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Abstract

In this paper, we elaborate on the well-known relationship between Gaussian Processes (GP) and
Support Vector Machines (SVM) under some convex assumptions for the loss functions. This paper
concentrates on the derivation of the evidence and error bar approximation for regression problems.
An error bar formula is derived based on the ε-insensitive loss function.
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1 Introduction

The foundation of Support Vector Machines (SVM) has been developed by Vapnik (1995) and has
gained popularity due to its many attractive, analytic and computational features, and promising
empirical performance. The formulation embodies the Structural Risk Minimization (SRM) principle,
which has been shown (Gunn et al., 1997) to be superior to the Empirical Risk Minimization (ERM)
principle employed by many conventional neural networks. SVMs were developed to solve the clas-
sification problem, in which it is shown that the generalization error is bounded by the sum of the
training set error and a term depending on the VC (Vapnik-Chervonenkis) dimension of the model.
Recently they have been extended to the domain of regression problems (Vapnik, 1995, 1998; Smola,
1998).

In the literature the terminology for SVMs can be slightly confusing. As proposed in (Gunn, 1998)
and here, we use the term SVM to refer to both classification and regression methods, and the terms
Support Vector Classification (SVC) and Support Vector Regression (SVR) to the specific problems
of classification and regression respectively.

SVCs are motivated by the geometric interpretation of maximizing the margin of discrimination, and
are characterized by the use of a kernel function. It has been shown that SVM methodology can be
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cast as a variational/regularization problem in terms of a reproducing kernel Hilbert space (RKHS)
(Wahba, 1990, 1999; Girosi, 1998; Poggio and Girosi, 1998), and hence SVMs and penalty methods, as
used in the statistical theory of nonparametric regression, have a strong interrelationship (Evgeniou
et al., 1999).

However, like most penalty methods, some parameters in the SVM have to be “tuned” to suit a specific
problem. One of the most important parameters is the regularisation parameter which is often chosen,
a priori. A more disciplined approach uses a validation dataset or cross-validation, but this can be
very computationally expensive.

Recently it has been shown (Sollich, 1999c) that SVC can be interpreted as a maximum a posterior
solution to inference problems with Gaussian priors and an appropriate likelihood function based
on a probabilistic interpretation. This interpretation enables Bayesian methods to be employed to
determine the regularisation parameters in the SVM framework. In the last decade neural networks
have been used to tackle regression and classification problems, with some notable successes. It has
also been widely recognized that they form a part of a wide variety of nonlinear statistical techniques
that can be used for these tasks. In these methods, Bayesian models which are based on Gaussian
priors, both on parameter spaces and function spaces are becoming increasingly popular in the neural
computation community see (MacKay, 1997; Neal, 1996; Williams, 1997, 1998). These ideas provide
the possibility of a probabilistic interpretation of SVR.

In this paper, we introduce the probabilistic SVR model with an ε-insensitive loss function in section
2. Section 3 proposes an approach using an evidence computation. Then in order to determine
the regularisation parameter we show how MacKay’s evidence framework (MacKay, 1992) can be
used in the case of Gaussian SVR. We conclude the paper by deriving an error bar formula for the
Gaussian SVR prediction. Finally some comparisons are made between different loss functions and
the difficulties in dealing with the Huber’s loss function are discussed.

2 Gaussian SVRs and ε-insensitive Loss Function

In regression estimation we try to estimate a functional dependency a(x) between a set of sampled
points X = {x1,x2, . . . ,x`} taken from Rn, and target values Y = {y1, y2, . . . , y`} with yi ∈ R. Let us
assume that these samples have been drawn independently from an unknown probability distribution
P (x, y) and that there exists a Hilbert space of real-valued functions

F = {a(x)|a : Rn −→ R},

then the basic problem is to find a function a(x) ∈ F that minimizes a risk functional

R[a] =
∫

l(y − a(x))dP (x, y)

where l is a loss function used to measure the deviations between the estimate and the target value.
Specializing l(y− a(x)) = (y− a(x))2 leads to the definition of the usual least mean square error risk.

As the probability density function P (x, y) is unknown, we cannot evaluate (and hence minimize)
R[a] directly. Instead we only can try to approximate the minimum of R[a] by some function f̂ , using
the given datasets of X and Y . In practice, this requires consideration of the empirical risk functional
Remp[a], which is obtained by replacing the integrals over the probability density function P (x, y)
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with summations over the empirical data:

Remp[a] =
1
N

∑
xi∈X

l(yi − a(xi)).

In general, this is an ill-posed problem in Tikhonov’s sense (Tikhonov and Arsenin, 1977) resulting in
poor generalization. Therefore it is not advisable to minimize the empirical risk without any means of
structural control or regularization. Hence the SRM principle is preferable in practice. The standard
regularization term in the spirit of (Tikhonov and Arsenin, 1977) is a positive semidefinite operator
P̂ mapping F into a dot-product (feature) space F by which a regularized risk functional

Rreg[a] = Remp[a] +
λ

2
‖P̂ a‖2

can be used with a regularization parameter λ ≥ 0. This additional term effectively reduces the model
space and thereby controls the complexity of the solution. In this paper we will consider an equivalent
form defined as follows

Rreg[a] = C
∑
xi∈X

l(yi − a(xi)) +
1
2
‖P̂ a‖2 (1)

In the above techniques one of the open questions remaining is how to determine the best regularization
parameter λ (or equivalently the parameter C in Equation 1). One method can use the model selection
criteria such as VC-theory (Vapnik, 1995), Bayesian methods (MacKay, 1991), AIC (Akaike, 1974)
and NIC (Murata et al., 1994) etc.

Recently the so-called Gaussian Process have been introduced into classification and regression prob-
lems by setting the regulariser P̂ in Equation 1 equal to a Gaussian Process (GP) see (Williams, 1998)
and therein. In fact, if Equation 1 is regarded as a negative posterior probability (see the following
discussion), then the second term corresponds automatically to a GP with kernel K = (P̂ T P̂ )−1. In
general, let us define a vector of function values a(X) as :

a(X) = [a(x1), a(x2), . . . , a(x`)]T

Then the conditional probability of a(X) given a training datasetD = {X, Y } is denoted by P [a(X)|D],
and the conditional probability (or likelihood) of D given a(X) is then denoted by P [D|a(X)]. If the
function underlying the data is a(x), then P [D|a(X)] is the likelihood probability that, by random
sampling the function a(x) at the input X, the measurement Y is obtained, and can therefore be
considered as a noise distribution for the additive model. P [a(X)] is the a priori probability of the
unknown function a(x) at X. This embodies the a priori knowledge of the function, and can be used
to impose constraints on the model, assigning significant probability only to those functions which
satisfy these constraints.

Assuming that the probability distributions P [D|a(X)] and P [a(X)] are known, the a posteriori
distribution P [a(X)|D] can now be computed by applying the Bayesian Rule as:

P [a(X)|D] =
P [D|a(X)]P [a(X)]

P [D]
(2)

where P [D] is called the evidence.
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We now make the assumption that the data, D, have been generated i.i.d. according to the following
model

P (x, y) = P (y|x)P (x) = P (y − a(x))P (x)

with P (y − a(x)) ∝ exp{−Cl(y − a(x))}. Therefore the probabilistic distribution P [D|a(X)] can be
written as:

P [D|a(X)] = K(C) exp

−C
∑
xi∈X

l(yi − a(xi))


where the loss function l is used to measure and penalize noise and K(C) is a corresponding normal-
ization constant.
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Figure 1: Four Typical Loss Functions

There exist a large number of loss functions which could be utilized. Figure 1 illustrates four possible
loss functions. The loss function in Figure 1(a) corresponds to the conventional least squares error
criterion which is optimal for a Gaussian noise density model. The loss function in Figure 1(b) is
the Laplacian loss function that is less sensitive to outliers than the quadratic loss function. Huber
proposed the loss function in Figure 1(c) as a robust loss function that has optimal properties when the
underlying distribution of the data is unknown. These three loss functions produce little sparseness
in the support vectors. To address this issue Vapnik proposed the famous ε-insensitive loss function
shown in Figure 1(d) as an approximation to Huber’s loss function that enables a sparse set of support
vectors to be obtained. In the following we concentrate on the ε-insensitive loss function, given by

Lε(u) =

{
0 for |u| < ε,

|u| − ε otherwise.

The model for the prior probability distribution P [a(X)] corresponding to the regularisation model
Equation 1 is chosen as

P [a(X)] ∝ exp
{
−1

2
‖P̂ a‖2

}
.
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This form of probability distribution gives high probability only to those functions for which the
regularisation term P̂ a is small.

The probabilistic interpretation of SVRs can be regarded as defining the loss function and in the case
of the ε-insensitive loss function resulting in a likelihood through,

P [D|a(X)] =
[
1
2

C

εC + 1

]N

exp

−C
∑
xi∈X

Lε(yi − a(xi))

 (3)

with the prior probability distribution P [a(X)] as a functional Gaussian process in the above frame-
work. A Gaussian process is defined as a stochastic process specified by giving only the mean vector
and covariance matrix for any finite subset of points. We specify the prior probability distribution
P [a(X)] as a Gaussian process with a zero mean and a covariance function K(x,x′), i.e.,

P [a(X)] =
1√

det 2πKX,X

exp
{
−1

2
a(X)T K−1

X,Xa(X)
}

. (4)

where KX,X = [K(xi,xj)] is the covariance matrix at the points X.

Following the Bayesian Rule Equation 2 the a posteriori probability of a(X) is written as

P [a(X)|D] =
[G(C, ε)]N√

det 2πKX,XP [D]
exp

{
− C

∑
xi∈X

Lε(yi − a(xi))

− 1
2
a(X)T K−1

X,Xa(X)
}

(5)

where G(C, ε) = 1
2

C
εC+1 .

A simple estimate of the function a(x) from Equation 5 is the so-called Maximum A Posterior (MAP)
estimate which is the function that maximizes the a posteriori probability P [a(X)|D], or minimizes
the exponent in the equation Equation 5. Thus the MAP solution of a(x) is the minimizer of the
following risk functional:

RGSVM[a] = C
∑
xi∈X

Lε(yi − a(xi)) +
1
2
a(X)T K−1

X,Xa(X) (6)

We call the minimisation of Equation 6 a Gaussian SVM problem for regression. It is easy to show
that the Gaussian SVM is equivalent to the standard SVM problem with the penalty term 1

2‖w‖
2

where w is the weight vector in the feature space defined by kernel K(x,y) see eg. (Smola, 1998),
and hence, 1

2a(X)T K−1
X,Xa(X) = 1

2‖w‖
2. The standard SVM algorithm finds the minimum a∗(x) of

RGSVM[a]. Following the discussion in (Girosi, 1998) and (Sollich, 1999c) we can write a∗(x) in the
form

a∗(x) =
∑
xi∈X

βiK(xi,x) (7)

where βi = α+
i − α−

i , and both α+
i and α−

i can be determined by a QP-problem using the Wolfe’s
dual of original minimisation (Vapnik, 1995). The training dataset X can be divided into four parts
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with respect to the SVM solution a∗(x),

X0 = {xi | |yi − a∗(xi)| < ε with α+
i = α−

i = 0} (8)
XC = {xi | |yi − a∗(xi)| > ε with α+

i = C,α−
i = 0 or α−

i = C,α+
i = 0} (9)

XM− = {xi | a∗(xi)− yi − ε = 0 with 0 < α−
i < C} (10)

XM+ = {xi | yi − a∗(xi)− ε = 0 with 0 < α+
i < C} (11)

All points xi in XM+ or XM− are collected as XM and are called the marginal vectors, i.e., the
marginal vectors XM are given by XM = XM− ∪ XM+ . The support vectors, XSV , are given by
XSV = XM ∪ XC . Denote XM = X \ XM . Also we should note that α+

i α−
i = 0, i.e., α+

i and α−
i

cannot be simultaneously different from zero.

3 Evidence for SVR

3.1 Calculation for the Evidence

The evidence P [D] in Equation 2 is simply the likelihood of the data for a given model, obtained by
integration over the model parameter space {a(x)}, i.e.,

P [D] =
∫

P [a(X)]P [D|a(X)]da(X) (12)

Inserting Equation 3 and Equation 4 leads to an integral which is analytically intractable. In order
to overcome this problem we use an approximation via a second order Taylor’s expansion around the
obtained SVR solution a∗(x). First denote ∂1Lε(yi − a∗(xi)) the (left/right) derivative of Lε at the
yi − a∗(xi). Thus for the support vector xi ∈ XM− , yi − a∗(xi) = −ε, then

δa(xi) = a(xi)− a∗(xi) = yi − a∗(xi)− (yi − a(xi))
= −ε− (yi − a(xi))

Thus

δa(xi) > 0 ⇐⇒ −ε > yi − a(xi) =⇒ ∂1Lε(yi − a∗(xi)) = −1
δa(xi) < 0 ⇐⇒ −ε < yi − a(xi) =⇒ ∂1Lε(yi − a∗(xi)) = 0

And for the support vector xi ∈ XM+ , yi − a∗(xi) = ε, then

δa(xi) = a(xi)− a∗(xi) = yi − a∗(xi)− (yi − a(xi))
= ε− (yi − a(xi)).

Hence

δa(xi) > 0 ⇐⇒ ε > yi − a(xi) =⇒ ∂1Lε(yi − a∗(xi)) = 0
δa(xi) < 0 ⇐⇒ ε < yi − a(xi) =⇒ ∂1Lε(yi − a∗(xi)) = 1

Let

F (a(X)) = lnP [a(X)]P [D|a(X)], (13)

mailto:jg@ecs.soton.ac.uk
mailto:S.R.Gunn@ecs.soton.ac.uk
mailto:cjh@ecs.soton.ac.uk
mailto:m1brown@uk.ibm.com


A Probabilistic Framework for SVM Regression and Error Bar Estimation 7

and define δa(X) = a(X)− a∗(X), then

F (a(X)) =F (a∗(X)) + ∂1F (a∗(X))T δa(X) +
1
2
δa(X)T ∂2F (a∗(X))δa(X)

=F (a∗(X))− a∗(X)T K−1
X,Xδa(X)

+ C
∑
xi∈X

∂1Lε(yi − a∗(xi))δa(xi)−
1
2
δa(X)T K−1

X,Xδa(X)

From equation Equation 7 and the MAP property that the linear terms in δa(xi) are zero for all input
points xi 6∈ XM , we obtain,

F (a(X)) =F (a∗(X))−
∑

xi∈XM

[βi − C∂1Lε(yi − a∗(xi))]δa(xi)

− 1
2
δa(X)T K−1

X,Xδa(X) (14)

Inserting Equation 13 and Equation 14 into Equation 12 results in

P [D] =
∫

exp
{

F (a∗(X))−
∑

xi∈XM

[βi − C∂1Lε(yi − a∗(xi))]δa(xi)

− 1
2
δa(X)T K−1

X,Xδa(X)
}

dδa(X)

By marginalizing over the variables XM , the above integral can be computed as:

P [D] = exp{F (a∗(X))}
∫

exp
{
−

∑
xi∈XM

[βi − C∂1Lε(yi − a∗(xi))]δa(xi)

− 1
2
δa(XM )T [K−1

X,X ]|XM
δa(XM )

}
dδa(XM )/

√
det(2π[K−1

X,X ]|−1
XM

) (15)

where [K−1
X,X ]|XM

is the sub-block matrix of K−1
X,X with respect to XM . Discarding the second order

terms and considering the integrals with respect to the linear term δa: For xi ∈ XM− , we have∫ ∞

−∞
exp{−βiδa(xi) + C∂1Lε(yi − a∗(xi))δa(xi)}dδa(xi)

=
∫ 0

−∞
exp{−βiδa(xi)}dδa(xi) +

∫ ∞

0
exp{−βiδa(xi)− Cδa(xi)}dδa(xi)

=
∫ 0

−∞
exp{α−

i δa(xi)}dδa(xi) +
∫ ∞

0
exp{−(C − α−

i )δa(xi)}dδa(xi)

=
1

α−
i

+
1

C − α−
i

=
C

α−
i (C − α−

i )

Similarly, for xi ∈ XM+ we have,∫ ∞

−∞
exp{−βiδa(xi) + C∂1Lε(yi − a∗(xi))δa(xi)}dδa(xi) =

C

α+
i (C − α+

i )
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Then the final evidence is

lnP (D) ≈− 1
2
(β)T |XSV

KXSV ,XSV
β|XSV

− 1
2

ln det(2πKXM
) + ` lnG(C, ε)

− C
∑

xi∈XC

Lε(yi − a∗(xi)) +
∑

xi∈XM

ln
C

|βi|(C − |βi|)
(16)

It is also important to note that Sollich has presented this kind of argument for the case of SVC in
(Sollich, 1999a, 2000, 1999b). From Equation 15 a more accurate approximation can be given

P [D] = exp{F (a∗(X))}
∫

exp
{
−

∑
xi∈XM

[βi − C∂1Lε(yi − a∗(xi))]δa(xi)

− 1
2

∑
xi∈XM

δa(xi)[K−1
X,X ]|XM

(i, i)δa(xi)
}

dδa(XM )/
√

det(2π[K−1
X,X ]|−1

XM
)

and each integral can be carried out by noting that the integral of the normal distribution is an error
function.

3.2 Hyperparameter Estimation

So far we have assumed that the values of the regularisation parameter C, or the hyperparameter in
the model, are known. However, for most applications, we will have little idea of a suitable value for C.
In general, the normal Bayesian treatment for hyperparameters such as C, whose value is unknown, is
to integrate them out of any predictions. However this treatment will result in an intractable integral
problem on the parameter C. An alternative approach, known as the evidence approximation, has
been discussed by MacKay (1992) and has recently been utilized within a Gaussian process technique
see (Williams, 1998) and therein. The core of this approach is to find the maximum C∗ of the evidence
P [D] or equivalently maximize the log evidence in Equation 16.

By differentiating Equation 16 with respect to C and setting to zero we get

Cnew =
[` + |XM |]∑

xi∈XC

Lε(yi − a∗(xi)) +
∑

xi∈XM

1
C−|βi| + ` ε

εC+1

(17)

The current estimate of C is used to evaluate the quantities on the righthand side of Equation 17, and
the procedure is started by making some initial guess for the value of C. Each new estimate Cnew is
then used to train the SVM algorithm to determine all of the α’s.

Let us take a simple example to demonstrate the application of equation Equation 17. A given data
set was generated by the simple model, y = sinx, with the target corrupted by additive Gaussian
noise with variance 0.5. The standard SVM algorithm is implemented with the RBF kernel function
with width σ2 = 0.8, the ε-loss function of ε = 0.4. We take an initial value of C = 10 in Equation 17
and then start the iterative procedure. In order to stop the iterative procedure we employ the criteria
that the two successive updated values of C satisfy |C1−C2| < 0.05. Table 1 lists the iterative values
of C.

From Table 1 we can choose C = 2.1 as an approximate value to the true value of C. However, the
iterative update formula Equation 17 is not globally stable, i.e., if the initial value of C is far from
its “true” value, then the iterative procedure may not converge. In general, Equation 17 will not find
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Step 1 2 3 4 5 6 7
C 10 3.4276 2.2356 2.0308 2.2081 2.1078 2.1951

Step 8 9 10 11 12 · · · · · ·
C 2.1252 2.1883 2.1339 2.1828 2.1405 · · · · · ·

Table 1: The Value of Hyperparameter C
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Figure 2: The Relationship between C and the Evidence: C = 2.1?

a stationary point of Equation 16 with respect to C due to the SVM solution changing with C. In
order to implement the evidence framework, a gradient-based search can be employed to search the
maximum of Equation 16 based on the derivative of the log evidence with respect to C. For simplicity,
we take an auxiliary algorithm to estimate a better initial value for the hyperparameter C based on
equation Equation 16. Like the demonstration method employed by Sollich in (Sollich, 1999b), the
log-evidence, lnP (D), can be evaluated as a function of the hyperparameter C. Thus the curve of
this function versus C can be plotted by taking different values of C. However, it should be pointed
out that the approximation Equation 16 has logarithmic singularities when, as C is varied, the βi for
one of the marginal inputs approaches either 0 or C. That means that Equation 16 is not actually a
smooth function of C. In order to get a smooth curve we take an average over 50 different dataset of
the same size as the above example where these singularities are smoothed out. The curve in Figure
2 is plotted based on those different datasets. This curve just reflects the approximated position of
the “true” value of C. From Figure 2 we can find an initial guess for the value of C near the “true”
value, e.g., C0 = 2.1, and then use the update formula Equation 17 for a more precise value of C.
It is worthy to mention that the evidence curve can be used as an estimation method for C (Sollich,
1999b).

In order to confirm that the estimated value C = 2.1 is reliable, let us investigate the relationship
between the hyperparameter C and the corresponding average generalisation error,

E(y(x)− a∗(x)) =
∫

Lε(y(x)− a∗(x))P (x)dx

where P (x) is the density distribution of input x, assumed to be uniform. It is obvious that E is a
function of C. The “true” value Ctrue of C should be the minima of the function E. For the above
example, the curve of this function is plotted in Figure 3 from which it can be found that the possible
“true” value of C is near to 2.
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Figure 3: The Relationship between C’s and the Average Generalised Errors

4 An Approximated Formula for Error Bar of SVR

Next we consider the problem of estimating the prediction error for the Gaussian SVR model. When
given a prediction, it is also very useful to be given some idea of the error bars associated with that
prediction. Error bars arise naturally in a Bayesian treatment of learning machines and are made up
of two terms, one due to the a posterior uncertainty (the uncertainty of function a(z)), and the other
due to the intrinsic noise in the data.

4.1 The Variance due to the Function Uncertainty

First of all, let us focus on the computation of the variance due to the function uncertainty.

Assume that z is a test example. Then first calculate the predictive distribution a(z) corresponding
to z. This can be obtained by using Bayes rule:

P (a(z)|D) =
1

P (D)

∫
P (D|a(X))P (a(X), a(z))da(X) (18)

Denote the covariance matrix with respect to the training data set X = XM ∪XM as follows

KX,X =

(
KXM ,XM

KXM ,XM

KT
XM ,XM

KXM ,XM

)

and the covariance matrix between X and a test point z

K[X,z],[X,z] =
(

KX,X KX,z

KT
X,z Kz,z

)
where KX,z = (KT

XM ,z,K
T
XM ,z

)T is a column vector and Kz,z = K(z, z) is a scalar, being the value of
the covariance function K at z. Denote the inverse of K[X,z],[X,z] as follows:

K−1
[X,z],[X,z] =

(
GX,X GX,z

GT
X,z Gz,z

)
and GX,X =

(
GXM ,XM

GXM ,XM

GT
XM ,XM

GXM ,XM

)
(19)
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Considering the formula for the predictive distribution Equation 18, and using the above notation,
the log integrand can be expressed as,

F (a(X), a(z)) = −1
2
a(X)T GX,Xa(X)− a(z)GT

X,za(X)− 1
2
a(z)Gz,za(z)

− C
∑
xi∈X

Lε(yi − a(xi))−
1
2

ln det(2πK[X,z],[X,z])

+ ` lnG(C, ε).

Denoting a∗(z) =
∑N

i=1 βiK(xi, z), then

a(z)GT
X,za

∗(X) = −a(z)(Kz,z −KT
X,zK

−1
X,XKX,z)−1a∗(z) = −a(z)Gz,za

∗(z).

Taking a(z) to be fixed and expanding F (a(X), a(z)) with respect to a(X) at the optimal SVM
solution, a∗(X), using a second order Taylor series expansion gives

F (a(X), a(z)) ≈ F̃ (a∗(X), a∗(z))−
∑

xi∈XM

{βi − C∂1Lε(yi − a∗(xi))}δa(xi)

− 1
2
δa(X)T GX,Xδa(X)− δa(z)GT

X,zδa(X)

− 1
2
δa(z)Gz,zδa(z). (20)

Now let us denote δa(XM ) = [δa(xi)]Txi∈XM
and GT

X,z = (GT
XM ,z, G

T
XM ,z

), then, similar to the com-
putation for the evidence, we have by taking the integration over δa(x),

P (a(z)|D) ∝ exp(F̃ (a∗(X)))

 ∏
xi∈XM−

C

α−
i (C − α−

i )

 ∏
xi∈XM+

C

α+
i (C − α+

i )


√

det(2πGXM ,XM
) exp[−a(z)Gz,za∗(z)−

1
2
a(z)Gz,za(z)]

exp
[
+

1
2
δa(z)GT

XM ,z
(GXM ,XM

)−1GXM ,zδa(z)
]

.

It is easy to check that

Gz,z −GT
XM ,z

(GXM ,XM
)−1GXM ,z = (Kz,z −KT

XM ,zK
−1
XM ,XM

KXM ,z)−1.

Thus

P (a(z)|D) ∝ exp
{
− 1

2
(a(z)− a∗(z))(Kz,z −KT

XM ,zK
−1
XM ,XM

KXM ,z)−1

(a(z)− a∗(z))
}

(21)

The equation Equation 21 means that P (a(z)|D) can be approximated by a Gaussian with mean a∗(z)
and variance

σ2
KM

(z) = Kz,z −KT
XM ,zK

−1
XM ,XM

KXM ,z (22)
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In order to compare the estimate Equation 22 with the true one an approximating bound for the
variance can be derived. First by the property of marginal points xi ∈ XM , see subsection 3.1, it is
easy to prove that

βi − C∂1Lε(yi − a∗(xi))

{
> 0 when δa(xi) > 0,

< 0 when δa(xi) < 0.

Then the exponential of Equation 20 can be upper bounded by

exp
{

F̃ (a∗(X), a∗(z))− 1
2
δa(X)T GX,Xδa(X)− δa(z)GT

X,zδa(X)

− 1
2
δa(z)Gz,zδa(z)

}
Denoting by σ2

K(z) = Kz,z −KT
X,zK

−1KX,z and integrating out δa(X) results in

P (a(z)|D) ≤ 1√
2πσ2

K(z)
exp{−(a(z)− a∗(z))2

2σ2
K(z)

}.

Thus the variance of a(z) can be upper bounded by σ2
K(z), i.e.,

var(a(z)) ≤ σ2
K(z). (23)

4.2 The Variance for the Prediction

Consider the prediction model for a new test data point z

t = a(z) + e(z) (24)

where e(z) is random noise independent of a(z). We want to find the variance for the target on a test
data point z. Let us first note that the likelihood of SVR case is described by exp{−Lε(t− a(z))} as
shown in Equation 3 for the training dataset. Recently Evgeniou et al. (1999) proved that

exp(−Lε(t− a(z)))

=
2(ε + 1)√

π

∫ +∞

−∞

∫ +∞

0
λ(u)µ(β)

√
β exp(−β(t− a(z)− u)2)dudβ, (25)

with

λ(u) =
1

2(ε + 1)
(χ[−ε,ε](u) + δ(u− ε) + δ(u + ε)), (26)

µ(β) =
1
4
β−2 exp(− 1

4β
). (27)

where χ[−ε,ε](u) is 1 for u ∈ [ε, ε], 0 otherwise.

Equation Equation 25 means that the underlying noise model e(z) described by the ε-insensitive loss
function can be represented by a superposition of Gaussian processes with differing variances, 1/β,
with distribution Equation 26 and differing means, u, with distribution Equation 27. The variables
u and β can be viewed as hidden variables with respect to the priors Equation 26 and Equation 27,
respectively. This viewpoint has been used to derive a variational approach for the SVR problem
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in our recent paper (Gao et al., 2000). The advantage of Equation 25 is that one can convert the
uncertainty analysis, such as the error bar problem of SVR, into a mixture of Gaussian distributions.

Based on the prediction model Equation 24 the posterior distribution for the target prediction t takes
the following form

P (t|D) ∝
∫

G(C) exp{−CLε(t− a(z))}P (a(z)|D)da(z)

By Equation 21 the posterior prediction function a(z) at an input point z is distributed by

P (a(z)|D) =
1√

2πσ2
K(z)

exp{− 1
2σ2

K(z)
(a(z)− a∗(z))2}

Then the target prediction distribution can be expressed as

P (t|D) =
G(C)√
2πσ2

KM

∫ +∞

−∞
exp{−CLε(t− a∗(z)− δa(z))}

exp{− δa(z)2

2σ2
KM

(z)
}dδa(z)

where δa(z) = a(z)−a∗(z) and G(C) is a normalization constant. In the following, the constant G(C)
may be distinct in the different equalities. Thus in terms of Equation 25 we obtain:

P (t|D) =
G(C)√
2πσ2

K(z)

∫ +∞

−∞
exp{−LεC(Ct− Ca∗(z)− Cδa(z))}

exp{− δa(z)2

2σ2
KM

(z)
}dδa(z)

=
G(C)

√
π

C

∫ +∞

−∞

∫ +∞

0
λC(u)µ(β)

exp{− (t−a∗(z)− u
C

)2

2(σ2
KM

(z)+ 1
2βC2 )

}
√

2π
√

σ2
KM

(z) + 1
2βC2

dudβ

where λC(u) is the C scaled version of λ(u). To simplify denote σ2
t (z, β) = σ2

KM
(z) + 1

2βC2 , then the
normalized P (t|D) is given by

P (t|D) =
∫ +∞

−∞

∫ +∞

0
λC(u)µ(β)

exp{− (t−a∗(z)− u
C

)2

2σ2
t (z,β)

}√
2πσ2

t (z, β)
dudβ (28)

Thus all of uncertainty analysis for the target, t, can be carried out based on the above distribution.
In the following, we will propose a simple derivation of error bar formula.

From Equation 24, it follows directly that the mean and variance of t are the sum of the means and
variance of a(z) and e(z) because a(z) and e(z) can be considered as independent random variables.
Now the probability distribution of e(z) is P (e(z)) ∝ exp{−CLε(e(z))}, so by the symmetry of
E(e(z)) = 0, we can obtain

E[t|D] = a∗(z).
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On the other hand, it is easy to prove that

var(e(z)) = E[e2(z)] =
2

C2
+

ε2(εC + 3)
3(εC + 1)

. (29)

Then by equations Equation 22 and Equation 29 we have

σ2
t (z) =σ2

KM
(z) + var(e(z))

=σ2
KM

(z) +
2

C2
+

ε2(3 + εC)
3(εC + 1)

= σ2
KM

(z) + σ2
C(ε) (30)

Thus Equation Equation 28 provides an approximation to the target predictive distribution with the
mean m = a∗(z) and the variance Equation 30. Then it is easy to obtain an estimate of the uncertainty
(or “error bar”) about the predicted mean a∗(z). This error bar has two components, see equation
Equation 30. The first σ2

K is an estimate of the width of the posterior over the function a(z) and
reflects the uncertainty induced in the function given the finite amount of data available. The second
term can be viewed as the measure for the uncertainty induced in the target value t determined by
the hyperparameters C and ε. By Equation 23 the variance of target t can be upper bounded as

σ2
t (z) ≤ σ2

K(z) + σ2
C(ε) (31)

4.3 Simulation

0 5 10 15
−2

−1

0

1

2

0 5 10 15
−2

−1

0

1

2

(a) The Result of SVR Algorithm (b) The Error Bar Curves

Figure 4: The simulation results for the standard SVR algorithm and the error bar curves given by
Equation 30

Figure 4 shows a simple application of the error bar estimation Equation 30. Artificial data is generated
by a simple function

y = sinx

which is corrupted by Gaussian noise with variance 0.5. The standard SVR algorithm is implemented
with an RBF kernel function K(x, y) = exp{− 1

2σ2 (x− y)2} with width σ2 = 0.8, the ε-loss function of
ε = 0.4 and C = 2.1. The C = 2.1 is a possible true value of ε-insensitive noise parameter which can
be obtained by the maximum evidence method as shown in section 3. Figure 4(a) shows the result of
the SVR algorithm based on the dataset of size 100 on the interval [0, 4π], in which the points marked
with plus-circle are the support vectors (51%) and the solid line is the estimation of y = sinx by the
SVR algorithm. Figure 4(b) shows the error bars given by equation Equation 30, in which the dotted
lines are the error bar curves for the estimated curve (the solid line) and the dash-dotted line is the
bound given by Equation 31.
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We should note that, when test point z is far away from the training data set, the covariance between
z and XM , KXM ,z, will approach zero due to the RBF kernel being used. Thus the error bar will be
constant, just depending on Kz,z = 1, C and ε (see Equation 30). The error bar will be dominated by
2/C2 when ε → 0. In this L1-loss function case, the noise variance can be measured by 2/C2. When
C → 0 one will get a poor error bar estimation, and when C → ∞, the noiseless case, the error bar
will be controlled by the deadzone parameter ε.

5 Comparison for Error Bars Based on Different Loss Functions

In the following discussion the loss function l(u) is required to be convex and to be at least continuous
everywhere on u ∈ R. Loss functions can be categorized into three classes: (1) The loss function is
C1 except for at a finite number of points; for example, the ε-insensitive loss function Lε(u) belongs
to this class due to its non-differentiable points u = ±ε; (2) The loss function is C2 except for at
a finite number of points; for example, the Huber loss function; (3) the loss function is at least C2

everywhere, for instance, the quadratic loss function.

For each loss function a posteriori probability of the unknown function a(x) can be defined as:

P [a(X)|D] ∝
exp

{
−C

∑
xi∈X l(yi − a(xi))− 1

2a(X)T K−1
X,Xa(X)

}
√

det 2πKX,XP [D]
(32)

and the resulting predictive distribution is given by:

P (a(z)|D) =
1

P (D)

∫
P (D|a(X))P (a(X), a(z))da(X).

For the loss function in the third class, one can easily tackle the problem of computing the evidence
and the error bars of the model prediction based on a Taylor expansion at the MAP solution a∗(x).
The basic result, for the error bars, resembles the one for the quadratic loss function (Williams, 1998).
Some examples can be found in (Kwok, 1999) for the soft-loss function used in classification problems.

A difficulty arises in dealing with the loss functions of the second class. Consider Huber’s loss function
as an example. In order to compute the evidence P [D] we need to compute the following integral:∫

exp{−1
2
δa(X)T [K−1

X,X + CΛ(a∗(X))]δa(X)}dδa(X), (33)

where Λ(a∗(X)) = diag[λ(a∗(xi))] is a diagonal matrix whose components are a function of δa(xi)
defined as follows:

• For yi − a∗(xi) < −ε, λ(a∗(xi)) = 0;

• For yi − a∗(xi) > ε, λ(a∗(xi)) = 0;

• For ε < yi − a∗(xi) < ε, λ(a∗(xi)) = 1;

• For yi − a∗(xi) = −ε,

λ(a∗(xi)) =

{
0 δa(xi) < 0
1 δa(xi) > 0
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• For yi − a∗(xi) = ε,

λ(a∗(xi)) =

{
1 δa(xi) < 0
0 δa(xi) > 0

The results are analytically intractable, and an approximate method needs to be developed for its
evaluation.

6 Conclusions

In summary, this paper describes a probabilistic framework for Gaussian SVM regression model. This
approach allows an evidence to be defined and computed by the MAP approximation method, enabling
an optimal value of the regularisation parameter C to be determined by Bayesian methods such as
MacKay’s evidence technique. Additionally, the corresponding error bars for prediction can be derived
from the Bayesian Rule. Future work will focus on a more comprehensive test of the evidence and
error bar formula, and investigate the comparison between the Gaussian SVM and other standard
Gaussian Process methods.
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