration fields [9, 21]. Such continuum descriptions, however, often
break down for small copy numbers of molecules, as is typically the case for bio-
chemical processes at cellular and subcellular scales [22–24]. The discreteness of
copy numbers gives rise to intrinsic noise, which has been included heuristically in
reaction–diffusion models in the form of spatiotemporal Gaussian white noise, e.g.,
in calcium signaling [25–28], but also for species extinction [29, 30].

A more systematic, microscopic approach suggests to switch from concentration
fields to spatially resolved probability distributions of copy numbers, which leads to
the reaction–diffusion master equation (RDME) [31–33]: position space is partitioned
into a regular mesh of volume elements, the diffusion of molecules is replaced by
a jump process on the mesh, and reactions occur only within each volume element
under assumed well-mixed conditions. Such conditions are justified in the spatiotem-
poral chemical master equation (ST-CME) [34, 35], which has been put forward in the
context of cellular environments to account for intracellular structures and compart-
mentalization. It uses an irregular partitioning of position space into comparably few
metastable subsets, meaning that the subsets are separated by barriers such that jumps
between them occur rarely. Another obstacle toward effective continuum models for
biochemical processes is macromolecular crowding, i.e., the dense and heterogeneous
packing of cellular spaces by macromolecules that do not participate in the reaction,
which has consequences for product formation rates as well as diffusion-influenced
reaction kinetics [36–41]. Someof the aspects of crowdinghave been included in recent
extensions of numerical reaction–diffusion schemes [42, 43], showing the potential
for qualitative changes of the observed phenomenology.
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An alternative to the above probabilistic descriptions is stochastic simulations of
particle-based reaction–diffusion (PBRD) models, which offer a high resolution down
to the scale of molecules combined with great modeling flexibility. The idea is that
molecules are represented by point particles undergoing Brownian motion and that
bimolecular reactions between close-by particles occur with a given rate depending
on the separation distance of the pair; the most common schemes use either a reaction
volume (Doimodel [44, 45]) or a reaction surface (Smoluchowskimodel [46]) in terms
of this distance. PBRD schemes are constructed in a bottom-up way and based on the
extensive theory of diffusion-influenced reactions [47–51]. A number of algorithms
for the PBRD scheme exist [52–57], differing in their implementation of Brownian
motion, whether physical interactions between molecules are supported [58, 59], and
in their degree of molecular resolution [60–62]. Applications reach from enzyme
kinetics under crowding conditions [63–65] to nanomaterial-based catalysis [66]. A
recent comparison of the two probabilistic models given by RDME and PBRD with a
focus on intracellular kinetics can be found in the review by Smith and Grima [24].

A mathematical formalization of PBRD models as an open many-particle system
undergoing reactions and diffusion was developed only partially [44, 45, 67–70].
Yet, such a framework would be a highly desirable starting point to systematically
derive numerical schemes for reaction–diffusion processes and to analytically connect
PBRD models with coarse-grained descriptions such as the RDME and the ST-CME.
For example, these compartmentalized descriptions are obtained by locally integrating
out the spatial degrees of freedom, turning the diffusion process into a continuous-time
random walk on a mesh of subdomains. For bimolecular reactions, however, the pro-
cedure gives rise to effective reaction rates [58, 71, 72] and markedly non-Markovian
reaction time distributions [73–75]. For the standard RDME,where second-order reac-
tions may occur only between particles of the same subdomain, it was shown that for
decreasing mesh size, the dynamics converge to a limit where second-order reactions
cease to occur [76]. This problem was addressed in terms of a convergent RDME [77,
78], which allows bimolecular reactions to take place also between particles located
in different subdomains.

The aim of this work is to develop a framework for the systematic formulation of
the probabilistic evolution equation for particle-based stochastic reaction–diffusion
processes, which we refer to as chemical diffusion master equation (CDME). The
CDME is a family of Fokker–Planck equations, each of them describing the diffusion
processes for a given n-particle probability density. The equations within the family
are coupled by the reaction dynamics similar in form to a chemical master equation
(CME) [79, 80]. The underlying reaction schemes are not restricted tomass-conserving
reactions andmay include effective reactions such as insertion and removal of particles,
e.g., by considering only a subset of the chemical species. Thus, the CDME is capable
of describing the dynamics of an open system characterized by the overall number
of particles changing in time, similarly to the standard CME [81]. To systematically
formulate the CDME given a general set of chemical reactions, our framework uses
creation and annihilation operators. We exemplify the framework for a birth–death
process as well as the second-order reaction of mutual annihilation. Our work further
provides the basis for putting reaction–diffusion models at different resolutions on
the same footing, which clears the way to derive relationships between the various
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coarse-grained descriptions and numerical schemes for reaction–diffusion dynamics.
The latter is fundamental to develop consistent multi-scale simulations. As a first step,
we discretize the particle-based dynamics by doing a Galerkin projection [82] of the
CDMEonto a partition of the position space into subvolumes. This yields a generalized
RDME,where bimolecular reactions can occur naturally between particles in different,
yet close-by subvolumes. In particular, we find explicit relations between the reaction
rate constants of the RDME and of the underlying particle-based model as given by
the CDME.

A number of technical challenges need to be solved to achieve these goals. In
general, reaction–diffusion systems are open systems in the sense that the number
of particles is not fixed, but changes in the course of time due to the reactions.
Whereas such situations are well-known in quantum field theory and solid-state
physics, where they are addressed in terms of creation and annihilation operators,
the analogous formulations for classical systems of indistinguishable particles are
comparably underdeveloped; this is particularly true for the stochastic dynamics of
particles undergoingBrownianmotion in an open system. In a probabilistic description
of reaction–diffusion dynamics, the number of particles of each species is no longer
determined but obeys a statistical distribution, which evolves in time along with the
particle positions. Further, the many-particle distributions do not distinguish individ-
ual particles of the same species, and the distributions are thus symmetric with respect
to permutations of particle labels. The symmetry must be preserved under time evolu-
tion, which requires non-trivial combinatorial factors in the reaction operators. These
aspects are addressed by borrowing the concept of the Fock space [83] from quantum
mechanics and translating it to the classical setting [44, 67, 84]. Amajor mathematical
obstacle in this endeavor is that probability densities are integrable, but not necessar-
ily square-integrable functions, as opposed to quantum wavefunctions, and that the
underlying function space is not a Hilbert space [70]. Some of these issues have been
addressed in the literature of probability theory for population dynamics [68–70, 85,
86]; however these works do not explore the applications in the context of chemical
reactions.
Outline. We start in Sect. 2 by introducing a probabilistic model for particle-based
reaction–diffusion dynamics and motivating the structure of the chemical diffusion
master equation that we look for. In Sect. 3, the probability functions are interpreted
as elements of a Fock space; the creation and annihilation operators are introduced
and central algebraic relations are derived. The main results of this work are pre-
sented in Sect. 4, where the creation and annihilation operators are used to express
the symmetrized densities and the diffusion and reaction operators. This allows us to
systematically formulate the CDME on a general level, as well as for two exemplary
reaction systems. Finally, Galerkin projection methods are applied in Sect. 5 to derive
the generalized RDME as a projection of the underlying CDME.

2 Probabilistic model for particle-based reaction–diffusion dynamics

The object of interest in this work is a collection of molecules that diffuse in space and
can undergo chemical reactions. These reactions will cause changes in the number of
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molecules of a given species. Focusing on a single species as a first step, elementary
reactions include the creation and annihilation of molecules, which is then straight-
forward to extend to, e.g., binary reactions among molecules of different species. The
goal is to find a probabilistic description that includes both the spatial movement of
molecules and the changes in the population size. In this section, we introduce the
structure of the CDME and formulate the equations for an exemplary birth–death pro-
cess. A systematic approach to formulate the CDME for general reaction schemes will
be given in Sect. 4.

2.1 Symmetric probability density functions

Specifically, we consider point particles of only one chemical species in a bounded
domain X ⊂ R

3. Due to the reactions, the number of particles N (t) ∈ N0 at time
t can vary in the course of time. Assuming that there are n = N (t) particles at
time t , the configuration of all particle positions is denoted by the vector x (n) =(

x (n)
1 , . . . , x (n)

n

)
∈ X

n . The statistical law of the configurations is encoded in the

conditional probability density function pn(x (n), t |N (t) = n) at time t given that
N (t) = n. Following the situation of a fixed particle number, we adopt the convention
that pn is normalized:

∫

Xn
pn(x (n), t |N (t) = n) dx (n) = 1 (1)

for all t ≥ 0 and each fixed n. The unconditional probability density for n ≥ 1 is then
given by

ρn(x (n), t) := pn(x (n), t |N (t) = n)P[N (t) = n], (2)

where P[N (t) = n] is the probability of having n particles in the system at time t ; for
the empty system, we set ρ0(t) := P[N (t) = 0]. It follows that

P[N (t) = n] =
∫

Xn
ρn(x (n), t) dx (n). (3)

In particular, the admissible probability densities ρn belong to the space of absolutely
integrable functions, L1(Xn) = {η : X

n → R ; ‖η‖n < ∞} with the standard norm

‖η‖n :=
∫

Xn

∣∣∣η
(

x (n)
)∣∣∣ dx (n). (4)

For n = 0, there is no dependence on the spatial position, so we have ρ0(t) ∈ R and
set ‖ρ0(t)‖0 := |ρ0(t)|.

As the n particles are of the same species and thus chemically indistinguishable,
we consider two-particle configurations as equivalent if they differ only by a permu-
tation of particle indices. Restricting to this reduced configuration space, the relevant

123



49 Page 6 of 59 M. J. del Razo et al.

probability densities are symmetric under interchanging any pair of their arguments.
The same symmetry is known for bosonic many-body wave functions in quantum
mechanics, albeit of totally different physical origin. The statistical indistinguisha-
bility of classical particles was introduced already by Gibbs to resolve the mixing
paradox in statistical mechanics [87].

The open system with a variable number of particles is then characterized by the
family of symmetrized probability densities,

ρ(t) = (ρ0(t), ρ1(·, t), . . . , ρn(·, t), . . . ). (5)

Note that we will sometimes skip the time argument t in the notation. Recalling that
‖ρn(·, t)‖n = P[N (t) = n], the total probability theorem implies that

∞∑
n=0

‖ρn(·, t)‖n = 1 for all t ≥ 0, (6)

which expresses the conservation of probability also within chemical reaction. The
underlying space of such a family of distributions has a specific algebraic structure
and is called the Fock space; it will be introduced in detail in Sect. 3. A similar
probabilistic description, albeit differing in detail, was employed recently in a model
of open systems that are coupled explicitly to a spatially separated reservoir [88, 89].
In particular, the many-particle densities therein obey a set of coupled Liouville-type
evolution equations that preserve total probability and the particle exchange symmetry.

We emphasize that the family of densities [Eq. (5)] must not be confused with the
hierarchy of correlation functions f1, f2, . . . that is used in statistical mechanics and
is governed by the BBGKY equations [90], where fn is also referred to as the reduced
n-particle (phase space) density. Specifically, f1 is the probability density of a tagged
particle’s position and f2 refers to the correlation between a pair of particles in the
presence of all other particles. These functions are obtained by marginalization of the
distribution of the overall system that consists of a large, but fixed number of particles.
In particular, f1 can be obtained from f2 by integration, which is conceptually different
from the present approach, where ρ1 and ρ2 do not share such a relation.

2.2 Chemical diffusionmaster equation

The main goal of this work is to develop a framework to formulate the evolution
equation for the family of symmetrized n-particle densities in the presence of diffusion
and reactions.

In the absence of reactions, the particle number is fixed and the system of interest
may be associated with a closed system of n particles that diffuse in space, possibly
subject to physical interactions or an imposed flow. In this case, the conditional density
pn(x (n), t |N (t) = n) of n-particle configurations x (n) ∈ X

n obeys the Fokker–Planck
equation

∂ pn

∂t
= Dn pn, (7)
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whereDn is the corresponding Fokker–Planck operator. In the most general situation,
it is a semi-elliptic linear operator and takes the form [91]

Dn pn = −
n∑

i=1

∇i · (Ai pn) +
n∑

i, j=1

∇i · (Di j∇ j pn
)
, (8)

where Ai = Ai (x (n), t) describes the deterministic drift, the Di j = Di j (x (n)) are
3 × 3 diffusion matrices composing the 3n × 3n diffusion tensor, and ∇i denotes
differentiation with respect to the position x (n)

i of particle i . If the drift originates from
an interaction potential U (x (n)), then

Ai = −
n∑

j=1

Di j∇ jU . (9)

In the absence of the drift term and assuming that diffusion is isotropic, the diffusion
operator reduces to that of standard Brownian motion, Dnρn = D�ρn , with a scalar
diffusion constant D > 0, where � is the Laplace operator.

In addition to diffusive motion, the particles of the considered species A undergo
reactions of the form

kA → lA, k, l ∈ N0. (10)

For each reaction, there is a reaction rate function

λ : X
l × X

k → [0,∞), (11)

where the value λ(y(l), x (k)) ≥ 0 corresponds to the rate at which the reaction occurs
given that the k reactants are at positions x (k) ∈ X

k and the l products are placed at
positions y(l) ∈ X

l . The reaction rate function λ is assumed to be symmetric under
particle exchange within the configuration y(l) and also within x (k).

In the presence of both reactions and diffusion, the total number of particles and
their positions can change simultaneously over time. Given that there are S different
chemical reactions, the family of n-particle densities, ρ = (ρ0, ρ1, . . . ), should obey
a linear evolution equation of the form

∂tρ =
(
D +

S∑
r=1

Rr

)
ρ (12)

which we will refer to as the chemical diffusion master equation (CDME). Here,
D is the diffusion operator as above, and the reaction operator Rr encodes the r -th
reaction, which is parametrized by a reaction rate function λr . A central assumption is
that diffusion and reactions occur independently, which allows us to split the operator
on the right-hand side into the sumD+R, whereR = ∑S

r=1Rr combines all reaction
operators into one to simplify the notation. The reaction operators couple components
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ρn of ρ for different n, similarly to the CME.More precisely, treating ρ as an infinitely
long column vector, Eq. (12) reads in matrix notation:

∂

∂t

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ0
ρ1
...

ρn
...

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ρ

=

⎛
⎜⎜⎜⎜⎜⎜⎝

D0ρ0
D1ρ1

...

Dnρn
...

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Dρ

+

⎛
⎜⎜⎜⎜⎜⎜⎝

Q00 Q01 . . . Q0n . . .

Q10 Q11 . . . Q1n . . .
...

...
... . . .

Qn0 Qn1 . . . Qnn . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
R

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ0
ρ1
...

ρn
...

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13)

Each entry Qnm is an operator that condenses the effect of all the reactions that act
on a given ρn′ yielding the temporal change of ρn , similarly to the CME. To ensure
conservation of probability [Eq. (6)] we impose reflective boundary conditions at the
boundaries of the domains X

n separately for every n, i.e., the diffusive flux across
these boundaries is zero. Under the assumption of well-mixed conditions, the spatial
degrees of freedom can be integrated out, and Eq. (13) should yield the conventional
CME [80]. On the other hand, if there are no reactions, the equations will uncouple
and yield a set of independent Fokker–Planck equations for the symmetrized densities
ρn , see Eq. (7).

The stochastic system trajectories corresponding to Eq. (13) combine continuous
diffusion in the configuration spaces (X0, X

1, . . . , X
n, . . . ) for fixed n and a discrete

jump process between X
m and X

n for m 
= n, modeling creation and annihilation of
particles due to reactions (Fig. 1). The model thus fits into the category of stochastic
hybrid systems, where continuous dynamics and discrete events coexist in the same
process. However, a particular challenge for the mathematical formalization is the
change of dimensionality that is induced by the discrete jumps.
Example (birth–death process). Consider a chemical species A that undergoes degra-
dation and creation reactions: Otherwise, it looks as if Fig. 1 contains the reactions
that we refer to

(I) A
λd (x)−−−→ ∅, (II) ∅

λc(x)−−−→ A. (14)

Here, λd(x) denotes the rate for reaction (I) to occur for a particle located at position
x ∈ X (i.e., the probability per unit of time for this particle to disappear), while λc(x)

is the rate for a new particle to be created at position x by reaction (II). Explicitly, we
assume that the rates depend only on the position in space, but not on the configuration
of all particle positions. Both λd and λc are special cases of the generic reaction rate
function λ in (11).

Arguments analogous to the formulation of the CME lead us to propose the follow-
ing equation for the time evolution of ρn(x (n), t) for n ≥ 1, taking into account the
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Fig. 1 Illustration of the configuration space of the stochastic process represented by the chemical diffu-
sion master equation (13). The position space for every particle is X ⊂ R

3. The configuration space is
composed of subspaces X

n of dimension n = 0, 1, 2, . . . , which is equal to the number of particles in the
system. Chemical reactions lead to transitions between these subspaces by adding or removing particles
with position-dependent rates as encoded in the matrix (Qnm ) of reaction operators. Qnm represents the
transition from a configuration with m particles to a configuration with n particles. For simplicity, only
transitions that differ by one particle are shown

symmetry of the densities:

∂tρn

(
x (n)
1 , . . . , x (n)

n , t
)

= Dnρn

(
x (n)
1 , . . . , x (n)

n , t
)

+ (n + 1)
∫

X

λd(y)ρn+1

(
x (n)
1 , . . . , x (n)

n , y, t
)
dy

−
n∑

i=1

λd(x (n)
i )ρn

(
x (n)
1 , . . . , x (n)

n , t
)

+ 1

n

n∑
i=1

λc(x (n)
i )ρn−1

(
x (n)
1 , . . . , x (n)

i−1, x (n)
i+1, . . . , x (n)

n , t
)

−
∫

X

λc(y)ρn(x (n)
1 , . . . , x (n)

n , t) dy,

(15)

where the first line refers to spatial diffusion, the second and third lines are gain and
loss terms due to reaction (I), and the last two lines relate to reaction (II). For n = 0,
we have

∂tρ0(t) =
∫

X

λd(x)ρ1(x, t)dx −
∫

X

λc(x)ρ0(t) dx . (16)

The boundary-value problem induced by Eqs. (15) and (16) is well-posed for an
elliptic diffusion operator D and regular reaction rate functions λd and λc. Equation
(15) corresponds to the n-th row of Eq. (13), and the components of the reaction

123



49 Page 10 of 59 M. J. del Razo et al.

operator matrix are:

(Qn,n+1ρn+1)(x (n)) = (n + 1)
∫

X

λd(y)ρn+1

(
y, x (n)

1 , . . . , x (n)
n

)
dy, (17a)

(Qn,n−1ρn−1)(x (n)) = 1

n

n∑
i=1

λc

(
x (n)

i

)
ρn−1

(
x (n)
1 , . . . , x (n)

i−1, x (n)
i+1, . . . , x (n)

n

)
,

(17b)

(Qn,nρn)(x (n)) = −
[

n∑
i=1

λd

(
x (n)

i

)
+

∫

X

λc(x) dx

]
ρn

(
x (n)
1 , . . . , x (n)

n

)
,

(17c)

and for n = 0, they are

Q0,1ρ1 =
∫

X

λd(x)ρ1(x)dx, (18a)

Q0,0ρ0 = −
∫

X

λc(x)ρ0 dx, (18b)

where ρ0 ∈ R is a constant.
We verify that the CME related the reactions (I) and (II) is recovered from Eq. (15)

by integrating out the spatial degrees of freedom [Eq. (3)]. To this end, we define the
marginal distribution

P(n, t) := P[N (t) = n] = ‖ρn(·, t)‖n (19)

and assume the reaction rate functions to be constants, λd(x) = γd and λc(x) = γc
for all x ∈ X. Then, integrating Eq. (15) over the space X

n yields:

∂t P(n, t) = (n + 1)γdP(n + 1, t) − nγdP(n, t)

+ γc|X|P(n − 1, t) − γc|X|P(n, t), (20)

where |X| < ∞ is the volume of the domain X. Note that the diffusion term vanishes
due to the no-flux boundary condition by Gauss’ theorem. Equation (20) is exactly
the CME as derived from the classical law of mass action for reactions of order zero
and one in spatially well-mixed systems. One checks easily that summation of the
right-hand side over n ≥ 0 yields zero, as required for a continuous-time Markov
chain.

In the next two sections, we will develop a systematic way to construct the CDME
such as Eq. (15) corresponding to a given set of chemical reactions [e.g., Eq. (14)].
In particular, we will specify the reaction operators [Eqs. (17a)–(17c)] and find their
correct combinatorial prefactors, which is often not a straightforward task.We do so by
means of the Fock space formalism, which yields one possible explicit representation
of the probabilistic evolution described by the CDME.
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3 Fock space formalism

The mathematical formalization of the dynamics of open systems requires means for
the insertion and deletion of particles. In reaction–diffusion problems, this can occur
everywhere in the domain X. Further, in the probabilistic description, a particle is
described by a probability density rather than by a single point. A similar problem
was solved in quantum field theory, where the n-particle densities are represented
by symmetric or anti-symmetric wavefunctions and (quasi-)particles can be created
in or annihilated from such states. The underlying algebraic construction is called
Fock space and relies on the fact that the space of n-particle densities is generated
from products of single-particle densities. In the quantum case, the wavefunctions
are square-integrable and form a Hilbert space whereas the probability densities of
classical particles are absolutely integrable [Eq. (3)]. As an important consequence, the
corresponding space L1(Xn) is merely a Banach space, i.e., it does not possess an inner
product. This technical deficiency can be circumvented by resorting to the dual space.
In the following, we will introduce the Fock space for the family of symmetrized
probability densities. Suitably defined creation and annihilation operators will then
serve as efficient instruments to represent the reaction operators in the CDME as well
as its solutions. This program will be carried out in Sect. 4.

3.1 Symmetrized n-particle spaces

Single-particle space. We start with the one-particle space H := L1(X), which con-
tains the probability density functions of a single particle’s position on the space of
motion X, and re-collect some facts from functional analysis [92]. The dual space of
L1(X) is isometrically isomorph to L∞(X), so that we can identify the dual space H∗
with L∞(X), i.e., the bounded functions on X. In the application to reaction–diffusion
dynamics below, we will see that, for example, reaction rate functions are elements of
H∗. A dual pairing 〈·, ·〉 : H∗ × H → R is defined by

〈ζ, η〉 :=
∫

X

ζ(x)η(x)dx, (21)

which acts as a substitute for the missing inner product on H and yields the “overlap”
between the functions ζ ∈ H∗ and η ∈ H . The next step is to choose a (Schauder)
basis (u1, u2, . . . ) of the space H , which can even be taken to be nonnegative [93] and
normalized, uα ≥ 0 and ‖uα‖1 = 1 for all α ∈ N. The basis induces the dual set of
linear functionals (u∗

1, u∗
2, . . . ), here identified with functions u∗

α ∈ L∞(X), such that
〈u∗

α, uβ〉 = δα,β for all α, β ∈ N, using the Kronecker symbol δα,β . Thus, a density
η ∈ H of a single particle has the representation

η =
∞∑

α=1

〈u∗
α, η〉uα (22)
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in terms of the one-particle basis (uα)α∈N.We note that the family (u∗
α)α∈N is countable

and thus cannot span the dual space H∗ ∼= L∞(X), which is not separable. However,
this deficiency of (u∗

α) is not of practical relevance for the following treatment.
Tensor spaces. A natural extension to the space L1(Xn) of n-particle densities uses the
observation that the pure tensor uα1 ⊗ · · · ⊗ uαn , given as products of n one-particle
densities,

(uα1 ⊗ · · · ⊗ uαn )(x (n)) := uα1(x (n)
1 ) . . . uαn (x (n)

n ), (23)

span the space L1(Xn). Thus, the tensor space

H⊗n :=
n⊗

i=1

H = span(uα1 ⊗ · · · ⊗ uαn )αi ∈N (24)

coincides with L1(Xn) and we refer to (uα1 ⊗ · · · ⊗ uαn )αi ∈N as a tensor basis. As
convention for n = 0, we set H⊗0 := R. Similarly to the one-particle case, we define
a dual pairing for η ∈ H⊗n , ζ ∈ (H⊗n)∗ as

〈ζ, η〉 :=
∫

Xn
ζ(x (n)) η(x (n)) dx (n). (25)

Then, the dual set of the tensor basis consists of the dual pure tensor

(uα1 ⊗ · · · ⊗ uαn )
∗ = u∗

α1
⊗ · · · ⊗ u∗

αn
, (26)

which satisfy

〈u∗
α1

⊗ · · · ⊗ u∗
αn

, uα′
1
⊗ · · · ⊗ uα′

n
〉 = 〈u∗

α1
, uα′

1
〉 . . . 〈u∗

αn
, uα′

n
〉

= δα1α
′
1
. . . δαnα′

n
(27)

for all multi-indices (α1, . . . , αn), (α′
1, . . . , α

′
n) ∈ N

n . Finally, the basis representation
of an element η ∈ H⊗n reads

η =
∑

α1,...,αn

cα1,...,αn uα1 ⊗ · · · ⊗ uαn , (28)

with coefficients cα1,...,αn := 〈u∗
α1

⊗ · · · ⊗ u∗
αn

, η〉 and each of the summation indices
α1 . . . αn running from 1 to ∞.
Symmetrization. The probability density of a system of n identical particles is sym-
metric in all particle positions (see Sect. 2.1). Thus, the spaces H⊗n are too large for
our purposes and we need to project onto the symmetrized functions. To this end, we
introduce the symmetrization operator Sn : H⊗n → H⊗n ,

Snη
(

x (n)
1 , . . . , x (n)

n , t
)

:= 1

n!
∑

σ∈n

η
(

x (n)
σ (1), . . . , x (n)

σ (n), t
)
, (29)
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where n is the set of permutations on {1, . . . , n}. We note that for n = 0 or n = 1,
the symmetrization is the identity: S0η = η for η ∈ H⊗0 or η ∈ H⊗1. Dividing by
the number n! of possible permutations ensures that normalization is preserved, i.e.,
‖Snη‖n = ‖η‖n . The operator Sn is indeed a linear projection, in particular S2

n = Sn ,
and it is also “orthogonal” with respect to the dual pairing (proof in Appendix A.1):

〈Snζ, η〉 = 〈ζ,Snη〉 = 〈Snζ,Snη〉 (30)

for any η ∈ H⊗n and ζ ∈ (H⊗n)∗. Throughout this work, we will refer to the
symmetrized tensor space Sn H⊗n = {Snv : v ∈ H⊗n} as the n-particle space.

A basis of Sn H⊗n is obtained by symmetrization of the n-particle tensor basis:

(Sn(uα1 ⊗ · · · ⊗ uαn )
)
α1≤...≤αn

, (31)

where the action of Sn on a pure tensor amounts to a linear combination of all per-
mutations of the factors uα1 , . . . , uαn . The ordering of the indices α1 ≤ · · · ≤ αn

is needed to avoid double counting; the equality is included here as, for example,
u1 ⊗ u1 belongs to S2H⊗2. The dual set of the symmetrized tensor basis obeys again
a biorthogonality relation [see Eq. (27)]:

〈Sn(uα1 ⊗ · · · ⊗ uαn )
∗,Sn(uα′

1
⊗ · · · ⊗ uα′

n
)〉 = δα1α

′
1
. . . δαnα′

n
(32)

with the understanding that in the expression Sn(. . . )∗ dualization is carried out after
symmetrization. It is evident from Eq. (30) that the two operations do not commute,
which motivates us to introduce “normalization” coefficients

sα1,...,αn := 〈Sn(u∗
α1

⊗ · · · ⊗ u∗
αn

),Sn
(
uα1 ⊗ · · · ⊗ uαn

)〉, (33)

so that the symmetrized duals are given in terms of the unsymmetrized duals by

Sn(uα1 ⊗ · · · ⊗ uαn )
∗ = 1

sα1,...,αn

Sn(u∗
α1

⊗ · · · ⊗ u∗
αn

). (34)

As an example, for n = 2, one calculates

sαβ = 〈S2(u
∗
α ⊗ u∗

β),S2(uα ⊗ uβ)〉
=

〈
1

2
(u∗

α ⊗ u∗
β + u∗

β ⊗ u∗
α),

1

2
(uα ⊗ uβ + uβ ⊗ uα)

〉

= 1

2
(1 + 1δαβ) (35)

so that sαβ = 1
2 for α 
= β and sαβ = 1 otherwise. With this, a symmetrized function

η ∈ Sn H⊗n has the basis representation

η =
∑

α1≤...≤αn

c̃α1,...,αnSn(uα1 ⊗ · · · ⊗ uαn ) (36)
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with coefficients

c̃α1,...,αn := 〈Sn(uα1 ⊗ · · · ⊗ uαn )
∗, η〉

= 1

sα1,...,αn

〈u∗
α1

⊗ · · · ⊗ u∗
αn

, η〉 (37)

for 1 ≤ α1 ≤ . . . ≤ αn < ∞, using Eqs. (30) and (34) in the second line. For later
reference, we again define the subspace spanned by the duals of the symmetrized
tensor basis:

(Sn H⊗n)′ := span
(Sn(uα1 ⊗ · · · ⊗ uαn )

∗)
αi ∈N ⊂ (Sn H⊗n)∗. (38)

Copy number representation. In the basis representation (36), the indices α1, . . . , αn

take values that are not necessarily different from each other. This motivates counting
the occurrence of every value α = 1, 2, . . . in a given multi-index (α1, . . . , αn) and
switching to a sequence of frequencies (N1, N2, . . . ), where most of the entries are
zero. We refer to these frequencies as copy numbers since Nα counts how many times
the factor uα is repeated in an element of the tensor basis, i.e., how many particles
have a position distributed according to uα ; in quantummechanics, the termoccupation
number is used instead. Given the number of particles n ∈ N, we define

Mn :=
{

N = (N1, N2, . . . ) : Nα ∈ N0,

∞∑
α=1

Nα = n

}
(39)

as the set of possible sequences of copy numbers and use it to enumerate the sym-
metrized n-particle tensor basis. Then, for η ∈ Sn H⊗n , we have

η =
∑

N∈Mn

pN Sn

(
u⊗N1
1 ⊗ u⊗N2

2 ⊗ . . .
)

(40)

with coefficients pN = 〈Sn(u⊗N1
1 ⊗u⊗N2

2 ⊗ . . . )∗, η
〉
. Expanding the symmetrization

operator and contracting the dual pairings in Eq. (33), one can show that

Sn

(
u∗⊗N1
1 ⊗ u∗⊗N2

2 ⊗ . . .
)

= N1! . . . NM !
n! Sn

(
u⊗N1
1 ⊗ u⊗N2

2 ⊗ . . .
)∗

(41)

so that

pN = n!
N1!N2! . . .

〈
u∗⊗N1
1 ⊗ u∗⊗N2

2 ⊗ . . . , η
〉
, (42)

where Sn has been omitted in the left factor on the r.h.s. since η is symmetrized. As Nα

is nonzero for at most n values of α (and recalling that 0! = 1 in all other cases), the
multi-nomial coefficients n!/(N1!N2! . . . ) are well defined. Note these multi-nomial
coefficients simply correspond to the “normalization” coefficients defined in Eq. (33).
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3.2 The Fock space

The Fock space F(H) holds the probability densities on the configuration space
of the open system, depicted in Fig. 1. The elements of F(H) are families ρ =
(ρ0, ρ1, ρ2, . . . ) of symmetrized n-particle densities, which form the direct sum of
symmetrized n-particle spaces (see Sect. 3.1),

∞⊕
n=0

Sn H⊗n = {
ρ = (ρ0, ρ1, ρ2, . . . ) : ρn ∈ Sn H⊗n for all n ∈ N0

}
. (43)

It is sometimes convenient to interpret ρn ∈ Sn H⊗n as the Fock space element
(0, . . . , 0, ρn, 0, . . . ) and to introduce a component-wise addition on F(H), which
allows for a compact notation such as in

ρ =
∞∑

n=0

ρn . (44)

Further, we introduce the following generalization of the L1-norm,

‖ρ‖ :=
∞∑

n=0

‖ρn‖n, (45)

with ‖ ·‖n as in Eq. (4), and define F(H) as the set of probability densities of the open
system that are integrable and absolutely summable:

F(H) :=
{
ρ ∈

⊕∞
n=0

Sn H⊗n : ‖ρ‖ < ∞
}

. (46)

In reaction–diffusion problems, we will consider probability densities ρ ∈ F(H)

which are normalized, ‖ρ‖ = 1, and preserve this normalization under time evolution
[see Eq. (6)].

In contrast to the L2-norm used in quantum mechanics, the L1-norm on H and
likewise the norm ‖ · ‖ on F(H) is not induced by any inner product. Hence, F(H)

cannot be a Hilbert space, but is merely a Banach space. The dual space of F(H) is
given by

F(H)∗ :=
{
ν ∈

⊕∞
n=0

Sn(H⊗n)∗ : ‖ν‖∞ < ∞
}

(47)

with elements ν = (ν0, ν1, ν2, . . . ) and the supremums norm,

‖ν‖∞ := sup
n

sup
x∈Xn

|νn(x)|. (48)
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The dual pairing for ρ ∈ F(H) and ν ∈ F(H)∗ is

〈ν, ρ〉 :=
∞∑

n=0

〈νn, ρn〉, (49)

with 〈νn, ρn〉 defined in Eq. (25).

3.3 Creation and annihilation operators

The creation and annihilation operators raise or lower the number of particles in the
systembymapping ann-particle density to an (n+1)-particle density or (n−1)-particle
density, respectively. The creation operator a+{w} adds a particle whose position is
described by the probability density w(x) ∈ H , and the annihilation operator a−{ f }
removes a particle with reaction rate function f (x) ∈ H∗. These operators are defined
on the symmetrized n-particle spaces and, most importantly, preserve symmetrization:

a+{w} : Sn H⊗n → Sn+1H⊗(n+1), (50a)

a−{ f } : Sn H⊗n → Sn−1H⊗(n−1). (50b)

There action on a symmetrized pure tensor v = Sn(v1 ⊗ · · · ⊗ vn) for vi ∈ H is
defined as

a+{w}v := Sn+1(w ⊗ v1 ⊗ · · · ⊗ vn), (51a)

a−{ f }v :=
n∑

j=1

〈 f , v j 〉Sn−1
(
v\{ j}

)
, (51b)

where v j is omitted in v\{ j} := v1 ⊗ · · · ⊗ v j−1 ⊗ v j+1 ⊗ · · · ⊗ vn ; for n = 0, we
set a−{ f }1 := 0. By linearity, these definitions extend naturally to the space Sn H⊗n ,
since the elements of its tensor basis are of the form v, and to the whole Fock space
F(H) by acting component-wise on ρ.

The sum in the annihilation operator [Eq. (51b)] expresses the fact that there are
n different ways to remove a particle. It reduces to a factor n in the well-mixed case
without spatial resolution (where all vi are equal to the uniformdistribution). The above
definitions thus differ from the ones used for quantum systems, where

√
n + 1 and√

n are the coefficients of a+ and a−, respectively. The present choice is suitable for
systems of indistinguishable classical particles [44, 67, 94], and for chemical systems,
they avoid cumbersome prefactors in the subsequent results.

The creation and annihilation operators have expansions in the basis (uα) of the
single-particle space H [see Eqs. (B2) and (B4)]:

a+{w} =
∑
α

〈u∗
α,w〉a+{uα}, (52a)
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a−{ f } =
∑
α

〈 f , uα〉a−{u∗
α}. (52b)

A basis-free representation of the action of the two operators on a symmetrized n-
particle density is given in Eqs. (B3) and (B5). We note that for a given annihilation
operator a−{ f } the choice of the reaction rate function f is not unique. It is seen from
the second relation that a−{ f } = a−{ f + ζ } for any ζ ∈ H∗ such that 〈ζ, uα〉 = 0
for all α. Such ζ 
= 0 exist since (u∗

α) does not span H∗. However, this mathematical
issue has no further implications for the present work.
Operator algebra. The creation and annihilation operators satisfy a number of basic
relations that define an operator algebra, which is useful to derive representations in
terms of these operators.

1. Removing a particle from the (normalized) vacuumelementρvac := (1, 0, 0, . . . ) ∈
F(H) yields zero, i.e., a−{ f }ρvac = 0 for any f ∈ H∗.

2. A symmetrized pure tensor Sn(v1 ⊗ · · · ⊗ vn) ∈ Sn H⊗n with vi ∈ H is generated
from a sequence of creation operators acting on ρvac:

Sn(v1 ⊗ · · · ⊗ vn) = a+{v1} . . . a+{vn}ρvac. (53)

3. The creation and annihilation operators satisfy the following commutation rela-
tions:

[a−{ f }, a+{w}] = 〈 f , w〉I, (54a)

[a+{w}, a+{ν}] = 0, (54b)

[a−{ f }, a−{g}] = 0, (54c)

for w, ν ∈ H and f , g ∈ H∗ and using the commutator [a, b] := ab − ba of
operators a, b on F(H). The proofs are found in Appendix A.3.

4. The particle number operator is defined as

N :=
∑
α

a+{uα}a−{u∗
α}, (55)

where (uα)α∈N is a basis of the single-particle space H . The name of the operator
refers to the fact that a density ρn with fixed particle number n is an eigenfunction
to the eigenvalue n, that is

Nρn = nρn, ρn ∈ Sn H⊗n . (56)

We prove this statement in Appendix A.4. For a general, normalized function
ρ(t) ∈ F(H) with ‖ρ(t)‖ = 1, the average number of particles is obtained as:

‖Nρ(t)‖ =
∑
n≥0

‖Nρn(t)‖n =
∑
n≥0

n P(n, t) = E[N (t)]. (57)
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Powers of N yield the higher-order factorial moments of N (t), for example,

‖N 2ρ(t)‖ = E[N (t)(N (t) − 1)], (58)

as shown in Appendix A.5. We note that ‖ρ‖ = 1 does not necessarily imply
Nρ ∈ F(H) and the domain of N is only a subspace of F(H). In particular,
there are reaction networks showing an explosion in finite time T < ∞, i.e.,
‖Nρ(t)‖ = E[N (t)] → ∞ for t → T although ‖ρ(t)‖ = 1 for all 0 ≤ t ≤ T .

4 Chemical diffusionmaster equation in terms of creation and
annihilation operators

The chemical diffusion master equation (CDME) is generally composed of diffusion
and reaction operators, see Eq. (12). In this section, we will show how to formulate
the CDME in a systematic way by expressing these operators in terms of creation and
annihilation operators. We distinguish operators that conserve the number of particles
and those that do not. The diffusion operator belongs to the first class, whereas the
reaction operator of a general single reaction can be decomposed into a conserving
and a non-conserving part. We start with particle number conserving operators and
then follow up with reaction operators. The scheme is worked out in detail for two
exemplary reaction systems at the end of this section.

4.1 Particle number conserving operators

We begin by expanding operators that do not change the number of particles if applied
to a function ρn ∈ Sn H⊗n , i.e., one with a determined number of particles. One
can think of their action as moving particles in space or extracting information from
the system. These operators will look different depending on the number of particles
they act on. As an example, consider a many-particle system where particles diffuse
independently. In this case, the diffusion operator is a conserving operator acting
on single particles. Conversely, diffusion in the presence of pair interactions can be
expressed by a conserving operator acting on two particles at a time.

4.1.1 Conserving single-particle operators

For operators acting on a single particle, let A denote a linear operator on the single-
particle space H . We denote by A j the action of A on the j th argument of a function
in the many-particle space H⊗n . The action of A on every particle of an n-particle
system (n ≥ 1) is then given by

An :=
n∑

j=1

A j , (59)
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and focusing on symmetrized spaces, one has An : Sn H⊗n → Sn H⊗n . For any
operator A : H → H it is shown in Appendix B.2 that the operatorAn can be written
as

A =
∑
α,β

〈u∗
α, Auβ〉 a+{uα}a−{u∗

β}, (60)

where we dropped the superindex n as the form of the right-hand side is the same for
every n. Note that if A is the identity, we recover the particle number operatorN , see
Eq. (55).

Applying the operatorA component-wise extends its action to general elements of
the Fock space, ρ = (ρ0, ρ1, ρ2, . . . ) ∈ F(H), that is Aρ := (Aρ0,Aρ1,Aρ2, . . . ),
with the convention that Aρ0 := 0.

4.1.2 Conserving two-particle operators

Analogously, let B denote a linear operator on the two-particle space H⊗2. The action
of B on every possible pair of particles of an n-particle system (n ≥ 2) is

Bn :=
∑

1≤i< j≤n

Bi j , (61)

where Bi j denotes the action of B on the i th and j th components of a symmetrized
many-particle function:

Bi j (Sn(v1 ⊗ · · · ⊗ vn)) := Sn(B(vi ⊗ v j ) ⊗ v\{i, j}) (62)

where v\{i, j} := v1 ⊗ · · · ⊗ vi−1 ⊗ vi+1 ⊗ · · · ⊗ · · · ⊗ v j−1 ⊗ v j+1 ⊗ · · · ⊗ vn for
i < j . We further assume B to be symmetric, Bi, j = B j,i , so it does not distinguish
the labeling of the particles. We prove in Appendix B.3 that Bn has the following
expansion:

B = 1

2

∑
α≤β
γ≤δ

1

sγ δ

〈S2(uα ⊗ uβ)∗, B(uγ ⊗ uδ)〉 a+{uα}a+{uβ}a−{u∗
γ }a−{u∗

δ } (63)

= 1

2

∑
α,β
γ,δ

〈u∗
α ⊗ u∗

β, B(uγ ⊗ uδ)〉 a+{uα}a+{uβ}a−{u∗
γ }a−{u∗

δ } (64)

for sαβ defined in Eq. (33). Note that we again dropped the super index n on B since
the representations do not depend on n. The factor 1/2 appears in the derivation, it
accounts for the fact that removing first particle i and then j is the same as removing
particle j first and then i . Expansion (63) is more adequate to easily obtain the explicit
coefficients of complex expansions, e.g., three-particle operators (n = 3). However,
throughout this work, we will write the expansions in the form of Eq. (64) due to its
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simpler notation. Also note that due to Eq. (30), the expansion (63) only needs the
symmetrization operator in one of the arguments of the dual pairing.

We can again extend the action of the operator B to general functions in the Fock
space, ρ = (ρ0, ρ1, ρ2, . . . ) ∈ F(H), by applying the operator component-wise
according to Bρ := (Bρ0,Bρ1,Bρ2, . . . ). Note Bρ0 = Bρ1 = 0 by construction.

Analogously, we could extend this result to conserving n-particle operators for
n ≥ 3; the coefficient leading the expansion would then be 1/n!. However, in practice,
it will be unlikely to encounter these operators for n ≥ 3, so we do not explicitly work
them out here.

4.2 Reaction operators

In the previous section, we focused on conserving operators that yield a result in
Sn H⊗n if acting on Sn H⊗n . However, reactions involve a change in the number
of particles, and thus, they cannot be expressed only in terms of particle number
conserving operators. For an arbitrary reaction, the reaction operator can naturally be
decomposed into two parts:

• a conserving operator to specify the probability outflow from the current state,
• a non-conserving operator to specify the probability inflow from another state
(with a different number of particles) into the current state.

In order to specify the two operators that form the reaction operator of a general
reaction kA → lA, we first need to define their action on a group of k particles. Using
the corresponding reaction rate function λ (see Sect. 2.2), we introduce these operators
as �(k) : H⊗k → H⊗k and �(k,l) : H⊗k → H⊗l with

(
�(k)(uβ1 ⊗ · · · ⊗ uβk )

)
(x (k)) := (uβ1 ⊗ · · · ⊗ uβk )(x (k))

∫

Xl
λ(y(l), x (k))dy(l),

(65)
(
�(k,l)(uβ1 ⊗ · · · ⊗ uβk )

)
(y(l)) :=

∫

Xk
λ(y(l), x (k))(uβ1 ⊗ · · · ⊗ uβk )(x (k))dx (k).

(66)

Here, �(k) encodes the rate of leaving a given configuration x (k) with k particles
and going to any other configuration with l particles, whereas�(k,l) is the rate of going
from any configuration of k particles to the configuration y(l) with l particles.

From the previous subsection,we already knowhow to extend a conserving operator
to act on all possible combinations of k particles in an n-particle space. For instance,
for the reaction A + A → A, the conserving part of the operator is [Eq. (64)]:

R(2) = 1

2

∑
α1,α2
β1,β2

〈u∗
α1

⊗ u∗
α2

,�(2)(uβ1 ⊗ uβ2)〉 a+{uα1}a+{uα2}a−{u∗
β1

}a−{u∗
β2

}.

(67)
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Analogously, we can construct a similar expression for the non-conserving operator,
where two particles are removed and one particle is created:

R(2,1) = 1

2

∑
α

β1,β2

〈u∗
α,�(2,1)(uβ1 ⊗ uβ2)〉a+{uα}a−{u∗

β1
}a−{u∗

β2
}. (68)

The proofs of the expansion of non-conserving operators are analogous to those for
conserving operators given in Appendices B.2 and B.3. The reaction operatorR in the
Fock space is composed by the sum of these two operators, acting pointwise according
to (Rρ)n = R(2,1)ρn+1−R(2)ρn . Note that the conserving operator will always carry
a minus in the CDME, as it refers to the outflow from a given state. The joint action
of both operators ensures that probability is conserved in the reaction.

For a general reaction kA → lA, the reaction operator is given component-wise by
(Rρ)n = R(k,l)ρn+k−l − R(k)ρn , where

R(k) = 1

k!
∑

α1,...,αk
β1,...,βk

〈
k⊗

i=1

u∗
αi

,�(k)
k⊗

j=1

uβ j

〉
k∏

i=1

a+{uαi }
k∏

j=1

a−{u∗
β j

}, (69)

R(k,l) = 1

k!
∑

α1,...,αl
β1,...,βk

〈
l⊗

i=1

u∗
αi

,�(k,l)
k⊗

j=1

uβ j

〉
l∏

i=1

a+{uαi }
k∏

j=1

a−{u∗
β j

}. (70)

Note that it holds R(k)ρn = R(k,l)ρn = 0 for n < k, which implies that (Rρ)n =
−R(k)ρn for k ≤ n < l, while (Rρ)n = R(k,l)ρn+k−l for l ≤ n < k. As there
are k! ways to choose (i.e., remove) the same k particles, the factor 1/k! is required
to avoid double counting. Note these expansions can also be written in terms of the
symmetrized basis, see Appendix B.4.

Belowwe list the expansions of the non-conserving part of frequently used reaction
operators involving one species:

R(0,1) =
∑
α

〈u∗
α,�(0,1)1〉a+{uα}, (71a)

R(1,0) =
∑
β

〈1,�(1,0)uβ〉a−{u∗
β}, (71b)

R(0,2) =
∑
α1,α2

〈u∗
α1

⊗ u∗
α2

,�(0,2)1〉a+{uα1}a+{uα2}, (71c)

R(2,0) = 1

2

∑
β1,β2

〈1,�(2,0)(uβ1 ⊗ uβ2)〉a−{u∗
β1

}a−{u∗
β2

}, (71d)

R(1,2) =
∑
α1,α2

∑
β

〈u∗
α1

⊗ u∗
α2

,�(1,2)uβ〉a+{uα1}a+{uα2}a−{u∗
β}, (71e)

R(2,1) = 1

2

∑
α

∑
β1,β2

〈u∗
α,�(2,1)(uβ1 ⊗ uβ2)〉a+{uα}a−{u∗

β1
}a−{u∗

β2
}. (71f)
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These reaction operators are useful to formulate the CDME for a general reaction
system.

4.3 Representation of the chemical diffusionmaster equation

Given a set of reactions indexed by r = 1, .., S, each of the form kA → lA for some
k, l ∈ N0 andwith corresponding reaction operatorsRr composed by their conserving
part R(k)

r and their non-conserving part R(k,l)
r , the CDME (12) may be written as

∂tρ =
(
D +

S∑
r=1

[
R(k,l)

r − R(k)
r

])
ρ, (72)

where k and l depend on r . For each component ρn of ρ ∈ F(H) this means

∂tρn = Dρn +
S∑

r=1

[
R(k,l)

r ρn+k−l − R(k)
r ρn

]
. (73)

That is, for several reactions, the overall reaction operator is simply the sum of indi-
vidual reaction operators.

The representation Eq. (72) of the CDME, together with the reaction operator
expansions in Eqs. (69) and (70) form the main results of this work. It allows for a
structured and systematic formulation of the probabilistic evolution described by the
CDME with the physics of the system encoded in the given reaction rate functions
and diffusion operators. We note that the expansions of the conserving single and
two-particle operators in Eqs. (60) and (64), respectively, are further useful to expand
the diffusion operator or higher-order particle-conserving operators.

In (72), the operators do not explicitly depend on the particle number n, which
greatly simplifies the expressions. With this, the operatorsQnm entering the matrix in
Eq. (13) are given as

Qnm =
{∑S

r=1R(k,l)
r δm−n,k−l if m 
= n,

−∑S
r=1R(k)

r if m = n.
(74)

The Q-matrix has a band-structure since there is only a finite number of reactions,
each of them changing the number of particles by a finite amount, i.e., there is some
�nmax such thatQnm = 0 for |n−m| > �nmax. Another important property is related
to the local conservation of probability and generalizes the fact that for aMarkov chain
on a finite state space column sums of the rate matrix are zero. For the CDME, we
show in Appendix C that this is expressed for any fixed m ∈ N0 as

∞∑
n=0

Jnm(·) = 0 (75)

123



A probabilistic framework for particle-based reaction… Page 23 of 59 49

in terms of the linear functionals

Jnm(η) :=
∫

Xm
(Qnmη)(x (m)) dx (m), η ∈ Sm Hm . (76)

As an interpretation,Jnm(·) yields the probability flux from the space with m particles
to onewithn particles forn 
= m; the total loss from them-particle space is summarized
in −Jmm(·).
CDME as an evolution equation.TheCDME (72), shortly denoted as ∂tρ = (D+R)ρ

has the form of a linear evolution equation, and the question arises whether it is well-
posed in the sense that solutions exist (in a finite time horizon, at least) and are
unique. Furthermore, it is a priori not clear that the positivity and normalization of the
probability density are preserved, ‖ρ(t)‖ = 1 and ρn(t) ≥ 0 for t ≥ 0 and for each
n, and how a permissible initial density ρ(0) looks like. These questions are brought
up already when considering the scenario of well-mixed reaction–diffusion systems
characterized by the conventional CME,which is an evolution equation on the space �1

of discrete probability distributions p = (p0, p1, . . . ), where pn(t) = ‖ρn(t)‖n . The
issue was addressed by the pioneers of probability theory for a broad class of Markov
jump processes on a countable state space [95–97], providing non-trivial criteria to
answer these questions [98]. Pathological examples can be found in refs. [98–100]
and the topic is still a subject of ongoing research [101, 102].

Technically, one employs the Hille–Yosida theory in the setting of an abstract
Banach space,which is F(H) in our case, to specify necessary and sufficient conditions
that the operator A := D + R generates a contraction semigroup

(
exp(tA)

)
t≥0 on

F(H). For a dissipative operator, the Lumer–Phillips theorem [103–105] provides
more tractable criteria for this to hold. For example, in addition to verifying that A is
dissipative on a suitable dense domain,which is proven inAppendixC, onewould need
to investigate when the operator μ−A is surjective for each μ > 0. A comprehensive
analysis of the issue for the CDME exceeds the scope of the present work and is left
for future research.
Multiple species. Using the formalism developed above, we can obtain the CDME
systematically for an arbitrary reaction–diffusion system with one chemical species.
Extensions tomultiple species require a straightforward generalization of the notation:
In the first place, for a system of L species, the probability densities ρn ∈ Sn H⊗n

generalize to ρn1,...,nL ∈ Sn1 H⊗n1 ⊗ · · · ⊗SnL H⊗nL with an index nl for the number
of particles of each species; the arguments of ρn1,...,nL refer to the particle positions for
each species. Note that since any two particles of different species are distinguishable,
the ρn1,...,nL must not be symmetrized with respect to all particle positions, but only
with respect to those of each species. The basis of the space of ρn1,...,nL is the tensor
product of the bases of then1- tonL -particle spaces of the single species case. Secondly,
the diffusion part hardly changes except for the fact that the diffusion constant and
physical interactions may vary among species, i.e., the diffusion operator will have
as many indices as the system has species, indicating its different actions on particles
of different species. Thirdly, for the reaction part, we get two indices per species,
counting the gains or losses with respect to that species on the reactant as well as
on the product side of the reaction. As a consequence, we will have rate functions
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λ(x (l1), . . . x (lL ); x (k1), . . . x (kL )) which depend on 2L position tuples for L species.
In the many-species generalization, the conserving part of the reaction operator will
involve an integration over all product positions of all species. Analogously, the non-
conserving part integrates over the reactant positions of all species. Also the creation
and annihilation operators have to be specified as to which species it is that is created
or destroyed, so that there are creation and annihilation operators separately for each
species.

4.4 Exemplary reaction systems

For the examples given in the following, we will reside with the setting of a single
species for the sake of clarity. Given the diffusion properties and the reaction rate
functions of the system, which encode the physics, we will specify the CDME for
some exemplary reaction systems in terms of creation and annihilation operators, and
we will show that the equations are consistent with well-known results, e.g., those
given in Sect. 2.2. Any chemical reaction can be decomposed into a combination
of unimolecular reactions and/or bimolecular reactions, we thus focus on creation
and degradation to represent unimolecular reactions and on mutual annihilation as an
example for a bimolecular reaction.

4.4.1 Creation and degradation

We consider the birth–death process given already in Eq. (14). It consists of the degra-
dation and creation reactions, A → ∅ and ∅ → A, occurring with rate functions
λd(x) and λc(x), respectively; in addition, each particle of species A diffuses freely
with diffusion coefficient D. The chemical diffusion master equation can be written
in terms of a diffusion operatorD and one reaction operator per reaction,Rd andRc,
as shown in Sect. 4.2:

∂tρn = Dρn + R(1,0)
d ρn+1 − R(1)

d ρn︸ ︷︷ ︸
Rd (degradation)

+R(0,1)
c ρn−1 − R(0)

c ρn︸ ︷︷ ︸
Rc (creation)

, (77)

with

D =
∑
α,β

〈u∗
α, D∇2uβ〉a+{uα}a−{u∗

β}, (78a)

R(1)
d =

∑
α,β

〈u∗
α,�

(1)
d uβ〉a+{uα}a−{u∗

β}, R(1,0)
d =

∑
α

〈1,�(1,0)
d uα〉a−{u∗

α},

(78b)

R(0)
c = �(0)

c , R(0,1)
c =

∑
α

〈u∗
α,�(0,1)

c 1〉a+{uα},
(78c)
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where ρn = ρn(x (n), t), and the reaction rate operators for each reaction are

(
�

(1)
d uβ

)
(x) = λd(x)uβ(x), �

(1,0)
d uα =

∫

X

λd(x)uα(x)dx, (79a)

�(0)
c =

∫
λc(y)dy,

(
�(0,1)

c 1
)

(x) = λc(x), (79b)

see Eqs. (65) and (66). Writing the CDME in matrix form as in Eq. (13), the reaction
operator

R =

⎛
⎜⎜⎜⎜⎝

−R(0)
c R(1,0)

d 0 0 . . .

R(0,1)
c −(R(1)

d + R(0)
c ) R(1,0)

d 0 . . .

0 R(0,1)
c −(R(1)

d + R(0)
c ) R(1,0)

d . . .
...

...
. . .

⎞
⎟⎟⎟⎟⎠

(80)

attains a tridiagonal form. Along the diagonal there is the conserving partR(1)
d +R(0)

c

with a minus sign, while the non-conserving partsR(1,0)
d andR(0,1)

c are found on the
secondary diagonals. Moreover, as the reaction operators given in terms of creation
and annihilation operators do not depend on the particle number n, we let them act
directly on elements of the Fock space, ρ = (ρ0, ρ1, . . . , ρn, . . . ), and rewrite the
CDME in compact form:

∂tρ =
(
D + R(1,0)

d − R(1)
d + R(0,1)

c − R(0)
c

)
ρ. (81)

To write the CDME explicitly as in Sect. 2, we start with the particle number
conserving operators. The expansions in terms of creation/annihilation operators cor-
responds to applying the operators to all the possible particles the operators can act
on, thus

Dρn =
n∑

i=1

D∇2
i ρn, R(1)

d ρn =
n∑

i=1

λd(xi )ρn, R(0)
c ρn = ρn

∫

X

λc(y)dy,

(82)

where the last one corresponds to a conserving zero-particle operator and thus it
acts on no particles. For the non-conserving operators, we need to explicitly apply
the creation and annihilation operators. In Appendix B.1, we show how to apply the
creation and annihilation operators from Eq. (51) to densities. Using these relations
and using ρn = ∑

β1≤...≤βn
c̃β1,...,βnSn(uβ1 ⊗ · · · ⊗ uβn ), we obtain

(R(1,0)
d ρn+1)(x (n))

(71b)=
∑
β

〈1,�(1,0)
d uβ〉

(
a−{u∗

β}ρn+1

)
(x (n))

(B5)=
∑
β

〈1,�(1,0)
d uβ〉(n + 1)

∫

X

u∗
β(y)ρn+1(x (n), y)dy
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(A1)= (n + 1)
∫

X

λd(y)ρn+1(x (n), y)dy (83)

and

(R(0,1)
c ρn−1)(x (n))

(71a)=
∑
α

〈u∗
α,�(0,1)

c 1〉 (
a+{uα}ρn−1

)
(x (n))

(B3)=
∑
α

〈u∗
α,�(0,1)

c 1〉1
n

n∑
j=1

uα(x (n)
j )ρn−1(x (n)

/ j )

(22)= 1

n

n∑
j=1

λc

(
x (n)

j

)
ρn−1

(
x (n)
/ j

)
. (84)

Gathering all the terms, this matches exactly the proposal in Eq. (15), which serves as
a first consistency check of the presented formalism.

4.4.2 Mutual annihilation

Next, we consider the mutual annihilation reaction A + A → ∅ with rate function
λ(x1, x2). The CDME in component-wise form is simply

∂tρn = Dρn + R(2,0)ρn+2 − R(2)ρn (85)

for n ≥ 0. The diffusion term is the same as before, and the reaction operator can be
decomposed into two parts, as shown in Sect. 4.2:

R(2) = 1

2

∑
α1,α2
β1,β2

〈u∗
α1

⊗ u∗
α2

,�(2)(uβ1 ⊗ uβ2)〉a+{uα1}a+{uα2}a−{u∗
β1

}a−{u∗
β2

},

(86a)

R(2,0) = 1

2

∑
β1,β2

〈1,�(2,0)(uβ1 ⊗ uβ2)〉a−{u∗
β1

}a−{u∗
β2

}. (86b)

In matrix notation, the full reaction operator acting on ρ ∈ F(H) reads

R =
⎛
⎜⎝

−R(2) 0 R(2,0) 0 0 . . .

0 −R(2) 0 R(2,0) 0 . . .
...

...
. . .

⎞
⎟⎠ . (87)

We will now recover the explicit form of the CDME for mutual annihilation. For
the conserving part of the reaction operator, we use the relations Eqs. (61), (62) and
(64) and apply definition (65) of the reaction rate operator to obtain

R(2)ρn =
∑

1≤i< j≤n

λ(x (n)
i , x (n)

j )ρn . (88)
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For the non-conserving operator, we insert the definitions of the reaction rate operators
[Eq. (66)] and of the annihilation operator [Eq. (51b)],

R(2,0)ρn+2 = 1

2

∑
β1,β2

〈1,�(2,0)(uβ1 ⊗ uβ2)〉
n+2∑

i, j=1
j 
=i

〈uβ1 , vi 〉〈uβ2 , v j 〉Sn(v\{i, j})

= 1

2

∑
β1,β2

〈1,�(2,0)(uβ1 ⊗ uβ2)〉
n+2∑

i, j=1
j 
=i

〈uβ1 ⊗ uβ2 , vi ⊗ v j 〉Sn(v\{i, j})

= 1

2

n+2∑
i, j=1

j 
=i

〈1,�(2,0)(vi ⊗ v j )〉Sn(v\{i, j})

= 1

2

n+2∑
i, j=1

j 
=i

∫

X2
λ(y1, y2)ρn+2(x (n), y1, y2)dy1dy2

= (n + 2)(n + 1)

2

∫

X2
λ(y1, y2)ρn+2(x (n), y1, y2)dy1dy2 (89)

for v\{i, j} := v1 ⊗ · · · ⊗ vi−1 ⊗ vi+1 ⊗ · · · ⊗ · · · ⊗ v j−1 ⊗ v j+1 ⊗ · · · ⊗ vn+2. So,
the full expression of the CDME of mutual annihilation is given in component-wise
form as

∂tρn(x (n)) = Dρn(x (n)) + (n + 2)(n + 1)

2

∫

X2
λ(y1, y2)ρn+2(x (n), y1, y2)dy1dy2

−
∑

1≤i< j≤n

λ
(

x (n)
i , x (n)

j

)
ρn(x (n)). (90)

By comparing to theCME formutual annihilation [35], one finds that both the structure
of the equation and the coefficients obtainedwithin the present approach are consistent
with well-known models at a more coarse-grained level. Note that for many analyses
and derivations, this explicit form of the equation is not needed. Instead, we will work
on the operator level in terms of creation and annihilation operators in the following.

5 Spatial discretization

In the previous sections, we laid out a theoretical basis for the probabilistic descrip-
tion of particle-based reaction–diffusion systems. Adapting the concept of the Fock
space, we developed a systematic method to formulate CDMEs for arbitrary reaction
networks. The CDME fully characterizes the stochastic reaction–diffusion dynamics.
Solving it analytically or numerically, however, will in general be a demanding issue. It
either requires solving directly a huge systemof partial differential equations (PDEs) or
performing stochastic simulations of the underlying particle-based reaction–diffusion
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process to obtain costly Monte Carlo estimates of the solution to the CDME. How-
ever, there are situations where the physical or structural features of a specific system
permit an approximation of the solutions by a (small) finite set of distinguished basis
functions. In such cases, a significant complexity reduction is achieved by a projec-
tion onto the subspace spanned by this reduced basis set. Our framework is an ideal
starting point for this as it already provides a basis representation of the CDME. As an
example, we will use a basis of indicator functions completely covering the domain
of particle positions, which amounts to a spatial coarse-graining. We thus obtain a
generalized RDME—consistent with the convergent RDME [77, 78]—that extends
the standard RDME by reactions between particles located in different subdomains.

5.1 Galerkin projection

Let Ĥ ⊂ H be a finite-dimensional linear subspace of H , and let ξ1, . . . , ξM be a
normed basis of Ĥ , i.e., ‖ξi‖1 = 1 for i = 1, . . . , M . The dual basis ξ∗

1 , . . . , ξ∗
M is

such that 〈ξ∗
i , ξ j 〉 = δi, j for all i, j . For example, the ξi could be indicator functions

of subsets for a given spatial discretization—a special case which will be analyzed in
Sect. 5.4. The set Ĥ = span(ξi ) induces a subspace F̂ ⊂ F(H) of the Fock space
F(H) defined inEq. (43).Wewill nowconsider a projection Q : F(H) → F̂ ⊂ F(H)

onto this subspace.
The Galerkin ansatz for an element ρ ∈ F(H) is given by ρ̂ = (ρ̂0, ρ̂1, . . . ) ∈ F̂

with

ρ̂n = Qρn =
∑

1≤i1≤...≤in≤M

ci1,...,in Sn(ξi1 ⊗ . . . ⊗ ξin ) (91)

for coefficients

ci1,...,in := 〈Sn(ξi1 ⊗ · · · ⊗ ξin )
∗, ρn〉

= 1

sξi1 ,...,ξin

〈Sn(ξ∗
i1 ⊗ · · · ⊗ ξ∗

in
), ρn〉 (92)

with sξi1 ,...,ξin
defined in Eq. (33). In accordance with the notation in Eq. (44), we write

ρ̂ =
∞∑

n=0

∑
i1≤...≤in

ci1,...,in Sn(ξi1 ⊗ . . . ⊗ ξin ) ∈ F̂ (93)

for the basis representation, or, in terms of creation operators,

ρ̂ =
∞∑

n=0

∑
i1≤...≤in

ci1,...,in a+{ξi1} . . . a+{ξin } ρvac, (94)

where ρvac = (1, 0, 0, . . . ) ∈ F(H) is the normalized vacuum element. Equal indices
are again included in the sum because, e.g., ξ1 ⊗ ξ1 is an allowed two-particle density.
In the following, we will use the abbreviations

123



A probabilistic framework for particle-based reaction… Page 29 of 59 49

a+
i := a+{ξi } and a−

i := a−{ξ∗
i }. (95)

For the diffusion operators D and the reaction operators R we derive the pro-
jected operators D̂ = QDQ and R̂ = QRQ, respectively, by extending the basis
of the subspace Ĥ by the complement basis χ1, χ2, . . . , such that (u1, u2, . . . ) =
(ξ1, . . . , ξM , χ1, χ2, . . . ) is a basis of the full space H . Then, using the operator expan-
sions derived in Sect. 4, we obtain equivalent expressions for the projected operators:
After projecting, only the sum over the ξi components remains due biorthogonality,
i.e., 〈χ∗

j , ξi 〉 = 〈ξ∗
i , χ j 〉 = 0 for any i, j . The expressions for the projected opera-

tors can thus be obtained by simply replacing sums over (uα) by sums over (ξi ). For
example, for the diffusion operator D, we obtain

D̂ =
∑
i, j

〈ξ∗
i ,Dξ j 〉a+

i a−
j , (96)

see Eq. (60), while for the non-conserving operatorR(0,1) of the reaction ∅ → A, we
get

R̂(0,1) =
∑

i

〈ξ∗
i ,�(0,1)1〉a+

i (97)

instead of the original expression Eq. (71a).
Copy number representation. The copy number representation introduced in Eq. (40)
is particularly useful for densities projected onto a finite Galerkin basis ξ1, . . . , ξM .
We simply need to redefine the index set Mn of Eq. (39) by restricting to the M
basis elements, i.e., to multi-indices N = (N1, . . . , NM ). Analogously to Eq. (40),
the n-particle density ρ̂n as in Eq. (91) can then be written as

ρ̂n =
∑

N∈Mn

pN1,...,NM Sn

(
ξ

⊗N1
1 ⊗ · · · ⊗ ξ

⊗NM
M

)

=
∑

N∈Mn

pN1,...,NM (a+
1 )N1 . . . (a+

M )NM ρvac (98)

with coefficients

pN1,...,NM = n!
N1! . . . NM !

〈
ξ

∗⊗N1
1 ⊗ · · · ⊗ ξ

∗⊗NM
M , ρn

〉
. (99)

In the following sections, we will use the short-hand notation

|N1, . . . , NM 〉 := (a+
1 )N1 . . . (a+

M )NM ρvac (100)

for the copy number representation. An element of the projected Fock space F̂ then
has the copy number representation
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ρ̂ =
∑
n≥0

∑
N∈Mn

pN1,...,NM |N1, . . . , NM 〉

=
∞∑

N1,...,NM =0

pN1,...,NM |N1, . . . , NM 〉, (101)

replacing the representation (94).

5.2 Normalization and positivity of the projected densities

Given ρ ∈ F(H) with ρn ≥ 0 for all n and ‖ρ‖ = 1, we would like to get a projected
function ρ̂ which fulfills these properties, too. In general, using Eqs. (45) and (4) as
well as the standard triangle inequality, we have

‖ρ̂‖ ≤
∞∑

n=0

∑
N∈Mn

|pN1,...,NM | ·
∥∥∥Sn

(
ξ

⊗N1
1 ⊗ · · · ⊗ ξ

⊗NM
M

)∥∥∥ . (102)

From ‖ξi‖1 = 1 for all i , it follows that ‖ξ⊗N1
1 ⊗ · · · ⊗ ξ

⊗NM
M ‖n = 1 as well as

‖Sn(ξ
⊗N1
1 ⊗ · · · ⊗ ξ

⊗NM
M )‖n = 1 for all N = (N1, . . . , NM ) ∈ Mn , such that we

obtain

‖ρ̂‖ ≤
∞∑

n=0

∑
N∈Mn

|pN1,...,NM |. (103)

In order to obtain equality, we have to assume both the basis functions ξi and the
coefficients pN1,...,NM to be positive, in which case it holds ρ̂n ≥ 0 for all n and

‖ρ̂‖ =
∞∑

n=0

∑
N∈Mn

pN1,...,NM . (104)

This will be true for the special case of a full spatial partition with rescaled indicator
functions, as we will see below.

However, as soon as the basis functions ξi are positive-valued and overlapping in
position space X, the dual basis functions ξ∗

i have negative values and, consequently,
also the coefficients pN1,...,NM as defined by the dual pairing (99) can become negative.
In this case, equality (104) is not fulfilled and an interpretation of the coefficients as
probabilities becomes pointless.

The positivity of the coefficients is only guaranteed if we assume the dual basis
functions ξ∗

i to be positive, ξ∗
i ≥ 0 for all i . Demanding in addition that the dual

basis functions sum up to one everywhere in position space,
∑

i ξ∗
i (x (1)) = 1 for all

x (1) ∈ X (as given, e.g., for committor functions in the context of transition path theory
[106, 107]), this guarantees that the coefficients sum up to one, as well. In this case,
the functions ξi themselves are not necessarily positive, and consequently, also the
projected functions ρ̂n can have negative values, which renders their interpretation as
projected probability distribution questionable. These insights motivate us to restrict
the following analysis to a full-partition approach.
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5.3 Full-partition approach

In order to make sure that both the coefficients and the projected probability distri-
butions are positive-valued, we consider non-overlapping basis functions as indicator
functions of a full spatial partition into subsets. That is, we split the position space X

into finitely many disjoint subsets Xi , i = 1, . . . , M such that

X =
M⋃

i=1

Xi , with Xi ∩ X j = ∅ for i 
= j . (105)

Given these subsets Xi ⊂ X, we can define the rescaled indicator functions

ξi := 1

vol(Xi )
1Xi = 1

‖1Xi ‖1
1Xi , (106)

which fulfill ‖ξi‖1 = 1. In this special case, the duals are given by

ξ∗
i = vol(Xi ) · ξi = 1Xi .

For this approach of a full spatial partition, the norm is naturally retained: Let
ρ ∈ F(H) be such that ρn ≥ 0 for all n and ‖ρ‖ = 1 for the norm defined in Eq. (45).
This means that it holds

∞∑
n=0

P[N = n] = 1 (107)

for P[N = n] := ∫
ρn(x (n)) dx (n) ≥ 0, see also Eq. (3). Now we note that for fixed n

it holds

∑
N∈Mn

pN =
∑

i1,...,in

〈ξ∗
i1 ⊗ . . . ⊗ ξ∗

in
, ρn〉 (108)

for the coefficients pN = pN1,....,NM defined in Eq. (99). Moreover, we have

∑
i1,...,in

(ξ∗
i1 ⊗ . . . ⊗ ξ∗

in
)(x (n)) =

∑
i1,...,in

ξ∗
i1(x (n)

1 ) · . . . · ξ∗
in

(x (n)
2 ) = 1 ∀x (n) ∈ X

n

(109)

for the given basis functions ξi . Inserting into Eq. (108) we obtain

∑
N∈Mn

pN =
∑

i1,...,in

∫
(ξi1 ⊗ . . . ⊗ ξin )

∗(x (n))ρn(x (n)) dx (n)

=
∫

ρn(x (n)) dx (n)
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= P[N = n], (110)

so, due to property (107), we find

‖ρ̂‖ =
∞∑

n=0

∑
N∈Mn

pN = 1 (111)

with pN ≥ 0 for all N . This means that the norm is preserved and the coefficients
pN may be interpreted as probabilities. Also ρ̂n ≥ 0 is fulfilled such that ρ̂n is again
a probability density function. This discretization can be understood in analogy to
conservative finite volume methods, where the conserved quantity is the probability.
Average concentration field.As a simple application of the Galerkin projection and the
probabilistic interpretation of Eq. (99), we calculate the expected number of particles
in a ball Bε(y) of radius ε centered at y ∈ X. For the Galerkin basis, we choose only
M = 2 basis functions, namely the indicator functions on X1 = Bε(y) and on its
complement X2 = X \ Bε(y). Then, the probability that at time t there are n particles
in the system and exactly k out of them are located in Bε(y) is obtained from the
n-particle component of a given ρ(t) ∈ F(H) as the coefficient pk,n−k(t) in Eq. (99),
explicitly:

pk,n−k(t) = n!
k!(n − k)!

∫

Bε(y)k×(X\Bε(y))n−k
ρn(x (n), t) dx (n). (112)

The average number of particles in Bε(y) is found by taking the expectation of k with
respect to the joint distribution of k and n as

Xε(y, t) :=
∞∑

n=0

n∑
k=1

k pk,n−k(t). (113)

Dividing further by the volume of the ball and taking its radius to zero yields the
average molecular concentration at point y:

c(y, t) := lim
ε→0

1

vol(Bε(y))
Xε(y, t), (114)

which, after carrying out the limit, reduces to

c(y, t) =
∞∑

n=0

n∑
k=1

n!
(k − 1)!(n − k)!

∫

{y}k−1×Xn−k
ρn(y, x (n−1), t) dx (n−1)

=
∞∑

n=0

n
∫

Xn−1
ρn(y, x (n−1), t) dx (n−1) (115)

since in the first line the integral is nonzero only for k = 1 as {y}k−1 is a null
set otherwise. The last result, Eq. (115), can serve as starting point to derive the
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deterministic reaction–diffusion equation in terms of average concentrations from a
given CDME.

5.4 Generalized reaction–diffusionmaster equation

Given the setting of a full spatial partition with basis functions defined in Eq. (106),
we will investigate next the projected diffusion and reaction operators for some basic
scenarios and derive the corresponding generalized RDME as an evolution equation
for the coefficients pN . Explicit calculations can be found in Appendix D.2.

5.4.1 Diffusion

Consider the projected diffusion operator given in Eq. (96) and define di j := 〈
ξ∗

i ,Dξ j
〉
,

such that

D̂ =
∑
i, j

di j a
+
i a−

j . (116)

This means that di j refers to the rate to go from basis j to basis i . We apply this
operator D̂ to ρ̂ given in Eq. (101). We find (see Eq. (D8))

D̂ρ̂ =
∑

N1,...,NM

∑
i, j
i 
= j

pN1,...,Ni −1,...,N j +1,...,NM di j (N j + 1) · |N1, . . . , NM 〉

+
∑

N1,...,NM

∑
i

pN1,...,NM dii Ni · |N1, . . . , NM 〉. (117)

Defining the operator D acting on the coefficients according to

DpN1,...,NM :=
∑
i, j
i 
= j

pN1,...,Ni −1,...,N j +1,...,NM di j (N j + 1) +
∑

i

pN1,...,NM dii Ni

=
∑
i, j
i 
= j

[
di j (N j + 1)pN1,...,Ni −1,...,N j +1,...,NM − d ji Ni pN1,...,NM

]
,

(118)

we can write

D̂ρ̂ =
∑

N1,...,NM

DpN1,...,NM · |N1, . . . , NM 〉. (119)

In Eq. (118), we used the identity dii = −∑
j 
=i d ji , which follows for the chosen

basis of indicator functions from the equality ξ∗
i = 1 − ∑

j 
=i ξ∗
j after integration by

parts.
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In the time-dependent setting, where ρ = ρ(·, t) is a function of t , we turn the
diffusion equation ∂tρ = Dρ into a “diffusionmaster equation” for the time-dependent
coefficients pN1,...,NM (t) of ρ̂(t) and get

d

dt
pN1,...,NM (t) = DpN1,...,NM (t) (120)

as the diffusive part of the RDME.

5.4.2 Creation and degradation

Consider the chemical diffusion master equation for creation and degradation, see Eq.
(77). Let λd denote the rate function of the degradation reaction A → ∅, while λc is
the rate function for the creation reaction ∅ → A. The corresponding operators are
denoted by R(1)

d and R(1,0)
d for degradation and by R(0)

c and R(0,1)
c for creation.

Degradation. The projected conserving one-particle reaction operator R̂(1)
d acts simi-

larly to the diffusion operator. Defining

λi
d :=

〈
ξ∗

i ,�
(1)
d ξi

〉
=

∫
ξ∗

i (x)λd(x)ξi (x)dx =
∫

λd(x)ξi (x)dx (121)

for �
(1)
d given in Eq. (79a), we find [Eq. (D9)]:

R̂(1)
d ρ̂ =

∑
N1,...,NM

∑
i

pN1,...,NM λi
d Ni · |N1, . . . , NM 〉. (122)

Applying the projected non-conserving operator R̂(1,0)
d = ∑

i 〈1,�(1,0)
1 ξi 〉a−

i to ρ̂ =∑
n≥0 ρ̂n given in Eq. (101), we get [Eq. (D10)]

R̂(1,0)
d ρ̂ =

∑
N1,...,NM

∑
i

pN1,...,Ni +1,...,NM λi
d(Ni + 1) · |N1, . . . , NM 〉. (123)

Combining the results, we define the operator Rd of the degradation reaction in terms
of coefficients by

Rd pN1,...,NM :=
∑

i

[
λi

d(Ni + 1)pN1,...,Ni +1...,NM − λi
d Ni pN1,...,NM

]
. (124)

Creation. As for the creation reaction ∅ → A, the conserving part R̂(0)
c acts as a mere

constant [Eq. (D11)]:

R̂(0)
c ρ̂ = �(0)

c

∑
N1,...,NM

pN1,...,NM |N1, . . . , NM 〉

= �(0)
c ρ̂, (125)
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with the reaction rate constant

�(0)
c =

∫
λc(x) dx . (126)

For the non-conserving part R̂(0,1), we set

λi
c := 〈ξ∗

i ,�(0,1)
c 1〉 =

∫
ξ∗

i (x) λc(x) dx (127)

and obtain [Eq. (D12)]

R̂(0,1)
c ρ̂ =

∑
N1,...,NM

∑
i

pN1,...,Ni −1,...,NM λi
c |N1, . . . , NM 〉. (128)

In terms of coefficients, and observing that �(0)
c = ∑

i λi
c, we obtain the operator Rc

as

Rc pN1,...,NM :=
∑

i

λi
c

[
pN1,...,Ni −1,...,NM − pN1,...,NM

]
. (129)

In combination with the diffusion operator, we obtain the standard RDME for the
system of creation and degradation

d

dt
pN1,...,NM (t) = (D + Rd + Rc)pN1,...,NM (t)

=
∑
i, j
i 
= j

[
di j (N j + 1)pN1,...,Ni −1,...,N j +1,...,NM (t) − d ji Ni pN1,...,NM (t)

]

+
∑

i

λi
d

[
(Ni + 1)pN1,...,Ni +1,...,NM (t) − Ni pN1,...,NM (t)

]

+
∑

i

λi
c

[
pN1,...,Ni −1,...,NM (t) − pN1,...,NM (t)

]
. (130)

Scaling by volume. Assuming that the reaction rate function λc of creation is constant,
λc(x) = γ for all x ∈ X, it holds λi

c = γ
∫

ξ∗
i (x)dx = γ vol(Xi ) and λc = γ vol(X).

As for degradation, we analogously obtain λi
d = γ . In both cases, this is the usual

volume-scaling of a reaction of order zero or one, respectively.

5.4.3 Mutual annihilation

For the mutual annihilation given by the reaction A + A → ∅, let λ(x (2)) denote the
rate for two particles to react when they are located at x (2) = (x (2)

1 , x (2)
2 ) ∈ X

2. By
virtue of Eq. (66) with k = 2 and l = 0 we set

λi j := 〈ξ∗
i ⊗ ξ∗

j ,�
(2)(ξi ⊗ ξ j )〉
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=
∫

(ξ∗
i ⊗ ξ∗

j )(x (2))λ(x (2))(ξi ⊗ ξ j )(x (2)) dx (2) (131)

and obtain the conserving part R̂(2) of the reaction as [Eq. (D15)]

R̂(2)ρ̂ =
∑

N1,...,NM

[∑
i

pN1,...,NM

1

2
λi i Ni (Ni − 1) |N1, . . . , NM 〉

+
∑
i< j

pN1,...,NM λi j Ni N j |N1, . . . , NM 〉
]
. (132)

On the other hand, under the assumption of non-overlapping basis functions, we find
the same λi j for the non-conserving part:

〈(1,�(2,0)(ξi ⊗ ξ j )〉 =
∫

λ(x (2))(ξi ⊗ ξ j )(x (2)) dx (2) = λi j , (133)

and thus [Eq. (D18)]

R̂(2,0)ρ̂ =
∑

N1,...,NM

[∑
i

pN1,...,Ni +2,...,NM

1

2
λi i (Ni + 2)(Ni + 1) |N1, . . . , NM 〉

+
∑
i< j

pN1,...,Ni +1,...,N j +1,...,NM λi j (Ni + 1)(N j + 1) |N1, . . . , NM 〉
]
.

(134)

In terms of the coefficients, we obtain the generalized RDME

d

dt
pN1,...,NM (t) = (D + R)pN1,...,NM (t)

=
∑
i, j
i 
= j

[
di j (N j + 1)pN1,...,Ni −1,...,N j +1,...,NM (t) − d ji Ni pN1,...,NM (t)

]

+ 1

2

∑
i

λi i [
(Ni + 2)(Ni + 1)pN1,...,Ni +2,...,NM (t) − Ni (Ni − 1)pN1,...,NM (t)

]

+
∑
i< j

λi j [
(Ni + 1)(N j + 1)pN1,...,Ni +1,...,N j +1,...,NM (t) − Ni N j pN1,...,NM (t)

]
,

(135)

where the last two lines define the operator R. The very last line refers to reactions
between particles located in different “boxes.” This makes the equation more general
than the standard RDME which would only allow reactions between particles located
in the same box.
Volume scaling of the rate constant. Let the reaction rate function λ be of the form
λ(x, y) = γ 1Br (x)(y), which corresponds to the standard situation of the Doi reaction
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model [45]; here, γ > 0 is a reaction rate constant, r > 0 is some maximum reac-
tion distance, and 1Br (x) denotes the indicator function of the ball Br (x) of radius r
centered at x , i.e., 1Br (x)(y) = 1 if ‖x − y‖ ≤ r and 0 otherwise. For simplicity, we
ignore boundary effects for positions x close to a subdomain boundary such that the
reactive volume around x can be assumed to be the same all over a subdomain Xi , i.e.,∫
Xi

1Br (x)(y)dy = V0 does not depend on x ∈ Xi , which is justified if the volume of
Xi is large compared to the reactive volume [108]. Then, we obtain

λi i =
∫

X×X

ξ∗
i (x)ξ∗

i (y)λ(x, y)ξi (x)ξi (y)dxdy

= γ

vol(Xi )2

∫

Xi ×Xi

1Br (x)(y) dxdy

= γ

vol(Xi )2

∫

Xi

V0dx

= γ V0

vol(Xi )
, (136)

which is the standard scaling of the reaction rate constant for a second-order reaction
in a finite volume.

6 Discussion and perspectives

In summary, we developed a probabilistic framework to formalize stochastic, particle-
resolved reaction–diffusion dynamics. A main result is the structured formulation of
the CDME (73), which governs the temporal evolution of the probability distribution
of the many-particle open system, by means of systematically constructed diffusion
and reaction operators. As the framework is based on suitable creation and annihilation
operators, we translated the concept of Fock space, well-known for Hilbert spaces in
quantum mechanics, to the setting of probability densities, which are absolutely inte-
grable rather than square-integrable.We introduced creation and annihilation operators
[Eq. (51)] as a natural means to express operations on symmetrizedmany-particle den-
sities, andwe used them as basic building blocks to represent the reaction and diffusion
operators, and thus the complete CDME. Diffusion operators are expressed as con-
serving particle operators, as they do not change the number of particles. However,
reaction operators are decomposed into two parts, one that conserves and one that does
not conserve the number of particles, representing loss and gain contributions to the
probability density, respectively [e.g., Eqs. (78) and (86)]. At the core of the reaction
operators are position-dependent reaction rate functions, which encode details of the
underlying PBRD model such as where to place reaction products [47, 52, 59, 109].
Domains with open boundary conditions can be simulated by including reactions that
insert or remove particles in a boundary layer only. Some of the reaction operators
take explicitly the form of integrals over n-particle densities, e.g., [Eq. (89)], so the
CDME in general is a family of coupled integro-partial-differential equations. The
CDME is proposed as an evolution equation on the Fock space F(H). Similarly as
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for the CME—valid for well-mixed systems—there is the question when do solutions
to the CDME exist and are unique, which will be addressed elsewhere. We worked
out the explicit form of the CDME for typical examples, namely a birth–death process
[Eq. (77)] and a mutual annihilation reaction [Eq. (85)]. We point out that the frame-
work extends beyond these specific examples and is applicable to general reaction
schemes. We briefly sketched the extension to multiple species (see Sect. 4.3), which
is straightforward for few species, but results in a clumsy notation for a larger number
of species. Using the Galerkin projection technique to discretize space, we derived a
generalized RDME with non-local higher-order reactions as an approximation of the
CDME [e.g., Eqs. (130) and (135)]. As a by-product, we found relations between the
reaction rate functions of the CDME and the rate constants of the RDME [Eq. (131)].

The (generalized) RDME as a spatial discretization of the CDMEmay, in principle,
appear suitable for a direct numerical treatment due to its form as an evolution equation
for the expansion coefficients of the Fock space element ρ̂ ∈ F̂ . However, such an
attempt would be computationally prohibitive, which follows from a brief estimate of
the amount of data to be processed. For a Galerkin basis of length M and limiting the
maximum copy number per basis element to Nmax, corresponding to a maximum of
M × Nmax molecules in the system, the function ρ̂ has coefficients pN1,...,NM for M
indices N1, . . . , NM each ranging from 1 to Nmax, see Eq. (98). The memory require-
ment to store such a dense coefficient array is (Nmax)

M floating-point numbers, which
in the setting of the ST-CME with few compartments and an exemplary, conservative
choice of M = 5 and Nmax = 100 would require already (Nmax)

M = 1010 double
words or 75 gigabytes of memory that need to be processed in every time integration
step. Conversely, in the RDME-like setting of a regular mesh of M = 10 × 10 cells
with Nmax = 5, one would need the unthinkable amount of (Nmax)

M ≈ 1070 double
words. Thus, instead of solving the CDME or RDME directly, the method of choice
is to calculate Monte Carlo estimates from simulations of the underlying stochastic
process either in continuous space for the CDME [57, 58] or, much less costly, on a
lattice for the RDME [110–112].

The obtained framework is broadly applicable for formulating and analyzing awide
range of arbitrary reaction–diffusion processes. It provides the theoretical backbone
to unify reaction–diffusion models at multiple scales that emerge from the CDME
in specific limits or regimes. For instance, macroscopic and mesoscopic descriptions
rely on (possibly fluctuating) concentration fields. Testing the assumptions behind the
emergence of these descriptions requires analysis on a more refined model such as
the CDME. The present formalism also enables the development of consistent hybrid
and multi-scale numerical schemes. For example, we have shown that the spatial
discretization of the CDMEby aGalerkin projection naturally yields a consistent, non-
local RDME,which supports higher-order reactions between different subdomains and
which converges to the original CDME as the mesh size tends to zero—in contrast to
the standard local RDME. Our work thus complements previous numerical studies on
convergent RDMEs [77, 78].

A relevant direction of future researchwould consist on fully integrating out the spa-
tial degrees of freedom from theCDME,which should recover the classicalCMEunder
well-mixed conditions. This is straightforward for unimolecular reactions [Eq. (20)],
whereas higher-order reactions are influenced by diffusion such that the spatial distri-
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bution of reacting molecules enters the rates effectively observed in the CME [47–49,
58]; further it gives rise to additional reaction channels [71, 72] and non-Markovian
effects [73–75]. Moreover, deterministic reaction–diffusion equations emerge from
spatially resolved stochastic models in the limit of large copy numbers [108, 113,
114]. It would be of practical value to derive such, in general nonlinear, macroscopic
equations from the CDME; see Eq. (115) for how to obtain locally averaged molecular
concentrations from the probability densities of the CDME. Future research may also
include the extension of Sect. 5 to other types of spatial discretizations by project-
ing onto basis functions different from indicator functions, e.g., committor functions
or locally supported, piecewise-linear functions (hat functions), yielding alternative
RDMEmodels that could be numerically advantageous. In conclusion, we have given
the probabilistic description of particle-resolved reaction–diffusion systems alongwith
systematic means to formulate the corresponding CDME, which opens rich perspec-
tives for future mathematical and numerical investigations.
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Appendix A: Basic relations and properties

Here, we prove some basic relations and properties for creation and annihilation oper-
ators that are quoted in the main text or are used for proving some of the subsequent
results.
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A.1 Relations for the dual pairing

For the contraction of dual pairings [Eq. (21)], it holds for η ∈ H and ζ ∈ H∗ and an
operator A : H → H that

〈ζ, Aη〉 =
∑
α

〈ζ, Auα〉〈u∗
α, η〉

=
∑
α

〈ζ, uα〉〈u∗
α, Aη〉, (A1)

where we inserted the basis expansion of η given in Eq. (22). In the second line, the
corresponding expansion of Aη ∈ H was used.

Next, we prove Eq. (30). Assuming ζ ∈ (H⊗n)∗ and η ∈ H⊗n , it holds

〈Snζ, η〉 =
∫

Xn
Sn(ζ(x (n)))η(x (n)))dx (n). (A2)

As the integral is over the whole domain, the labeling of the integration variables does
not matter, and consequently

〈Snζ, η〉 = 1

n!
∑

σ∈n

∫

Xn
Sn

(
ζ(x (n))

)
η

(
x (n)
σ (1), . . . , x (n)

σ (n)

)
dx (n)

=
∫

Xn
Sn

(
ζ(x (n))

)
Sn

(
η(x (n))

)
dx (n) = 〈Snζ,Snη〉, (A3)

where n is the set of all permutations σ on {1, . . . , n}. Following the same argument
in reverse gives 〈Snζ,Snη〉 = 〈ζ,Snη〉 and thus

〈Snζ, η〉 = 〈ζ,Snη〉. (A4)

A.2 Products of a+ and a− operators

In the following, we prove relations for the action of products of a+ and a− operators
on a symmetrized pure tensor v = Sn(v1 ⊗ · · · ⊗ vn) ∈ Sn H⊗n for vi ∈ H and
i = 1, . . . , n.

Applying a+a− for elements of the single-particle basis to v yields

a+{uα}a−{u∗
β}v = Sn

n∑
j=1

〈u∗
β, v j 〉(uα ⊗ v\{ j}), (A5)
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where we used the definitions (51), as well as the short-hand notation v\{ j} = v1 ⊗
. . . v j−1 ⊗ v j+1 · · · ⊗ vn . Similarly, we find for the product a+a+a−a− that

a+{uα}a+{uβ}a−{u∗
γ }a−{u∗

δ }v = Sn

n∑
i, j=1

j 
=i

〈u∗
δ , vi 〉〈u∗

γ , v j 〉(uα ⊗ uβ ⊗ v\{i, j}).

(A6)

A.3 Commutation relations

We prove the commutator relations (54). Again, it is sufficient to consider a sym-
metrized pure tensor v ∈ Sn H⊗n as above. Let w, ν ∈ H and f , g ∈ H∗, and we
begin with the first identity:

[a−{ f },a+{w}]v = a−{ f }a+{w}v − a+{w}a−{ f }v. (A7)

To expand the first term, we apply Eq. (51a) followed by Eq. (51b). The second term
is given in Eq. (A5), and we obtain

[a−{ f }, a+{w}]v = Sn
(〈 f , w〉v +

n∑
j=1

〈 f , v j 〉(w ⊗ v\{ j})
) − Sn

n∑
j=1

〈 f , v j 〉(w ⊗ v\{ j})

= 〈 f , w〉v. (A8)

The other two commutators follow similarly by inserting the definitions (51):

[a+{w}, a+{ν}]v = a+{w}a+{ν}v − a+{ν}a+{w}v
= Sn+2(w ⊗ ν ⊗ v1 ⊗ · · · ⊗ vn) − Sn+2(ν ⊗ w ⊗ v1 ⊗ · · · ⊗ vn)

= 0, (A9)

and

[a−{ f }, a−{g}]v = a−{ f }a−{g}v − a−{g}a−{ f }v
=

∑
i, j
i 
= j

(〈 f , vi 〉〈g, v j 〉 − 〈 f , v j 〉〈g, vi 〉
)Sn−2(v\{i, j})

= 0. (A10)

A.4 Particle number operator

Putting α = β in Eq. (A5), summation over α yields the particle number operator:

N v =
∑
α

a+{uα}a−{u∗
α}v
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=
∑
α

Sn

n∑
j=1

〈u∗
α, v j 〉uα ⊗ v\{ j}

=
n∑

j=1

Sn(v1 ⊗ · · · ⊗ vn)

= nv, (A11)

exploiting biorthogonality, 〈u∗
α, v j 〉 = δα, j , in the last-but-one step. As a general

density ρn ∈ Sn H⊗n is a linear combination of symmetric pure tensors, the previous
relation implies Nρn = nρn . It follows straightforwardly that the identity operator
(resolution of unity) on Sn H⊗n reads

Iρn = 1

n

∑
α

a+{uα}a−{u∗
α}ρn . (A12)

A.5 Second-order particle number operator

Taking α = γ and β = δ in Eq. (A6) and summing over α and β, we obtain the
second-order particle number operator:

N 2v =
∑
αβ

a+{uα}a+{uβ}a−{u∗
α}a−{u∗

β}v

=
∑
αβ

Sn

n∑
i, j=1

j 
=i

〈u∗
β, vi 〉〈u∗

α, v j 〉(uα ⊗ uβ ⊗ v\{i, j})

=
n∑

i, j=1
j 
=i

Sn(v1 ⊗ · · · ⊗ vn)

= n(n − 1)v. (A13)

Due to linearity, this implies N 2ρn = n(n − 1)ρn . In analogy to the particle number
operator it holds

‖N 2ρ‖ =
∑
n≥0

‖N 2ρn‖n =
∑
n≥0

n(n − 1)P(n) = E[N (t)(N (t) − 1)]. (A14)

The generalization is straightforward. In general,N k can be expressed as k sumswhere
each term is composed by k creation operators followed by k annihilation operators.
It holds that

‖N kρ‖ = E[N (t)(N (t) − 1) · · · (N (t) − k + 1)], (A15)

which are the factorial moments of N (t).
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Appendix B: Expansions in terms of creation and annihilation opera-
tors

In the following, we always assume v ∈ Sn H⊗n to be a symmetrized pure tensor,
v = Sn(v1 ⊗ · · · ⊗ vn) for vi ∈ H .

B.1 Creation and annihilation operators acting on densities

We rewrite the creation and annihilation operators from Eq. (51) acting explicitly on
symmetrized densities. For ρn ∈ Sn H⊗n and w ∈ H it holds

a+{w}ρn
(51a)= Sn+1(w ⊗ ρn) (B1)
(22)=

∑
α

〈u∗
α,w〉Sn+1(uα ⊗ ρn)

=
∑
α

〈u∗
α,w〉a+{uα}ρn, (B2)

which evaluates at a point x (n+1) ∈ X
n+1 to

(a+{w}ρn)(x (n+1)) = 1

n + 1

n+1∑
j=1

w
(

x (n+1)
j

)
ρn

(
x (n+1)
\{ j}

)
(B3)

with the notation x (n+1)
\{ j} = (x (n+1)

1 , . . . , x (n+1)
j−1 , x (n+1)

j+1 , . . . x (n+1)
n+1 ) ∈ X

n .
Applying the annihilation operator to ρn = ∑

β1≤...≤βn
c̃β1,...,βnSn(uβ1 ⊗· · ·⊗uβn )

yields for f ∈ H∗:

a−{ f }ρn
(51b)=

n∑
j=1

∑
β1≤...≤βn

〈 f , uβ j 〉c̃β1,...,βnSn−1(u\{β j })

(22)=
n∑

j=1

∑
β1≤...≤βn

∑
α

〈 f , uα〉〈u∗
α, uβ j 〉c̃β1,...,βnSn−1(u\{β j })

(51b)=
∑
α

〈 f , uα〉a−{u∗
α}ρn, (B4)

which evaluates to

(a−{ f }ρn)(x (n−1)) =
n∑

j=1

∑
β1≤...≤βn

(∫

X

f (y) uβ j (y) dy

)
c̃β1,...,βnSn−1(u\{β j })(x (n−1))

=
n∑

j=1

∫

X

f (y)ρn

(
x (n−1)
1 , . . . , x (n−1)

j−1 , y, x (n−1)
j+1 , . . . , x (n−1)

n−1

)
dy
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= n
∫

X

f (y)ρn

(
x (n−1), y

)
dy. (B5)

B.2 Conserving single-particle operators

We prove that the operator A = An defined in Eq. (59) fulfills Eq. (60):

Av =
n∑

j=1

A jSn (v1 ⊗ · · · ⊗ vn)

= Sn

n∑
j=1

(Av j ) ⊗ v\{ j}

(22)= Sn

n∑
j=1

(∑
α

〈u∗
α, Av j 〉uα ⊗ v\{ j}

)

(A1)= Sn

n∑
j=1

⎛
⎝∑

α,β

〈u∗
α, Auβ〉〈u∗

β, v j 〉uα ⊗ v\{ j}

⎞
⎠

=
∑
α,β

〈u∗
α, Auβ〉 Sn

n∑
j=1

〈u∗
β, v j 〉uα ⊗ v\{ j}

(A5)=
∑
α,β

〈u∗
α, Auβ〉a+{uα}a−{u∗

β}v. (B6)

B.3 Conserving two-particle operators

Per definition (62), it holds

Bv =
∑

1≤i< j≤n

Bi jv = Sn

∑
1≤i< j≤n

B(vi ⊗ v j ) ⊗ v\{i, j}. (B7)

The representation of B(vi ⊗ v j ) in terms of the symmetrized 2-particle tensor basis
reads [Eq. (36)]:

B(vi ⊗ v j ) =
∑
α≤β

〈S2(uα ⊗ uβ)∗, B(vi ⊗ v j )〉S2(uα ⊗ uβ). (B8)

Together this gives

Bv = Sn

∑
1≤i< j≤n

∑
α≤β

〈S2(uα ⊗ uβ)∗, B(vi ⊗ v j )〉S2(uα ⊗ uβ) ⊗ v\{i, j}

=
∑

1≤i< j≤n

∑
α≤β

〈S2(uα ⊗ uβ)∗, B(vi ⊗ v j )〉Sn(uα ⊗ uβ ⊗ v\{i, j})
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(A1)=
∑

1≤i< j≤n

∑
α≤β
γ≤δ

〈S2(uα ⊗ uβ)∗, BS2(uγ ⊗ uδ)〉〈S2(uγ ⊗ uδ)
∗,S2(vi ⊗ v j )〉

× Sn(uα ⊗ uβ ⊗ v\{i, j}), (B9)

and after interchanging dualization and symmetrization using Eq. (34):

Bv =
∑

1≤i< j≤n

∑
α≤β
γ≤δ

1

sαβsγ δ

〈S2(u
∗
α ⊗ u∗

β), BS2(uγ ⊗ uδ)〉〈S2(u
∗
γ ⊗ u∗

δ ),S2(vi ⊗ v j )〉

× Sn(uα ⊗ uβ ⊗ v\{i, j}), (B10)

where the symmetrization S2 in the argument of the symmetric operator B may be
omitted. Moreover, we note that for v ∈ Sn H⊗n it holds

1

2
a+{uα}a+{uβ}a−{u∗

γ }a−{u∗
δ } v

(A6)= 1

2

n∑
i, j=1

j 
=i

〈u∗
δ , vi 〉〈u∗

γ , v j 〉Sn(uα ⊗ uβ ⊗ v\{i, j})

= 1

2

n∑
i, j=1

j 
=i

〈u∗
γ ⊗ u∗

δ , vi ⊗ v j 〉Sn(uα ⊗ uβ ⊗ v\{i, j})

=
∑

1≤i< j≤n

〈u∗
γ ⊗ u∗

δ ,S2(vi ⊗ v j )〉Sn(uα ⊗ uβ ⊗ v\{i, j})

=
∑

1≤i< j≤n

〈S2(u
∗
γ ⊗ u∗

δ ),S2(vi ⊗ v j ))〉Sn(uα ⊗ uβ ⊗ v\{i, j}).

(B11)

where Eq. (30) was used in the last line. Inserting this equality into Eq. (B10), the
operator fulfills

Bv = 1

2

∑
α≤β
γ≤δ

1

sαβsγ δ

〈S2(u
∗
α ⊗ u∗

β), B(uγ ⊗ uδ)〉 a+{uα}a+{uβ}a−{u∗
γ }a−{u∗

δ } v.

(B12)

By means of Eq. (35), and using the symmetry of the summands, we finally obtain

Bv = 1

2

∑
α,β,γ,δ

〈u∗
α ⊗ u∗

β, B(uγ ⊗ uδ)〉 a+{uα}a+{uβ}a−{u∗
γ }a−{u∗

δ } v. (B13)
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Note that the need of the factor 1/2 becomes clear as a consequence of applying
the annihilation operator twice; removing first particle i and then j is the same as
removing particle j and then i . If an operator expansion consists of n annihilation
operators, it will require a factor 1/n! to account for all the equivalent orderings.

One can verify the equation above directly by expanding the creation and annihi-
lation operators and by contracting the expansions in the non-symmetrized basis:

1

2

∑
α,β,γ,δ

〈u∗
α ⊗ u∗

β, B(uγ ⊗ uδ)〉 a+{uα}a+{uβ}a−{u∗
γ }a−{u∗

δ }v

(A6)= 1

2

∑
α,β,γ,δ

〈u∗
α ⊗ u∗

β, B(uγ ⊗ uδ)〉 Sn

⎛
⎜⎜⎝

n∑
i, j=1

j 
=i

〈u∗
δ , vi 〉〈u∗

γ , v j 〉(uα ⊗ uβ ⊗ v\{i, j})

⎞
⎟⎟⎠

= 1

2
Sn

n∑
i, j=1

j 
=i

∑
α,β,γ,δ

〈u∗
α ⊗ u∗

β, B(uγ ⊗ uδ)〉 〈u∗
γ ⊗ u∗

δ , vi ⊗ v j 〉(uα ⊗ uβ ⊗ v\{i, j})

(A1)= 1

2
Sn

n∑
i, j=1

j 
=i

B(vi ⊗ v j ) ⊗ v\{i, j}

(62)=
∑

1≤i< j≤n

Bi jv

= Bv. (B14)

B.4 Reaction operators

The reaction operators

R(k) = 1

k!
∑

α1,...,αk
β1,...,βk

〈
k⊗

i=1

u∗
αi

,�(k)
k⊗

j=1

uβ j

〉
k∏

i=1

a+{uαi }
k∏

j=1

a−{u∗
β j

}, (B15a)

R(k,l) = 1

k!
∑

α1,...,αl
β1,...,βk

〈
l⊗

i=1

u∗
αi

,�(k,l)
k⊗

j=1

uβ j

〉
l∏

i=1

a+{uαi }
k∏

j=1

a−{u∗
β j

} (B15b)

can also be written in terms of their symmetric basis:

R(k) = 1

k!
∑

α1≤...≤αk
β1≤...≤βk

1

sβ1,...,βk

〈
Sk

(
k⊗

i=1

uαi

)∗
, �(k)

k⊗
j=1

uβ j

〉
k∏

i=1

a+{uαi }
k∏

j=1

a−{u∗
β j

},

(B16a)
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R(k,l) = 1

k!
∑

α1≤...≤αl
β1≤...≤βk

1

sβ1,...,βk

〈
Sk

(
l⊗

i=1

uαi

)∗
,�(k,l)

k⊗
j=1

uβ j

〉
l∏

i=1

a+{uαi }
k∏

j=1

a−{u∗
β j

},

(B16b)

where sβ1,...,βn is defined onEq. (33). The proofs of these expansionswork analogously
to the proof in Appendix B.3. The coefficients sβ1,...,βk and the coefficients sα1,...,αk

(or sα1,...,αl ) that appear when commuting symmetrization with duality compensate
for the duplicate terms in the non-symmetrized expansion.

Appendix C: Local conservation of probabilities and dissipativity of
the CDME operator

The dissipativity of the reaction operator is closely related to the local conservation
of probability, expressed by Eq. (75), which we will prove first. This can be done
for each reaction separately, such that we can restrict to the case of a single reaction
with fixed stoichiometric coefficients k and l. Then, each “column” m of the reaction
operator R = (Qnm) has at most two nonzero entries (see Eq. (74)) and the column
sum reduces to

∞∑
n=0

Jnm(ρm) = Jm−k+l,m(ρm) + Jmm(ρm)

=
∫

Xm−k+l
R(k,l)ρmdx (m−k+l) −

∫

Xm
R(k)ρmdx (m) (C1)

for m ≥ k and dropping the subscript r on the reaction operators. (For m < k, the
reaction does not occur and Jnm(ρm) = 0, irrespective of the value of n.) For the sum
in (C1) to be zero it has to hold

∫

Xm
(R(k)ρm)(x (m))dx (m) =

∫

Xm−k+l
(R(k,l)ρm)(x (m−k+l))dx (m−k+l), (C2)

for ρm ∈ Sm H⊗m , which means that the considered reaction induces the probability
outflow from the m-particle space given on the l.h.s., which is balanced by the inflow
into the space with m − k + l particles on the r.h.s.

We here give the proof of Eq. (C2) for the case k = 2 and l = 1, i.e., the reaction
A + A → A; the general case for arbitrary k, l follows analogously. The reaction
operators read [Eqs. (69) and (71b)]:

R(2) = 1

2

∑
α1,α2
β1,β2

〈u∗
α1

⊗ u∗
α2

,�(2)(uβ1 ⊗ uβ2)〉 a+{uα1}a+{uα2}a−{u∗
β1

}a−{u∗
β2

},

(C3)
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R(2,1) = 1

2

∑
α

∑
β1,β2

〈u∗
α,�(2,1)(uβ1 ⊗ uβ2)〉a+{uα}a−{u∗

β1
}a−{u∗

β2
}, (C4)

with the coefficients given in terms of the same reaction rate function λ(x (1), x (2)) as
[Eqs. (65) and (66)]:

(
�(2)(uβ1 ⊗ uβ2)

)
(x (2)) = (uβ1 ⊗ uβ2)(x (2))

∫

X1
λ(x (1), x (2))dx (1), (C5)

(
�(2,1)(uβ1 ⊗ uβ2)

)
(x (1)) =

∫

X2
(uβ1 ⊗ uβ2)(x (2))λ(x (1), x (2))dx (2). (C6)

Integrating the remaining degrees of freedom of each equation and using Fubini’s
theorem, we obtain the relation

∫

X2

(
�(2)(uβ1 ⊗ uβ2)

)
(x (2))dx (2) =

∫

X1

(
�(2,1)(uβ1 ⊗ uβ2)

)
(x (1))dx (1). (C7)

With this, we conclude Eq. (C2) as follows:
∫

Xm
R(2)ρm dx (m)

(C3)=
∫

Xm

1

2

∑
α1,α2
β1,β2

〈u∗
α1

⊗ u∗
α2

, �(2)(uβ1 ⊗ uβ2 )〉 a+{uα1}a+{uα2 }a−{u∗
β1

}a−{u∗
β2

}ρmdx (m),

inserting the definition of the creation operator [(51a)],

=
∫

Xm

1

2

∑
α1,α2
β1,β2

〈u∗
α1

⊗ u∗
α2

,�(2)(uβ1 ⊗ uβ2 )〉 Sn(uα1 ⊗ uα2 ⊗ a−{u∗
β1

}a−{u∗
β2

}ρm)dx (m),

omitting the symmetrization under the integral,

=
∫

Xm

1

2

∑
α1,α2
β1,β2

〈u∗
α1

⊗ u∗
α2

,�(2)(uβ1 ⊗ uβ2)〉 uα1 ⊗ uα2 ⊗ a−{u∗
β1

}a−{u∗
β2

}ρmdx (m),

carrying out the sums over α1, α2 upon recognizing the expansion of �(2)(uβ1 ⊗ uβ2)

in the 2-particle basis [Eq. (28)],

=
∫

Xm

1

2

∑
β1,β2

�(2)(uβ1 ⊗ uβ2) ⊗ a−{u∗
β1

}a−{u∗
β2

}ρmdx (m),

interchanging the sums and integrals,

= 1

2

∑
β1,β2

∫

X2
�(2)(uβ1 ⊗ uβ2)dx (2)

∫

Xn−2
a−{u∗

β1
}a−{u∗

β2
}ρmdx (m−2),
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making use of the identity (C7),

= 1

2

∑
β1,β2

∫

X

�(2,1)(uβ1 ⊗ uβ2)dx (1)
∫

Xm
a−{u∗

β1
}a−{u∗

β2
}ρmdx (m−2),

and finally expanding �(2,1)(uβ1 ⊗ uβ2) in the 1-particle basis [Eq. (28)],

= 1

2

∑
β1,β2

∫

X

∑
α

〈u∗
α,�(2,1)(uβ1 ⊗ uβ2)〉a+{uα}dx (1)

∫

Xn−2
a−{u∗

β1
}a−{u∗

β2
}ρmdx (m−2)

=
∫

Xn−1

1

2

∑
α

β1,β2

〈u∗
α,�(2,1)(uβ1 ⊗ uβ2)〉a+{uα}a−{u∗

β1
}a−{u∗

β2
}ρmdx (n−1)

(C4)C4)=
∫

Xn−1
R(2,1)ρmdx (n−1). (C8)

This implies (C2) for the considered reaction. Using equivalent argumentation for
other reactions and combining the results delivers Eq. (75).

For the dissipativity of the reaction operator R one has to show that

‖μρ − Rρ‖ ≥ μ‖ρ‖ for all μ > 0 and ρ ∈ dom(R). (C9)

Here, dom(R) ⊂ F(H) denotes the domain of R, which is taken such that ρ ∈
dom(R) satisfies ‖Rρ‖ < ∞ and

∑∞
n=0 |Jnm(ρm)| < ∞ for each m ∈ N0. The last

condition together with Eq. (75) implies the relation
∞∑

n=0

∫

Xn
(Rρ)ndx (n) =

∞∑
n=0

∫

Xn

∞∑
m=0

(Qnmρm)dx (n) =
∞∑

m=0

( ∞∑
n=0

Jnm(ρm)

)
(75)= 0,

(C10)

noting that only finitely many of theQnm are nonzero for fixed n (see Eq. (74)), which
allows us to interchange the m-sum and the integral over X

n and finally the order of
summation. With this relation, it is straightforward to infer the dissipativity of R:

‖μρ − Rρ‖ =
∞∑

n=0

‖μρn − (Rρ)n‖n

≥
∣∣∣

∞∑
n=0

∫

Xn
[μρn − (Rρ)n] dx (n)

∣∣∣

=
∣∣∣

∞∑
n=0

∫

Xn
μρndx (n) −

∞∑
n=0

∫

Xn
(Rρ)n dx (n)

∣∣∣

(C10)= μ‖ρ‖, (C11)

making use of the triangle inequality in the second line and that both sums are abso-
lutely convergent in the last-but-one step.
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Finally, the calculation in (C11) can directly be transferred to the reaction–diffusion
operatorD+R, noticing that due to the reflecting boundary conditions at the boundary
of X, it holds

∫

Xn
(Dρn)(x (n))dx (n) = 0 (C12)

for any n ∈ N. In total, we obtain the dissipativity of the CDME operatorA = R+D.

Appendix D: Spatial discretization

The crucial step in performing the spatial discretization is to consistently define the
respective diffusion and reaction operators, which are expressed in terms of creation
and annihilation operators, acting on the basis elements of the copy number represen-
tation. We lay a basis for doing so in the following.

D.1 Creation and annihilation operators acting on a discrete space

The action of the creation and annihilation operators on the Galerkin-projected Fock
space F̂ is particularly transparent for basis elements of the copy number representa-
tion. Using the short-hand notation (100), it holds

a+
k |N1, . . . , NM 〉 = |N1, . . . , Nk + 1, . . . , NM 〉, (D1)

a−
k |N1, . . . , NM 〉 = Nk |N1, . . . , Nk − 1, . . . , NM 〉. (D2)

Relation (D1) follows directly from the definition of the operator a+
k . In order to

prove the second relation, Eq. (D2), we make the following observation. From the
commutator relation

[
a−{ f }, a+{w}] = 〈 f , w〉 I, see Eq. (54), we get

a−
i a+

j = a+
j a−

i + 〈
ξ∗

i , ξ j
〉 I = a+

j a−
i + δi jI, (D3)

where δi j is the Kronecker delta. More generally, for n ≥ 1, we have

a−
j (a+

i )n = a+
i a−

j (a+
i )n−1 + δi j (a

+
i )n−1

= (a+
i )2a−

j (a+
i )n−2 + 2δi j (a

+
i )n−1

= . . .

= (a+
i )na−

j + nδi j (a
+
i )n−1,

and thus

[
a−

j , (a+
i )n

]
= nδi j (a

+
i )(n−1). (D4)
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We can use this formula to calculate the following identities:

a−
k (a+

1 )N1 . . . (a+
M )NM

= (a+
1 )N1 . . . (a+

M )NM a−
k +

M∑
i=1

Niδik(a
+
1 )N1 . . . (a+

i )Ni −1 . . . (a+
M )NM

= (a+
1 )N1 . . . (a+

M )NM a−
k + Nk(a

+
1 )N1 . . . (a+

k )Nk−1 . . . (a+
M )NM , (D5)

which, applied to ρvac, yields Eq. (D2). By repeated application of Eq. (D2) if follows
directly that

a−
k a−

l |N1, . . . , NM 〉 = Nk Nl |N1, . . . , Nk − 1, . . . , Nl − 1, . . . , NM 〉 (D6)

for k 
= l, and

a−
k a−

k |N1, . . . , NM 〉 = Nk(Nk − 1)|N1, . . . , Nk − 2, . . . , NM 〉, (D7)

which will be used in the next section for deriving the projected reaction operators of
mutual annihilation.

D.2 Diffusion and reaction operators

For the calculation of the diffusion and reaction operators we need to apply the proper-
ties of the creation and annihilation operators given in Appendix D.1 and subsequently
shift indices. In order to simplify notation in this index shift, we define pN1,...,NM := 0
for all (N1, . . . , NM ) /∈ N

M
0 (especially for negative indices).

Diffusion. For the projected diffusion operator D̂ given in Eq. (96) and specified in Eq.
(116) we find, using the copy number representation (101) as well as the properties
(D1) and (D2),

D̂ρ̂ =
∑

N1,...,NM

pN1,...,NM

∑
i, j

di j a
+
i a−

j |N1, . . . , NM 〉

=
∑

N1,...,NM

pN1,...,NM

∑
i, j
i 
= j

di j N j · |N1, . . . , Ni + 1, . . . , N j − 1, . . . , NM 〉

+
∑

N1,...,NM

pN1,...,NM

∑
i

dii Ni · |N1, . . . , NM 〉

=
∑

N1,...,NM

∑
i, j
i 
= j

pN1,...,Ni −1,...,N j +1,...,NM di j (N j + 1) · |N1, . . . , NM 〉

+
∑

N1,...,NM

∑
i

pN1,...,NM dii Ni · |N1, . . . , NM 〉. (D8)
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Degradation.Analogously, we obtain for the conserving one-particle reaction operator
R̂(1)

d = ∑
i, j 〈ξ∗

i ,�
(1)
d ξ j 〉a+

i a−
j of degradation A → ∅ by using definition (121):

R̂(1)
d ρ̂ =

∑
N1,...,NM

pN1,...,NM

∑
i, j

λ
i j
d a+

i a−
j |N1, . . . , NM 〉

=
∑

N1,...,NM

pN1,...,NM

∑
i, j
i 
= j

λ
i j
d N j · |N1, . . . , Ni + 1, . . . , N j − 1, . . . , NM 〉

+
∑

N1,...,NM

pN1,...,NM

∑
i

λi i
d Ni · |N1 . . . , NM 〉

=
∑

N1,...,NM

∑
i, j
i 
= j

pN1,...,Ni −1,...,N j +1,...,NM λ
i j
d (N j + 1) · |N1, . . . , NM 〉

+
∑

N1,...,NM

∑
i

pN1,...,NM λi i
d Ni · |N1, . . . , NM 〉, (D9)

and for the non-conserving one-particle reaction operator R̂(1,0)
d = ∑

i 〈1,�(1,0)
d ξi 〉a−

i
of degradation, by means of definition (121):

R̂(1,0)
d ρ̂ =

∑
N1,...,NM

pN1,...,NM

∑
i

λi
d a−

i |N1, . . . , NM 〉

=
∑

N1,...,NM

pN1,...,NM

∑
i

λi
d Ni · |N1, . . . , Ni − 1, . . . , NM 〉

=
∑

N1,...,NM

∑
i

pN1,...,Ni +1,...,NM λi
d(Ni + 1) · |N1, . . . , NM 〉. (D10)

Creation. For the creation reaction ∅ → I the conserving part is given by

R̂(0)
c ρ̂ =

∑
N1,...,NM

pN1,...,NM λc|N1, . . . , NM 〉, (D11)

and the non-conserving one-particle reaction operator acts as:

R̂(0,1)
c ρ̂ =

∑
N1,...,NM

pN1,...,NM

∑
i

λi
ca+

i |N1, . . . , NM 〉

=
∑

N1,...,NM

pN1,...,NM

∑
i

λi
c|N1, . . . , Ni + 1, . . . , NM 〉

=
∑

N1,...,NM

∑
i

pN1,...,Ni −1,...,NM λi
c |N1, . . . , NM 〉, (D12)

where we applied definition (127).
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Mutual annihilation. For the reactionA+A → ∅ ofmutual annihilation, the projected
conserving operator R̂(2) is given by

R̂(2) = 1

2

∑
i, j
k,l

〈ξ∗
i ⊗ ξ∗

j ,�
(2)(ξk ⊗ ξl)〉a+

i a+
j a−

k a−
l (D13)

see Eq. (86a). For the rescaled indicator functions given in Eq. (106), the factor

〈ξ∗
i ⊗ ξ∗

j ,�
(2)(ξk ⊗ ξl)〉 =

∫

X2
(ξ∗

i ⊗ ξ∗
j )(x (2))λ(x (2))(ξk ⊗ ξl)(x (2))dx (2)(D14)

is for k = i and l = j equal to λi j defined in Eq. (131), and zero otherwise.
We thus obtain

R̂(2)ρ̂ = 1

2

∑
N1,...,NM

∑
i, j

pN1,...,NM λi j a+
i a+

j a−
i a−

j |N1, . . . , NM 〉

= 1

2

∑
N1,...,NM

[∑
i

pN1,...,NM λi i Ni (Ni − 1) |N1, . . . , NM 〉

+
∑
i 
= j

pN1,...,NM λi j Ni N j |N1, . . . , NM 〉
]

=
∑

N1,...,NM

[∑
i

pN1,...,NM

1

2
λi i Ni (Ni − 1) |N1, . . . , NM 〉

+
∑
i< j

pN1,...,NM λi j Ni N j |N1, . . . , NM 〉
]
, (D15)

where the last equality follows from the fact that the reaction rate function λ(x (2)) is
symmetric, which implies λi j = λ j i .

For the non-conserving part, it holds

R̂(2,0) = 1

2

∑
i, j

〈1,�(2,0)(ξi ⊗ ξ j )〉a−
i a−

j , (D16)

where

〈1,�(2,0)(ξi ⊗ ξ j )〉 = �(2,0)(ξi ⊗ ξ j )

=
∫

X2
λ(x (2))(ξi ⊗ ξ j )(x (2))dx (2)

= λi j (D17)
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again for λi j defined in Eq. (131), such that

R̂(2,0)ρ̂ = 1

2

∑
N1,...,NM

∑
i, j

pN1,...,NM λi j a−
i a−

j |N1, . . . , NM 〉

= 1

2

∑
N1,...,NM

[∑
i

pN1,...,NM λi i Ni (Ni − 1) |N1, . . . , Ni − 2, . . . , NM 〉

+
∑
i 
= j

pN1,...,NM λi j Ni N j |N1, . . . , Ni − 1, . . . , N j − 1, . . . , NM 〉
]

=
∑

N1,...,NM

[∑
i

pN1,...,Ni +2,...,NM

1

2
λi i (Ni + 2)(Ni + 1) |N1, . . . , NM 〉

+
∑
i< j

pN1,...,Ni +1,...,N j +1,...,NM λi j (Ni + 1)(N j + 1) |N1, . . . , NM 〉
]
.

(D18)
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