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A probabilistic generative model for
quantification of DNA modifications
enables analysis of demethylation
pathways
Tarmo Äijö1,2, Yun Huang3,4,5, Henrik Mannerström1, Lukas Chavez3,4,6, Ageliki Tsagaratou3, Anjana Rao3,4,7,9*

and Harri Lähdesmäki1,8*

Abstract

We present a generative model, Lux, to quantify DNA methylation modifications from any combination of bisulfite
sequencing approaches, including reduced, oxidative, TET-assisted, chemical-modification assisted, and methylase-
assisted bisulfite sequencing data. Lux models all cytosine modifications (C, 5mC, 5hmC, 5fC, and 5caC) simultaneously
together with experimental parameters, including bisulfite conversion and oxidation efficiencies, as well as various
chemical labeling and protection steps. We show that Lux improves the quantification and comparison of cytosine
modification levels and that Lux can process any oxidized methylcytosine sequencing data sets to quantify all cytosine
modifications. Analysis of targeted data from Tet2-knockdown embryonic stem cells and T cells during development
demonstrates DNA modification quantification at unprecedented detail, quantifies active demethylation pathways and
reveals 5hmC localization in putative regulatory regions.

Keywords: DNA methylation, Bayesian analysis, Hierarchical modeling, TET proteins, 5-methylcytosine oxidation,
Bisulfite sequencing, BS-seq/oxBS-seq/TAB-seq/fCAB-seq/CAB-seq/redBS-seq/MAB-seq

Background
Many biological processes, including X-chromosome in-

activation [1], gene imprinting [2] and genomic instabil-

ity [3] are controlled by cytosine methylation, the most

widely studied epigenetic modification of DNA [4]. In

mammals, the bulk of DNA methylation in somatic cells

occurs as 5-methylcytosine (5mC), typically in a CpG se-

quence context. DNA methylation is dynamically altered

during normal development and abnormal changes have

been described in disease [5]. For instance, DNA methy-

lation is thought to contribute to cancer development by

diminishing genome stability and suppressing the ex-

pression of tumor-suppressor genes [6]. Comparison of

different cell types, including human embryonic stem

cells and fetal fibroblasts [7], has revealed differential

methylation at tissue-specific enhancers in various

mouse [8] and human [9] tissues, linking methylation to

cell development and differentiation [7–9]. DNA methy-

lation has also been mechanistically linked to splicing

regulation through inhibition of CTCF binding [10].

DNA methylation is also generally believed to have a re-

pressive effect at regulatory regions, although transcrip-

tional regulators can also selectively bind methylated

and unmethylated DNA [11]. Finally, DNA methylation

has been observed to accumulate during mammalian

brain development [12] and decrease during aging [13].

For all these reasons, it is important to quantify 5mC

changes accurately during embryonic development, cell

differentiation and oncogenesis.

Proteins of the TET (Ten-eleven translocation) family

were shown to be dioxygenases that converted 5mC to

5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC)

and 5-carboxylcytosine (5caC) [14, 15]. These oxidized

methylcytosine (oxi-mC) species have multiple functions
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as intermediates in DNA demethylation (5mC→ C) as

well as stable epigenetic marks that recruit chromatin

regulators and interact with RNA polymerase [16–20].

However, the discovery that oxi-mC modifications

occur naturally in mammalian DNA has complicated

the analysis of DNA methylation. Initially, affinity-

based methods were used to map the location of 5mC

and 5hmC in genomic DNA, including immunoprecipi-

tation of methylated and hydroxymethylated DNA

using antibodies to 5-methylcytosine (MeDIP), 5-

hydroxymethylcytosine (hMeDIP), or cytosine 5-

methylenesulfonate (CMS, the adduct formed by

reaction of sodium bisulfite with 5hmC [21–23]), or

biotinylation of 5hmC using sodium periodate (GLIB) [24]

or click chemistry [25]. However, there are many obvious

advantages to mapping 5mC and oxi-mC at single base

resolution. First, compared with affinity-based methods,

which show a strong density bias [26], single-base reso-

lution methods are more sensitive at detecting 5hmC in

regions of low density CpGs. Second, if performed at

high sequence coverage, single-base resolution methods

are more sensitive at detecting minor and dynamic

changes of oxi-mC, which are likely to be important in

many different biological processes. Third, single-base

resolution methods can detect localized dynamic

changes of oxi-mC, such as oscillating distribution of

5hmC around CTCF binding sites and its correlation

with nucleosome positioning [27, 28]. Fourth, single-

base resolution methods can detect strand-specific

modifications that might be associated with transcrip-

tional activity.

For many years, the most widely used method for

quantification of DNA methylation at a single-base level

was bisulfite sequencing (BS-seq), the gold standard for

methylation profiling [7–9, 12, 29]. Unlike affinity-based

approaches, BS-seq provides methylation information at

the single-nucleotide resolution by introducing single

nucleotide changes into DNA sequence in a methylation-

dependent manner [30]. Briefly, treatment of genomic

DNA with sodium bisulfite results in rapid deamination of

unmodified cytosine to uracil, which is read as thymine

after PCR amplification and sequencing (C→T conver-

sion). In contrast, 5mC is deaminated much more slowly,

and so remains unconverted and is read as C. Unfortu-

nately, bisulfite sequencing has proved inadequate to detect

oxi-mCs: 5hmC reacts with sodium bisulfite to form a new

adduct, cytosine 5-methylenesulfonate [21], that is resistant

to deamination like 5mC, whereas 5fC and 5caC are prone

to deamination like unmodified C. Thus, bisulfite sequen-

cing cannot distinguish 5mC and 5hmC, which are both

read as C after PCR amplification, nor can it distinguish un-

modified C from 5fC or 5caC, which are all read as T [31].

The previously reported contradictory functions of

5mC in gene regulation [7] are partly due to the inability

of BS-seq to distinguish 5hmC from 5mC. To overcome

the limitations of BS-seq, oxBS-seq (oxidative bisulfite

sequencing) [32] and TAB-seq (Tet-assisted bisulfite

sequencing) [28] have been developed to differentiate

5hmC from 5mC at a single nucleotide level. Both tech-

niques use oxidation; KRuO4 oxidizes 5hmC to 5fC in

oxBS-seq [32], whereas in TAB-seq, 5hmC is protected

by β-glucosyltransferase and recombinant mouse Tet1 is

used to oxidize 5mC to 5caC [28]. Importantly, oxBS-seq

and TAB-seq have to be combined with BS-seq in order to

distinguish C, 5mc and 5hmC and to quantify their levels.

Recently, several new sequencing protocols have been

developed to quantify further oxidized methylcytosines

in DNA (reviewed in [33]). In fCAB-seq (5fC chemical

modification-assisted bisulfite sequencing) [34], O-ethylhy-

droxylamine (Et-ONH2) modifies 5fC and protects it from

deamination by sodium bisulfite, whereas NaBH4 reduces

5fC to 5hmC in redBS-seq (reduced bisulfite sequencing)

[35]. Subsequent sequencing of modified or reduced 5fC in

fCAB-seq and redBS-seq, respectively, reads 5fC similarly

with 5mC and 5hmC. Thus, quantification of 5fC becomes

possible when fCAB-seq or redBS-seq data are combined

with the standard BS-seq data obtained from the same

sample. Similarly with fCAB-seq, in CAB-seq (chemical

modification-assisted bisulfite sequencing) [36] 1-ethyl-3-

[3-dimethylaminopropyl]-carbodiimide hydrochloride (EDC)

selectively protects 5caC from deamination during bisul-

fite treatment and quantification of 5caC requires CAB-

seq to be combined with BS-seq data. In MAB-seq (M.SssI

methylase-assisted bisulfite sequencing) [37], unmethy-

lated C is methylated with the bacterial DNA CpG meth-

yltransferase M.SssI. Sequencing of the M.Sssl and sodium

bisulfite treated DNA then discriminates 5fC and 5caC

from other DNA methylation modifications. All afore-

mentioned methods are challenging and sensitive to vari-

ation in various experimental steps, often resulting in

sample-specific biases. Moreover, although TAB-seq or

oxBS-seq selectively detect 5hmC and 5mC, respectively,

in all other methods several modifications are convoluted

and, thus, the underlying true modification levels, or pro-

portions, need to be computationally inferred from a com-

bination of these data sets.

Various computational methods exist for analyzing

BS-seq data from Sanger and high-throughput sequen-

cing — for instance, QUMA [38], BISMA [39],

methylKit [40], GBSA [41], BSmooth [42], MOABS [43],

a Bayesian hierarchical model [44], MethylSeekR [45],

and RadMeth [46]. These methods provide means to

quantify levels of methylation, visualize data and detect

differential methylation. Depending on the biological

question, the quantification of methylation is done either

at individual cytosines, in sliding window fashion or

for predefined genomic regions, such as promoters,

CpG islands or shores. Earlier methods (e.g., QUMA,
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methylKit) make no specific statistical assumptions

about data characteristics, whereas BSmooth models

the distribution of converted and unconverted cytosine

counts with binomial distribution, which was extended

to a hierarchical beta-binomial model in MOABS and

other methods [43–46] to account for biological vari-

ation. Different measures have been proposed for call-

ing differential methylation — for instance, Fisher’s

exact test [7] on the counts of converted and uncon-

verted cytosines, Mann–Whitney U-test [38] or a

modified t-test [42] on methylation profiles, and the

credible methylation difference metric calculated be-

tween methylation level distributions [43]. Although

these methods are applicable for analyzing BS-seq/

oxBS-seq data separately, they lack support for integra-

tive analysis of different methylation states (the per-

centages of which need to add up to 100 %) from BS-

seq and oxBS-seq data. Consequently, the previously

proposed methods use a naïve integration, such as sub-

traction, of the individual methylation state estimates,

which is prone to erroneous estimates. Recently, the

MLML method was published, which provides consist-

ent methylation (non-negative and adds up to 100 %)

estimates from BS-seq, oxBS-seq, and TAB-seq data

using the expectation maximization algorithm [47].

However, no method exists to analyze other oxi-mC-

seq data (other than simple subtraction of read counts)

and, importantly, previous methods do not take into

account experiment-specific variation in the biochem-

istry. These non-ideal experimental parameters in-

clude, e.g., bisulfite conversion, oxidation efficiencies,

chemical labeling and protection steps and sequencing

errors, and their experimental significance has been

demonstrated [28, 32, 34, 37]. Notable exceptions in-

clude the computational methods introduced in [12,

28, 32] which use the binomial test together with a

conversion inefficiency parameter to quantify the sig-

nificance (i.e., p value) of 5mC > 0 and 5hmC > 0. How-

ever, the use of these early methods is limited as they

provide neither a way to accurately quantify cytosine

modification levels nor a method to assess differential

methylation.

To study active demethylation and to characterize un-

known functions of oxi-mC species, a rigorous statistical

analysis of BS-seq and oxi-mC-seq data is needed for ac-

curate quantification of different cytosine modifications

and detection of differential methylation between condi-

tions. To fill this gap we present an integrative hierarch-

ical model, Lux, which is inspired by the aforementioned

measurement processes. This probabilistic generative

model enables accurate and unbiased quantification of

different cytosine modifications and differential methy-

lation at individual cytosines or loci, with or without

replicates, while taking imperfect and sample-specific

experimental parameters into account. Full Bayesian in-

ference quantifies the effect of the uncertainties in data

and parameters to the final estimates. Lux is applicable

for analyzing any number and combination of BS-seq

and oxi-mC-seq data sets from whole genome, reduced

representation or targeted experiments, and provides

the most accurate methylome estimates when samples

are spiked-in with stretches of unmethylated and meth-

ylated (5mC, 5hmC, 5fC, and/or 5caC) control DNAs.

These features were benchmarked extensively on real

and simulated data, including BS-seq, oxBS-seq, TAB-

seq, and fCAB-seq. We also show that the statistical

framework is easily extended for other existing data

types, such as CAB-seq, redBS-seq, and MAB-seq, as

well as upcoming derivatives of traditional bisulfite se-

quencing. A platform-independent implementation of

Lux is released under MIT license at https://github.-

com/tare/Lux/ and as Additional files 1 and 2.

Results and discussion

Method overview

We first describe how Lux can be applied to simultan-

eously analyze C (together with 5fC and 5caC), 5mC and

5hmC from BS-seq and oxBS-seq data, and later extend

Lux to other data types. BS-seq and oxBS-seq provide

partially orthogonal, but convoluted, information on

methylation status (Fig. 1a) as BS-seq reads discriminate

5mC and 5hmC from C whereas oxBS-seq reads dis-

criminate 5mC from C and 5hmC. Thus, together they

provide the data required for quantifying levels of C,

5mC and 5hmC. Two straightforward approaches for

quantifying 5hmC levels from BS-seq and oxBS-seq data

calculate the difference in proportions of unconverted

cytosines [32] or the difference of separately estimated

proportions [43], respectively, resulting in unconstrained

maximum likelihood estimates (termed as frequency

method; see Additional file 3). Unfortunately, both ap-

proaches can lead to erroneous estimates, such as nega-

tive values for 5hmC, because the cytosine modification

levels are tightly interconnected. Moreover, the read-

outs from BS-seq and oxBS-seq assays depend on the ef-

ficiencies of bisulfite conversion and oxidation (Fig. 1a).

We considered the following experimental parameters:

bisulfite conversion (BSeff ), inaccurate bisulfite conver-

sion (BS*eff; Figure S1a in Additional file 4), oxidation

(oxeff ) efficiencies and sequencing errors (seqerr). To

quantify the C, 5mC and 5hmC proportions from BS-

seq and oxBS-seq data while taking into account the ex-

perimental parameters; we formulated a probabilistic

generative model (see "Materials and methods"). First,

for each cytosine modification, we write the probabilities

of the BS-seq and oxBS-seq outcomes in the terms of

experimental parameters BSeff, BS*eff, oxeff and seqerr
(Fig. 1b, c; Figure S1b, c in Additional file 4). Next, we
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modeled cytosine-specific methylation states (C, 5mC

and 5hmC) with cytosine-specific probabilities θ = [p(C),

p(5mC), p(5hmC)] (Σθ = 1) and weighted the probabil-

ities of the BS-seq and oxBS-seq outcomes with the pro-

portions in θ (Additional file 4: Figure S1d; see

"Materials and methods"). Consequently, the BS-seq and

oxBS-seq outcomes are Bernoulli distributed with the

aforementioned weighted and summed success probabil-

ities; moreover, the frequencies of the sequencing read-

outs are binomially distributed (Figure S2 in Additional

file 4). The capability of analyzing data from repeated

biological experiments in Lux is implemented by adding

a hierarchical level for modeling biological variation be-

tween the replicate-specific proportions θi from the

common proportions μ (Figure S2 in Additional file 4;

see "Materials and methods"). The statistical model is

described in more detail in "Materials and methods" and

in full detail in Additional file 3.

Bayesian inference of the model yields posterior distri-

butions of the model parameters conditioned on data

(see "Materials and methods"). This starts by specifying

prior distributions on the model parameters (Figure S2

in Additional file 4; Table S1 in Additional file 5; see

"Materials and methods"). The model inference was im-

plemented in Stan, which utilizes the Hamiltonian

MCMC strategy (HMC) with the No-U-turn sampler

(NUTS) for estimating posterior distributions with fast

convergence [48] (see "Materials and methods"). In prac-

tice, Lux with the model suitable for distributed comput-

ing (Figure S2b in Additional file 4) is able to analyze

approximately 15,000 cytosines for a single replicate in

an hour on a single core (Figure S2c in Additional file 4).
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Fig. 1 The effect of imperfect bisulfite conversion and oxidation efficiencies on BS-seq and oxBS-seq assays. a The read-outs for C, 5mC and
5hmC in BS-seq and oxBS-seq assays. The arrows indicate which read-outs are affected by bisulfite conversion and/or oxidation efficiencies. b The
bisulfite conversion of C followed by sequencing. The four possible scenarios of sequencing “C” or “T” are expressed in terms of BSeff and seqerr.
Oxidation does not have an effect on C so this model also applies to the oxBS-seq measurement of C. c The oxidation of 5hmC followed by
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Notice that run time requirement with respect to repli-

cates increases sub-linearly. Thus, as demonstrated in this

study by utilizing a computing cluster, one can analyze all

cytosines in a CpG context in mammalian genomes in

several hours, therefore rendering Lux applicable for inte-

grative analysis of oxi-mC data with or without replicates

in a genome-wide setting.

Estimation of experimental parameters

We focused on 14 previously studied genomic loci cov-

ering approximately 2000 cytosines in wild-type (v6.5)

and Tet2 knockdown (Tet2kd) v6.5 embryonic stem cells

[49] and carried out targeted BS and oxBS sequencing

with three biological replicates. Ten of the selected loci

were highly statistically significantly differentially meth-

ylated and had varying methylation states based on the

previous mapped 5hmC and 5mC methylomes [49] ob-

tained using CMS-IP (cytosine-5-methylenesulfonate

immunoprecipitation) and MeDIP (methylated DNA im-

munoprecipitation) antibody techniques. Four of the loci

showed no differential methylation [49]. The obtained

high coverage (median cytosine coverage 2042×) data

sets on the selected loci provided an ideal backdrop for

assessing the applicability of Lux, and for comparing

Lux’s accuracy with that of other methods. To estimate

the bisulfite conversion rates and oxidation efficiencies,

the sequencing libraries were spiked with stretches of

unmethylated, methylated and hydroxymethylated DNAs

(see "Materials and methods"). The Cs and 5mCs in the

control DNA are close to 100 % unmethylated and

methylated, respectively, while 5hmC has ~90 % purity,

reflecting the purity of the 5hmCTP obtained from the

manufacturer [28]. This prior knowledge was plugged

into the model through the prior distributions (Table S1

in Additional file 5; Figure S2a in Additional file 4; see

"Materials and methods"). Next the model was condi-

tioned on the data and the posterior distributions of the

methylation states of the control DNA (Fig. 1d) and ex-

perimental parameters (oxidation efficiencies shown in

Fig. 1e; others are listed in Table S2 in Additional file 5)

were derived (see "Materials and methods"). C and 5mC

controls were close to ideal, whereas 5hmC controls had

more experimental variation, presumably because of the

impure dhmCTP mix and experimental challenges

(Fig. 1d). The small standard deviations of the estimates

demonstrate the identifiability of the experimental pa-

rameters. The experimental variation in the parameters

(oxeff from 0.48 to 0.89) emphasizes the importance of

considering them while estimating methylation levels

and comparing methylation levels among samples

(Fig. 1e). In addition to impure dhmCTP mixes, the

amount of 5hmC in the genomic DNA might affect the

oxidation efficiency, and thus the higher oxidation effi-

ciency in Tet2kd cells might be due to the reduced

amount of 5hmC in Tet2kd cells compared with that in

v6.5 cells. Importantly, 5hmC estimates would be under-

estimated in the v6.5 samples if the sample-specific oxidiza-

tion efficiency was not taken into account, as implemented

in Lux. As expected, other parameters were close to ideal

(Table S2 in Additional file 5).

In addition, we carried out an in silico experiment to

enable a more controlled evaluation (Figure S3a in

Additional file 4). Briefly, we studied the identifiability

of the model by testing different settings of experimental

parameters, number of control cytosines, and coverage

levels. The simulation results also demonstrate a good

identifiability of the experimental parameters since they

can be estimated even from a single control cytosine

(Figure S3b in Additional file 4). Moreover, simulation

results suggest that with 20 control cytosines per

methylation modification, the experimental parameters

can be accurately estimated and their accuracy saturates

at 48× coverage (Figure S3c in Additional file 4).

Estimation of methylation levels

The methylation statuses of all the cytosines with at least

10× coverage across all six samples (N = 2428) were esti-

mated (Table S3 in Additional file 5) simultaneously with

the estimation of experimental parameters. As expected,

there was wide variation in the DNA methylation levels

of cytosines in a CpG context (left panel in Fig. 2a), but

no 5mC or 5hmC in cytosines located in a non-CpG

(CHG/CHH) context (right panel in Fig. 2a). Because

TET family proteins oxidize 5mC to 5hmC, 5fC and

5caC, a Tet2kd is expected to block this demethylation

pathway and increase the level of 5mC. Notably, 5mC

levels for 179 out of 384 cytosines were increased in

Tet2kd cells (pTet2kd(5mC) − pv6.5(5mC) > 0.1) (Fig. 2a).

These cytosines were also highly marked by 5hmC in

v6.5 cells (Fig. 2a), suggesting the expected scenario in

which Tet2 depletion resulted in loss of 5hmC and con-

comitantly increased 5mC. However, the demethylation

process is reduced rather than entirely blocked in Tet2

knock-down mESCs, either because of incomplete deple-

tion and residual TET2 activity or compensatory activity

of other TET enzymes, most likely TET1 [49]. More

generally, we observed an inverse correlation between

5mC and 5hmC levels (Figure S4 in Additional file 4)

reflecting the inherent relationships between cytosine

modifications in the active demethylation pathway.

To confirm Lux’s ability to estimate methylation levels,

we compared our estimates with published 5hmC and

5mC methylome maps [49] obtained using CMS-IP and

MeDIP antibody techniques, respectively. For example,

in a methylated locus (Runx1), Lux estimated qualita-

tively similar 5mC and 5hmC levels from BS- and oxBS-

seq data before and after Tet2 depletion (Fig. 2b, top).

However, detailed analysis of individual CpGs showed

Äijö et al. Genome Biology  (2016) 17:49 Page 5 of 22



the expected loss of 5hmC and gain of 5mC in Tet2-de-

pleted relative to parental v6.5 embryonic stem cells

(Fig. 2c), confirming previous conclusions from compari-

sons of CMS-IP and MeDIP peaks (Fig. 2b, bottom)

[49]. Additionally, as a negative control, no 5mC or

5hmC were detected within the tested unmethylated loci

(Figure S5 in Additional file 4). Results on other loci are

similar (data not shown).

A recently published method, MLML, provides con-

sistent methylation estimates by calculating the con-

strained maximum likelihood estimates using the

expectation maximization algorithm [47]. To study the
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differences between Lux and MLML, we analyzed our

BS-seq and oxBS-seq data using MLML and then com-

pared the results with the ones obtained using Lux. First,

the obtained C and 5mC level estimates correlate well

between biological replicates for both of the two

methods (Figure S6a in Additional file 4), although 5mC

estimates from Lux correlate slightly better between bio-

logical replicates. Next we analyze all cytosines in a CpG

context using Lux and observe that 5hmC correlations

between replicates range from 0.45 to 0.52, which are a

bit low but still higher than those from the MLML

method (from 0.35 to 0.41) (Fig. 2d). MLML’s poor per-

formance is likely affected by several biological and

methodological factors, particularly the lack of experi-

mental parameters in the MLML model. While Lux in-

corporates experiment-specific experimental parameters

in estimating methylation modifications, these are not

included in the MLML model, which together with vari-

ation in the oxidation efficiencies (Fig. 1e) can explain

MLML’s lower 5hmC correlation values.

We further validated Lux’s performance on BS-seq

and oxBS-seq data from Booth et al. [35]. We analyzed

the BS-seq and oxBS-seq libraries (two biological repli-

cates) while assuming 1) ideal experimental parameters

(BSeff = 1, oxeff = 1, BS*eff = 0, seqerr = 0) or 2) non-ideal

experimental parameters (BSeff = 0.99, oxeff = 0.85, BS*eff =

0.001, seqerr = 0.001) (see "Materials and methods"). Then

we compared the resultant 5mC and 5hmC level esti-

mates to glucMS-qPCR measurements (measured using

a bisulfite-free and restriction enzyme-based assay) from

[35]. We carried out the same comparison for the BS-seq

and oxBS-seq analysis method from [35]. As expected,

the Lux estimates obtained with the ideal experimental

parameters have a slightly better correlation with the

glucMS-qPCR measurements than the Booth et al. esti-

mates (Table S4 in Additional file 5), particularly for

5hmC levels (0.54 versus 0.57). When the non-ideal ex-

perimental parameters are incorporated into the Lux

analysis, we observe more accurate quantification of

methylation levels (Table S4 in Additional file 5). Al-

though the correlation of 5mC levels remains practically

unchanged, the correlation of 5hmC levels increases

from 0.57 (p = 0.007) to 0.63 (p = 0.002). Moreover,

comparison of the correlation measures between Lux

and the method from Booth et al. [35] shows a marked

improvement for 5hmC quantification; correlation in-

creases from 0.54 (p = 0.012) to 0.63 (p = 0.002).

Additionally, we carried out an in silico experiment

simulating a replicate-free experiment to study the effect

of sequencing coverage on the Lux and MLML estimates

[47], thus providing guidelines for experiments (Figure S6b

in Additional file 4). In short, we compared the Lux and

MLML estimates of methylation levels using simulated

data from different methylation level/coverage settings

with controls. The results further demonstrate the import-

ance of both integrative analysis of all cytosine modifica-

tions simultaneously and accounting for the experimental

parameters in estimating C, 5mC and 5hmC levels be-

cause the MLML estimates are consistently biased, i.e., the

medians are deviated from the true values (Figure S6c in

Additional file 4). Notably, this holds for both hypo- and

hyper-5mC (methylation levels of p(C) = 0.8, p(5mC) =

0.1, and p(5hmC) = 0.1 and p(C) = 0.1, p(5mC) = 0.8,

and p(5hmC) = 0.1) and situations with high but realis-

tic 5hmC levels (p(5hmC) = 0.3), commonly observed

in various applications. Note in particular that ignoring

the experimental parameters results in consistent

underestimation of the already less abundant 5hmC

species levels. Lux also has a small bias for low sequencing

depths due to the prior distribution used in Bayesian ana-

lysis. Importantly, the more experimental data one has,

the smaller the bias in Lux estimates becomes, i.e., Lux

provides consistent methylation level estimates. The user

can also adjust the strength of the prior; a less informative

prior produces less bias, whereas a stronger prior pro-

duces less variance for low sequencing depth. In this

simulation experiment, approximately 48× coverage is

enough for Lux to produce accurate methylation propor-

tion estimates. Supposedly, a higher sequencing depth is

needed when the 5hmC level is lower and/or the experi-

mental parameters are impaired. We also simulated bio-

logical replicates to gain information on the effect of

replicates on methylation level estimates (Figure S7a, b in

Additional file 4). As expected, the accuracy of estimates

is commensurate with the number of replicates and more

replicates are needed as the divergence between the distri-

bution of interest and prior increases (Figure S7c–e in

Additional file 4). Overall, these results demonstrate that

Lux is able to infer biological variation from BS- and

oxBS-seq data, which is essential in detecting differential

methylation.

Detection of differential methylation

Next we describe how Lux identifies differential methyla-

tion between conditions A and B. Briefly, two hypotheses,

or models, are formulated (see "Materials and methods"):

the null hypothesis H0 where Δμ = μA − μB = 0 (no differ-

ential methylation); and the alternative hypothesis H1

where Δμ = μA − μB ≠ 0 (differential methylation). In a

Bayesian setting the data support for the hypothesis H1

over H0 can be quantified using the Bayes factor (BF; see

"Materials and methods"). Here the BFs are approximated

using the Savage-Dickey density ratio approach, which has

recently been used, e.g., in detecting alternative splicing by

Katz et al. [50]. The Savage-Dickey formulation involves

calculation of the ratio BF ≃ p(Δμ = 0|H1)/p(Δμ = 0|H1,D).

Succinctly, the term in the numerator is calculated from

the prior distributions of μ for which we derive a closed-
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form solution, and the denominator is calculated from

the posterior for which we use samples from the HMC

sampler (see "Materials and methods").

We compared Lux, MOABS, and FET for detecting

differential methylation on real data. We divided all the

covered cytosines in a CpG context (N = 384) into sets

of differentially (N = 252) and similarly (N = 132) methyl-

ated cytosines based on independent CMS-IP and MeDIP

loci-level information (see "Materials and methods"). Ob-

viously, CMS-IP and MeDIP do not give information on

methylation at a single-nucleotide resolution level; how-

ever, in many cases the methylation of nearby CpG sites is

highly correlated. Since we consider short loci, presumably

the obtained ground-truth sets are largely correct and, im-

portantly, obtained using a method independent of BS-seq

and oxBS-seq protocols. The use of FET and MOABS re-

quire that replicates are pooled and BS-seq and oxBS-seq

data are analyzed separately (see "Materials and methods").

To investigate the effect of coverage, we analyzed the data

using either the full data set or reduced data sets down-

sampled to either 12× or 30× coverage. The cytosines

were listed in descending order of evidence for differential

methylation (descending and ascending order of p values

and BFs, respectively), and the methods were compared

using the area under the curve (AUC) of receiver operat-

ing characteristic (ROC) curves (Fig. 3c; Figure S8c in

Additional file 4). Lux provided better performance

on the 12× down-sampled data with realistic cover-

age (AUC = 0.8743) than MOABS (AUCBS = 0.8197,

AUCoxBS = 0.8500) or FET (AUCBS = 0.6765, AUCoxBS =

0.7526). The results were highly similar on the 30× down-

sampled data (Lux AUC= 0.8748; MOABS AUCBS =

0.8197, AUCoxBS = 0.8500; and FET AUCBS = 0.6765,

AUCoxBS = 0.7526; Figure S8c in Additional file 4). As ex-

pected, the results of the methods on the full coverage

data set were close, but Lux still provided the best per-

formance; the AUC values were 0.8728 for Lux, AUCBS =

0.7446 and AUCoxBS = 0.7697 for FET, and AUCBS =

0.8678 and AUCoxBS = 0.8576 for MOABS. Additionally,

we tested the binomial test with conversion efficiency

method [32] on our data (see "Materials and methods").

The performance of the method was poorer than those

of Lux, MOABS, and FET, which is expected since the

method is primarily designed for the detection of

methylation (Figure S8d in Additional file 4). These re-

sults collectively show that the integrative analysis of

BS-seq/oxBS-seq data and the model-based analysis of

replicates by Lux result in improved performance on

data with realistic sequencing coverage.

From the ten differentially methylated and four non-

differentially methylated loci covered by our targeted

experiments, we identified that 30 individual cytosines,

A

B

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

p(C)

p(5mC) p(5hmC)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

p(C)

(5mC) p(5hmC)

v6.5 Tet2kd

c
h

r4
:1

3
9

,7
8

3
,8

5
7

BF=67.8 

0.0

0.6

1.2

1.8

2.4

1e1

0.0

1.2

2.4

3.6

4.8

1e1

p

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
s
it
iv

e
ra

te

ES cells (12X coverage)

Lux (0.8743)
FET (0.6765)
MOABS (0.8197)
FET (0.7526)
MOABS (0.8500)

B
S

o
xB

S

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
s
it
iv

e
ra

te

Lux (0.9443)
FET (0.7919)
MOABS (0.8001)
FET (0.8706)
MOABS (0.8806)

C

B
S

o
xB

S

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simulation (12X coverage)

Fig. 3 Identifying differentially methylated cytosines. a A ternary plot representation of the posterior distribution of the methylation proportions
(estimated over three replicates) for the cytosine at chr4:139,783,857 in v6.5 (left panel) and Tet2kd (right panel) samples. b A comparison of Lux,
FET, and MOABS in detecting differential methylation. For this purpose we down-sampled the full data set to 12× coverage for each of the three
replicates. BS-seq and oxBS-seq data sets were analyzed separately with FET and MOABS for differential methylation. All the covered cytosines in
a CpG context (N = 384) were divided into sets of differentially (N = 252) and similarly (N = 132) methylated cytosines based on independent
CMS-IP and MeDIP loci-level information (see "Materials and methods"). The ROC curves of the methods are calculated based on the differential
methylation analysis results. The curves of different methods (Lux, FET, and MOABS) and data types (BS-seq/oxBS-seq) are distinguished with
different colors. The AUC values are listed in the figure key. c Same as (b) but here the methods are compared using simulated data (see also Figure S8e
in Additional file 4)

Äijö et al. Genome Biology  (2016) 17:49 Page 8 of 22



regardless of sequence context, were differentially meth-

ylated between v6.5 and Tet2kd cells (BF > 1, i.e., the

posterior probability of H1 exceeds that of H0, corre-

sponding to ‘weak evidence’). Eight of the cytosines had

at least ‘substantial evidence’ (BF > 3) for differential

methylation (Figure S9a in Additional file 4; Table S3 in

Additional file 5). For comparison, FET and MOABS are

very non-conservative, as FET detected 464 (BS-seq)

and 788 (oxBS-seq) and MOABS 226 (BS-seq) and 316

(oxBS-seq) differentially methylated cytosines (Benjamini-

Hochberg false discovery rate (FDR) < 0.01). Although Lux

is more conservative in reporting significant differential

methylation, nevertheless, ROC analysis confirms that Lux

is more accurate in discriminating differential methylation

from non-differential methylation (Fig. 3c; Figure S8c in

Additional file 4). The changes detected by Lux were

supported by antibody-based approaches (Figure S10 in

Additional file 4). Notably, the amount of evidence for

differential methylation decreases significantly when

ideal experimental parameters (i.e., BSeff = 1, BS*eff = 0,

oxeff = 1, and seqerr = 0) are used in the model (Figure

S9b in Additional file 4), thus further emphasizing the

importance of accounting for the experimental parame-

ters. The condition-specific posterior distributions of

the methylation levels for the top hits from the loci

chr4:139,783,236–139,784,235 and chr15:61,868,386–

61,869,385 show the expected pattern of TET2-dependent

demethylation, i.e., increased 5mC and decreased 5hmC

levels in Tet2kd samples (Fig. 3b; Figure S10a, c in

Additional file 4). Intriguingly, these loci reside in the

vicinity of a promoter of a long non-coding gene, Pvt1

(plasmacytoma variant translocation 1; Figure S10c in

Additional file 4) and an intronic enhancer within

Igsf21 (immunoglobin superfamily, member 21; Figure

S10a in Additional file 4) identified in mESCs [51]. Unex-

pectedly, the cytosine having the third highest BF,

chr15:100,300,108, shows unaffected 5mC (pv6.5(5mC) =

0.23/pTet2kd(5mC) = 0.20) but increased 5hmC upon Tet2

knock down (pv6.5(5hmC) = 0.02/pTet2kd(5hmC) = 0.34)

(Figure S10b in Additional file 4). Possibly, the down-

stream demethylation pathway (5hmC→C) is dependent

on TET2. In conclusion, detection of modest changes

caused by an individual enzyme (TET2) requires primarily

biological replicates but not exceedingly deep sequencing

per sample (Figure S8f in Additional file 4) and con-

sideration of experimental parameters (Figure S9b in

Additional file 4), whereas near complete methylation

(p(5mC) = 0.95) and unmethylation (p(C) = 0.95) can

be distinguished from each other without biological

replicates even with a low sequencing coverage (Figure

S8g in Additional file 4).

Additionally, to guide experimental design in future

studies, we applied Lux, Fisher’s exact test and MOABS

to in silico data with realistic genome-wide coverage

(12×) and varying number of replicates. First, as desired,

Lux does not detect differential methylation between

identical conditions and the detection sensitivity of dif-

ferential methylation increases together with the number

of replicates and the magnitude of differential methylation

(Figure S8a, b in Additional file 4). Second, consistent with

our results on real data, we observed that Lux (AUC=

0.9443) outperformed FET (AUCBS = 0.7919, AUCoxBS =

0.8706) and MOABS (AUCBS = 0.8001, AUCoxBS = 0.8806)

in discriminating differential methylation from nondiffer-

ential methylation (Fig. 3d). For the amount of biological

variation and differential methylation used in our simula-

tions, strong evidence (BF > 10) for differential methylation

is typically obtained with two or more replicates. Taken to-

gether with results from real data (Fig. 3; Figures S8f, g, S9

and S10 in Additional file 4) we expect that three bio-

logical replicates with only modest sequencing coverage

are sufficient to detect larger differential methylation

changes in controlled molecular biology studies. As methy-

lation modification level changes in disease studies can be

modest, our results support the use of larger sample sizes

even at the price of sequencing coverage.

To gain more statistical power for managing biological

variation one can move from the individual cytosine

level to the loci level [7]. In Lux, this is implemented by

assuming that the methylation levels of cytosines within

a locus follow the same μ distribution while allowing

variation between individual cytosines within a locus

(Figure S11a in Additional file 4; see "Materials and

methods"). We scanned the 14 loci with window-length

100 bp and 50 bp step size (Table S5 in Additional file 5;

see "Materials and methods"). Altogether, we identified

16 windows from six different loci having BF > 1; as ex-

pected, 14 out of these 16 windows exhibited increased

5mC and decreased 5hmC levels in Tet2kd compared

with v6.5 cells. As an example, this approach led to pos-

terior distributions on the locus chr15:61,868,740–

61,868,840 having great kurtosis (BF > 1e16; Fig. 4a) even

though the individual cytosines, of which only two have

BF > 1, are variably methylated across the locus and be-

tween biological replicates (Fig. 4b). In other words, the pro-

posed loci level analysis scheme achieves greater sensitivity

for detecting modest changes in methylation, which is an

anticipated feature of studies without biological replicates or

with large biological variability. Additionally, comparison of

these loci-level differential methylation analysis results with

the independent CMS-IP and MeDIP validation data shows

that Lux is more accurate in detecting differential methyla-

tion than MOABS (Figure S11b in Additional file 4).

DNA demethylation dynamics during mouse T-cell

development

To further demonstrate the applicability of Lux for analyz-

ing dynamic DNA methylation/demethylation changes
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during T-cell development, we measured DNA modifica-

tions for five loci in double positive (DP), CD4 single posi-

tive (SP) and naïve CD4 T cells using targeted BS and

oxBS sequencing. The five loci distributed in Il6ra, Prkcq,

Zbtb7b (two loci), and Pax5 were selected because they

are important for mouse T-cell development and 5hmC

levels were dynamically changed during mouse T-cell de-

velopment based on an antibody-based assay [52]. The

resulting methylome snapshots of three biological repli-

cates enabled us to study DNA methylation through three

consecutive developmental stages during mouse T-cell de-

velopment at single-base resolution.

The sequencing libraries were spiked with stretches of

unmethylated, methylated and hydroxymethylated DNAs

as described previously (see "Materials and methods").

Strikingly, when estimating the experimental parameters

as described above, each cytosine in the hydroxymethy-

lated control DNA was estimated to be lowly hydroxy-

methylated (p(5hmC) ≃ 0.1) contrary to our prior belief

of ~90 % purity of the 5hmCTP mix (Figure S12a in

Additional file 4; Table S6 in Additional file 5). To con-

firm the impurity of the 5hmCTP mix, we performed a

dotblot assay to quantify the 5hmC level in the new

spike-in 5hmC-containing oligonucleotides used in this

study (Figure S12b in Additional file 4). Indeed, the dot-

blot assay results suggest a ~10-fold decrease of 5hmC

levels in the new 5hmC spike-in control. Lux took the

impurity of the 5hmCTP mix into account automatically

through integrative analysis of all modifications and all

spike-in controls and updated the prior distributions in

light of the experimental data (Figure S12a in Additional

file 4); hence, the resulting experimental parameter esti-

mates were in the expected range (Table S7 in Additional

file 5). For instance, the posterior mean of oxeff varied

from 0.86 to 0.94 (Figure S12c in Additional file 4). Im-

portantly, none of the existing tools would be able to

correct these kinds of biases in the control data and/or

experimental parameters.

Next, we estimated the methylation status of all of the

cytosines with at least 10× coverage across all nine sam-

ples, that is, we analyzed 423 cytosines (64 are in a CpG

context; Table S7 in Additional file 5). We first repeated

the same correlation analysis between biological repli-

cates as for the embryonic stem cell data above. The cor-

relations for C and 5mC levels are again very high for

both Lux and MLML (data not shown). Interestingly, in

our T-cell data the 5hmC correlations (Figure S12d in

Additional file 4) are also notably higher compared with

the v6.5 data (Fig. 2d). Importantly, Lux achieves con-

sistently higher correlation values than MLML, although

the amount of increase is smaller than in the embryonic

stem cell data. For T-cell data, where oxidation efficiencies

are consistently good (Figure S12c in Additional file 4),

MLML is able to estimate consistent 5hmC levels be-

tween replicates, whereas for the embryonic stem cell

data, where oxidation efficiencies exhibit more variation

(Fig. 1e), 5hmC estimates from MLML are less consist-

ent. The Lux method, in turn, provides more consistent

5hmC estimates both for the embryonic stem cell and

T-cell data. Overall, our results reveal that Lux is not-

ably more consistent across biological replicates than

previous methods, thus suggesting that utilization of

experimental parameters improves the quantification

of cytosine modification levels.

We next detected differentially methylated cytosines in

a CpG context between any two cell types and identified

18, 29, and 17 differentially methylated cytosines (BF > 1)

from the comparisons of DP versus CD4 SP, DP versus

naïve CD4, and CD4 SP versus naïve CD4, respectively.

Altogether, 30 unique differentially methylated cytosines

were identified (Figure S12e in Additional file 4; Table S6

in Additional file 5). The rest of the cytosines were mostly

methylated in the three stages of development (average

5mC levels are 0.85, 0.84, and 0.77 in DP, CD4 SP, and
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naïve CD4 cells, respectively; Table S6 in Additional file

5). The average 5mC level of differentially methylated cy-

tosines decreases during the transitions from DP (0.71) to

CD4 SP (0.59) and further to naïve CD4 (0.32) (Figure

S12e in Additional file 4; Table S6 in Additional file 5).

Simultaneously, the average 5hmC level peaks in DP cells

(0.23, 0.08, and 0.02 in DP, CD4 SP, and naïve CD4 cells,

respectively), supporting the role of oxi-mC species in the

demethylation pathway (Figure S12e in Additional file 4;

Table S6 in Additional file 5). Collectively, we detected

gradual loss of 5mC during the transition from DP stage

to naïve CD4 stage within the three loci, which are im-

portant in mouse T-cell development. Interestingly, one of

the CpG dinucleotides that lost 5mC resides within a de-

tected canonical E-box motif occurrence in Il6ra (Fig. 5a).

Il6ra is not expressed in DP cells but it is highly expressed

in CD4/CD8 SP and naïve CD4/CD8 cells (Fig. 5b) [52–

54]. As many transcription factors binding the canonical

E-box motif are expressed during T-cell development [55],

and as DNA methylation is known to alter DNA conform-

ation and conformational changes in turn alter binding to

E-box motifs [56], it is plausible that this locus is occupied

by one or more readers of 5mC in DP cells and/or readers

of oxi-mC or unmodified cytosine in CD4 SP and naïve

CD4 cells.

Integrative analysis of genome-wide BS-seq, TAB-seq, and

fCAB-seq data

To further demonstrate the applicability of Lux in a

genome-wide setting, we analyzed recently published

BS-seq, TAB-seq, fCAB-seq data sets from two-cell em-

bryos [57]. Notably, the introduction of fCAB-seq allows
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the identification of 5fC, and consequently the cytosine-

specific probability vector θ = [p(C), p(5mC), p(5hmC),

p(5fC)] (Σθ = 1) is four-dimensional. First, we derive the

required statistical model by stating the propagated

probabilities of the possible outcomes of the BS-seq,

TAB-seq and fCAB-seq assays (Additional file 3; Figure

S13 in Additional file 4). Besides the aforementioned bi-

sulfite conversion (BSeff ) and inaccurate bisulfite conver-

sion (BS*eff ) efficiencies and sequencing error (seqerr),

here we considered labeling (labeff ), oxidation (oxeff ),

and protection (proeff ) efficiencies involved in TAB-seq

and fCAB-seq assays (Figure S13 in Additional file 4).

First, we confirmed using an in silico simulation ap-

proach that we can simultaneously identify experimental

parameters and methylation levels accurately from the

data (Figure S14a in Additional file 4). Indeed, our simu-

lations with different realistic methylation level/coverage

settings demonstrate Lux’s ability to produce consistent

(i.e., unbiased) methylation level estimates with notably

smaller variance than the frequency method estimator.

As expected, the frequency estimator produces often

negative methylation level estimates in the cases of low

5mC (hypo-5mC) and/or 5fC (hypo-5fC). This is an im-

portant point because cytosines with negative estimates

are typically ignored from downstream analysis.

Next, we estimated the four methylation modification

levels of the common (N = 12,350,189), maternal (N =

477,179) and paternal (N = 32,966) cytosines in a CpG

context with at least 10× coverage (Fig. 5c; Figure S14b

in Additional file 4; see "Materials and methods"). The

experimental values were set based on the values re-

ported in Wang et al. [57] (see "Materials and methods").

As reported previously, the 5hmC and 5fC levels are

modest in general (Fig. 5c; Figure S14b in Additional file 4);

for instance, 79 % and 46 % of the common cytosines

are lowly hydroxided (p(5hmC) ≤ 0.1) and/or formylated

(p(5fC) ≤ 0.1), respectively (Fig. 5c). However, for some

cytosines 5hmC and 5fC modification levels can reach

up to 0.3 and 0.6, respectively. Intriguingly, the distribu-

tions of the C and 5mC levels differ between the com-

mon and maternal cytosines (Fig. 5c; Figure S14b, top in

Additional file 4) as 10 % and 22 % of the common and

maternal cytosines are methylated (p(C) ≤ 0.1), respect-

ively. Lux automatically quantifies the amount of uncer-

tainty in estimated cytosine modification levels for each

cytosine via the full posterior distribution. As expected,

the standard deviations of the estimated posterior distri-

butions of methylation levels decrease when the sequen-

cing coverage increases (Figure S14c in Additional file

4). Notably, almost half of the considered cytosines had

negative 5mC or 5fC levels and would thus be ignored

(or truncated to zero) when the frequency method esti-

mator is used (Fig. 5d; see Figure S14d in Additional file

4 for the 5mC and 5hmC comparisons). As expected,

the similarity between the Lux and frequency method

estimates improves when cytosines with negative fre-

quency method estimates are ignored, but simultan-

eously almost half of the data is also ignored (Figure

S14e in Additional file 4), whereas Lux provides esti-

mates of methylation modification levels which are both

consistent (sum up to one) and take into account the

experiment-specific variation in biochemistry, i.e., non-

ideal experimental parameters. Finally, we visualized the

estimated C, 5mC, 5hmC, and 5fC levels across the

locus discussed in Wang et al. [57] (Fig. 5e). Note that

Lux can estimate all the four different modification

levels (instead of 5mC, 5fC and 5mC + 5hmC + 5fC) and

that the methylation levels of each cytosine sum up to

one.

Applicability of Lux to analyze other derivatives of

traditional bisulfite sequencing data

Above we described how Lux can analyze BS-seq, oxBS-

seq, TAB-seq and fCAB-seq data together with their

experimental parameters. Importantly, Lux is also applic-

able for the analysis of CAB-seq, redBS-seq and MAB-seq

data with minor changes. Another bisulfite-based tech-

nique, termed CAB-seq, was recently published for detect-

ing 5caC at nucleotide resolution [36], making it possible

to differentiate C, 5mC, 5hmC and 5caC. This requires an

integration of CAB-seq data with BS-seq and oxBS-seq/

TAB-seq data, which is easily implemented in Lux by de-

fining the generative model for the outcomes of a CAB-

seq experiment in terms of its related experimental pa-

rameters (Fig. 6a; Additional file 3) and combining that

with the likelihood functions of BS-seq and oxBS-seq/

TAB-seq data. An additional bisulfite-based technique,

redBS-seq, has been developed for detecting 5fC at indi-

vidual cytosine sites. Interestingly, Booth et al. [35] re-

ported that almost 30 % of the 5fC estimates obtained

using the frequency method estimator were negative,

which were then discarded from the subsequent ana-

lysis. This problem can only be resolved by using the in-

tegrative analysis of all cytosines as implemented in

Lux. Similar to CAB-seq, Lux can be straightforwardly

extended to redBS-seq and MAB-seq data (Fig. 6b, c;

Additional file 3). More generally, the hierarchical

framework implemented in Lux can be extended to

process data from various sequencing assays with se-

quential, error-prone experimental steps [33].

Conclusions

Here, we present a unified statistical framework, Lux, for

analyzing BS-seq and oxi-mC-seq data sets. Lux provides

several major improvements and extensions compared

with existing methods; for instance, it integrates BS-seq

and oxi-mC-seq measurements, models bisulfite conver-

sion and oxidation efficiencies, various chemical labeling
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and protection steps and sequencing errors, and analyzes

data from replicated experiments. No previous computa-

tional analysis methods exist which would have the above-

mentioned functionalities. Lux’s performance on detecting

experimental parameters, methylation levels, biological

variation and differential methylation was assessed exten-

sively on real and simulated data on various realistic

methylation levels ((C, 5mC, 5hmC): (0.8, 0.1, 0.1), (0.1,

0.8, 0.1), (0.6, 0.1, 0.3), (0.1, 0.6, 0.3), (0.7, 0.25, 0.05), (0.2,

0.7, 0.1); (C, 5mC, 5hmC, 5fC): (0.8, 0.1, 0.05, 0.05), (0.1,

0.8, 0.05, 0.05), (0.6, 0.1, 0.15, 0.15), and (0.1, 0.6, 0.15,

0.15) corresponding to different scenarios of strong hyper-

and hypomethylation, weak hyper- and hypomethylation,

as well as active demethylation (see also Figure S14b in

Additional file 4)). Through Bayesian inference, experi-

mental parameters and their associated uncertainties

propagate to the final estimates of methylation levels,

which makes it possible to compare samples with different

experimental parameters in a meaningful and statistically

justified manner. We have shown how the accuracy and

sensitivity of methylation estimates and the detection of

differential methylation are improved compared with pre-

vious methods when the non-ideal, sample-specific experi-

mental parameters and replicates are taken into account.

Our results support the previous guidelines for sequen-

cing depth requirements for discriminating completely

methylated cytosines from completely unmethylated cyto-

sines. Importantly, we further examined the detectability

of endogenous levels of 5hmC and demonstrated the im-

portance of biological replicates as well as experimental

parameters in detecting subtle changes in 5hmC or other

cytosine modifications.

Our detailed analysis of selected genomic loci revealed

TET2-dependent demethylation of individual cytosines

occurring at promoters and enhancers in mESCs. More-

over, we identified progressive loss of 5mC, leading to

production of 5fC, 5caC or unmodified cytosine (these

three cytosine species are experimentally indistinguishable

in our experimental conditions) in genes known to be

important for mouse T-cell development. The observed

effect of TET2 was only partial, suggesting that demethyl-

ation is controlled in parallel by multiple enzymes. As re-

ported previously, 5mC and 5hmC were only observed at

cytosines in a CpG context. Our analysis of biological rep-

licates illustrated the stochastic nature of demethylation.
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The observed stochasticity emphasizes the importance of

biological replicates, especially when the focus is on study-

ing differential methylation of individual cytosines. For

instance, the inclusion of the exon 5 of Ptprc during

lymphocyte activation is governed by methylation sta-

tus [10]. Low levels of DNA methylation on exon 5

allow CTCF binding and cause RNA polymerase II

pausing, thus resulting in exclusion of exon 5 [10]. Pre-

vious studies suggested that the interaction between

CTCF and DNA is affected by CpG methylation, even

at a single CpG site. Although antibody-based tech-

niques can be useful in detecting larger methylated

loci, their resolution is limited to the range of hundreds

of nucleotides. Furthermore, quantification and compari-

son of absolute proportions of different cytosine modifica-

tions from immunoprecipitation data are challenging,

whereas Lux automatically estimates absolute proportions

of Cs, 5mCs, and 5hmCs from BS-seq and oxBS-seq data

at single nucleotide resolution.

Deciphering the active demethylation pathway will re-

quire deconvolution of the effects of individual enzymes

to understand their orchestrated action. Moreover, it will

be intriguing to shed light on the interplay between tran-

scription factor binding and methylation using DNase

footprinting or ChIP-exo and BS-seq/oxi-mC-seq ap-

proaches, respectively. In addition, the interaction be-

tween DNA and other transcriptional factors can be

affected by DNA methylation at a single CpG site, such

as C/EBP [58]. It will be very interesting to examine how

oxidized 5mCs (5hmC, 5fC, and 5caC) affect the DNA

binding capability of transcriptional factors to regulate

gene expression. Although 5hmC, 5fC, and 5caC binding

proteins have been identified in mESCs and neural pro-

genitor cells, many transcriptional factors have their

own binding motif which might not be captured with

the approach of Spruijt et al. [59]. In combination with

the enrichment of certain transcription factors, single-

base resolution mapping of oxi-mC and Lux analysis

will provide insights into the effect of DNA modifica-

tions on DNA binding of transcriptional factors either

genome-wide or at the loci-specific scale. In addition,

understanding the role and importance of 5hmC and

other further oxidized cytosine modifications in tran-

scription will require temporal approaches for measur-

ing active transcription, such as nascent-seq, and the

capability of detecting temporal changes in methylation

levels at high resolution. In conclusion, all of the afore-

mentioned and many additional future research questions

will benefit greatly from Lux’s unique features of account-

ing for sample-specific variation in experimental parame-

ters when quantifying all cytosine modification levels from

replicated BS-seq and oxi-mC-seq data sets. All of Lux’s

functionality described above is implemented in the Lux

software, which has been made freely available.

Materials and methods
Embryonic stem cell culture and genomic DNA isolation

mESCs (v6.5) were cultured in Knockout DMEM (Invi-

trogen) with 20 % embryonic stem cell qualified fetal

bovine serum (Germini Bio-product), 2 mM L-glutam-

ine, 0.1 mM 2-mercaptoethanol, 0.1 mM nonessential

amino acids, 50 units/ml penicillin/streptomycin and

1000 U/ml ESGRO (LIF; Chemicon). Tet2 was stably

knocked down in v6.5 cells using electroporation with

pSUPER-puro-Tet2shRNA (320V, 250F) followed by

1.5 μg/ml puromycin selection for 7–10 days [60].

Genomic DNA was isolated with the DNeasy blood

and tissue kit (Qiagen) by following the manufacturer’s

instructions. Three independent cultures of wild-type

and Tet2kd samples were used.

Validation of Tet2 knockdown in mESCs

Tet2 knockdown efficiency was measured by quantitative

PCR (qPCR) and western blot [49]. For qPCR, total RNA

was isolated with an RNeasy kit (Qiagen, Chatsworth, CA,

USA) and cDNA was made using SuperScript III reverse

transcriptase (Invitrogen). qPCR was performed using

FastStart Universal SYBR Green Master mix (Roche,

Mannheim, Germany) on a StepOnePlus real-time PCR

system (Applied Biosystems, Foster City, CA, USA). Gene

expression was normalized to Gapdh. Primers used for

qPCR are listed below:

Tet1 forward: GAGCCTGTTCCTCGATGTGG

Tet1 reverse: CAACCCACCTGAGGCTGTT

Tet2 forward: AACCTGGCTACTGTCATTGCTCCA

Tet2 reverse: ATGTTCTGCTGGTCTCTGTGGGAA

Gapdh forward: GTGTTCCTACCCCCAATGTGT

Gapdh reverse: ATTGTCATACCAGGAAATGAGCTT

For western blot, nuclear proteins from parental and

Tet2 knock-down mESCs were extracted as previously

described [61]. Nuclear protein (30 μg) was loaded on

4–12 % Bis-Tris gels (Invitrogen) and transferred to

nitrocellulose membrane. Tet2 was detected using anti-

Tet2 (Abcam) antibodies. Loading control, beta-actin,

was detected using anti-beta actin from Abcam.

Mice

We used 4–6-week-old female C57BL/6 mice obtained

from Jackson labs for cell isolation. The mice were

housed in a pathogen-free animal facility in the La Jolla

Institute for Allergy and Immunology and were used

according to protocols approved by the Institutional

Animal Care and use Committee (IACUC).

Preparation of thymocyte subsets

Subsets of thymocytes were isolated by cell sorting as

previously described [54], after cell surface staining using
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CD4 (GK1.5), CD8 (53–6.7), CD3ε (145-2C11), and CD24

(M1/69) (all from Biolegend). DP cells were CD4+ CD8

int/hi; CD4 SP cells were CD4CD3 hi, CD24 int/lo. Per-

ipheral subsets were isolated after pooling spleen and

lymph nodes. T cells were enriched by negative isolation

using Dynabeads (Dynabeads untouched mouse T cells,

11413D, Invitrogen). After surface staining for CD4

(GK1.5), CD8 (53–6.7), CD62L (MEL-14), CD25 (PC61)

and CD44 (IM7), naïve CD4 + CD62LhiCD25-CD44lo

were obtained by sorting (BD FACS Aria). Three cell isola-

tions from independent mice were prepared for each of

the three thymocyte subsets.

Synthesis of cytosine-, 5mC- and 5hmC-containing control

oligonucleotides

Spike-in cytosine-, 5mC- and 5hmC-containing control

oligonucleotides were synthesized using unmethylated

lambda DNA (Promega) as template by PCR containing

dCTP, dmCTP (5mC) or dhmCTP (5hmC), respectively.

Regular dCTP was purchased from Promega, and

dmCTP and dhmCTP were purchased from Zymo Re-

search. PCR primers for control oligonucleotides are

listed below:

C control oligo forward:

ATTGTATGTATTGGTTTATTG

C control oligo reverse:

TTATCACATTCAAACATTAAT

5mC control oligo forward:

TAGATAGTAAATATAATGTGAGA

5mC control oligo reverse:

ATAAATCATCAACAAAACACAA

5hmC control oligo forward:

GTTTTTTTGAATAATAAATGTTA

5hmC control oligo reverse:

TTTATCACCTCTAAAATATATCA

PCR was performed using REDtaq DNA polymerase

(Sigma) by following the manufacturer’s instructions.

BS-seq and oxBS-seq

Purified genomic DNA with spike-in control oligonucle-

otides (1:50) was divided into two parts. One part was

directly treated with sodium bisulfite, while the other

was treated with KRuO4 to oxidize 5hmC to 5fC,

followed by bisulfite treatment. oxBS experiments were

performed by following the procedures described by

Booth et al. [32, 62]. Briefly, up to 1 μg ethanol-

precipitated genomic DNA was purified by Micro Bio-

Spin column (SSC buffer; Bio-Rad) and denatured in

24 μl 0.05M NaOH at 37 °C for 30 min. Denatured gen-

omic DNA was snap-cooled on ice for 5 min and

followed by adding 1 μl KRuO4 solution (15 mM in

0.05M NaOH). The reaction was performed on ice for

1 h with gentle flicks every 10–15 min. Next, reacted

genomic DNA was purified by Micro Bio-Spin column

(SSC buffer; Bio-Rad). Bisulfite reaction was performed

using the MethylCode bisulfite conversion kit (Invitro-

gen) by following the manufacturer’s Instructions. Loci-

specific primers against bisulfite-treated genomic DNA

were designed through the online MethPrimer software.

Regions of interest were amplified using oxBS- and BS-

treated genomic DNA as templates by using the Pyro-

Mark PCR kit (Qiagen) and further purified by AmpuXP

beads (Beckman coulter) in 96-well PCR plates. To pre-

pare libraries compatible with MiSeq, the concentration

of each amplicon was quantified by Nanodrop and nor-

malized to desired concentrations. In each condition,

normalized amplicons were pooled together and followed

by illumina library preparation using TruSeq DNA library

preparation kit (Illumina). Prepared libraries were

amplified for four cycles and purified by two rounds of

AmpuXP beads to remove the primer dimmers. The

quality of libraries was examined by Bioanalyzer (Agilent)

and then subjected to sequencing on MiSeq.

Preprocessing of BS-seq and oxBS-seq data

First the sequencing adapters were removed from the

reads when encountered. Bismark v0.7.12 [63] was used

to align the BS and oxBS reads against the mm9 refer-

ence genome and lambda phage DNA simultaneously.

The alignment was done using the paired-end Bowtie 2

[64] backend with the following parameters: -I 0 -X

2000 -N 0. The “bismark_methylation_extractor” script

distributed with the Bismark aligner was used to ex-

tract the number of unconverted and converted

read-outs for each cytosine with the following parameters:

–paired-end –CX –cutoff 10 –no_overlap –bedGraph

–counts. The cytosines having at least ten read-outs

across all six samples were taken into account. The

control cytosines located on the Watson strand were

used in the analysis.

Derivation of the statistical model

We first describe the statistical model to quantify C,

5mC and 5hmC from BS-seq and oxBS-seq data and

later extend Lux to other oxi-mC species and data types.

For a given cytosine, we use a Dirichlet random variable

of order three to model proportions of different cytosine

methylations θ = [p(C), p(5mC), p(5hmC)] (Σθ = 1) sim-

ultaneously and, for a given value of θ, we define BS-seq

and oxBS-seq likelihoods to have binomial distributions.

Thus, our model could be described as Dirichlet-

binomial2, where the binomial squared refers to the two

binomial distributions used in modeling BS-seq and

oxBS-seq data (Figure S2a in Additional file 4). Our

model can also be viewed as an extension of a previously

presented beta-binomial model, which is inadequate for
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simultaneous analysis of BS-seq and oxBS-seq data:

MOABS [43] uses the beta distribution to model separately

the probabilities p(C) + p(5mC or 5hmC) = 1 (BS-seq) and

p(C or 5hmC) + p(5mC) = 1 (oxBS-seq). Our generalization

makes it possible to analyze BS-seq and oxBS-seq data

(and later any number and combination of BS-seq and/or

oxi-mC-seq data sets) together and correctly deconvolve

the proportions of different cytosine modifications. This

procedure is explained in detail below.

To take into account the bisulfite conversion (BSeff ),

inaccurate bisulfite conversion (BS*eff ) and oxidation

(oxeff ) efficiencies as well as sequencing errors (seqerr),

we have to define their effects on the BS-seq and oxBS-

seq read-outs. Motivated by the chemical steps involved

in BS-seq and oxBS-seq experiments, we define the ef-

fects of BSeff, BS*eff, oxeff and seqerr on each of the cyto-

sine modifications (C, 5mC, 5hmC; Fig. 1b, c; Figure S1b

in Additional file 4) and derive the BS-seq- and oxBS-

seq-specific emission probabilities (propagated probabil-

ities; Figure S1c in Additional file 4). That is, we define

the probability of observing “C” in a BS-seq experiment

given that the nucleotide is unmethylated, pBS(“C”|C),

as:

pBS “C”jCð Þ ¼ 1−BSeffð Þ 1−seqerrð Þ þ BSeffseqerr;

and similarly for the other cases:

pBS “C”j5mCð Þ ¼ 1−BS�effð Þ 1−seqerrð Þ þ BS�effseqerr
pBS “C”j5hmCð Þ ¼ 1−BS�effð Þ 1−seqerrð Þ þ BS�effseqerr

poxBS “C”jCð Þ ¼ 1−BSeffð Þ 1−seqerrð Þ þ BSeffseqerr
poxBS “C”j5mCð Þ ¼ 1−BS�effð Þ 1−seqerrð Þ þ BS�effseqerr

poxBS “C”j5hmCð Þ ¼ oxeff ½ 1−BSeffð Þ 1−seqerrð Þ þ BSeffseqerr�

þ 1−oxeffð Þ½ 1−BS�effð Þ 1−seqerrð Þ

þ BS�effseqerr�:

We follow the standard practice and ignore “A” and

“G” read-outs as the reads containing these read-outs

are discarded during the mapping (their impact on the

estimates would be negligible), and, consequently, the

probability of the complementary events, i.e., reading

“T” instead of “C”, are one minus the aforementioned

probabilities. Parameters BSeff, BS*eff, oxeff and seqerr are

shared across cytosines but, importantly, specific for

each biological experiment.

In practice, BS-seq and oxBS-seq experiments are

carried out for a collection of cells, which comprise a

cytosine population. Consequently, the probability of

sequencing a “C” (for a given cytosine) in BS-seq ex-

periment is obtained by weighting the above emission

probabilities with the (unknown) cytosine proportions,

θ = [p(C), p(5hmC), p(5hmC)] (Figure S1d in Additional

file 4):

pBS “C”ð Þ ¼ p Cð ÞpBS “C”jCð Þ

þ p 5mCð ÞpBS “C”j5mCð Þ

þ p 5hmCð ÞpBS “C”j5hmCð Þ

poxBS “C”ð Þ ¼ p Cð ÞpoxBS “C”jCð Þ

þ p 5mCð ÞpoxBS “C”j5mCð Þ

þ p 5hmCð ÞpoxBS “C”j5hmCð Þ:

In other words, pBS(“C”) and poxBS(“C”) are the probabil-

ities of obtaining “C” in a single BS-seq and oxBS-seq

draw, respectively, from a cytosine population with pro-

portions p(C), p(5hmC) and p(5hmC). Thus, individual

“C” and “T” read-outs from BS-seq and oxBS-seq are Ber-

noulli distributed where the probabilities of observing “C”

are pBS(“C”) and poxBS(“C”), respectively. Consequently,

the counts of “C” read-outs, NBS,C and NoxBS,C, from

NBS BS-seq and NoxBS oxBS-seq draws, respectively, are

binomially distributed (Figure S2a in Additional file 4).

Because BS-seq and oxBS-seq data are conditionally

independent given model parameters, the likelihood of

data D = (DBS,DoxBS) for a single cytosine is the product

of the BS-seq and oxBS-seq likelihoods, p(DBS|θ,

BSeff,BS*eff,seqerr) and p(DoxBS|θ,BSeff,BS*eff,oxeff,seqerr).

Thus, under the binomial model the likelihood function

has the following form:

p DBS;DoxBSjθ;BSeff ;BS�eff ; oxeff ; seqerrð Þ
¼ p DBSjθ;BSeff ;BS�eff ; seqerrð Þ p DoxBSjθ;BSeff ;BS�eff ; oxeff ; seqerrð Þ

¼
NBS

NBS;C

� �

pBS }C}ð ÞNBS;C 1−pBS }C}ð Þð ÞNBS‐NBS;C

NoxBS

NoxBS;C

� �

poxBS }C}ð ÞNoxBS;C 1−poxBS }C}ð Þð ÞNoxBS−NoxBS;C
:

The complete likelihood is obtained by multiplying the

likelihoods of all cytosines in the studied regions and in

the control oligonucleotides.

Biological variation is modeled hierarchically (see also

Figure S2a in Additional file 4) by defining a condition-

specific mean μ for methylation proportions, and μ is

assigned a Dirichlet prior with hyperparameters α = (0.8,

0.8, 0.8), where α was selected to increase sensitivity of

the estimation even with low sequencing coverage. The

effect of α on estimation is studied systematically in Figure

S15a in Additional file 4. The sensitivity of the methyla-

tion estimation is greater and “bias” is smaller (i.e., fewer

data are needed to update the posterior), when the values

of the elements of α decrease. On the other hand, esti-

mates have larger variance when more a sensitive param-

eter is used. Thus, in the cases of relatively high coverage

we recommend the use of the default value of α.

Replicate specific methylation proportions θ are de-

fined to follow Dir(gμ + 1) distribution, where g repre-

sents biological variation around μ and was given a
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gamma prior with the shape parameter a = 2 and rate

parameter b = 2/6. The vector 1 is added in order to pre-

vent concentration of the probability mass in a few com-

ponents. The presented statistical model is described in

detail in Additional file 3.

Prior and hyperprior definitions

The knowledge on the purity of spike-in controls was

incorporated in the model through Dirichlet priors. The

parameters of the priors αC, α5mC and α5hmC were

defined so that they reflected expected and previously

reported purities of the dNTP, 5mC dNTP and 5hmC

dNTP mixes (Table S1 in Additional file 5) [28].

The probability model of the experimental parameters

BSeff, BS*eff, oxeff and seqerr is defined as a hierarchical

structure. Each experiment has its own set of parameter

values which are drawn from their corresponding prior

distributions. The shapes of the prior distributions are in

turn controlled by corresponding hyperpriors which are

defined by the user.

As the parameters BSeff, BS*eff, oxeff and seqerr repre-

sent probabilities, an intuitive way of eliciting the prior

knowledge would be by defining Beta distributions

through pseudo-counts or by specifying means and

standard deviations. However, as the mean and standard

deviation of each parameter depend on the experimen-

tal setup, we modeled them with hyperparameters. For

each of the parameters, the hyperparameter specifying

the mean models the expected value of that parameter

in each experiment, and the parameter specifying the

standard deviation models the spread of the values over

separate experiments.

When implementing the hierarchical probabilistic model

of the experimental parameters BSeff, BS*eff, oxeff and seqerr
and their respective hyperparameters, we decided not to

use the straightforward Beta parameterization but instead

use normal distributions and transformations of normal

distributions. This enables us to use noncentered parame-

terizations (NCPs) [65], which gives a significantly faster

sampler than one implemented with Beta distributions.

The parameters BSeff, BS*eff, oxeff and seqerr are modeled

with logistic-normal distributions [66]. The unconstrained

expected values of the corresponding distributions are

modeled with normal distributions and the correspond-

ing standard deviations with log-normal distributions

(see Figure S2a in Additional file 4; Table S1 in Additional

file 5). The values of the hyperhyperparameters were se-

lected so that they will produce distributions reflecting

our prior knowledge on BSeff, BS*eff, oxeff and seqerr; that

is, BSeff should be close to 1, oxeff should be around 0.95

and BS*eff and seqerr should be close to zero. The estima-

tion procedure is not sensitive to the selection of the

values of the hyperhyperparameters (Figure S15b in

Additional file 4). The default values should be applicable

for most of the cases. For a more detailed description,

see Additional file 3.

MCMC estimation of posterior distributions

After assigning priors and hyperpriors for the model pa-

rameters, the next step is to condition the model on data

and derive posterior distribution of the model parameters.

We use the Hamiltonian Monte Carlo (HMC) strategy

with the No-U-turn (NUTS) sampler [48] to sample the

posterior distributions. NUTS as implemented in Stan

v2.2.0 [67] was used in all the analyses with the following

settings: method = sample algorithm = hmc engine = nuts

max_depth = 8 stepsize = 0.02. The default numbers of

warm-up (1000) and sampling (1000) iterations were run.

The chains were initialized with values sampled from the

priors. The convergence of the MCMC chains was moni-

tored using the built-in Gelman and Rubin's convergence

diagnostic, the potential scale reduction factor [68].

Detection of differential methylation

Differential methylation between two conditions is quan-

tified by assessing the difference in the posterior distri-

butions of μ in conditions A and B. For this, we define

Δμ = μA − μB, where the difference is taken element-wise.

In addition, the null hypothesis H0 and alternative hy-

pothesis H1 are defined as Δμ = 0 and Δμ ≠ 0, respect-

ively. The BF is a measure of the evidence in the data D

in support of H1 over H0 BF = p(D|H1)/p(D|H0). The

calculation of the BF requires evaluation of the marginal

likelihoods of the data, which unfortunately do not have

closed-form solutions. We resort to the Savage-Dickey

density ratio for approximating the BF as BF ≃ p(Δμ =

0|H1)/p(Δμ = 0|D,H1). Next we will go through how we

calculated the numerator and denominator.

The value of the probability density function of the

difference of two independent Dirichlet random vari-

ables at the origin (0, 0, 0) can be solved analytically (see

Additional file 3). Thus, if μ1, μ2 ~ Dir((0.8, 0.8, 0.8)),

then p(Δμ = 0|H1) = pμ1-μ2((0, 0, 0)) ≃ 2.19712.

To calculate the value p(Δμ = 0|H1,D), we use two

MCMC chains containing posterior samples of μA and μB,

corresponding to the conditions A and B, and estimate

the empirical posterior distribution of the difference Δμ.

Here the estimation was done using a standard kernel

density estimation approach with the Gaussian kernel (the

routine scipy.stats.gaussian_kde in SciPy [69]). The density

is estimated based on all the pair-wise differences calcu-

lated between the samples of the two chains; in the case of

N samples per chain there are altogether N2 differences

used in the kernel density estimation. The bandwidth of

the kernel was selected to be one-fourth of the estimate

given by Scott’s rule [70]. The scaling factor of ¼ for the

bandwidth was included to improve the accuracy of the

kernel density estimates. The accuracy of the kernel
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density estimation was assessed in the following way: 1)

sample data from two known Dirichlet distributions; 2)

calculate the kernel density estimate for the difference be-

tween the two Dirichlet distributed variables using the

sampled data; and 3) compare the estimate with the true

value obtained using the analytical formula.

We systematically studied the effect of α on the detec-

tion of differential methylation (Figure S15c in Additional

file 4). Small α values result in more sensitive differential

detection estimation and larger BF values (Figure S15c in

Additional file 4). Note that the increase in the absolute

value of BF is mainly due to the denominator term, which

is calculated based on the prior in the Savage-Dickey es-

timator. In the case of the Jeffreys non-informative prior

(α = (0.5,0.5,0.5); which would produce most sensitive

methylation estimates), the Savage-Dickey density ratio

is not applicable because the denominator calculated

based on the prior is always 0.

Detection of differential methylation at the locus level

At the locus level, Lux accounts for two types of variability:

variability between individual cytosines within a locus, and

variability in individual cytosine methylation levels between

biological replicates. This is achieved by introducing an

additional level to the Lux model (Figure S11 in Additional

file 4). That is, variation in methylation across a locus is

modeled hierarchically by first defining a condition-specific

mean μ for methylation proportions in a locus, and μ is

assigned a Dirichlet prior with hyperparameters α = (0.8,

0.8, 0.8), where α was selected to increase sensitivity of the

estimation even with low sequencing coverage. Methyla-

tion proportions ν over individual cytosines within a locus

are defined to follow Dir(gμ + 1) distribution, where g rep-

resents biological variation around μ and was given a

gamma prior with the shape parameter a = 2 and rate par-

ameter b = 2/6. The vector 1 is added in order to prevent

concentration of the probability mass in a few components.

Finally, replicate-specific methylation proportions θ are de-

fined to follow Dir(fν +1) distribution, where f represents

variation around ν and was given a gamma prior with the

shape parameter a = 2 and rate parameter b = 2/6. Differen-

tial methylation between two conditions is quantified as

described above by assessing the difference in the posterior

distributions of μ in conditions A and B.

To scan our loci, we used a scanning window ap-

proach with window-length 100 bp and step-size 50 bp.

In our analysis we only considered those cytosines which

were in a CpG context. Moreover, we ignored those win-

dows which had less than three cytosines, as those are

better quantified using cytosine-level analysis.

Defining differentially and similarly methylated cytosines

To compare Lux, MOABS, and FET in detecting differ-

ential methylation we have to define sets of differentially

and similarly methylated cytosines. This was done by de-

tecting ten top scoring loci and four low scoring loci

showing differential 5mC and/or 5hmC levels based on

independent CMS-IP and MeDIP measurements [49].

The detection of loci with differential 5mC and 5hmC

was done using the MEDIPS tool [71] with 300 bp win-

dows (p value < 1e-4). All the covered cytosines in a

CpG context (N = 384) were divided into sets of differen-

tially (N = 252) and similarly (N = 132) methylated cyto-

sines based on the aforementioned loci-level information.

The same procedure was carried out while defining differ-

entially and similarly methylated windows in Figure S11b

in Additional file 4.

DNA modification-sensitive assays like MeDIP and

CMS-IP are known to have a CpG density bias. Espe-

cially regions with low CpG densities will result in only

moderate signals, even when fully methylated. Various

methods have been proposed to transform MeDIP-seq-

derived count data into beta-like absolute methylation

values by correcting for CpG densities [71–74]. How-

ever, any experiment-independent bias, like local CpG

density, affects each sample the same way. Therefore, no

normalization of CpG density or other experiment-

independent factors needs to be performed when differ-

ential methylation at a fixed region and between samples

is calculated. For validation of our method, we have fo-

cused on genomic regions identified as differentially

methylated (MeDIP) and differentially hydroxymethy-

lated (CMS-IP) comparing conditions and the selected

regions all have balanced and elevated CpG densities.

Although MeDIP and CMS-IP do not provide informa-

tion on the single nucleotide level, they have been used

to detect differential 5mC and 5hmC successfully. More-

over, it has also been reported that in many cases the

methylation levels of several nearby CpG sites are highly

correlated. Finally, MeDIP and CMS-IP are independent

techniques from BS-seq and oxBS-seq and, thus, provide

orthogonal information.

Using MOABS

To compare Lux with MOABS in detecting differential

methylation we first downloaded the MOABS (v.1.2.7)

binaries from https://code.google.com/p/moabs/. We

generated necessary input files (in the BED format) con-

taining information about methylation calls as described

in the MOABS user guide (v.1.2.2). Then, we carried out

differential methylation analysis of individual cytosines

between two conditions with (“mcomp –doDmrScan =

0 -r c1_r1.bed,c1_r2.bed,c1_r3.bed -r c2_r1.bed,c2_r2.-

bed,c3_r3.bed -m c1.bed c2.bed -c c1_vs_v2.txt”) or

without replicates (“mcomp –doDmrScan 0 -r c1.bed -r

c2.bed -c c1_vs_c2.txt”) using the mcomp module as de-

scribed in the user guide. To carry out differential

methylation of windows, we used mcomp (“mcomp -r
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c1_r1.bed,c1_r2.bed,c1_r3.bed -r c2_r1.bed,c2_r2.-

bed,c3_r3.bed -m c1.bed c2.bed -c c1_vs_v2.txt” and

“mcomp -c c1_vs_v2.txt -f window.bed”) and the obtained

p values were used. Based on the user guide, mcomp

does not support simultaneous analysis of BS-seq and

oxBS-seq data, and thus we analyzed BS-seq and oxBS-

seq data separately.

Binomial test with conversion efficiency

We used the binomial test with the conversion efficien-

cies (BSEff = 0.99) as described in the supplement of [32]

to quantify the presence of 5mC and 5hmC for each

CpG. Since [32] does not provide a way to handle repli-

cates, we combined the replicate-specific p values using

Fisher’s method. We used this strategy to analyze both

wild-type and knockout conditions separately. The ob-

tained p values therefore provide a proxy for the amount

of 5mC and 5hmC; low p values correspond to high

amounts of cytosine modifications. Using a p value

threshold we can decide the presence of 5mC and/or

5hmC in both conditions and call a difference in methy-

lation modification levels, which we defined by using

the minimum of the two p values. Finally, by sliding

the p value threshold from 0 to 1 we can then generate

the ROC graph and the AUC score as illustrated in Figure

S8d in Additional file 4.

Simulation of data

The counts of unconverted read-outs out of N read-outs

from BS-seq and oxBS-seq experiments are assumed to be

binomially distributed random variables with the derived

emission probabilities. The experimental parameters and

methylation levels are varied as indicated.

Downsampling was done by sampling data from bino-

mial distributions defined by the parameters estimated

from the complete data. That is, for a given cytosine and

BS-seq experiment we calculated the fraction of uncon-

verted read-outs, NBS,C/NBS. This value was used as the

success probability parameter, i.e., the probability of ob-

serving “C”. Using the defined binomial distribution, we

sampled a number of “C” read-outs out of N read-outs.

The same procedure was used for oxBS-seq but in that

case we calculated the fractions NoxBS,C/NoxBS.

Kernel density estimation in the open two-dimensional

simplex

A kernel density estimator was applied to data prior to

ternary plotting. To deal with compositional data correctly

we utilized a published method based on the use of the

isometric log-ratio normal kernel (iln) [75].

Comparison with glucMC-qPCR data

The raw BS-seq and oxBS-seq data sets were down-

loaded from the European Molecular Biology Laboratory-

European Bioinformatics Institute ArrayExpress Archive

(E-MTAB-1042). Bismark v0.7.12 [63] was used to align

the BS and oxBS reads against the mm9 reference gen-

ome. The alignment was done using the single-end Bowtie

2 [64] backend with the following parameters: -N 1 –L 20.

The “bismark_methylation_extractor” script distributed

with the Bismark aligner was used to extract the num-

ber of unconverted and converted read-outs for each

cytosine with the following parameters: –cutoff 5 –bed-

Graph –counts. The PCR primers given in [32] were

aligned against the mm9 reference genome and the loca-

tions of the CCGG sites within the loci were extracted.

The methylation levels of the second cytosine within the

CCGG sites were estimated using Lux (α = (0.8, 0.8, 0.8)).

The Booth et al. estimates and glucMS-qPCR measure-

ments were taken from [32].

Integrative analysis of BS-seq, TAB-seq, and fCAB-seq

data

First, we derived the statistical model for the simultan-

eous and integrative analysis of BS-seq, TAB-seq, and

fCAB-seq data. The derivation of BS-seq/TAB-seq/fCAB-

seq model followed the same principle as the aforemen-

tioned derivation of the BS-seq/oxBS-seq model. Briefly,

for a given cytosine, we used a Dirichlet random variable

of order four to model proportions of different cytosine

methylations θ = [p(C), p(5mC), p(5hmC), p(5fC)] (Σθ = 1)

simultaneously. Similarly as in the derivation of the BS-

seq/oxBS-seq model, we define the effects of BSeff, BS*eff,

labeff, oxeff, proeff and seqerr on each of the cytosine modi-

fication (C, 5mC, 5hmC, 5fC) and the BS-seq/TAB-seq/

fCAB-seq read-outs (Additional file 3; Figure S13 in

Additional file 4). Then we derive the BS-seq-, TAB-

seq-, and fCAB-seq-specific emission probabilities

(propagated probabilities; Additional file 3). Finally, for

given a value of θ, we define BS-seq, TAB-seq, and

fCAB-seq likelihoods to have binomial distributions as

in the BS-seq/oxBS-seq model. Consequently, we can

define the complete likelihood function as in the case of

the BS-seq/oxBS-seq model.

The preprocessed BS-seq, TAB-seq, and fCAB-seq data

sets (GSM1386021, GSM1386028, and GSM1386029)

were downloaded from the Gene Expression Omnibus

(GEO) database. We limited our analysis to the cytosines

(common, maternal, and paternal) on the positive strand

because no preprocessed BS-seq data were available

for the cytosines on the negative strand. Moreover,

we only considered the cytosines (N = 12,860,334)

with ≥10× coverage in all three experiments (BS-seq,

TAB-seq, and fCAB-seq).

Because no controls were available for all the experimen-

tal parameters, we set the values of the experimental pa-

rameters to the values reported in the original study [57],

i.e., BSeff = 0.99, labeff = 0.95, oxeff = 0.95, and proeff = 0.8.

Äijö et al. Genome Biology  (2016) 17:49 Page 19 of 22



Moreover, we assumed that BS*eff = 0.001 and seqerr =

0.001. Finally, given the relatively low sequencing coverage

in the genome-wide data, we assigned the Jeffreys prior

for μ, i.e., μ ~Dir(α), where α = (0.5, 0.5, 0.5, 0.5).

Next, as with the BS-seq/oxBS-seq model, we used the

HMC sampling scheme to estimate the posterior distri-

butions of μ and θ for each of the considered cytosines

given the read count data and the values of the experi-

mental parameters.

Integrative analysis of other derivatives of traditional

bisulfite sequencing data

Besides BS-seq, oxBS-seq, TAB-seq and fCAB-seq, Lux

can be easily extended to analyze and quantify other

oxi-mC-seq data. The main experimental steps and the

corresponding parameters for CAB-seq, redBS-seq and

MAB-seq are shown in Fig. 6. Details of the propagated

probabilities, which are needed to compute the likelihood

are shown in Additional file 3.

Availability of software implementation

A platform-independent implementation of Lux is released

under MIT license at https://github.com/tare/Lux/ and as

Additional files 1 and 2. We recommend to get the latest

version from the GitHub repository.

Availability of experimental data

The data sets supporting the results of this article are

available in the GEO repository under accession number

GSE68576.
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