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Abstract

This paper presents a novel probabilistic framework for
3D surface reconstruction from multiple stereo images. The
method works on a discrete voxelized representation of the
scene. An iterative scheme is used to estimate the proba-
bility that a scene point lies on the true 3D surface. The
novelty of our approach lies in the ability to model and re-
cover surfaces which may be occluded in some views. This
is done by explicitly estimating the probabilities that a 3D
scene point is visible in a particular view from the set of
given images. This relies on the fact that for a point on
a lambertian surface, if the pixel intensities of its projec-
tion along two views differ, then the point is necessarily oc-
cluded in one of the views. We present results of surface
reconstruction from both real and synthetic image sets.

1. Introduction

Reconstruction of surfaces from stereo images has been
a central research problem in computer vision for a long
time. Early work in this area focussed on developing stereo
algorithms for binocular camera configurations. There is a
volume of literature on binocular stereo with a number of
algorithms that work well on many types of images. More
recently, however, due to significant advances in compu-
tational power, vision systems using multiple cameras are
becoming increasingly feasible and practical. Example of
multi-view vision systems include the3D room developed
by Kanade et al; [10] and the KECK Laboratory by Davis
et al; [6] These systems are able to capture multiple syn-
chronized images of indoor scenes. This has generated a
renewed interest in the computer vision community to de-
velop efficient, scalable and robust algorithms for surface
reconstruction from multiple images.

Going from binocular to multiple views has the advan-
tage of potentially increasing the stability of the reconstruc-
tion. However, in order to be able to fully exploit this po-

tential, the algorithm must be able to handle occlusions, es-
pecially if the views are widely separated. In this paper, we
consider the problem of 3D reconstruction from multiple
cameras which are placed in arbitrary but known locations.
The problem is formulated as one of estimating the proba-
bility that a3D point in the scene lies on the object’s sur-
face. An iterative scheme is presented which updates this
probability based on the visibility constraints that exist in
the images.

2. Previous Work

3D shape reconstruction from multiple images is an in-
tensely researched area. In this section, we restrict our dis-
cussion to approaches which model and detect occlusions
explicitly.

The depth map representation, which is widely used in
binocular stereo, is unable to represent partially occluded
background regions (due to the fact that only a single dis-
parity value is assigned to each pixel in the reference im-
age). Therefore, most multi-view algorithms use an ex-
plicit representation of the 3D volume of the scene. When
the camera calibration is known up to a projective transfor-
mation (weakly calibrated system), Saito and Kanade [11]
proposed using projective grid spaces from a large number
of images. For calibrated cameras, the scene may be dis-
cretized either in equal increments of volume (voxel space)
or disparity (disparity space) [4, 7, 13, 14]. The goal of re-
construction is to find voxels which lie on the surface of the
objects in the scene.

The earliest approach which reconstructed a voxelated
representation of the scene was the cooperative stereo al-
gorithm proposed by Marr and Poggio [9]. The Marr and
Poggio algorithm works under the assumptions that the dis-
parity maps have unique values and are continuous almost
everywhere. The Marr and Poggio approach simultane-
ously represented and manipulated evidence for multiple
disparities. This allowed for initial consideration of sev-
eral hypotheses which would eventually be pruned through



subsequent competition (uniqueness assumption). Kanade
and Zitnick [16] have used this cooperative algorithm and
modified it to use 3D local support and continuous match
likelihood values. This also allowed them to explicitly de-
tect occluded areas as regions with low likelihood values.
Although the uniqueness assumption is true for binocular
stereo, as pointed out in the previous paragraph, it does not
hold for multi-view stereo because of occlusions.

Along similar lines, Szeliski and Golland [15] use an it-
erative scheme. At each stage of the algorithm, they have a
set of voxels which are known to be surface points. Using
this, they compute a visibility map, which indicates whether
a given camera can see a voxel. The color consistency of a
voxel along views in which it is visible is used to select clear
winners at each stage that are added to the set of known sur-
face points. In addition, in order to take into account the fact
that voxels on the boundaries of objects are only partially
occupied, they use real valued transparencies to represent
voxels which are partially occupied by opaque objects.

An approach along different lines is the photo consis-
tent voxel coloring algorithm by Seitz and Dyer [12]. Here,
the problem of detecting occlusions is solved by the scene
traversal ordering used in the algorithm; the order is such
that if voxel V occludesV ′ then V is visited beforeV ′.
However, this requires that the placement of the cameras
satisfy the ordinal visibility constraint, which says that no
scene point should be contained within the convex hull of
the camera centers.

Kutulakos and Seitz [8] address the limitation in the
placement of the cameras of the voxel coloring algorithm
by using a multi-sweep implementation of voxel coloring.
Multiple planes are swept through the scene volume. Each
plane sweep considers only a subset of cameras from which
a voxel may be visible. An additional limitation of this ap-
proach is that for each voxel it only uses a subset of the
total views available. Since it ignores the information that a
voxel is occluded or visible in a view which was not used,
all the available views are not utilized. In fact, as pointed
out by [5], this approach is likely to produce a result that
includes color-inconsistent voxels. Their generalized voxel
coloring algorithm [5] addresses this limitation. The basic
idea behind this approach is that carving a voxel potentially
changes the visibility of other voxels. When an uncarved
voxel’s visibility changes, it’s color consistency is reevalu-
ated and it too is carved if it is found to be inconsistent.

A common problem underlying these three approaches
[12, 8, 5] is that they make hard commitments in carving
away voxels. Therefore, if a voxel is carved away in er-
ror, there is no way to recover and this leads to a cascad-
ing effect, thereby generating large errors in reconstruction.
Another problem is that they reconstruct onlyone of the
potentially numerous scenes consistent with the input im-
ages. Consequently, they are susceptible to aperture prob-

lems caused by image regions of near uniform color.
These two problems can be addressed in a framework

that does not make hard decisions and which takes into con-
sideration alternative hypothesis which could better explain
all the available images simultaneously. This is the basis for
our probabilistic framework for surface reconstruction. Re-
cently, several authors have used a probabilistic framework
for surface reconstruction [1, 3].

Broadhurst et al; [3] have proposed a probabilistic exten-
sion of the space carving algorithm[12]. This framework is
applicable to the special case in which the image set can be
processed in a single sweep (i.e. the cameras satisfy the or-
dinal visibility constraint). Here, each voxel is assigned a
probability that it belongs to the surface. The voxel array
is processed using the plane sweep algorithm, starting with
the layer closest to the viewer. The probabilities of the lay-
ers prior to the current layer are used to determine visibility
for voxels in the current layer. Our framework, in contrast,
is iterative and works forarbitrary placement of cameras.
In addition, we not only use the information from the views
in which a voxel is visible, but also the information that a
voxel is occluded in other views.

The framework developed by Bonet and Viola [1] is very
similar to our formulation. However, since we restrict our-
selves to opaque objects, the optimization procedure is dif-
ferent. They use a probabilistic framework to represent vox-
els with partial opacity. Their algorithm is a multi-step algo-
rithm which progresses from an initial estimate of the vol-
ume as entirely transparent, toward a state in which much
of the volume is empty, and the observations are explained
by a collection of semi-transparent and opaque structures.
During the initial stages of the algorithm, occlusions cannot
be accurately determined. However, as the algorithm pro-
gresses, the opacity of some voxels will be realized and the
occlusion caused by these voxels will be used in subsequent
steps.

The organization of the rest of the paper is as follows.
The basic idea behind our approach is described in section
3. Section 4 presents the algorithm details. Experimental
results with both real and synthetic data are presented in
section 5.

3. Multi-view Viewing Constraints

The input for multi-view reconstruction is a set ofK im-
ages of a sceneS. In addition, we assume that each point
in the scene is visible in at leastV views. Knowledge about
the camera placement can be used to obtain a conservative
estimate ofV . In the worst case,V can be safely assigned
a value of two i.e.V ≥ 2. This reflects the fact that only
those scene points which are visible in at least two images
can be reconstructed. LetIi be theith image of this set
viewed from cameraCi andMi the corresponding projec-



tion matrix of the camera. Therefore, a point in 3D spaceX
projects to a pointxi in imagei where

xi = MiX (1)

Figure 1 shows a surfaceS viewed from four cameras
placed atC0, C1, C2 and C3. Point X on the surface is
visible in camerasC0 andC1 and occluded in camerasC2

andC3. CiXAi, i = 0, 1, 2, 3 is the ray joining the camera
center to the 3D point for viewi i.e. it is the viewing ray of
X for view i. Note that in this configurationV = 2.
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Figure 1. A scene viewed from four cameras

Under the assumption that the scene to be reconstructed
is approximately Lambertian, if the3D point X is not oc-
cluded in viewsi andj, then the pixel intensities

Ii(xi) ≈ Ij(xj) (2)

Interpreted differently, if the absolute value of the differ-
ence in pixel intensities‖Ii(xi) − Ij(xj)‖ is large, then it
is highly probable thatX is occluded in one of the viewsi
andj. The converse, however is not true, unless of course
each 3D point is uniquely colored. That is to say, even if
‖Ii(xi) − Ij(xj)‖ is 0, it is possible thatX is occluded in
one of the views.

Denote bypre(X, i), the set of all 3D points lying on
the ray joiningCi to X which are closer toCi thanX. Let
post(X, i) denote all the 3D points lying on the viewing ray
which are farther away fromCi thanX. In figure 1 above,
pre(X, 1) is the set of points lying on the line segmentC1X
andpost(X, 1) is the set of points lying on the line segment
XA1 (excluding the pointX in both cases). At thenth

iteration,Pn(X) denotes the probability that the 3D point
X lies on the surface of an object in the scene. IfX does not
lie on the surface of any object, thenX is said to be “free
space”†. We use the following two constraints on visibility
to refinePn(X).

†Note that by this definition, an interior point of an object is also a “free
space” point

For a scene containing opaque objects, ifX lies on the
surface of an object, the following two properties must be
satisfied along the viewing rayCiXAi.

1. Constraint 1: A point X ′ ∈ post(X, i) may either
be free spaceor it may be a surface point that isnot
visible in imagei. But it cannotbe a surface point that
is visible in imagei.

2. Constraint 2: If X is visible in imagei, thenall points
X ′ ∈ pre(X, i) must be free space. Otherwise, ifX is
not visible in imagei, then there must beat least one
pointX ′ ∈ pre(X, i) that is a surface point.

4. Iterative Refinement of Probabilities

Ours is an iterative algorithm that works on a 3D dis-
cretized voxel space. We assume that we are given a voxel
space containing the scene to be reconstructed. The size
of the voxels is chosen so that the spatial resolution corre-
sponds to the pixel resolution for most of the voxels. For
voxels that project to multiple pixels or less than a pixel in
a particular image, the pixel closest to the projection of the
centroid of the voxel is taken as its projection. Apart from
this simplistic framework, other ways of dealing with this
sampling problem include a statistical consistency check
proposed by Broadhurst and Cipolla [2]

At the nth iteration, Pn(X) represents the probability
thatX is a surface point. Therefore, the probability thatX
is free space is(1 − Pn(X)). Points which agree with the
above two constraints are more likely to be surface points.
And conversely, those that do not are unlikely to be surface
points. A probabilistic measureR(X) is introduced which
measures how wellX satisfies the above two constraints,
which is then used to update the probabilitiesPn+1(X) for
the next iteration.

4.1. Determination of visibility

Given that a voxelX is visible in viewi, let Pvisj
i (X)

denote the probability that it is visible in viewj. As pointed
out earlier, if the differenceδ = ‖Ii(xi)− Ij(xj)‖ is large,
thenX is probably occluded in viewj. On the other hand,
if δ is small, then it may be either occluded or visible in
view j. Based on this, we assignPvisj

i (X) as

Pvisj
i (X) = f(δ) (3)

where f is a function ofδ satisfying the following two prop-
erties.

1. f should be high for small values ofδ and should de-
crease asδ increases.



2. for small values ofδ, the value of f should reflect the
uncertainty that exists on whether or notX is visible if
δ is small.

Let ST be a subset consisting ofT out of theK cameras
and letPvis(ST , X) denote the probability thatX is simul-
taneously visible in allT cameras inST . ForX to be visible
in all the cameras, it must be visible in all pairsi, j ∈ ST ,
so all Pvisj

i (X) i, j ∈ ST must be high. Therefore, the
minimum value ofPvisj

i (X) i, j ∈ ST can be assigned to
Pvis(ST , X).

Pvis(ST , X) = min
i,j

(
Pvisj

i (X)
)

wherei 6= j andi, j ∈ ST

(4)
Lastly, we want to determine the probability that voxelX

is visible in a viewi, denoted byPvis(i,X). To determine
this probability, we take advantage of the fact that every
voxel is visible in at leastV out of the totalK views.

Pvis(i,X) = max
SV

(Pvis(SV , X)) wherei ∈ SV (5)

i.e. we find a subsetSV such thati ∈ SV andPvis(SV , X)
is maximum, and assign its probability of visibility to
Pvis(i,X).

4.2. Initial Probabilities

To start the process, we need to initialize the probabilities
P0(X) for each voxelX. Again, taking advantage of the
fact that voxelX is visible in at leastV views,

P0(X) = max
SV

(Pvis(SV , X)) (6)

i.e. out of the
(
K
V

)
subsetsSV , we take the subset with the

maximumPvis(SV , X) and assign its probability of visi-
bility to P0(X). Note that while this guarantees that voxels
which actually lie on the surface of an object will be as-
signed a high initial probability, many other voxels not lying
on the surface will also be assigned high probabilities due
to the fact that colors of the projected points may match in
some views coincidentally. The goal of iterative refinement
is to prune out those voxels which are not surface points
through the use of constraints 1 and 2 along each visible
ray.

4.3. Evidence Aggregation

At thenth iteration, the two constraints along each view-
ing directioni can be used as evidence about the existence
of a surface at a pointX. These two constraints can be
translated into probabilities as follows.

By constraint 1, all pointŝX ∈ post(X, i) may be either
free space or a surface point that is not visible along viewing

ray i. The probability of this eventPpost(X̂) is given by the
sum of the probabilities of these two events

Ppost(X̂) = (1− Pn(X̂)) + Pn(X̂)(1− Pvis(i, X̂))

= 1− Pn(X̂)Pvis(i, X̂) (7)

This simply states the fact that it cannot be the case thatX̂
is a surface point that is visible along viewing rayi.

Similarly, by constraint 2, for all pointŝX ∈ pre(X, i),
if X is visible in viewi, thenX̂ must be free space. The
probability of this event is

Ppre(X̂) = Pvis(i,X)(1− Pn(X̂)) (8)

Equations 7 & 8 holds for all points inpost(X, i) and
pre(X, i) respectively. Therefore, allPpost(X̂) and
Ppre(X̂) must be high. LetX ′ ∈ pre(X, i) and X ′′ ∈
post(X, i) be such that

Ppre(X ′) ≤ Ppre(Y ) ∀Y ∈ pre(X, i) (9)

Ppost(X ′′) ≤ Ppost(Y ) ∀Y ∈ post(X, i) (10)

i.e. X ′ and X ′′ are points with the least probability of
obeying the constraints amongstpre(X, i) andpost(X, i)
respectively. Therefore, these are the two candidate points
where the visibility constraint may be violated. In other
words, ifX preserves the constraints for those points, then
we need not check for other points lying on the ray.

Both the constraints must be simultaneously satisfied
along rayi for X to be a visible surface point in viewi.
Therefore, along rayi, the evidence forX being a visible
surface point,Ei(X), is simply the product of these two
probabilities

Ei(X) = Ppre(X ′)Ppost(X ′′) (11)

4.4. Updating the Probabilities

Once the evidenceEi(X) for each voxel and viewing di-
rection are computed, they are then scaled so that the max-
imum Ei(X) along each viewing direction is 1. This con-
verts the absolute probabilitiesEi(X) to relative probabili-
tiesRi(X) and accounts for the fact that along each viewing
ray, there must be one surface point that is visible along that
ray.

Ri(X) =
Ei(X)

Ei(Xmax )
and (12)

Ei(Xmax ) = max
Y

(Ei(Y )) where (13)

Y ∈ {pre(X, i) ∪ {X} ∪ post(X, i)}

In order to combineRi(X) i = 1, . . . , K, we take advan-
tage of the fact that a voxel is visible in at leastV images.



Therefore we can sort theRi(X) and multiply theV largest
values to obtainR(X).

R(X) =
V∏

i=1

Ri(X) where (14)

Ri(X) > Rj(X) ∀j = i + 1, . . . , K i = 1, . . . , V

Intuitively, as mentioned earlier,R(X) is a measure of
how well the pointX satisfies the two visibility constraints.
The higher the value, the more is the agreement and vice-
versa. Using these relative probabilitiesR(X) andPn(X),
Pn+1 is updated using Baye’s rule wherein,Pn(X) is taken
as the prior probability thatX is a surface point.

Pn+1(X) =
Pn(X)

Pn(X)R(X) + (1− Pn(X))
(15)

4.5. Incorporating Smoothness

Most surfaces in the real world are smooth almost every-
where, except at surface discontinuities. At each iteration,
we take this into account by considering a small3D win-
dow centered at each voxel and then replacingPn+1(X) by
the average probability in that window.

4.6. Surface Reconstruction

At each iteration of the algorithm, voxels with maxi-
mum probabilities along each viewing ray represent the re-
constructed surface for that iteration and the color for each
voxel is determined as the average color of its projection in
all the viewing directions in which it is not occluded.

4.7. Discussion

Starting with a distribution of probability which is high
for many scene points, including those which are not sur-
face points, our algorithm uses the visibility constraints to
prune down the probabilities of these false points and at
the same time, boosts the probabilities of the true surface
points. This is due to the fact that for true surface points, the
relative probabilityR(X) will be close to 1 and for points
that are not surface points,R(X) will be close to 0. So
in the end, the false surface points are “carved” away. Our
algorithm differs from the approach by [1] in this regards,
since their approach starts with a representation of space
that is initially all transparent(free space) and then adds the
surface points as the iteration proceeds.

For a scene containingN voxels, during each iteration,
each voxel is traversed once for every viewing direction
and we need to store the relative weight for each voxel
along each direction(Ri(X)). In addition, for each view-
ing direction, we also need to findX ′ andX ′′ (equations

9 & 10). This can be accomplished in an efficient manner
through two passes of the voxels (for each viewing direc-
tion). Therefore the time and space complexity of our algo-
rithm isO(NK + 2NK) = O(NK) during each iteration.
Although, we have not done a convergence analysis of our
algorithm, for all our experiments, the algorithm gave good
results after 20-30 iterations. Obtaining a good estimate of
V , the minimum number of views in which a voxel is vis-
ible, leads to faster convergence. Note that, in the absence
of any information, as pointed out earlier,V can always be
set to two. However, if in factV > 2, then the algorithm
converges slower by takingV = 2 and a larger number of
iterations are required. We have also found that small over-
estimates ofV do not hamper the results or convergence in
any significant way.

5. Experimental Results

For our experiments, we have used a simple linear func-
tion for f(δ) together with a threshold. Since our cameras
are color calibrated, in most cases the pixel intensity differ-
ences for visible surface points lie well within a difference
of 20.

f(δ) =
{

0.55− 0.01δ : δ ≤ 20
0.01 : δ > 20 (16)

That is, if the absolute value of the difference in pixel inten-
sities is less than 20, thenf linearly decreases from 0.55.
For δ = 0, f(δ) is assigned 0.55 to reflect the fact that in
this case the voxel may be either visible in both the views or
it may be occluded but they have similar pixel intensities by
chance. Forδ greater than 20, a very low value is assigned
to f. We have incorporated smoothness by using a 3x3x3
3D window.

In the first experiment, twelve synthetic images of three
texture mapped spheres were created. The camera was ro-
tated around the spheres in increments of 30 degrees. Fig-
ure 2(a) shows the first image of the input set and figure 2(b)
shows the second image at 30 degrees rotation with respect
to the first image. Our algorithm was run on a 100x100x100
cube enclosing the sphere.V for this set was set to two. A
screen shot of the reconstructed VRML model is shown in
figure 2(c)‡. Figure 2(d) shows the volume viewed from the
top. Notice that towards the center of the volume, the sphere
is not reconstructed. This is due the fact that these regions
are visible in only a single camera and therefore cannot be
reconstructed.

In our second experiment, fourteen images of a human
subject were captured using color cameras placed on the
four walls of a room, four on each wall (two of the cam-
eras were out of synch and therefore not used). Figures 3(a)

‡Note that this not actually a synthesized view but a screen shot of the
VRML model



and 3(b) show two images from two cameras placed on ad-
jacent walls. For this configuration,V was taken to be 3.
As in the synthetic set, the volume to be reconstructed was
taken as a box of size 100x100x100 enclosing the subject.
Two views of the reconstructed VRML model are shown in
Figures 3(c) and 3(d).

6. Conclusion

We have presented a probabilistic framework for recon-
struction of surfaces from a large number of views. The
algorithm is based on two observations:

1. If a scene point is occluded from one view, then there
must be another surface point along the ray joining that
scene point to the camera center of that view.

2. Conversely, if a surface point is visible in a view, then
there cannot be another surface point along the ray
joining the camera center to that surface point.

The algorithm uses these two visibility constraints in all the
views simultaneously to refine the probability that a scene
point lies on the true surface, in an iterative manner. An-
other contribution of our paper is to use the pixel intensities
of the projected images to obtain estimates for whether or
not a surface point is occluded in a particular view. We
have presented reconstruction results from both real and
synthetic image sets.

The algorithm converges in about 20-30 iterations. We
have not investigated the convergence properties of the al-
gorithm. Intuitively, since all we are employing is the con-
sistent visibility of the scene, the algorithm would probably
converge for scenes with only opaque objects, although this
remains to be demonstrated. It is also possible to adapt the
algorithm for semi-transparent objects by adding a voxel
opacity term. Another potential improvement that can be
made is to take advantage of the knowledge of the camera
placement and orientation, as in the voxel coloring algo-
rithm [8, 12]. This is based on the fact that a voxelX that is
visible in imagei is more likely to be visible in all views that
lie on one side of the plane passing throughX and normal
to camera centeri. Therefore our probabilities for visibility
(Pvisj

i (X) - equation 3) should be higher for all cameras,
j, which lie on the same side of the plane asi. We are also
currently investigating the case when the usual Lambertian
assumption does not hold.
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(a) First Image (b) Second Image
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Figure 2. Experimental results for synthetic images

(a) First Image (b) Second Image

(c) VRML Model (d) VRML Model - View from top

Figure 3. Experimental results for real images


