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A Probabilistic Memetic Framework
Quang Huy Nguyen, Yew-Soon Ong, and Meng Hiot Lim

Abstract— Memetic algorithms (MAs) represent one of the
recent growing areas in evolutionary algorithm (EA) research.
The term MAs is now widely used as a synergy of evolutionary or
any population-based approach with separate individual learning
or local improvement procedures for problem search. Quite often,
MAs are also referred to in the literature as Baldwinian EAs,
Lamarckian EAs, cultural algorithms, or genetic local searches.
In the last decade, MAs have been demonstrated to converge
to high-quality solutions more efficiently than their conventional
counterparts on a wide range of real-world problems. Despite the
success and surge in interests on MAs, many of the successful
MAs reported have been crafted to suit problems in very specific
domains. Given the restricted theoretical knowledge available in
the field of MAs and the limited progress made on formal MA
frameworks, we present a novel probabilistic memetic framework
that models MAs as a process involving the decision of embracing
the separate actions of evolution or individual learning and
analyzing the probability of each process in locating the global
optimum. Further, the framework balances evolution and individ-
ual learning by governing the learning intensity of each individual
according to the theoretical upper bound derived while the search
progresses. Theoretical and empirical studies on representative
benchmark problems commonly used in the literature are pre-
sented to demonstrate the characteristics and efficacies of the
probabilistic memetic framework. Further, comparisons to recent
state-of-the-art evolutionary algorithms, memetic algorithms, and
hybrid evolutionary-local search demonstrate that the proposed
framework yields robust and improved search performance.

Index Terms— Hybrid genetic algorithm-local search (GA-LS),
memetic algorithm (MA), probabilistic evolutionary algorithms.

I. INTRODUCTION

OPTIMIZATION may be defined simply as a process
for seeking better or best alternative solution from a

number of possible solutions to a problem. It is part and
parcel of problem solving in many areas of science and
engineering, including those that are directly applicable in our
daily life. Over the years, optimization methods have evolved
considerably, with many algorithms and implementations now
available. Typical conventional search methods are steepest
descent methods, conjugate gradient, quadratic programming,
and linear approximation methods. These local strategies carry
out iterative search for the optimum solution within the
neighborhood of a candidate solution. Starting from a single
candidate solution, these methods rely on “local” information
to decide on their next move in the neighborhood. As the
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name suggests, all deterministic local strategies suffer from
the same drawback; they are susceptible to stagnation due to
convergence towards a local optima. Their main advantage is
the efficiency. However, they tend to be sensitive to starting
point selection and are more likely to settle at non-global
optima than modern stochastic algorithms.

Modern stochastic algorithms such as evolutionary algo-
rithms (EAs) draw inspiration from biological evolution. EA,
unlike conventional numerical optimization methods, produce
new design points that do not use information about the local
slope of the objective function and are thus not prone to
stalling at local optima. Instead, they involve a search from a
“population” of solutions, making use of competitive selection,
recombination, mutation or other stochastic operators to gen-
erate new solutions which are biased towards better regions of
the search space. Furthermore, they have shown considerable
success in dealing with optimization problems characterized
by non-convex, disjoint, or noisy solution spaces. Some of
the modern stochastic optimizers that have attracted a great
deal of attention in recent years include simulated annealing,
tabu search, genetic algorithms, evolutionary programming,
evolution strategies, differential evolution, and others [1]–[5].
These stochastic methods have been successfully applied to
many real-world optimization problems.

In general, EAs are capable of exploring and exploiting
promising regions of the search space. They can, however, take
a relatively long time to locate the exact local optimum within
the region of convergence. Memetic algorithms (MAs) are
recent extensions of EAs with the introduction of individual
learning as a separate process of local refinement for acceler-
ating search. Recent studies on MAs have demonstrated that
they converge to high-quality solutions more efficiently than
their conventional counterparts [6]–[11] on many real-world
applications. In recent years, many dedicated MAs have been
crafted to solve domain-specific problems more efficiently.
Meanwhile, a distinct group of researchers concentrated on
the algorithmic aspects of MA, as combinations of EAs with
local searches [13]–[24]. In recent special issues [25], [26],
and journal [53] dedicated to MA research, several new design
methodologies of memetic algorithms [27], [54], [55] and
specialized memetic algorithms designed for tackling the per-
mutation flow shop scheduling [56], optimal control systems
of permanent magnet synchronous motor [28], VLSI floorplan-
ning [30], quadratic assignment problem [31], gene/feature
selection [32] have been introduced. From a survey of the area,
it is now well established that potential algorithmic improve-
ment can be achieved by considering some important issues
of MAs.

1) How often should local learning be applied, i.e.,
local search frequency fil? Alternatively, what is the
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appropriate probability Pil for applying local learning
to an individual?

2) To which solution subset of the population �il should
the local learning be applied?

3) How long should the local learning be run, i.e., local
search intensity or local search computational time bud-
get, til?

4) Which local improvement procedure or meme is to be
used?

One of the first issues pertinent to MA design is to consider
how often the local search should be applied, i.e., local
search frequency. In [13], the effect of local search frequency
on MA search performance was considered where various
configurations of the local search frequency at different stages
of the MA search were investigated. Conversely, it was shown
in [14] that it may be worthwhile to apply local search on every
individual if the computational complexity of the local search
is relatively low. On the issue of selecting appropriate individu-
als among the EA population that should undergo local search,
fitness-based and distribution-based strategies were studied
for adapting the probability of applying local search on the
population of chromosomes in continuous parametric search
problems, with Land [15] extending the work to combinatorial
optimization problems. Recently, Bambha et al. [16] intro-
duced a simulated heating technique for systematically inte-
grating parameterized local search into EAs to achieve maxi-
mum solution quality. Goldberg and Voessner also attempted
to optimize the performance of global-local search hybrid
in the context of a fixed local search time that leads to
solution with acceptable targets on simplistic synthetic func-
tions [17]. Subsequently, Sinha et al. [18] extends the work
in [16] with some in-depth study on genetic algorithm as
a global searcher. The performance of MA search is also
greatly affected by the choice of neighborhood structures.
The effect of neighborhood structures on evolutionary search
performances was first studied by Yao in the context of sim-
ulated annealing [19]. Recently, Krasnogor [20], [21] investi-
gated how to change the size and the type of neighborhood
structures dynamically in the framework of multimeme MAs
where each meme biases different neighborhood structure,
acceptance rule, and local search intensity. Various schemes
for choosing among multiple local learning procedures or
memes during the memetic algorithm search in the spirit of
Lamarckian learning, otherwise known as meta-Lamarckian
learning, was also addressed in [6]. For a detailed taxonomy
and comparative study on adaptive choice of memes in MA,
the reader is referred to [22]. Based on the terminology pro-
vided in [22], several new adaptive and self-adaptive memetic
algorithms were proposed by Smith [26], Liu et al. [27] and
Caponio et al. [28] and reported in the recent special issue
on MA [25].

Thus far, it is clear that unless one has a priori knowledge as
to whether the evolutionary or individual learning mechanisms
suits the problem in hand, i.e., through the correct definition
of the algorithmic settings, the MA may not perform at its
optimum or, worse, it may perform poorer than evolution or
individual learning alone. Depending on the complexity of
the design problem, an algorithmic configuration that may

have proven to be successful in the past might not work at
all, or as well as, others—an outcome that is directly related
to the “no free lunch theorem for search” [33]. With the
restricted amount of theory currently available for choosing
the appropriate configuration of MA that best matches a black
box problem, it is not surprising that researchers have now
opted for algorithms that learn and reconfigure itself to adapt
to the problem in hand while the search progresses [13]–[24].

In the context of optimization, it is worth noting that the
key design issue of MA lies in the successful promotion of
competition and cooperation between the forces of evolution
and individual learning. This can be achieved by adapting
the algorithmic parameters of MA, within some limited com-
putational budget. Since MA are synergies of evolution and
individual learning, it may be worthwhile to model MA as
a process involving the decision of embracing the separate
actions of evolution or individual learning at each point in
time. As an example, it is worth noting that the frequency
and intensity of individual learning, i.e., fil or til , are among
those that directly define the degree of evolution (exploration)
against individual learning (exploitation) in the MA search
under some limited computational budget. Clearly, a more
intense individual learning, i.e., a large til and fil , provide
greater chances of convergence to the local optima but limits
the extent of evolution that may be expended without incurring
excessive computational resources.

In this paper, we present a formal probabilistic memetic
framework (PrMF) that governs at runtime whether evolution
or individual learning should be favored, with the primary
objective of accelerating MA search. Note that existing strate-
gies for controlling the MA parameters are mostly designed
based on heuristics that comes with little theoretical motivation
and considers each design issue of MA independently. In
contrast to earlier works, we derive a theoretical bound for
individual learning intensity or tls within the PrMF. Section II
outlines the formulation of the probabilistic models used in
deriving the theoretical bound. Subsequently, we propose a
novel approximate probabilistic memetic framework (APrMF)
that adapts by governing the learning intensity of each indi-
vidual according to a theoretical upper bound while the search
progresses. Section III describes the APrMF in details. Sec-
tion IV presents the numerical study on search performance
of APrMF while Section V compares the performance of
APrMF with several recent state-of-the-art advanced evolu-
tionary, memetic, and hybrid algorithms. Finally, Section VI
concludes with some recommendations for further research.

II. PROBABILISTIC MEMETIC FRAMEWORK FOR

NONLINEAR OPTIMIZATION

Optimization is the study of the mathematical properties of
optimization problems and the analysis of algorithms. It deals
with the problem of minimizing or maximizing a mathematical
model of an objective function such as cost, fuel consumption,
etc., subject to a set of constraints. Here, we consider the
general nonlinear programming problem of the form:

1) a target objective function f (x) to be minimized or
maximized;
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Procedure: Canonical Memetic Algorithm

Begin

/* Evolution - Stochastic Search Operators */

Initialize: Generate an initial population;

While (Stopping conditions are not satisfied)

Evaluate all individuals in the population.

Select the subset of individuals, �il , that should undergo the individual learning procedure.

For each individual in �il

/* Individual Learning –Local heuristics or Conventional exact methods */

• Perform individual learning using meme(s) with probability of Pil or frequency fil for a til period.

• Proceed with Lamarckian or Baldwinian learning.

End For

Generate a new population using stochastic search operators.

End while

End

Fig. 1. Outline of a memetic algorithm.

2) a set of real variables, x ∈ R
ndim , xlow ≤ x ≤ xup,

where xlow and xup are the vectors of lower and upper
bounds, respectively, and ndim representing problem
dimensionality;

3) a set of equality/inequality constraints gw (x) that allow
the unknowns to take on certain values but exclude
others. For example, the constraints may take the form
of gw (x) � 0, for w = 1, 2, ..., b where b is the number
of constraints.

A. Memetic Algorithm

At a macro-level, MA can be defined as a synergy of
evolution and individual learning. In the case of a minimization
problem, the aim of the memetic algorithm is to locate the
global minimum x∗ such that x∗ = arg minx f (x), without
violating the constraints imposed. The pseudo-code of a
Canonical Memetic Algorithm is outlined in Fig. 1.

Without loss of generality, evolution usually involves some
stochastic operators while individual learning is in the form
of local heuristics [34] or conventional exact enumerative
methods [35]–[38]. Examples of the stochastic evolutionary
search include Monte Carlo algorithm, simulated annealing,
genetic algorithm, swarm algorithm, and others. In practice,
the objective function of a problem does not display convexity,
thus several local optima in the form of minima and/or maxima
may exist. In this case, a local minimum xl is defined as a point
for which there exists some δ > 0 so that for all x such that∥∥x − xl

∥∥ ≤ δ, the expression f (xl) ≤ f (x) holds. Examples
of individual learning strategies include the hill climbing,
Simplex method, Newton/Quasi-Newton method, interior point
methods, conjugate gradient method, line search and other
local heuristics.

In what follows, we present the theoretical formulations
of probabilistic models for evolution and individual learning
in MA. In particular, we model MA as a process involving

Fi
tn

es
s

 ε
C A B D

Fig. 2. Illustrations of type I and type II points.

the decision of embracing the separate actions of evolution or
individual learning and analyze the probability of each process
in locating the global optimum. To begin, we outline some
basic definitions used in our formulations.

Definition 1: The optimization problem is considered
solved or reached the global optimum if at least one solution
x

′
satisfies the condition

f (x
′
) ≤ f (x∗) + ε (1)

where ε denotes a very small value.
Definition 2: A type I point satisfies inequality (1). As

shown in Fig. 2, a point is of type I if it lies in the segment
AB of the graph.

Definition 3: A type II point lies in a basin of attraction
containing type I points. Based on Fig. 2, type II points lie in
the segment CD.

Definition 4: p(k)
1 or p(k)

2 is the probability that an individual
in the population of candidate solutions at generation k is a
type I or type II point, respectively.

Note that it follows from the above definitions that all
individual learning approaches, when started from a type II
point always converges to a type I point within tractable
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computational budget. In Fig. 2 the basins are shown as valley,
but without loss of generality, the basin of attraction can be
in the form of any neighborhood/modality structure.

Here, we model evolution and individual learning in MA
as independent processes and analyze the probability of each
process in locating type I point(s). Consider current generation
k, the probability of finding at least one type I as a result of
individual learning can be derived as

Pl = 1 −
(

1 − p(k)
2

) fil∗n
. (2)

The total computational cost Cil (in terms of function
evaluation counts/calls) of individual learning in each search
generation can be written as

Cil = til × ( fil × n) (3)

where n represents the MA population size, til is the com-
putational budget allocated to a single iteration of individual
learning, and fil is the frequency of individual learning that
defines the portion of a population that undergoes individual
learning.

For the same computational budget expended, the number of
search generations �g that one may replace individual learning
with stochastic evolutionary search is given by

�g = til × ( fil × n)

tgs
(4)

where tgs is the computational cost incurred by evolution in
generating the subsequent populations. For the sake of consis-
tency, we consider tgs in terms of function evaluations incurred
per generation. By assuming weak dependency among the
value of p(k)

1 across �g generations, the probabilityPgof
having at least one type I point is given by

Pg = 1 −
�g∏
i=1

(
1 − p(k+i)

1

)n
. (5)

B. Theoretical Upper Bound for til in MA

Here, we generalize the design of an MA as a decision of
evolution against individual learning at each point in time.
Clearly, individual learning should be used if it has a higher
probability of reaching a type I point over stochastic evolution
under equal computational budget, i.e.

Pl ≥ Pg

⇔ 1 −
(

1 − p(k)
2

) fil∗n ≥ 1 −
�g∏
i=1

(
1 − p(k+i)

1

)n
(6)

⇔
(

1 − p(k)
2

) fil∗n ≤
�g∏
i=1

(
1 − p(k+i)

1

)n
.

Every search algorithm, except for uniform random search,
introduces some unique form of bias, which is suitable
for some classes of problems but not for others. Hence
it is fair to assume that the global search method chosen
for solving the problem of interest is one that is deemed

as capable of directing the search towards the promis-
ing region containing Type I points as the search evolves,
i.e.,

�g∏
i=1

(
1 − p(k+i)

1

)n ≤ (1 − p(k)
1 )n∗�g . (7)

From (6) and (7) we have

(
1 − p(k)

2

) fil∗n ≤
�g∏
i=1

(
1 − p(k+i)

1

)n ≤
(

1 − p(k)
1

)n∗�g

⇔
(

1 − p(k)
2

) fil ≤
(

1 − p(k)
1

)�g
.

(8)

Taking logarithms of both sides, we arrive at

fil ln
(

1 − p(k)
2

)
≤ �g ln

(
1 − p(k)

1

)
⇔ fil ln

(
1 − p(k)

2

)
≤ til filn

tgs
ln

(
1 − p(k)

1

)
⇔ ln

(
1 − p(k)

2

)
≤ tiln

tgs
ln

(
1 − p(k)

1

)
.

(9)

Since ln
(
1 − p1

)
< 0, the above expression becomes

til ≤ tgs

n

ln
(

1 − p(k)
2

)
ln

(
1 − p(k)

1

)
Or

tupper
il = tgs

n

ln
(

1 − p(k)
2

)
ln

(
1 − p(k)

1

) . (10)

Equation (10) thus provides a theoretical upper bound
on the computational cost allowable for performing indi-
vidual learning in MA. This implies that one should not
allocate a computational budget greater than (tgs/n) ×(
ln

(
1 − p(k)

2

)
/ln

(
1 − p(k)

1

))
for conducting individual learn-

ing at generation k. Indirectly, it also implies that if a meme
or learning procedure requires a computational budget of more
than tupper

il to reach a type I point, then it should not be used
since it does not offer any competitive advantage over the
process of evolution in the MA search. It is also worth noting
that (10) is independent of fil indicating that the frequency
of learning in MA does not affect the theoretical bound for til .

III. PROBABILISTIC MEMETIC FRAMEWORK

In this section, we formulate a PrMF as a basis for adapta-
tion. This is achieved by governing the maximum intensity of
the individual learning using the theoretical bound derived in
Section II, while the search progresses. Based on the taxonomy
in [22], PrMF represents an Online adaptive approach. The
pseudo code for PrMF is outlined in Fig. 3. In the first step, the
PrMF population is initialized either randomly or using design
of experiments techniques such as Latin hypercube sampling
[39]. The evaluated populations of chromosomes then undergo
evolution based on the stochastic operators. For instance, in a
genetic-based MA, the stochastic operators include mutation,
crossover, and selection.
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Procedure: PrMF

Begin

/* Evolution - Stochastic Search Operators */

Initialize: Generate an initial population;

While (Stopping conditions are not satisfied)

Evaluate all individuals in the population.

For each individual in new population

/* Individual learning with til defined by the estimated theoretical upper bound */

• Estimate the theoretical individual learning intensity bound, tupper
il = [(tgs)/(n)][(ln

(
1 − p(k)

2

)
)/(ln

(
1 − p(k)

1

)
)]

• Perform individual learning using the specified meme for tupper
il evaluations

• Proceed with Lamarckian or Baldwinian learning

End For

Generate a new population using stochastic search operators.

End while

End

Fig. 3. Outline of probabilistic memetic framework.
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Fig. 4. Unimodal sphere function.

Subsequently, in contrast to the canonical MA, the theoret-
ical upper bound for learning intensity tupper

il is estimated for
each individual/chromosome in the newly evolved population,
based on p(k)

1 , p(k)
2 , and tgs/n in (10). Each chromosome

then undergoes individual learning using the specified meme
according to their respective maximum allowable intensity. In
the next section, we analyze the efficacy of the proposed PrMF
using two synthetic benchmark functions with known fitness
landscape.

A. Unimodal Sphere Function

We first consider the Sphere function with a one-
dimensional landscape depicted in Fig. 4. For unimodal Sphere
function, all decision vectors in the entire solution space
including the global optimum lie in the single basin of
attraction for a first- or second-order derivative based local
search optimization method. Hence, the probabilities of hitting
type I

(
p(k)

1

)
or type II

(
p(k)

2

)
points at generation k can be

easily estimated as p(k)
1 < 1 and p(k)

2 = 1, respectively. Note

5
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4

3.5

3

2.5

2

1.5

1
0 2 4 6 8 10 12

Fig. 5. Multimodal step function.

that p(k)
1 approaches zero for increasing dimensionality of the

Sphere function. With p(k)
1 ∼ 0 and p(k)

2 = 1 in (10), the
theoretical upper bound of til approaches infinity. This implies
that all individual learning involving first- or second-order
derivative based methods would search more efficiently than
random sampling or stochastic search methods in reaching
the global optimum. From (2), it can also be derived that
the probability Pl of finding at least one type I point or
the global optimum of the Sphere function in the case of a
unimodal problem when using individual learning is 1, since
Pl = 1 − (

1 − p(k)
2

) fil∗n = 1, as p(k)
2 = 1. Statistically, it

makes better sense to use a first or second-order derivative
based method over stochastic evolutionary operators to search
on the unimodal Sphere function.

B. Multimodal Step Function

Next we consider the multimodal Step function where the
one-dimensional landscape is depicted in Fig. 5. Consider
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Procedure: APrMF

Begin

/* Start of Canonical MA */

Initialize: Generate an initial population;

For the first few generations

Evaluate all individuals in the population.

For each individual x(i) in current population

• Perform individual learning using the specified meme with tracking capabilities for a maximum of
til(i) = t initial

il evaluations

• Proceed with Lamarckian or Baldwinian learning

End For

Generate a new population using stochastic search operators.

End For

/* End of Canonical MA */

While (Stopping conditions are not satisfied)

Evaluate all individuals in the population

For each individual x(i) in new population

/* Individual learning with adaptive til set according to upper bound and the expected value */

• Estimate learning intensity upper bound tupper
il (i) and

expected learning intensity texpected
il (i) for individual x(i) using

the Individual Learning Intensity Estimation Scheme outlined in Fig. 7.

• If (texpected
il (i) ≤ tupper

il (i)) then

/* increase budget for individual learning */

• til(i) = f (texpected
il (i))

• Perform individual learning using the specified meme for til(i) evaluations

• Proceed with Lamarckian or Baldwinian learning

Else

/* Do not perform any individual learning */

End If

End For

Generate a new population using stochastic search operators.

End while

End

Fig. 6. Outline of the approximate probabilistic memetic framework.

again a first- or second-order derivative based local search
optimization method as the individual learning procedure
versus the stochastic evolutionary operators in the PrMF.
From the landscape in Fig. 5, it can be easily observed
that the set of type II points, for instance in the range [9,
ref:12], is exactly the same as the set of type I points.
As a result, for a specific search method considered, the
probability of hitting type I

(
p(k)

1

)
or type II

(
p(k)

2

)
is equal,

i.e., p(k)
1 = p(k)

2 , for all k. With p(k)
1 = p(k)

2 , the theoretical
upper bound tupper

il becomes tgs/n according to (10), i.e.,
tupper
il = tgs/n × ln

(
1 − p(k)

2

)
/ln

(
1 − p(k)

1

) = tgs/n. Further,
the condition tgs ≤ n holds since the entire or a portion of
the population is generally replaced and evaluated in each
search generation. With tgs ≤ n and tupper

il becomes ≤ 1

indicating that derivative-based individual learning should not
be performed on this multimodal Step problem. Note that
first- or second-order derivative based methods do not generate
improvements on a stationary point and since all points in
the search space and basin of attraction are stationary, i.e.,
(gradient is equal to 0), any amount of computational budget
allocated to a derivative-based individual learning is unlikely
to contribute to the success of PrMF in search for the global
optimum.

C. APrMF

In the previous section, we have assumed that information
on p(k)

1 and p(k)
2 for the problem in hand can be easily obtained

or estimated. In reality, one usually has little or no prior
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Procedure: Individual Learning Intensity Estimation Scheme

Begin

/* Estimate p1 and p2 */

1. Identify set �, the q nearest chromosomes of x in database �.

2. Identify set �trace, the q learning search traces associated with the q nearest chromosomes.

3. Find xbest, the fittest individual in �trace, i.e., xbest = arg min
x

{ f (x)|x ∈ �trace}.
4. Find x1, the furthest ε -close point to xbest, i.e., x1 = arg max

x
{‖x − xbest‖ | f (x) ≤ f (xbest) + ε}

5. Estimate the upper bound for learning intensity,

tupper
ls = tgs

n

ln
(

1 − p(k)
2

)
ln

(
1 − p(k)

1

) = tgs

n

‖x − xbest‖ndim

‖x1−xbest‖ndim
.

6. Estimate the expected value for learning intensity,

texpected
il = average length of the search traces in �trace.

End

Fig. 7. Outline of individual learning intensity estimation scheme.

knowledge of p(k)
1 and p(k)

2 in complex optimization problems.
In this regard, we propose a novel APrMF that incorporates
an individual learning intensity estimation scheme for approxi-
mating p(k)

1 , p(k)
2 , and the theoretical upper bound of the prob-

lem in hand. In doing so, APrMF adapts/governs the individual
learning intensity of each individual using the approximated
theoretical upper bound as the search progresses.

To begin, Fig. 6 presents an outline of the APrMF. In
the first step, the APrMF population is initialized either
randomly or using design of experiments techniques such
as Latin hypercube sampling. During this initial stage, the
APrMF search operates similarly to the canonical MA with
all chromosomes assigned equal computational budget for
conducting individual learning. Nevertheless, in contrast to
a canonical MA, the individual learning procedure or meme
in APrMF is equipped with search tracking capability such
that the search history and structure of each chromosome
is archived in database �. The archived search history is
then used for estimating the theoretical upper bound of future
individual learning intensity.

After some predefined number of generations has elapsed,
the adaptive mechanism for individual learning intensity, i.e.,
til , takes effect. For each chromosome/individual, denoted here
as x(i), that undergoes individual learning, the upper learn-
ing intensity bound tupper

il (i)and expected learning intensity
texpected
il (i) are estimated based on the individual learning

intensity estimation scheme outlined in Fig. 7. Here, we
describe the individual learning intensity estimation scheme
as six main steps with the aid of the simple illustration in
Fig. 8.

1) Step 1: Locate the q nearest neighbors of individual x(i)
from database � based on some appropriate distance
metric. For example, a simple Euclidean distance metric
may be used in the case of a continuous parametric

optimization problem, i.e., the two nearest neighboring
points of individual x in Fig. 8(a), are denoted by
xneighbor1 and xneighbor2.

2) Step 2: Identify the set �trace of q learning search traces
associated with the nearest q chromosomes. In Fig. 8,
the search traces for xneighbor1 and xneighbor2 are t1 and
t2, respectively.

3) Step 3: Determine the fittest point, xbest, in �trace,
i.e., xbest = arg min

x
{ f (x)|x ∈ �trace}. xbest represents

the best quality solution found so far within the local
vicinity or neighborhood of x(i). xbest is denoted by
point A in Fig. 8.

4) Step 4: Determine the range of type I point which
is estimated based on the furthest ε − close point
in �trace to xbest, denoted here as x1, i.e., x1 =
arg maxx {‖x − xbest‖ | f (x) ≤ f (xbest) + ε}. In Fig. 8,
x1 is defined as point B.

5) Step 5: The values of probabilities p(k)
1 and p(k)

2 for the
neighborhood region of x(i) are approximated by

p(k)
2 = ‖x − xbest‖ndim/

volume of search space

p(k)
1 = ‖x1−xbest‖ndim/

volume of search space.

The upper learning intensity bound tupper
ls of the current

individual is then estimated by

tupper
il

= tgs

n

ln
(

1 − p(k)
2

)
ln

(
1 − p(k)

1

)
= tgs

n

ln
(
1 − ‖x − xbest‖ndim

/
volume of search space

)
ln

(
1 − ‖x1−xbest‖ndim

/
volume of search space

) .
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Xneighbor1

X

BA

ε

(a)

Xbest

C

X1

Xneighbor2

(b)

Xbest
A B C

X1
ε

Xneighbor2

Xneighbor1

X

Local search trace of Xneighbor1

Local search trace of Xneighbor2

Fig. 8. Illustration of algorithm. (a) Case 1: narrow, deep basin. (b) Case 2: wide, shallow basin.

Based on Taylor series expansion, ln(1−αn) ≈ −αn for
small value of α, the above equation simplifies to

tupper
il = tgs

n

‖x − xbest‖ndim

‖x1−xbest‖ndim
.

For the illustration example in Fig. 8

tupper
il = C A

B A
= 5 for the case I in Fig. 8(a) while

tupper
il = C A

B A
= 2 for the case II in Fig. 8(b).

6) Step 6: Estimate the expected learning intensity texpected
il

as an average of the intensity for the k nearest neighbors.
In Fig. 8, the expected intensity for individual x is three
since its neighbors, defined by xneighbor1 and xneighbor2
took three function evaluations on average in their
individual learning processes.

For individual x(i), APrMF then proceeds with individual
learning for a maximum computational budget defined by
the estimated tupper

il (i) and texpected
il (i), if the current expected

learning intensity of the current neighborhood does not exceed
the estimated learning intensity upper bound, i.e., texpected

il (i) ≤
tupper
il (i) This is followed by a replacement of the genotype

and fitness of x(i) x(i) in the population or only the latter
action with the improved solution in the spirit of Lamarckian
or Baldwinian learning, respectively. Otherwise, no form of
individual learning would be carried out should texpected

il >
tupper
il happens. The stochastic GA operators are then used to

create the next population. The entire process repeats until the
specified stopping criteria are satisfied.

IV. EMPIRICAL STUDY

In this section, we present a numerical study to ana-
lyze the search behavior and performance of the APrMF.

Several commonly used continuous parametric benchmark
test problems already extensively discussed in the litera-
ture are used here to demonstrate the efficacy of the pro-
posed probabilistic framework. They represent classes of uni-
modal/multimodal, discrete/continuous, epistatic/non-epistatic
test functions. Table I tabulates these benchmark test functions
with their notable characteristics.

To see how the proposed APrMF improves the efficiency
of a search, we consider diverse candidates of MA formed
by the synergy of different stochastic and individual learning
strategies on the representative benchmark problems. In par-
ticular, we consider the 1) canonical genetic algorithm (GA)
[3], or 2) differential evolution (DE) [40], or 3) evolutionary
strategy (ES) [41] as candidate stochastic search strategies
here. For individual learning or meme, we consider the 1)
strategy of Davies, Swann, and Campey with Gram-Schmidt
orthogonalization (DSCG) [35], 2) Davidon, Fletcher and
Powell Strategy (DFP) [37], and 3) Simplex strategy of Nelder
and Mead [36]. These are representative of second, first, and
zeroth order exact local search methods commonly found in
the literature.

To gain a better understanding of APrMF, we analyzed
and compared with the canonical MA having different
fixed individual learning intensity according to the following
aspects:

1) search quality and efficiency—the capability of the strat-
egy to provide high search quality and efficiency over
different problem types;

2) computational cost—the amount of extra CPU effort
incurred over and above canonical memetic algorithm;

3) robustness—the capability of the framework/algorithm
to generate performances that is reliable over different
problems;
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TABLE I

MULTIMODAL BENCHMARK FUNCTIONS USED IN THE STUDY (D IS THE NUMBER OF DIMENSIONS)

Benchmark test functions Range of xi
Characteristics

Global optimum
Epi* Mul* Disc*

FSphere =
D∑

i=1
x2

i [−100, 100]D None None None 0.0

FStep = 6D +
D∑

i=1
�xi  [−5.12, 5.12]D None None Medium 0.0

FGriewank =
D∑

i=1

x2
i

4000 −
D∏

i=1
cos( xi√

i
) + 1 [−6, 6]D Weak High None 0.0

FAckley = −20 exp(−0.2

√
1
D

D∑
i=1

x2
i [−32, 32]D None Weak None 0.0

− exp( 1
D

D∑
i=1

cos(2πxi )) + 20

FRastrigin =
D∑

i=1
(x2

i − 10 cos(2πxi ) + 10) [−5, 5]D None High None 0.0
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Fig. 9. Search trends of canonical MA (with a fixed individual learning
intensity, til = 100) and APrMF (GA-DFP) on the unimodal Sphere function.

4) simplicity and ease of implementation—simple frame-
work/algorithm requiring minimum effort to develop, as
well as a minimum numbers of control parameters that
need to be managed.
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Fig. 10. Search trends of canonical MA (with a fixed individual learning
intensity, til = 100) and APrMF (GA-DFP) on the Step function.

A. Search Quality and Efficiency

The average convergence trends obtained by APrMF based
on GA and DFP individual learning procedure (GA-DFP)
for solving the 30-dimension Sphere and Step problems are
depicted in Figs. 9 and 10 as a function of the total number
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of fitness evaluation calls. All results presented are averages
over 25 independent runs. Each run continues until the global
optimum was found or a maximum of 100 000 function
evaluations was reached. In each run, the control parameters
of the GA used in APrMF for solving the benchmark problems
were set as follows: population size of 50, Gaussian mutation
rate of 0.03, two-point crossover with a rate of 0.7, and real
number encoding. The initial individual learning intensity used
in APrMF is initialized to 100 evaluations. In Figs. 9 and 10,
canonical MA implies that throughout the entire search, a fixed
individual learning intensity of 100 is used, i.e., no form of
adaptation for tls is made. From the results reported in the
figures, APrMF is shown to converge to the global optimum
of both the Sphere and Step functions more efficiently than
the canonical MA.

Besides the best fitness convergence trends obtained along
the APrMF search, Fig. 9(bottom) also depicts the respective
individual learning/global search ratio against fitness evalu-
ation calls. Note that the individual learning/global search
ratio reflects the degree of local against the global efforts
expended in the search so far. It is worth noting that during the
initial stage of the plots in Figs. 9 and 10 on learning/global
search ratio against function evaluation call, both the APrMF
and canonical MA exhibit similar trends or traces since the
former operates exactly like the canonical MA during this
initial learning phase of two search generations before its
adaptive strategy begins to bite. From Fig. 9(bottom), it is
observed that in contrast to the canonical MA (with a fixed
individual learning intensity of 100) which reaches a stable
state of individual learning/global search ratio, the individual
learning/global search ratio of the APrMF increases signifi-
cantly as the search progresses on the Sphere function. This
implies that the expected individual learning intensity of the
entire population increases adaptively once the knowledge
about individual learning actually leads to greater benefits than
the stochastic evolutionary method is gained. In contrast, the
plot in Fig. 10(bottom) illustrates a case where the individual
learning/global search ratio of the population drops since the
converse is true in the case of a Step function, i.e., the
use of the stochastic GA operators leads to greater benefits
than individual learning. In both figures, APrMF is shown to
converge to the global optimum more efficiently than canonical
MAs. Note that these results obtained by APrMF based on GA
and DFP is consistent with our theoretical analysis presented
earlier in Section III-C. Hence, this shows that the proposed
individual learning intensity estimation scheme in APrMF is
capable of generating good approximation of p1, p2 and tupper

ls
at search runtime.

Next, we further analyze the search behavior of the APrMF
for different evolutionary and individual learning procedures
or memes on more benchmark problems that include the
30-dimensional Ackley, Griewank, and Rastrigin functions.
In particular, the following configurations of APrMFs and
canonical MAs are investigated:

1) APrMF with the initial individual learning intensity
configured to 100 (APrMF1);

2) APrMF with the initial individual learning intensity
configured to 200 (APrMF2);

TABLE II

PARAMETER SETTING OF APRMF

General parameters

Global search GA, DE and ES

Local search DSCG, DFP and Simplex

Stopping criteria
100 000 evaluations or con-
vergence to global optimum

Population size 50

Genetic algorithm parameters

Encoding scheme Real-coded

Selection scheme Roulette wheel

Crossover operator Two point crossover pc = 0.7

Mutation operator Gaussian mutation, pm = 0.03

Differential evolution parameters

Crossover probability pc = 0.9

ES parameters

Selection method μ + λ, μ = 50, λ = 100

Mutation operator Gaussian mutation

Local search parameters

Initial local search intensity t initial
il 100 or 200 evaluations

3) canonical MA with fixed individual learning intensity of
100 (MA1);

4) canonical MA with fixed individual learning intensity of
200 (MA2).

All parameters of the GA are kept consistent as before.
Table II summarizes the parameter settings of the other search
procedures used in the present experimental study.

The averaged convergence trends of various MAs obtained
for the 30-dimensional benchmark problems as a function
of the total number of function evaluations are summarized
in Figs. 11–13. For the sake of brevity in our discussion,
the numerical results obtained are grouped accordingly in
Figs. 11–13, so as to highlight the different adaptive trends
of the individual learning/global search ratio and individual
learning intensity in the APrM framework.

Note that all the subplots in Fig. 11 share similar upward
trends in the individual learning/global search ratio as the
search progresses for different level of synergy between evo-
lution and individual learning procedures on the benchmark
problems. With the APrM framework, knowledge on the
greater benefits of using individual learning against stochastic
evolutionary search for the problems in hand is gained. Hence
over time, the expected individual learning intensity or indi-
vidual learning/global search ratio increases adaptively as the
search progresses.

On the other hand, Fig. 12 displays upward trends in
the individual learning/global search ratio on APrMF1 while
experiencing a downward trend on APrMF2. Since APrMF1
and APrMF2 differ in the configurations of initial individual
learning intensity at 100 and 200, respectively, such trends
serve to indicate that the optimum configuration of individual
learning intensity should lie somewhere between the region
from 100 to 200. Note that in Fig. 12(b) and (d), the indi-
vidual learning/global search ratios of APrMF1 and APrMF2
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Fig. 11. APrMF with upward trends in individual learning/global search ratio and til [for legends, refer to Fig. 13(d)]. (a) Rastrigin DE-DSCG. (b) Ackley
DE-Simp. (c) Rastrigin DE-DSCG. (d) Griewank GA-GSCG.
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Fig. 12. APrMF Adapting the individual learning/global search ratio to its optimal configurationtil [for legends, refer to Fig. 13(d)]. (a) Ackley De-DSCG.
(b) Rastrigin ES-Simp. (c) Ackley GA-DSCG. (d) Griewank GA-Simp.
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APrMF1: APrMF with tinitial=100il

APrMF1: APrMF with tinitial=200il

Ma1: Canonical MA with til=100

Ma1: Canonical MA with til=200

(d)

Fig. 13. APrMF with downward trends in individual learning/global search ratio and til . (a) Griewank DE-Simp. (b) Ackley ES-Simp. (c) Griewank ES-Simp.
(d) Legend for Figs. 11–13.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 00:58:53 EST from IEEE Xplore.  Restrictions apply. 



NGUYEN et al.: A PROBABILISTIC MEMETIC FRAMEWORK 617

TABLE III

BENCHMARK FUNCTIONS FOR REAL NUMBER OPTIMIZATION

Func Benchmark test functions Range
Characteristics

Epi* Mul* Disc*

1 FSphere =
D∑

i=1
z2
i [−100, 100]D None None None

2 FSchwe f el1.2 =
D∑

i=1

(
i∑

j=1
z j

)2

[−100, 100]D High None None

3 FElliptic =
D∑

i=1

(
106

) i−1
D−1 z2

i [−100, 100]D None None None

4 FSchwe f el1.2+Noise =
⎛
⎝ D∑

i=1

(
i∑

j=1
z j

)2
⎞
⎠ ∗ (1 + 0.4 |N (0, 1)|) [−100, 100]D High High None

5 FSchwe f el2.6 = max {|Ai x − Ai o|} i = 1..D [−100, 100]D None None Medium

6 FRosenbrock =
D−1∑
i=1

(
100(z2

i − zi+1)2 + (zi − 1)2
)

[−100, 100]D High High None

7 FRastrigin =
D∑

i=1

(
z2
i − 10 cos(2π zi ) + 10

)
[−5.12, 5.12]D None High None

8 FGriewank−R =
D∑

i=1

z2
i

4000 −
D∏

i=1
cos

(
zi√

i

)
+ 1 [−∞,+∞]D Weak High None

9
FAckley−R = −20 exp

(
−0.2

√
1
D

D∑
i=1

z2
i

)
[−32, 32]D High Weak None

− exp

(
1
D

D∑
i=1

cos(2π zi )

)
+ 20

10 FRastrigin−R =
D∑

i=1
(z2

i − 10 cos(2π zi ) + 10) [−5.12, 5.12]D High High None

11
FW eierstrass−R =

D∑
i=1

(
k max∑
k=0

[ak cos(2πbk (zi + 0.5))])
[−0.5, 0.5]D High High None

− D
k max∑
k=0

[ak cos(πbk )]

12
FSchwe f el2.13 = ∑

(Ai − Bi x)2
[−π, π ]D Weak Weak None

Ai =
D∑

j=1

(
ai j sin α j + bi j cos α j

)
,

Bi =
D∑

j=1

(
ai j sin x j + bi j cos x j

)

13 FGrieRos =
D∑

i=1
FGriewank−R

(
FRosenbrock−R(zi , zi+1)

)
, zD+1 = z1 [−5, 5]D High High None

14
FSca f f er =

D∑
i=1

(
F(zi , zi+1)

)
, zD+1 = z1 [−100, 100]D Low High None

F(x, y) = 0.5 +
sin2

(√
x2+y2

)
−0.5(

1+0.001
(
x2+y2

))2

15 FH ybrid1 (see f16 in [42]) [−5, 5]D High High Medium

16 FH ybrid2(see f19 in [42]) [−5, 5]D High High Medium

1

TABLE IV

PARAMETERS CONFIGURATION OF APRMF BASED ON GA-DSCG

10-D functions 30-D functions
Stopping criteria 100 000 evaluations 300 000 evaluations
Global search Genetic algorithm
Local search DSCG
Population size 50
Encoding scheme Real-coded
Selection scheme Roulette wheel selection
Crossover operator One point crossover pc = 0.7
Mutation operator Gaussian mutation pm = 0.03
Initial local search
intensity t initial

ls
100 evaluations 300 evaluations

converged to very similar values. This serves to demonstrate
that the proposed APrM framework is capable of adapting the
individual learning intensity to suit the search problem in hand,
regardless of its initial settings as well as the evolutionary and
individual learning procedures used.

Fig. 13 illustrates the inability of the individual learning
procedures in contributing to the optimization problems. For
instance, the Simplex individual learning procedure is found
to synergize poorly with ES or DE in contributing to the
MA search on the Griewank function; see Fig. 13(a) and
(c). Similarly, ES also did not synergize well with Simplex
to form an MA that is appropriate for solving the Ackley
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TABLE V

OPTIMIZATION RESULTS USING APRMF (GA-DSCG) ON 10-D BENCHMARK FUNCTIONS. FEC REPRESENTS FUNCTION EVALUATION CALLS

INCURRED TO CONVERGE AT THE GLOBAL OPTIMUM SOLUTION OF EACH RESPECTIVE FUNCTION

FEC FSphere FSchwe f el1.2 FElliptic FSchwe f el1.2+Noise FSchwe f el2.6 FRosenbrock FRastrigin FGriewank−R

1e3

min 0 1.91e+3 2.59e–028 9.17e+3 2.09e+3 8.45e+0 0 7.63e–1

7th 0 2.83e+3 1.42e–027 1.28e+4 5.74e+3 4.50e+1 0 9.57e–1

med. 0 2.83e+3 5.25e–027 1.43e+4 6.70e+3 5.86e+1 0 9.57e–1

19th 0 2.83e+3 1.13e–026 17420 7.71e+3 1.49e+2 0 9.57e–1

max 0 3.50e+3 3.64e–026 2.28e+4 9.28e+3 1.39e+3 0 1.34e+0

mean 0 2.80e+3 8.13e–027 1.50e+4 6.41e+3 2.82e+2 0 9.84e–1

std 0 3.07e+2 8.33e–027 3.31e+3 1.80e+3 4.58e+2 0 1.11e–1

1e4

min - 1.33e–6 - 2.27e+3 9.23e+1 0 - 0

7th - 6.34e–5 - 4.63e+3 7.35e+2 0 - 1.82e–10

med. - 6.34e–5 - 6.18e+3 1.66e+3 2.02e–7 - 2.46e–2

19th - 9.54e–5 - 7.15e+3 2.14e+3 1.03e+0 - 4.67e–2

max - 6.45e–3 - 1.02e+4 3.89e+3 4.94e+0 - 1.13e–1

mean - 4.01e–4 - 5.92e+3 1.54e+3 8.16e–1 - 2.95e–2

std - 1.28e–3 - 2.02e+3 9.26e+2 1.46e+0 - 2.96e–2

1e5

min - - - 1.34e+2 7.36e–4 - - 0

7th - - - 8.70e+2 6.48e+1 - - 0

med. - - - 1.22e+3 1.53e+2 - - 0

19th - - - 1.81e+3 2.57e+2 - - 9.86e–3

max - - - 4.71e+3 1.20e+3 - - 3.69e–2

mean - - - 1.48e+3 2.23e+2 - - 8.07e–3

std - - - 1.01e+3 2.58e+2 - - 1.14e–2

FEC FAckley−R FRastrigin−R FW eierstrass−R FSchwe f el2.13 FGrieRos FSca f f er FH ybrid1 FH ybrid2

1e3

min 2.02e+1 6.78e+1 5.50e+0 1.35e+3 2.83e+0 1.23e–1 2.26e+2 9.10e+2

7th 2.04e+1 7.98e+1 8.12e+0 2.13e+3 4.56e+0 3.97e–1 2.98e+2 1.03e+3

med. 2.05e+1 7.98e+1 9.02e+0 3167 5.15e+0 4.42e–1 3.20e+2 1.07e+3

19th 2.06e+1 7.98e+1 9.58e+0 3.78e+3 5.15e+0 6.16e–1 3.73e+2 1.11e+3

max 2.08e+1 9.66e+1 1.08e+1 3.91e+3 6.25e+0 1.08e+0 4.71e+2 1.16e+3

mean 2.05e+1 7.96e+1 8.67e+0 2.83e+3 4.81e+0 4.89e–1 3.37e+2 1.06e+3

std 1.43e–1 5.43e+0 1.44e+0 8.52e+2 7.15e–1 2.21e–1 6.81e+1 6.72e+1

1e4

min 2.01e+1 2.79e+1 4.79e+0 1.01e–1 6.23e–1 3.89e–2 1.33e+2 6.76e+2

7th 2.02e+1 3.88e+1 5.68e+0 2.80e+1 8.83e–1 5.83e–2 1.68e+2 8.42e+2

med. 2.03e+1 4.49e+1 6.90e+0 5.73e+1 1.09e+0 7.79e–2 1.96e+2 9.09e+2

19th 2.04e+1 5.55e+1 7.27e+0 9.25e+1 1.51e+0 1.e–1 2.11e+2 9.59e+2

max 2.05e+1 7.98e+1 8.39e+0 3.99e+2 3.39e+0 1.66e–1 2.73e+2 1.03e+3

mean 2.03e+1 4.88e+1 6.63e+0 8.36e+1 1.27e+0 8.49e–2 1.95e+2 8.85e+2

std 1.11e–1 1.34e+1 1.04e+0 8.82e+1 6.41e–1 3.05e–2 3.65e+1 9.50e+1

1e5

min 2.0e+1 9.95e+0 4.17e+0 0 1.92e–1 1.94e–2 1.16e+2 4.32e+2

7th 2.02e+1 1.99e+1 5.17e+0 0 5.84e–1 3.89e–2 1.31e+2 6.64e+2

med. 2.02e+1 2.29e+1 5.60e+0 0 6.91e–1 3.89e–2 1.37e+2 7.90e+2

19th 2.03e+1 2.80e+1 6.32e+0 1.84e–4 8.27e–1 7.77e–2 1.44e+2 8.e+2

max 2.04e+1 3.38e+1 7.92e+0 3.52e–1 1.16e+0 9.72e–2 1.59e+2 8.26e+2

mean 2.02e+1 2.30e+1 5.70e+0 2.38e–2 7.07e–1 4.99e–2 1.37e+2 7.21e+2

std 1.05e–1 6.35e+0 1.01e+0 7.84e–2 2.07e–1 2.66e–2 1.18e+1 1.20e+2

function, as shown in Fig. 13(b). Consequently, the APrM
frameworks, i.e., APrMF1 and APrMF2, adapt by reducing the
expected individual learning intensity of the population as the
search proceeds, when knowledge on the inability of individual
learning compared to the stochastic GA operators is learned.
Thus a downward trend in the individual learning/global search
ratio can be observed in Fig. 13(a)–(c).

B. Computational Complexity

The time complexity of a canonical MA can be easily
derived as the order of O{[ngen × tgs × τeval] + [(ngen × n) ×
til ×τeval]}, where ngen is the maximum number of generations
evolved during the search process, τeval is the time taken for
one objective function evaluation while tgs , n, and til have
been defined in the previous sections. Hence, ngen × popsi ze
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TABLE VI

OPTIMIZATION RESULTS USING APRMF (GA-DSCG) ON 30-D BENCHMARK FUNCTIONS. FEC REPRESENTS FUNCTION EVALUATION CALLS

INCURRED TO CONVERGE AT THE GLOBAL OPTIMUM SOLUTION OF EACH RESPECTIVE FUNCTION

FEC FSphere FSchwe f el1.2 FElliptic FSchwe f el1.2+Noise FSchwe f el2.6 FRosenbrock FRastrigin FGriewank−R

1e3

min 3.11e–27 3.85e+4 1.33e–24 7.67e+4 1.49e+4 2.60e+2 0 3.72e+0
7th 1.31e–26 71670 1.30e–23 1569 1.94e+4 3.09e+3 4.01e+0 4.32e+0

med. 3.26e–26 8.34e+4 2.71e–23 119853 2.17e+4 4.79e+3 5.31e+0 6.16e+0
19th 3.26e–26 103222 8.15e–2 156792 2.45e+4 7.42e+3 2.89e+1 6.41e+0
max 6.77e+2 107899 1.17e+1 173645 3.28e+4 1.15e+4 6.25e+1 6.41e+0
mean 2.71e+1 8.30e+4 2.42e+0 1.27e+5 2.23e+4 5.29e+3 1.57e+1 5.51e+0
std 1.35e+2 2.15e+4 4.55e+0 3.05e+4 4.32e+3 2.96e+3 1.80e+1 1.09e+0

1e4

min - 7849 - 6.56e+4 1.06e+4 5.81e+1 0 4.22e–3
7th - 1.26e+4 - 8.52e+4 1.31e+4 2.25e+2 0 5.47e–1

med. - 1.41e+4 - 9.06e+4 1.43e+4 4.98e+2 0 6.21e–1
19th - 1.62e+4 - 107937 1.62e+4 1.14e+3 2.77e–2 7.23e–1
max - 2.70e+4 - 156792 2.41e+4 2.14e+3 5.98e+0 1.05e+0
mean - 1.52e+4 - 1.01e+5 1.47e+4 6.93e+2 6.66e–1 6.06e–1
std - 5.17e+3 - 2.54e+4 2.94e+3 5.84e+2 1.60e+0 2.41e–1

1e5

min - 0 - 3.14e+4 5.93e+3 1.52e–7 - 0
7th - 0 - 41743 7.23e+3 8.82e+0 - 0

med. - 0 - 4.37e+4 8.37e+3 1.56e+1 - 0
19th - 0 - 4.90e+4 9.71e+3 2.86e+1 - 0
max - 8.41e+3 - 6.43e+4 1.13e+4 1.73e+2 - 9.86e–3
mean - 3.36e+2 - 4.55e+4 8.48e+3 3.30e+1 - 1.04e–3
std - 1.68e+3 - 6.91e+3 1.57e+3 4.10e+1 - 2.45e–3

3e5

min - - - 2.57e+4 4.45e+3 0 - 0
7th - - - 3.15e+4 6.03e+3 1.34e–6 - 0

med. - - - 3.59e+4 6.39e+3 1.10e+0 - 0
19th - - - 4.03e+4 7.21e+3 1.32e+1 - 0
max - - - 5.42e+4 9.14e+3 5.79e+1 - 9.86e–3
mean - - - 3.61e+4 6.66e+3 8.27e+0 - 8.76e–4
std - - - 6.63e+3 1.28e+3 1.29e+1 - 2.36e–3

FEC FAckley−R FRastrigin−R FW eierstrass−R FSchwe f el2.13 FGrieRos FSca f f er FH ybrid1 FH ybrid2

1e3

min 2.07e+1 3.83e+2 3.09e+1 4.22e+4 2.87e+1 8.51e–1 1.33e+2 8.47e+2
7th 2.08e+1 4.41e+2 3.38e+1 7.07e+4 5.88e+1 2.82e+0 1.48e+2 9.07e+2

med. 2.09e+1 4.80e+2 3.58e+1 120430 8.39e+4 3.14e+0 1.53e+2 9.31e+2
19th 2.11e+1 4.86e+2 3.79e+1 140507 160182 3.93e+0 2.47e+2 9.57e+2
max 2.11e+1 5.16e+2 3.86e+1 182762 162441 4.84e+0 5.21e+2 9.68e+2
mean 2.09e+1 4.66e+2 3.58e+1 1.11e+5 7.58e+4 3.31e+0 2.16e+2 9.28e+2

std 1.21e–1 3.71e+1 2.14e+0 4.e+4 7.14e+4 8.94e–1 1.19e+2 3.05e+1

1e4

min 2.05e+1 2.49e+2 2.10e+1 1.60e+4 7.98e+0 8.51e–1 1.16e+2 5.26e+2
7th 2.07e+1 3.39e+2 3.04e+1 3.42e+4 1.37e+1 1.27e+0 1.23e+2 7.70e+2

med. 2.08e+1 3.39e+2 3.12e+1 4.63e+4 2.06e+1 1.54e+0 1.27e+2 8.34e+2
19th 2.08e+1 3.92e+2 3.23e+1 51674 3.16e+1 1.85e+0 1.31e+2 8.94e+2
max 2.09e+1 4.69e+2 3.58e+1 7.44e+4 2.13e+2 2.67e+0 1.39e+2 9.45e+2
mean 2.08e+1 3.64e+2 3.12e+1 4.44e+4 3.76e+1 1.59e+0 1.27e+2 8.17e+2

std 9.90e–2 5.36e+1 2.79e+0 1.32e+4 5.30e+1 4.67e–1 6.21e+0 1.05e+2

1e5

min 2.e+1 1.79e+2 2.10e+1 3.29e+0 4.71e+0 2.45e–1 1.03e+2 5.03e+2
7th 2.06e+1 2.34e+2 2.93e+1 4.41e+2 6.84e+0 6.29e–1 1.12e+2 5.75e+2

med. 2.07e+1 2.51e+2 3.02e+1 1.63e+3 8.68e+0 7.72e–1 1.17e+2 5.98e+2
19th 2.08e+1 2.82e+2 3.12e+1 2.79e+3 1.25e+1 9.29e–1 1.19e+2 6.56e+2
max 2.09e+1 3.38e+2 3.32e+1 5.87e+3 2.22e+1 1.54e+0 1.21e+2 7.43e+2
mean 2.07e+1 2.55e+2 2.98e+1 1.87e+3 9.89e+0 8.16e–1 1.15e+2 6.12e+2

std 1.86e–1 4.29e+1 2.49e+0 1.70e+3 4.13e+0 3.26e–1 4.81e+0 5.87e+1

3e5

min 2.e+1 1.71e+2 2.10e+1 2.42e–6 4.71e+0 2.34e–1 1.03e+2 4.78e+2
7th 2.06e+1 1.92e+2 2.82e+1 8.22e+0 6.28e+0 4.31e–1 1.07e+2 4.98e+2

med. 2.07e+1 2.14e+2 2.99e+1 1.40e+2 6.84e+0 5.21e–1 1.13e+2 5.26e+2
19th 2.08e+1 2.33e+2 3.04e+1 6.64e+2 8.16e+0 6.85e–1 1.16e+2 5.51e+2
max 2.08e+1 2.91e+2 3.32e+1 2.83e+3 1.38e+1 8.76e–1 1.19e+2 6.45e+2
mean 2.06e+1 2.17e+2 2.93e+1 4.42e+2 7.72e+0 5.41e–1 1.12e+2 5.34e+2

std 1.91e–1 3.36e+1 2.54e+0 6.72e+2 2.26e+0 1.88e–1 5.12e+0 4.31e+1
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TABLE VII

MEMETIC ALGORITHMS OR HYBRID EA-LOCAL SEARCH

USED IN COMPARISON

Algorithm name Description

BLX-GL50 Hybrid Real-Coded Genetic Algorithms [43]

BLX-MA Real-coded memetic algorithm with adap-
tive local-search probability and local search
length [44]

DMS-L-PSO Dynamic multi-swarm particle swarm opti-
mizer with local search [45]

EDA Continuous Estimation of Distribution Algo-
rithms [46]

DEshcSPX Differential evolution with crossover-based
local search [47]

G-CMAES Restart CMA Evolution Strategy With
Increasing Population Size [48]

represents the total number of chromosomes that undergo
individual learning in the entire search.

APrMF enhanced the canonical MA by introducing the
Individual Learning Intensity Estimation Scheme which is
made up of two main parts.

1) Identify the k nearest chromosomes, for which the time
complexity is of the order of O{(ngen×n)2×τdis} where
τdis is the time taken to perform the distance measure
between any two chromosomes.

2) γ is the time to estimate the upper bound and expected
learning intensity. The total time complexity incurred
throughout the APrMF search is of the order of
O{(ngen × n) × γ }.

Hence, the total time complexity incurred by APrMF over the
canonical MA is of the order of O{[(ngen × n)2 × τdis] +
[(ngen × n) × γ ]}. Note that since τdis and γ are relatively
small (order of microseconds) especially on complex optimiza-
tion problems where function evaluations are computationally
expensive [10], i.e., τeval is usually large (order of minutes
or more), the extra cost incurred may be considered to be
negligible.

C. Simplicity and Robustness

In contrast to the fil , �il , and til control parameters in a
canonical MA, APrMF represents a much simpler framework
since it has only a single t initial

il parameter. Furthermore,
from the results reported in Figs. 11–13, the APrMF has
been demonstrated to adapt the local search intensity til
competently at runtime, regardless of the initial setting for
t initial
il , thus producing search performances that are superior

to the canonical MA counterparts on all the benchmark
problems considered. For instance, for the same initial con-
figuration, APrMF is shown to increase the value of til to
suit the Sphere landscape, while the reverse is observed on
the Step function. In another example, both the APrMF1
and APrMF2 converged to robust search performances and
global/individual learning ratio on the Griewank function;
see Fig. 12(d). Hence, APrMF not only converges to robust
solutions, but also offers ease of implementations as an added
advantage.

V. APRMF WITH COMPARISON TO OTHER

EVOLUTIONARY AND MEMETIC APPROACHES

In this section we provide a comprehensive empirical study
of APrMF and a detailed comparison to several recent state-
of-the-art evolutionary, memetic and/or hybrid evolutionary
local search approaches using the test suite proposed in
the Congress on Evolutionary Computation (CEC’05) [42].
These are comprehensive collections of unimodal/multimodal,
discrete/continuous, epistatic/non-epistatic and hybridized test
functions used for comparison in literature. The list of
functions and their characteristics are summarized here in
Table III.2

The search performance of APrMF based on GA-DSCG
for the 10-D and 30-D versions of the benchmark functions
are summarized in Tables V and VI, respectively. In the
tables, results are presented for 103, 104, 105 and D ∗ 104

function evaluations (D is the dimensionality of the benchmark
problems considered). At each of the evaluation points, the
objective function errors of 25 independent runs are sorted and
the best, the 7th, the median, the 19th and the worst results
together with the mean and standard deviation are presented
in the tables. The parametric configuration of the GA-DSCG
used is also summarized in Table IV.

For rotated functions (8, 9, 10, 11, and 13):
z = Mrotate (x − o) .

For other functions: z = x−o, where o is the shifted global
optimum, Mrotate is the rotation matrix.

Using the results obtained in Tables V and VI, we pit
APrMF against other memetic and hybrid evolutionary local
search approaches. The list of algorithms used here for com-
parisons were reported in the recent CEC’05 which signif-
icantly outperform many others in the literature. Table VII
provides a brief description of these algorithms, while Tables
VIII and IX summarize their search performance compared to
the APrMF in solving the same set of benchmark problems.
For fair comparison, the same performance metric used in
CEC’05 has been maintained. Entries in each table are the
average number of function evaluations for all the successful
runs (among 25 independent runs). For fair comparisons, the
accuracy level of convergence, ε, is set to 10−6 for functions
1 to 5 and 10−2 for all others, similar to that used in the CEC
2005 benchmark studies. Overall, APrMF outperforms all the
other methods on the unimodal, multimodal, discrete, continu-
ous, epistatic, and non-epistatic 10- and 30-dimensional bench-
mark problems. On the hybridized problems, i.e., functions 15
and 16 in Table III, competitive results have been obtained for
APrMF compared to the other approaches considered.

A further comparative study of APrMF (also based on
GA-DSCG for consistency) to recent advance evolutionary
algorithms is also provided here and the results are summa-
rized in Fig. 14. In particular, we pit APrMF against the fast
evolutionary strategy [49], fast evolutionary programming [50]
orthogonal GA (OGA/Q) [51], and hybrid Taguchi-genetic

2Due to space constraints, we present only the results of GA-DSCG on
the 10-D and 30-D benchmark functions in this paper. For the results on
other modes of synergy between evolutionary and individual learning MA,
the reader may contact the authors for details.
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TABLE VIII

SUCCESS MEASURE OF THE ALGORITHMS IN SOLVING THE 10-D BENCHMARK FUNCTIONS. FOR INSTANCE, 0.6 (25) ON FSPHERE IMPLIES THAT

APRMF INCURRED AN AVERAGE OF (0.6*1000) FUNCTION EVALUATION CALLS ON 25 SUCCESSFUL INDEPENDENT RUNS. A ‘-’ ENTRY IN THE TABLE

IMPLIES THAT THE RESPECTIVE ALGORITHM FAILS TO CONVERGE TO THE GLOBAL OPTIMUM. BOLD ITALIC ALSO HIGHLIGHTS THE BEST SEARCH

PERFORMANCE (BASED ON PAIR-WISE T-TEST BETWEEN EACH RESPECTIVE ALGORITHM PAIRS)

FSphere FSchwe f el1.2 FElliptic FRosenbrock FGriewank−R FRastrigin FSchwe f el2.13

APrMF 0.6(25) 11.0(25) 0.6(25) 10.5(25) 17.6(20) 1.0(25) 31.9(19)

BLX-GL50 19.0(25) 41.04(25) - 51.8(25) 20.8(9) 20.4(3) 51.59(13)

BLX-MA 12.0(25) 36.96(25) - - - 69.8(18) -

DMS-L-PSO 12.0(25) 12.0 (25) 11.7(25) 54.7(25) 94.8(4) 35.7(25) 54.1(19)

EDA 10.0(25) 11.0(25) 16.3(23) 68.2(25) 75.9(1) - 35.2(10)

DEshcSPX 22.9(25) 34.7(25) 89.2(20) 50.2(23) 97.3(21) 89.7(5) -

G-CMAES 1.61(25) 2.38(25) 6.5(25) 10.8(25) - 4.67(25) 32.7(19)

TABLE IX

RESULT OF T-TEST WITH 95% CONFIDENCE LEVEL COMPARING STATISTICAL VALUES FOR APRMF AND THOSE OF THE OTHER ALGORITHMS IN

SOLVING THE 10-D BENCHMARK FUNCTIONS (S+, S–, AND ≈ INDICATE THAT APRMF IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND

INDIFFERENT, RESPECTIVELY)

FSphere FSchwe f el1.2 FElliptic FRosenbrock FGriewank−R FRastrigin FSchwe f el2.13

BLX-GL50 s+ s+ - s+ s+ s+ s+

BLX-MA s+ s+ - - - s+ -

DMS-L-PSO s+ s+ s+ s+ s+ s+ s+

EDA s+ ≈ s+ s+ s+ - s+

DEshcSPX s+ s+ s+ s+ s+ s+ -

G-CMAES s+ s– s+ ≈ - s+ ≈

TABLE X

SUCCESS MEASURE OF THE ALGORITHMS IN SOLVING THE 30-D BENCHMARK FUNCTIONS. A ‘-’ ENTRY IN THE TABLE IMPLIES THAT THE

RESPECTIVE ALGORITHM FAILS TO CONVERGE TO THE GLOBAL OPTIMUM. BOLD ITALIC ALSO HIGHLIGHTS THE BEST SEARCH PERFORMANCE

(BASED ON PAIR-WISE T-TEST BETWEEN EACH RESPECTIVE ALGORITHM PAIRS)

FSphere FSchwe f el1.2 FElliptic FGriewank−R FRastrigin

APrMF 0.6(25) 87.0(25) 1.0(25) 25.5 (25) 5.9(25)

BLX-GL50 58.05(25) 159.6(25) - 66.3(25) -

BLX-MA 32.13(25) - - - 238.8(9)

DMS-L-PSO 5.13(25) 129.6(25) 285.3(21) 57.4(24) -

EDA 150.1(25) 159.6(25) 219.3(25) 129.93(25) -

DEshcSPX 89.4(25) 299.3(2) - 148.1(21) -

G-CMAES 4.5(25) 13.0(25) 42.7(25) - 6.1(25)

TABLE XI

RESULT OF T-TEST WITH 95% CONFIDENCE LEVEL COMPARING STATISTICAL VALUES FOR APRMF AND THOSE OF THE OTHER ALGORITHMS IN

SOLVING THE 30-D BENCHMARK FUNCTIONS (S+, S–, AND ≈ INDICATE THAT APRMF IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND

INDIFFERENT, RESPECTIVELY)

FSphere FSchwe f el1.2 FElliptic FGriewank−R FRastrigin

BLX-GL50 s+ s+ - s+ -

BLX-MA s+ - - s+

DMS-L-PSO s+ s+ s+ s+ -

EDA s+ s+ s+ s+ -

DEshcSPX s+ s+ - s+ -

G-CMAES s+ s– s+ -

algorithm (HTGA) [52] on common benchmark functions used
that includes the non-rotated Ackley, Griewank, and Rastrigin
functions, described previously in Table III. The results in
Fig. 14 indicate the superior performance of the APrMF in

converging to the global optimum more efficiently than all
the counterparts considered, three of which were published
recently in the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION.
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Fig. 14. Number of function evaluations used by different algorithms in
solving the 30-D benchmark functions.

VI. CONCLUSION

One major issue pertaining to adaptation is to deter-
mine during runtime whether evolution or individual learning
should be directed, with the objective of accelerating an MA
search. In contrast to earlier works which rely on semi-ad
hoc or heuristics methods, the essential backbone of our
framework is a probabilistic model derived for establishing
the theoretical upper bound of individual learning intensity.
In particular, we model the MA as a process involving
the decision of embracing the separate actions of evolution
or individual learning and analyze the probability of each
process in locating the global optimum. This leads to a
novel PrMF, a quantitative formalization for adaptation by
governing the learning intensity of each individual accord-
ing to the theoretical upper bound while the search pro-
gresses.

An important aspect of PrMF is the determination of certain
probabilistic measures based on the neighborhood structure
of a local search. We showed in this paper that in practice,
such probabilistic measures can be estimated reliably. For
this purpose, we outlined the formalization of an APrMF,
to demonstrate how the PrMF can be put into practice. For
validation, empirical and theoretical studies on representative
benchmark problems commonly used in the literature are then
presented to demonstrate the characteristics and efficacies of
the probabilistic memetic framework. Subsequent comparisons
to recent state-of-the-art evolutionary algorithms, memetic
algorithms, and hybrid evolutionary local demonstrate that
the proposed framework converges to good solutions effi-
ciently.

This paper has established the groundwork for the formal-
ization of a quantitative framework for adaptive MAs. On
the one hand, it can be viewed as a paradigm shift on how
adaptation on MAs can be dealt with. From a research point
of view, this perception is likely to be more applicable and
further research is warranted. On the other hand, it can be
perceived as an alternative on how one can quantitatively char-
acterize the synergy level between evolutionary and individual
learning in MAs. This is more likely to be applicable from an
implementation point of view.
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