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A Probabilistic Load Flow Method
Considering Branch Outages

Zechun Hu and Xifan Wang, Senior Member, IEEE

Abstract—This paper proposes a probabilistic load flow method
considering random branch outages as well as uncertainties of
nodal power injections. Branch outages are simulated by fictitious
power injections at the corresponding nodes. A unified procedure
is given to deal with random branch outages, generating unit out-
ages, and load uncertainties by their moments and cumulants. The
variations of nodal voltages and line flows produced by normally
and discretely distributed input variables are handled separately.
The method proposed by Von Mises is employed to solve the dis-
crete distribution part of each state and output variable. The final
distribution of a desired variable is obtained by simply convoluting
its continuous and discrete distribution part. Results of 24-bus
IEEE Reliability Test System are analyzed and compared to those
obtained by Monte Carlo simulation. A numerical test on a real
power system shows the effectiveness of the proposed method.

Index Terms—Branch outage, cumulant, probabilistic load flow
(PLF), probability distribution function (PDF), Von Mises method.

I. INTRODUCTION

OPEN access of transmission systems has resulted in more
highly stressed and unpredictable operating conditions.

Uncertain factors bring great challenges to power system plan-
ning and operation. Probabilistic analysis tools are needed ur-
gently in the fields, such as transmission system expansion [1],
[2] and real-time operation [3]. Software that is developed for
online security assessment and can be integrated with the ex-
isting EMS systems considering load uncertainties and random
outages is valuable [4]. However, the traditional deterministic
load flow only finds nodal voltages and line flows under a spec-
ified operating condition. On the other hand, the probabilistic
load flow (PLF) [5]–[18] or stochastic load flow [19]–[22] can
be used to assess adequacy indexes, such as the probability of
a nodal voltage being outside acceptable levels and the proba-
bility of a line flow being greater than its thermal rating, under
load uncertainties and random contingencies. Hatziargyriou and
Karakatsanis have applied PLF methods to reactive power con-
trol and voltage instability assessment [23]–[25].

The PLF was proposed by Borkowska for evaluation of power
flow considering uncertainties [5]. Many papers [6]–[21] have
been published on this interesting and challenging area, espe-
cially by Allan and Leite de Silva [6]–[14]. Most PLF formu-
lations use linear load flow equations. By linearizing ac load
flow equations around the expected input value region, the state
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and output variables can be represented as a linear combination
of input variables. Assuming independence among all the vari-
ables, convolution techniques and methods based on moments
and cumulants [15]–[17] are commonly applied to obtain the
probability density functions (PDF) or cumulative distribution
functions (CDF) of desired variables. Test results show that the
performance of the linear model is good [8], and the quadratic
items are small enough to reside [18] within a certain uncer-
tainty range of input variables. The basic convolution operation
or fast Fourier transform method [5]–[8] for the PLF is computa-
tionally intensive with large storage requirements. By using cu-
mulants, the computation burdens can be greatly relieved [17].

Practically, correlations may exist between nodal powers
[13]. The multivariate Gram–Charlier Type A series in [27] can
be employed to the PLF problem in this case. Based on joint
PDF of nodal powers, Sauer and Hoveida deduced full formulas
to calculate moments of output variables [21]. Because it is
difficult to model the exact correlations in power injection
variations, only linear dependence has been considered in [9],
[14], and [22]. Dispatch strategies are also considered in [9]
and [18].

Monte Carlo simulation (MCS) techniques are widely used
in power system computations, especially in reliability as-
sessment. MCS can be employed to solve the PLF problem
straightforwardly by repeated simulations. It can provide
considerably accurate results, but the computation is time
consuming for large systems. Techniques that combine MCS
with multilinearized power flow equations are proposed to
reduce computational burden in [10] and [11]. Results obtained
by MCS can be set as benchmarks for comparison purposes.

So far, only a few works have considered random branch out-
ages in the analytical PLF formulations [12], [26]. This may be
due to the following two reasons.

1) Unlike the case when only considering random power in-
jections, the network structure is also “uncertain” after in-
corporating random branch outages.

2) Branch outages may have much greater influence on
system state than nodal power injection uncertainties.

The formulation in [26] uses a dc model. The method in [12]
obtains the PDF of desired variables from a weighed sum of
density function evaluated for each possible network configu-
ration. So the computational burden could be very heavy when
a large number of network configurations are required to deal
with.

In this paper, random branch outages are simulated by
fictitious power injections with 0–1 distributions at the corre-
sponding nodes. The organization of this paper is as follows.
Section II describes the formulation of the proposed PLF
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method. Section III introduces some mathematical back-
grounds about moments, cumulants, and the Von Mises method
[22], [29]. Section IV provides the distribution functions of
desired random variables and the computation procedure. In
Section V, tests on two systems are illustrated and discussed.
Section VI concludes.

II. FORMULATION

A. Linear Load Flow Equations

The two sets of nonlinear load flow equations for a power
system can be expressed as

(1)

(2)

where (the boldface symbol denotes a vector or matrix in this
paper) is the input vector of real and reactive power injections,

is the state vector of nodal voltages and angles, is the output
vector of line flows, and and are the nodal power and line
flow functions, respectively.

Uncertainties of nodal power injections considered in this
paper include random load variations and unit forced outages.
They are defined by PDFs. The expected values of real and re-
active power injections at all nodes are known. Running a con-
ventional load flow at the expected value of and linearizing
(1) and (2) at the solution point gives

(3)

(4)

where and are expected values of and , respectively;
is the inverse of the Jacobian matrix

(5)

(6)

If nodal power injections are independent, one can obtain the
nodal voltages and line flows as a linear combination of input
variables. When the variances of load uncertainties are not large,
the error raised by linearization may be acceptable. On the other
hand, the discrete disturbances may have much greater influence
on state and output variables; therefore, errors introduced by the
linearization should be studied carefully.

B. Discrete Disturbances

If random discrete disturbances and load uncertainties with
continuous distributions are independent, then their influence
on nodal voltages and line flows can be handled separately. The
variations of and produced by the continuous distribution
of are called continuous parts in this paper. The discrete vari-
ations of and deviated from and that are produced
by discrete disturbances are called discrete parts.

1) Branch Outage: Different from random power injections,
the configuration of a power network is changed after a branch
outage. To make use of the linear equations (3) and (4), each line
outage is simulated by injecting fictitious powers at both ends of

Fig. 1. Branch outage simulation by fictitious injection powers.

the line. When the injected powers are equal to powers leaving
from each end of the line, the state of the system is equivalent
to that after the line outage [30].

Suppose powers leaving from the two ends before the line
outage are and , respectively (see Fig. 1).
The fictitious power injections and
make them change and , respec-
tively. The post-outage system state should satisfy the following
equations:

(7)

(8)

They can be rewritten in matrix form as

(9)
where is a 4-by-4 identity matrix, and

(10)

It follows that

(11)

is actually a submatrix of , which is available after
linearizing the load flow equations. When and

are solved using (11), the random branch outage
can be simulated by two random power injections with 0-1 dis-
tributions at each end of the branch. Thus, the linear load flow
equations can be used. Multiple branch outages can also be sim-
ulated in a similar way.

The above simulation method is based on linear relationships
between input and output vectors. Some line outages have great
influence on system state; errors raised by using the linear load
flow (3) and (4) may not be negligible. To balance between
speed and accuracy, a threshold is defined. After the ficti-
tious power injections are obtained, (3) is then used to calculate
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the voltage angle variation and at each end of the line.
If the absolute value of or is greater than , a full
load flow should be run with all nodal power injections set equal
to their expect values.

2) Unit Outage and Load Uncertainty: Random generating
unit outages are generally considered as power injection uncer-
tainties in the PLF formulations. In order to reduce the error
introduced by linearization, unit outages can be handled in a
similar way as line outages if reactive limits and the power bal-
ance problem are not considered. For each unit outage, calculate
its nodal voltage angle variation after its outage using (3). If the
variation is smaller than , the linear load flow equations
will be used, and the swing bus is responsible for matching the
balance of power. Otherwise, an exact load flow will be run to
obtain the post-outage state. The “lost” power is compensated
by other units. Dispatch strategies can also be incorporated. The
“blackout” of a power plant with no more than two units is also
considered.

A bus with several discrete load levels is similar to a node
with several generating units because they all have several dif-
ferent power injection levels. So load uncertainties with discrete
distributions can be handled in the similar way as random unit
outages.

To sum up, a unified approach can be used to deal with the dis-
crete distributions of load uncertainties, unit outages, and branch
outages.

C. Correlation and Dispatch Strategy

The aforementioned model assumes total independence
between all disturbances. Practically, correlations may exist
between nodal power injections (including loads and generator
outputs) and line outages. If only linear correlations among
components of are considered, these correlations can be
handled by the method proposed in [9] and [22]. Jointly,
normal distributions can also be considered using a covariance
matrix [21].

It is very complex to include dispatch strategies in the ana-
lytical PLF method. The swing bus absorbs all changes due to
load uncertainties in the proposed method. However, the dif-
ference between composite reliability evaluation and the PLF
should be noted [11]. In the long-term or mid-term planning,
the load uncertainties may be significant. It is better to take into
account different dispatch or unit commitments strategies under
different load levels. The multilinearization methods proposed
in [10] and [11] may be tailored to solve this problem.

III. MATHEMATICAL BACKGROUND

A. Moment

For a random variable with a continuous distribution func-
tion , the definition of its th moment is given
by [28]

(12)

where is the mathematical expectation operator.

If a random variable is discretely distributed and each pos-
sible point and the corresponding probability are known,
the definition of its th moment is

(13)

The following descriptions will focus on the moments and cu-
mulants of continuously distributed random variables and sup-
pose their moments exist. The definitions and properties can be
easily extended to discrete distribution by degenerating integra-
tion to summation.

B. Cumulant

For a random variable , its characteristic function is defined
as [28]

(14)

where .
Applying a logarithm operator to (14) and expanding by a

MacLaurin series for a small value of gives

(15)

where the coefficients are called cumulants or semi-invari-
ants, and is the error of the expansion.

Property 1: If is the sum of independent random vari-
ables , then its th cumulant is equal to the sum of the
th cumulant of all .

Supposing that is the sum of two independent random vari-
ables and , the following equation can be obtained ac-
cording to the property of mathematical expectation:

(16)

Therefore

(17)

From (15) and (17), one can see that the convolution of two
independent random variables can be transformed into the sum-
mation of their cumulants.

Property 2: If , then the th cumulant of
is equal to the th cumulant of times .

Supposing that , the characteristic function of
is

(18)

(19)

where is the th-order cumulant of . According to (15), it
can be observed that

(20)
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Therefore

(21)

C. Relationship Between Cumulants and Moments

The cumulants are not, like the moments, directly ascertain-
able by integrative processes. To find them, it is usually neces-
sary to find the moments first. The following recursive relation-
ship is very useful [31]:

(22)

(23)

(24)

(25)

where are the binomial coefficients.

D. Determining a Discrete Distribution by its Moments

Von Mises proposed a method to determine a discrete distri-
bution with impulses by its first moments in [29].

Define determinants as follows:

...
(26)

It can be proved that to are all greater than 0 for a
discrete distribution with not less than impulses. The roots of
the following equation are equal to the abscissas of the points:

(27)

The coefficients are determined by the following linear
equations:

(28)

where is a matrix with the same elements as determinant
, and

(29)

It can be proved that the roots of (27) are real numbers and
different from each other. When each of a discrete distribu-
tion is known, the corresponding possibility can be solved by
the linear equations given in (30) based on the moment defini-
tion (13)

...
...

...
...

...

(30)

Now, a discrete distribution with impulses is completely
determined. If a distribution has more than discrete points,
the solved distribution with discrete points approximates to it
because they have the same first moments [28].

IV. DISTRIBUTION OF DESIRED RANDOM VARIABLE

AND THE COMPUTATION PROCEDURE

The continuous part and the discrete part of each desired
random variable are treated separately in this paper. The con-
tinuous distribution considered here is the normal distribution.
Since the result of convoluting normal distributions is still a
normal distribution, so the continuous parts of voltages and line
flows are all normally distributed when using linearized equa-
tions. After running a deterministic load flow at the expected
value of , cumulants of the desired variables can be obtained
using (3) and (4). For a normal distribution, all cumulants higher
than the second order are zero. So only the first- and the second-
order cumulants are required to calculate. The unified procedure
described in Section II-B is employed to calculate discrete part
cumulants of each desired variable.

To completely determine the discrete part of each desired
variable with impulses, the first moments should be
calculated. If there are a large number of impulses, the com-
putational burden will be huge. A discrete distribution with

impulses obtained by the Von Mises method can serve
as an approximation. If is equal to 5, only the first nine mo-
ments are required. This is similar to the Gram–Charlier expan-
sion using several items. The difference is that the accuracy will
be improved by using more moments when employing the Von
Mises method, while the Gram–Charlier expansion does not en-
sure higher accuracy with more items. It also should be noted
that the desired random variables may have divergent cumulants
when random branch outages are considered. Errors introduced
by the Gram–Charlier expansion may be significant.

A desired random variable is the sum of a normally dis-
tributed random variable and a discretely distributed random
variable , i.e.,

(31)

According to the definition of convolution, the PDF of is

(32)
where , , and are the probabilities (impulses),
variate-values (abscissas), and the PDF of , respectively;

is the PDF of the normally distributed ; and

(33)

where and are the expectation and the standard deviation of
, respectively.
The CDF of a standard normal distribution is

(34)
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Fig. 2. Flowchart of the proposed PLF method.

Thus, the CDF of an output or state variable is

(35)

The final distributions of desired random variables can be ob-
tained according to (32) and (35). The flowchart of the proposed
PLF method is shown in Fig. 2. Output data include expected
values, variances, and distribution functions of nodal voltages
and line flows. The part contained in the dashed line box high-
lights the method described in Section II-B for dealing with dis-
crete disturbances. means voltage angle variation of each
related node after a discrete disturbance.

V. SIMULATED TEST RESULTS

A. 24-Bus IEEE RTS

The system data can be found in [32]. The base power is
100 MVA. All loads are assumed to be normally distributed,
their expected values are equal to the annually peak loads, and
their standard deviations are all equal to 10% of their expected
values. All branch outages are considered, except those that
make the system separate. Random outages of four pair lines

Fig. 3. Influence of random branch outages on the CDF of U24.

that have common structures are also considered. Rates of line
outages are obtained according to

(36)

where is permanent outage rate (outages/year), and
is permanent outage duration (hours). is a scaling factor. If

, the average value of is 0.04%. To make the influence
of branch outages more obvious, is set equal to 10. is
set equal to 0.1 rad. The first nine cumulants of each random
variable are calculated.

The allowable voltage range is (0.95, 1.05) per unit. All
voltage distributions are within this range without considering
random branch outages. When branch outages are considered,
voltages of buses 3 and 24 may violate the lower limit. Fig. 3
shows the cumulative distribution curves of the voltage at bus
24 (U represents nodal voltage magnitude). The main differ-
ence between these two curves lies in the lower voltage side,
especially in the range (0.965, 0.975) per unit.x

The branches’ continuous ratings given in [32] are considered
as their thermal ratings. Except for line 7–8, no branch over-
loads without random branch outages. When random branch
outages are taken into account, lines 1–5, 15–16, 15–24, and
16–19 could violate their thermal ratings. The PDFs of the ac-
tive power of line 15–24 are shown in Fig. 4. One can see that
the influence of branch outages on the distribution is notable. No
voltage or line flow violates its limit under criteria. How-
ever, when load uncertainties, generating units, and line outages
are all considered together, the weak buses and lines can be
found. This demonstrates that PLF considering random branch
outages can provide more comprehensive information about the
system condition.

The results of the PLF and MCS are compared. Only crude
MCS is used in this paper, and the sampling size is 50 000. Av-
erage root mean-square (ARMS) error used in [17] is calculated
using the result of MCS as a reference. ARMS is defined as

ARMS (37)
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Fig. 4. Influence of random branch outages on the PDF of P15–24.

TABLE I
ARMS OF NODAL VOLTAGES

where is the number of selected points, and , repre-
sent the th value on the CDF obtained by MCS and PLF, respec-
tively. The statistical points are evenly chosen from the range
of CDF obtained by MCS. For nodal voltages, the intervals be-
tween each two neighboring chosen points are 0.0001 per unit.
The errors of expected values (represented by dEV) and ARMS
of some nodal voltages are shown in Table I. One can see that
the differences between the results obtained by the two methods
are very small.

When using the first five, seven, and nine moments, the dis-
crete part of each desired random variable obtained by the Von
Mises method consists of three, four, and five impulses, respec-
tively. The more moments are used, the more accurate results will
be obtained. Fig. 5 shows the CDF of the active power of branch
3–24. The results of the proposed PLF method are satisfactory
when moments of the first nine moments are used in this test.

Take branch 3–24, 14–16, 16–17 with heavy loading, line 7–8
with moderate loading, and line 1–3 with light loading, for ex-
ample. Table II lists their power flow intervals between 5% and
95% confidence level. The results obtained by the PLF are con-
sistent with those by MCS. Among them, power flow of line
14–16 has the largest difference. This is due to this line’s po-
sition in the system. Figs. 6 and 7 show the probability density
curves obtained by the PLF and MCS. The distributions given
by the two methods are close. There are visible differences in
some local part of the distributions. The errors are mainly caused
by linear approximations. Another important reason is that only
five impulses are used to approximate the discrete part of each
desired random variable. Thus, the results given by the proposed
method cannot exhibit full detailed distribution information of
the desired variables.

Fig. 5. Cumulative density curves of P3–24 obtained by using different order
of moments.

TABLE II
LINE FLOW INTERVALS BETWEEN 5% AND 95% CONFIDENCE LEVEL

Fig. 6. Comparison between the PDF of Q14–16 obtained by the PLF and
MCS.

The proposed PLF method and the MCS method are imple-
mented by the C++ programming language. They are tested
using a P4 1.8-GHz/512-MB RAM PC. The average computing
times are listed in Table III. Let stand for the total active
power flow of all branches of the test system. The second ter-
mination criterion of MCS is the standard deviation of expecta-
tion estimate of less than 3 MW. MCS converges after 9420
trials on average. The proposed PLF method is about 30 times
faster than the MCS method using the second termination crite-
rion. An accurate load flow is run for every discrete disturbance
when setting . The slight computation time savings by
using linear load flow equations to deal with some disturbances
(by setting rad) can be seen from Table III.
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Fig. 7. Comparison between the PDF of P14–16 obtained by the PLF and
MCS.

TABLE III
COMPUTATION TIME COMPARISON

TABLE IV
PROBABILITIES OF VIOLATING VOLTAGE LOWER BOUNDS BEFORE

AND AFTER COMPENSATION

B. 682-Bus System

This is a real power system in China with 682 buses, 973
branches, and 130 generating units. The system condition is the
operation state of a peak load hour of year 2004. Suppose that
all loads are normally distributed, and their standard deviations
are equal to 3% of their expected values. Random outages of
134 lines are considered. Generating unit forced outages are not
taken into account. Set radian. The aim of this case
study is to check the adequacy of the transmission system under
the peak load condition.

The given nodal voltage range is (0.90, 1.02) per unit. Results
of the PLF show that voltages of some buses in a province vi-
olate the lower bound with large probabilities. The voltages of
several buses are already lower than 0.9 per unit without any
uncertainty, so more reactive power supports are required. If
200 MVar of capacitors were installed at bus 163 and switched
on, the voltages would be greatly improved. Table IV lists part
of the results.

Line flow distributions obtained by the PLF are also analyzed.
A critical line from bus 161 to 163 may violate its thermal limit

TABLE V
COMPUTATION TIMES AND ARMS UNDER DIFFERENT THRESHOLDS

Fig. 8. Probability density curves of P161–163 obtained under different
conditions.

with a possibility of 16.93%. Because there is no available gen-
erating capacity, shedding load at bus 150 is unavoidable when
this line is overloading. The possibility of overloading of line
161–163 will decrease to 1.66% after shedding a 100-MW load.

The MCS consumes 604 s when using the second termination
criterion as the last test case, while the proposed PLF method
only needs 34 s. The computation time savings by using the lin-
earized load flow equations to deal with some line outages are
shown in Table V. The second column in Table V lists times
of rerunning full load flow when dealing with random line out-
ages. If the threshold were greater than 0.3 rad, all random
line outages would be handled using (11) and the linear load
flow (3) and (4). Although the computation time would be re-
duced remarkably, the error might be great. The ARMS of ac-
tive power flow of line 161–163 (P161–163) increases about 3.4
times when this threshold is augmented from 0.01 to 0.15 rad
(see the last column of Table V). Fig. 8 shows the distribution
curves of P161–163 obtained under three different conditions.
There will be discernible errors when the threshold is increased
to 0.1 rad, especially in the tail part of the distribution. Although
reasonable value of this threshold is system-dependent, 12%
computation time would be saved, even if it was set equal to
0.01 rad.

VI. CONCLUSION

The general probabilistic load flow methods do not include
random branch outages in their formulations. This paper pro-
poses a unified approach to handle random branch outages along
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with discrete load uncertainties and unscheduled generating unit
outages. PDFs of voltages and line flows are obtained. Moments
and cumulants are used to simplify the convolution of random
variables. Cumulants of desired random variables caused by un-
certainties with continuous or discrete distributions are treated
separately. The discrete part of each desired random variables is
determined by the method proposed by Von Mises.

Test results of the 24-bus IEEE RTS indicate that random
branch outages have considerable influence on the distribution
of output and state variables, though their occurrence possibil-
ities are small. The proposed method is also tested on a power
system with 682 buses to check the adequacy indexes of nodal
voltages and line flows under a heavy load condition. Possible
low-voltage buses and overload transmission lines are found.
The validity of corrective measures is also verified by the pro-
posed method. The distributions of nodal voltages and line flows
obtained by the proposed method are in reasonable agreement
with those by MCS in the case studies. The calculation speed of
the proposed method is much faster than that of MCS.

REFERENCES

[1] M. O. Buyg, G. Balzer, H. M. Shanechi, and M. Shahidehpour, “Market-
based transmission expansion planning,” IEEE Trans. Power Syst., vol.
19, no. 4, pp. 2060–2067, Nov. 2004.

[2] A. M. Leite de Silva, S. M. P. Ribeiro, and V. L. Arienti et al., “Prob-
abilistic load flow techniques applied to power system expansion plan-
ning,” IEEE Trans. Power Syst., vol. 5, no. 4, pp. 1047–1053, Nov. 1990.

[3] M. Ni, J. D. McCalley, V. Vittal, and T. Tayyib, “Online risk-based secu-
rity assessment,” IEEE Trans. Power Syst., vol. 18, no. 1, pp. 258–265,
Feb. 2003.

[4] M. Ni, J. D. McCalley, V. Vittal, S. Greene, C.-W. Ten, V. S. Ganugula,
and T. Tayyib, “Software implementation of online risk-based security
assessment,” IEEE Trans. Power Syst., vol. 18, no. 3, pp. 1165–1172,
Aug. 2003.

[5] B. Borkowska, “Probabilistic load flow,” IEEE Trans. Power App. Syst,
vol. PAS-93, no. 4, pp. 752–759, Apr. 1974.

[6] , “Probabilistic analysis of power flows,” Proc. Inst. Elect. Eng. C.,
vol. 121, pp. 1551–1556, Dec. 1974.

[7] R. N. Allan and M. R. G. Al-Shakarchi, “Probabilistic techniques in a.c.
load-flow analysis,” Proc. Inst. Elect. Eng., vol. 124, no. 2, pp. 154–160,
Feb. 1977.

[8] R. N. Allan, A. M. Leite de Silva, and R. C. Burchett, “Evaluation
methods and accuracy in probabilistic load flow solutions,” IEEE Trans.
Power App. Syst, vol. PAS-100, no. 5, pp. 2539–2546, May 1981.

[9] A. M. Leite da Silva, V. L. Arienti, and R. N. Allan, “Probabilistic load
flow considering dependence between input nodal powers,” IEEE Trans.
Power App. Syst., vol. PAS-103, no. 6, pp. 1524–1530, Jun. 1984.

[10] R. N. Allan and A. M. Leite de Silva, “Probabilistic load flow using mul-
tilinearizations,” Proc. Inst. Elect. Eng. C., vol. 128, no. 5, pp. 280–287,
Sep. 1981.

[11] A. M. Leite da Silva and V. L. Arienti, “Probabilistic load flow by a
multilinear simulation algorithm,” Proc. Inst. Elect. Eng. C., vol. 137,
no. 4, pp. 276–282, Jul. 1990.

[12] A. M. Leite da Silva, R. N. Allan, S. M. Soares, and V. L. Arienti, “Prob-
abilistic load flow considering network outages,” Proc. Inst. Elect. Eng.
C., vol. 132, no. 3, pp. 139–145, May 1985.

[13] R. N. Allan and M. R. G. Al-Shakarchi, “Linear dependence between
nodal powers in probabilistic a.c. load flow,” Proc. Inst. Elect. Eng., vol.
124, no. 6, pp. 529–534, Jun. 1977.

[14] R. N. Allan, C. H. Grigg, and R. F. Simmons, “Probabilistic power-flow
techniques extended and applied to operational decision making,” Proc.
Inst. Elect. Eng., vol. 123, no. 12, pp. 1317–1323, Dec. 1976.

[15] X. Wang and J. R. McDonald, Modern Power System Planning. New
York: McGraw-Hill, 1994, pp. 437–454.

[16] N. S. Rau and C. Necsulescu, “Solution of probabilistic load flow equa-
tions using combinatorics,” Elect. Power Energy Syst., vol. 12, no. 3, pp.
156–164, Jul. 1990.

[17] P. Zhang and S. T. Lee, “Probabilistic load flow computation using the
method of combined cumulants and Gram-Charlier expansion,” IEEE
Trans. Power Syst., vol. 19, no. 1, pp. 676–682, Feb. 2004.

[18] M. Brucoli, F. Torelli, and R. Napoli, “Quadratic probabilistic load flow
with linearly modeled dispatch,” Elect. Power Energy Syst., vol. 17, no.
3, pp. 138–146, 1984.

[19] J. F. Dopazo, O. A. Klitin, and A. M. Sasson, “Stochastic load flow,”
IEEE Trans. Power App. Syst., vol. PAS-94, pp. 299–309, Mar./Apr.
1975.

[20] P. W. Sauer and G. T. Heydt, “A generalized stochastic power flow al-
gorithm,” in Proc. IEEE Power Engineering Society Summer Meeting,
Los Angeles, CA, Jul. 1978, Paper A 78 544-9.

[21] P. W. Sauer and B. Hoveida, “Constrained stochastic power flow anal-
ysis,” Elect. Power Syst. Res., vol. 5, pp. 95–97, 1982.

[22] L. A. Sanabria and T. S. Dillon, “Stochastic power flow using cumulants
and Von Mises functions,” Elect. Power Energy Syst., vol. 8, no. 1, pp.
47–60, Jan. 1986.

[23] N. D. Hatziargyriou and T. S. Karakatsanis, “Distribution system voltage
and reactive power control based on probabilistic load flow analysis,”
Proc. Inst. Elect. Eng., Gener., Transm., Distrib., vol. 144, no. 4, pp.
363–369, Jul. 1997.

[24] , “Probabilistic load flow for assessment of voltage instability,”
Proc. Inst. Elect. Eng., Gener., Transm., Distrib., vol. 145, no. 2, pp.
196–202, Mar. 1998.

[25] , “Probabilistic constrained load flow for optimizing generator re-
active power resources,” IEEE Trans. Power Syst., vol. 15, no. 2, pp.
687–692, May 2000.

[26] F. Aboytes, “Stochastic contingency analysis,” IEEE Trans. Power App.
Syst, vol. PAS-97, no. 2, pp. 335–341, Mar./Apr. 1978.

[27] P. W. Sauer and G. T. Heydt, “A convenient multivariate Gram-Char-
lier Type A series,” IEEE Trans. Commun., vol. COM-27, no. 1, pp.
247–248, Jan. 1979.

[28] M. Kendall and A. Stuart, The Advanced Theory of Statistics, 4th
ed. London, U.K.: C. Griffin, 1977, vol. 1.

[29] R. Von Mises, Mathematical Theory of Probability and Statistics. New
York: Academic, 1964, pp. 384–396.

[30] K. R. C. Mamandur and G. J. Berg, “Efficient simulation of line and
transformer outages in power systems,” IEEE Trans. Power App. Syst,
vol. PAS-101, no. 10, pp. 3733–3741, Oct. 1982.

[31] W. D. Tian, D. Sutanto, Y. B. Lee, and H. R. Outhred, “Cumulant based
probabilistic power system simulation using Laguerre polynomials,”
IEEE Trans. Energy Convers., vol. 4, no. 4, pp. 567–574, Dec. 1989.

[32] C. Grigg, P. Wong, and P. Albrecht et al., “The IEEE reliability test
system-1996,” IEEE Trans. Power Syst., vol. 14, no. 3, pp. 1010–1020,
Aug. 1999.

Zechun Hu was born in Nanjing, China, in 1979. He received the B.S. de-
gree from Xi’an Jiaotong University, Shaanxi, China, in 2000. He is currently
working toward the Ph.D. degree in electric power engineering at Xi’an Jiao-
tong University.

His major research interests are static security analysis and optimal reactive
power dispatch.

Xifan Wang (SM’86) received the B.S. degree from Xi’an Jiaotong University,
Xi’an, China, in 1957.

Currently, he is the Head of the Electrical Power Economics Research Insti-
tute, Xi’an Jiaotong University, Shaanxi, China. His major research fields in-
clude power market, generation planning, reliability evaluation, and stability
analysis.


	toc
	A Probabilistic Load Flow Method Considering Branch Outages
	Zechun Hu and Xifan Wang, Senior Member, IEEE
	I. I NTRODUCTION
	II. F ORMULATION
	A. Linear Load Flow Equations
	B. Discrete Disturbances
	1) Branch Outage: Different from random power injections, the co



	Fig.€1. Branch outage simulation by fictitious injection powers.
	2) Unit Outage and Load Uncertainty: Random generating unit outa
	C. Correlation and Dispatch Strategy
	III. M ATHEMATICAL B ACKGROUND
	A. Moment
	B. Cumulant
	Property 1: If $\xi$ is the sum of $n$ independent random variab
	Property 2: If $\xi^{\prime}=a\xi$, then the $r$ th $(r>0)$ cumu

	C. Relationship Between Cumulants and Moments
	D. Determining a Discrete Distribution by its Moments

	IV. D ISTRIBUTION OF D ESIRED R ANDOM V ARIABLE AND T HE C OMPUT

	Fig.€2. Flowchart of the proposed PLF method.
	V. S IMULATED T EST R ESULTS
	A. 24-Bus IEEE RTS


	Fig.€3. Influence of random branch outages on the CDF of U24.
	Fig.€4. Influence of random branch outages on the PDF of P15 24.
	TABLE€I ARMS OF N ODAL V OLTAGES
	Fig.€5. Cumulative density curves of P3 24 obtained by using dif
	TABLE€II L INE F LOW I NTERVALS B ETWEEN 5% AND 95% C ONFIDENCE
	Fig.€6. Comparison between the PDF of Q14 16 obtained by the PLF
	Fig.€7. Comparison between the PDF of P14 16 obtained by the PLF
	TABLE€III C OMPUTATION T IME C OMPARISON
	TABLE€IV P ROBABILITIES OF V IOLATING V OLTAGE L OWER B OUNDS B
	B. 682-Bus System

	TABLE€V C OMPUTATION T IMES AND ARMS U NDER D IFFERENT T HRESHO
	Fig.€8. Probability density curves of P161 163 obtained under di
	VI. C ONCLUSION
	M. O. Buyg, G. Balzer, H. M. Shanechi, and M. Shahidehpour, Mark
	A. M. Leite de Silva, S. M. P. Ribeiro, and V. L. Arienti et al.
	M. Ni, J. D. McCalley, V. Vittal, and T. Tayyib, Online risk-bas
	M. Ni, J. D. McCalley, V. Vittal, S. Greene, C.-W. Ten, V. S. Ga
	B. Borkowska, Probabilistic load flow, IEEE Trans. Power App. Sy
	R. N. Allan and M. R. G. Al-Shakarchi, Probabilistic techniques 
	R. N. Allan, A. M. Leite de Silva, and R. C. Burchett, Evaluatio
	A. M. Leite da Silva, V. L. Arienti, and R. N. Allan, Probabilis
	R. N. Allan and A. M. Leite de Silva, Probabilistic load flow us
	A. M. Leite da Silva and V. L. Arienti, Probabilistic load flow 
	A. M. Leite da Silva, R. N. Allan, S. M. Soares, and V. L. Arien
	R. N. Allan and M. R. G. Al-Shakarchi, Linear dependence between
	R. N. Allan, C. H. Grigg, and R. F. Simmons, Probabilistic power
	X. Wang and J. R. McDonald, Modern Power System Planning . New Y
	N. S. Rau and C. Necsulescu, Solution of probabilistic load flow
	P. Zhang and S. T. Lee, Probabilistic load flow computation usin
	M. Brucoli, F. Torelli, and R. Napoli, Quadratic probabilistic l
	J. F. Dopazo, O. A. Klitin, and A. M. Sasson, Stochastic load fl
	P. W. Sauer and G. T. Heydt, A generalized stochastic power flow
	P. W. Sauer and B. Hoveida, Constrained stochastic power flow an
	L. A. Sanabria and T. S. Dillon, Stochastic power flow using cum
	N. D. Hatziargyriou and T. S. Karakatsanis, Distribution system 
	F. Aboytes, Stochastic contingency analysis, IEEE Trans. Power A
	P. W. Sauer and G. T. Heydt, A convenient multivariate Gram-Char
	M. Kendall and A. Stuart, The Advanced Theory of Statistics, 4th
	R. Von Mises, Mathematical Theory of Probability and Statistics 
	K. R. C. Mamandur and G. J. Berg, Efficient simulation of line a
	W. D. Tian, D. Sutanto, Y. B. Lee, and H. R. Outhred, Cumulant b
	C. Grigg, P. Wong, and P. Albrecht et al., The IEEE reliability 



