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ABSTRACT
Evaluating rankers using implicit feedback, such as clicks on docu-
ments in a result list, is an increasingly popular alternative to tradi-
tional evaluation methods based on explicit relevance judgments.
Previous work has shown that so-called interleaved comparison
methods can utilize click data to detect small differences between
rankers and can be applied to learn ranking functions online.

In this paper, we analyze three existing interleaved comparison
methods and find that they are all either biased or insensitive to
some differences between rankers. To address these problems, we
present a new method based on a probabilistic interleaving process.
We derive an unbiased estimator of comparison outcomes and show
how marginalizing over possible comparison outcomes given the
observed click data can make this estimator even more effective.

We validate our approach using a recently developed simulation
framework based on a learning to rank dataset and a model of click
behavior. Our experiments confirm the results of our analysis and
show that our method is both more accurate and more robust to
noise than existing methods.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Evaluation, Implicit feedback, Interleaved comparison

1. INTRODUCTION
In information retrieval (IR), most techniques for evaluating ran-

kers require explicit feedback, in which assessors manually judge
the relevance of documents for given queries. Unfortunately, ob-
taining such explicit judgments is expensive and error-prone. Since
annotators usually judge documents for queries they did not for-
mulate, the judgments may be biased towards their interpretation
of the underlying information needs [2]. Consequently, evaluating
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rankers using implicit feedback such as click data is a promising
alternative. Since click data is a by-product of the normal interac-
tions between the user and the retrieval system, it can be collected
unobtrusively and at minimal cost. In addition, since it is based on
the behavior of real users, it more accurately reflects how well their
actual information needs are met [23].

Previous work demonstrated that two rankers can be successfully
compared using click data. In the balanced interleave method [15],
an interleaved list is generated for each query based on the two
rankers. The user’s clicks on the interleaved list are attributed to
each ranker based on how they ranked the clicked documents, and
the ranker that obtains more clicks is deemed superior. These com-
parisons are repeated for a large number of queries, to obtain a
reliable estimate of the relative performance of the two rankers.

Unfortunately, the balanced interleave approach suffers from a
bias that can make it prefer the wrong ranker [23]. The alternative
team draft method avoids this form of bias by assigning each doc-
ument to the ranker that contributed it to the interleaved list and
only crediting clicks to the ranker to which the clicked document
is assigned. In contrast to the balanced interleave and team draft
methods, the document constraint method takes relations between
documents into account [10].

In this paper, we analyze existing interleaved comparison meth-
ods and find that the document constraint method suffers from a
bias similar to that of the balanced interleave method. We also find
that the team draft method, though unbiased, is insensitive to some
differences between rankers. We illustrate these problems using
examples, and show how they can affect comparison outcomes.

Furthermore, we propose a new approach for comparing rankers
that utilizes a probabilistic model of the interleave process and is
based on the team draft method. The main idea is to replace the
original rankers with softmax functions that define probability dis-
tributions over documents. Contributing a document to an inter-
leaved list is formulated as sampling without replacement from a
probability distribution. To infer comparison outcomes, we de-
rive an unbiased estimator. Because this estimator is based on our
probabilistic model, it smooths over click assignments, making the
method both unbiased and sensitive to small differences between
rankers. Finally, we show how comparisons can make more effec-
tive use of observed data by marginalizing over all possible com-
parison outcomes for each observed sample.

We present experiments using a large set of explicitly labeled
data and a recently developed user click model that simulates the
resulting implicit feedback. These experiments confirm the results
of our analysis, and show that our method can identify the cor-
rect ranker more reliably than existing methods. Furthermore, our
method improves over previous methods in terms of efficiency and
robustness to noise.
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In the next section we give an overview of related work (§2). We
then formulate requirements for interleaved comparison methods
and analyze existing methods (§3). Our probabilistic method is
described in §4 and experiments are detailed in §5. We present and
discuss experimental outcomes in §6 and conclude in §7.

2. RELATED WORK
Implicit feedback has long been used in a variety of settings, e.g.,

to infer users’ interest in specific web pages. Many forms have
been considered, such as the time spent on a page, scrolling, and
clicks [5, 17]. In IR, implicit feedback has been used for relevance
feedback, to refine search results throughout a search session [27].

Unfortunately, implicit feedback tends to be noisy. For example,
a long-term study of “time spent reading” found no clear relation
between this form of implicit feedback and a document’s perceived
usefulness, and that the time spent on the page varies considerably
across users and tasks [18].

Clicks, the most easily collected form of feedback, are difficult
to use for evaluation because they do not correspond well to ab-
solute relevance. Jung et al. [16] found that click data does con-
tain useful information, but that variance is high. They propose
aggregating clicks over search sessions and show that focusing on
clicks towards the end of sessions can improve relevance predic-
tions. Similarly, Scholer et al. [24] found that click behavior varies
substantially across users and topics, and that click data is too noisy
to serve as a measure of absolute relevance. Fox et al. [7] found that
combining several implicit indicators can improve accuracy, though
it remains well below that of explicit feedback.

Nonetheless, in some applications, click data has proven reliable.
In searches of expert users who are familiar with the search system
and document collection, clicks can be as reliable as purchase de-
cisions [11]. Methods for optimizing the click-through rates in ad
placement [19] and web search [22] have also learned effectively
from click data.

Methods that use implicit feedback to infer the relevance of spe-
cific document-query pairs have also proven effective. Shen et al.
[25] show that integrating click-through information for query-do-
cument pairs into a content-based retrieval system can improve re-
trieval performance substantially. Agichtein et al. [1] demonstrate
dramatic performance improvements by re-ranking search results
based on a combination of implicit feedback sources, including
click-based and link-based features. Chapelle and Zhang [4] learn
a Bayesian model that accurately predicts the relevance of docu-
ments to specific queries from click data.

These applications learn the value of specific documents for spe-
cific queries, for which implicit feedback appears to be accurate.
However, since implicit feedback varies so much across queries, it
is difficult to use it to learn models that generalize across queries.
To address this problem, several methods have been developed that
use implicit feedback, not to infer absolute judgments, but to com-
pare two rankers by observing clicks on an interleaved result list.
In the remainder of this section, we overview these methods.

The balanced interleave method [15] takes as input two result
lists l1 and l2 for a given query q, and produces an outcome o ∈
{−1, 0, 1} that indicates whether the quality of l1 is judged to be
lower, equal to, or higher than that of l2, respectively. The method
first generates an interleaved list l (see Figure 1, part 1). One of
{l1, l2} is selected at random as the starting list and its first doc-
ument is placed at the top of the interleaved list. Then, the non-
starting list contributes its highest-ranked document if it is not al-
ready part of the list. These steps repeat until the interleaved list
has the desired length. The clicks c that are observed when the in-
terleaved list is presented to the user are attributed to each list as
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Figure 1: Interleaved comparisons using balanced interleave.

follows (Figure 1, part 2). For each list, the lowest-ranked docu-
ment that received a click is determined, and the minimum of their
ranks is denoted k. Then, the clicked documents ranked at or above
k are counted for each list. The list with more clicks in its top k is
deemed superior (they tie if they obtain the same number of clicks).
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Figure 2: Interleaved comparisons using team draft.

The alternative team draft method [23] creates an interleaved list
following the model of “team captains” selecting their team from
a set of players (see Figure 2). For each pair of documents to be
placed on the interleaved list, a coin flip determines which list gets
to select a document first. It then contributes its highest-ranked
document that is not yet part of the interleaved list. The method
also records which list contributed which document in an assign-
ment a. To compare the lists, only clicks on documents that were
contributed by each list are counted towards that list. This method
of assignments ensures that each list has an equal chance of obtain-
ing clicks. Recent work demonstrates that the team draft method
can reliably identify the better of two rankers in practice [21].

1) Interleaving 2) Comparison

d1

d2

d3

d4

List l1
d2

d3

d4

d1

List l2

d1         

d2        

d3        

d4        

d2        

d1        

d3        

d4        

x

d1       

d2       

d3       

d4       

d2       

d1       

d3       

d4       

inferred constraints
violated by:   l1  l2
d2 ≻ d1      x  -

d3 ≻ d1      x  -

x

x x

l2 wins the first comparison, and loses the 

second. In expectation l2 wins.

inferred constraints
violated by:   l1  l2
d1 ≻ d2      -  x

d3 ≻ d2      x  x

Two possible interleaved lists l:

Figure 3: Interleaved comparisons using document constraints.

Neither the balanced interleave nor the team draft method takes
relations between documents explicitly into account. To address
this, He et al. [10] propose an approach that we call the document-
constraint method (see Figure 3). Result lists are interleaved and
clicks observed as for the balanced interleave method. Then, fol-
lowing [14], the method infers constraints on pairs of individual
documents, based on their clicks and ranks. For each pair of a
clicked document and a higher-ranked non-clicked document, a
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constraint is inferred that requires the former to be ranked higher
than the latter.1 For example, in the first interleaved list shown in
Figure 3, d2 is ranked lower than d1. If d2 is clicked while d1 is
not, the constraint d2 � d1 is inferred. The method then com-
pares these constraints to the original result lists and counts how
many constraints are violated by each. The list that violates fewer
constraints is deemed superior. Though more computationally ex-
pensive, this method proved more reliable than either balanced in-
terleave or team draft on a synthetic data set [10].

3. ANALYSIS
To analyze interleaved comparison methods, we need a set of

criteria against which such methods can be evaluated. We propose
two criteria. First, an interleaved comparison method should not
suffer from bias, i.e., it should not prefer either ranker when clicks
are random. Second, it should possess sensitivity, i.e., it should be
able to detect differences in the quality of document rankings. In
this section, we detail both criteria and analyze to what degree they
are met by existing methods.

3.1 Bias
Our first criterion for interleaved comparison methods is that

they not suffer from bias. We define an interleaved comparison
method to be biased if, under a random distribution of clicks, it
prefers one ranker over the other in expectation. Bias is problem-
atic because it means that noise in click feedback can affect the
expected outcome of comparisons, making the comparison method
unreliable.

For the balanced interleave method, Radlinski [23] demonstrated
bias in cases where l1 and l2 are very similar. This problem is illus-
trated in Figure 1. The interleave process can result in interleaved
lists that are identical, or very similar, to one of the original lists. In
the example, the first interleaved list is equal to l1, and the second
is similar to it, with only the first two documents switched. Conse-
quently, clicks towards the top of the interleaved list are more likely
to be attributed to l1, while clicks on lower-ranked documents tend
to benefit l2. This is problematic for two reasons. First, the biases
for either list do not necessarily cancel each other out, so that even
randomly distributed clicks can yield a preference for one of the
lists. For example, in Figure 1, l2 wins in expectation, i.e., the out-
come converges to l2 in the limit; this can easily be verified using
truth tables. Second, documents displayed at the top of a result list
are typically more likely to be clicked, due to position bias [6]. In
the example, strong position bias would favor l1.

For the document constraint method, we identify a similar bias.
Since interleaving is done as in the balanced interleave method, the
interleaved lists can again be very similar to one of the original lists.
Here, the list that is more similar to a presented interleaved list has
a disadvantage because it is more likely to attract clicks. These
clicks translate into constraints that are more likely to be violated
by the more similar list. For example, in the first interleaved list
constructed in Figure 3, clicks on the second and third rank of the
interleaved list result in two violated constraints for the similar l1
and no violated constraints for l2. For randomly distributed clicks,
l2 wins in expectation.

The team draft method addresses the issue of bias by ensuring
that each click can only be attributed to one list (the one assigned to
that document). Because the interleaving process also ensures that
1In the original description in [10], additional constraints are in-
ferred between the lowest-clicked document and its successor. To
simplify analysis, we consider only the first type of constraints. The
additional requirements do not qualitatively affect our analytical or
experimental results.

Table 1: Notation used throughout this paper. Uppercase let-
ters indicate random variables and lowercase letters indicate
the values they take on.

Symbol Description

q query
d document
l interleaved list
r rank of a document in a document list
a assignment, a vector of length |l| where each element

a[r] ∈ {1, 2} indicates whether the document at rank
r of an interleaved list l, l[r] was contributed by l1 or
l2 (or by softmax functions s1 or s2, respectively)

c a vector of clicks observed on an interleaved list l
sx softmax function, cf., §4.1, Equation 1
o(c, a) outcome of a comparison computed from clicks c and

assignments a

in expectation each list contributes the same number of documents
to each rank, the method is unbiased, both under random clicks and
in the face of position bias.

3.2 Sensitivity
Our second criterion for assessing interleaved comparison meth-

ods is sensitivity. We define sensitivity as the ability of an inter-
leaved comparison method to detect differences in the quality of
rankings. As in standard evaluation measures like Normalized Dis-
counted Cumulative Gain (NDCG) [13], we assume that the quality
of a ranking depends on how highly it ranks relevant documents.

Clearly, all interleaved comparison methods will fail to be sen-
sitive if user clicks are not correlated with relevance. However,
in some cases, the team draft method can suffer from insensitivity
even when such correlations exist. Figure 2 illustrates this phe-
nomenon. Assume that d3 is the only relevant document, and is
therefore more likely to be clicked than other documents. Because
l2 ranks this document higher than l1 it should win the comparison.
To compare l1 and l2 using the team draft method, four possible
interleaved lists can be generated, all of which place document d3
at the same rank. In two interleaved lists, d3 is contributed by l1,
and in two it is contributed by l2. Thus, in expectation, both lists
obtain the same number of clicks for this document, yielding a tie.
Therefore, the method fails to detect the preference for l2.

Hence, since the team draft method is insensitive to some rank-
ing differences, it can fail to detect a difference between rankers or
infer a preference for the wrong ranker. In contrast, the balanced
interleave and document constraint methods can detect these dif-
ferences in ranking, but because of the bias discussed above, small
differences between rankers can result in erratic behavior.

4. METHOD
As discussed above, existing interleaved comparison methods

are either biased or insensitive to certain differences between rank-
ings. In this section we develop a probabilistic method that fulfills
both criteria. We do so by devising a probabilistic model in §4.1,
which is based on the team draft method. Instead of interleaving
documents deterministically, we model the interleaving process as
random sampling from softmax functions that define probability
distributions over documents. This model allows us to derive an
estimator in §4.2 that is both unbiased and sensitive to even small
ranking changes. Finally, in §4.3, we derive a second estimator that
marginalizes over all possible assignments to make estimates more
reliable. Table 1 shows notation used throughout this section.
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4.1 Probabilistic interleaving
We propose a probabilistic form of interleaving in which the in-

terleaved document list l is constructed, not from fixed lists l1 and
l2, but from softmax functions s1 and s2 that depend on the query q.
The use of softmax functions is key to our approach, as it ensures
that every document has a non-zero probability of being selected
by each ranker. As a result, the distribution of credit accumulated
for clicks is smoothed, based on the relative rank of the document
in the original result lists. If both rankers place a given document at
the same rank, then the corresponding softmax functions have the
same probability of selecting it and thus they accumulate the same
number of clicks in expectation.

More importantly, rankers that put a given document at similar
ranks receive similar credit in expectation. Furthermore, the dif-
ference in expected value reflects the magnitude of the difference
between the two rankings. In this way, the method becomes sensi-
tive to even small differences between rankings and can accurately
estimate the magnitude of such differences.

Starting with the ranked lists l1 and l2 that two rankers generated
for a given query q, we construct corresponding softmax functions
s1 and s2. Each sx is a probability distribution over documents in
which documents with a higher rank according to lx have a higher
probability. Many softmax functions are possible [20, 26]. We
use a function in which the probability of selecting a document is
inversely proportional to a power of the rank rx(d) of a document
d in list lx:

Psx(d) =

1
rx(d)τ∑

d′∈D
1

rx(d′)τ
, (1)

where D is the set of all ranked documents, including d. The de-
nominator applies a normalization to make probabilities sum to 1.
Because it has a steep decay at top ranks, this softmax function is
suitable for an IR setting in which correctly ranking the top doc-
uments is the most important. It also has a slow decay at lower
ranks, preventing underflow in calculations. The parameter τ con-
trols how quickly selection probabilities decay as rank decreases,
similar to the Boltzmann temperature in the normalized exponen-
tial function [26]. In our experiments, τ = 3, though preliminary
experiments with higher τ yielded qualitatively similar results.

After constructing s1 and s2, l is generated similarly to the team
draft method. However, instead of randomizing the ranker to con-
tribute the next document per pair, one of the softmax functions is
randomly selected at each rank. Doing so is mathematically conve-
nient, as the only component that changes at each rank is the distri-
bution over documents. The system records which softmax func-
tion was selected to contribute the next document in assignment a.
Then, a document is randomly sampled without replacement from
the selected softmax function and added to the interleaved list. The
document is also removed from the non-sampled softmax function
and both are renormalized. This process repeats until l has the de-
sired length.

This approach has several properties that ensure no bias is in-
troduced. First, in expectation, each ranker contributes the same
number of documents to the interleaved list. Second, the soft-
max functions constructed for each ranker have the same shape,
i.e., the probability allocated to each document depends only on its
rank. Third, the use of assignments guarantees that each click is
attributed to only one list, as in the team draft method.

Figure 4 depicts a probabilistic model of this process. It has four
random variables: the user’s query q, the interleaved list l gener-
ated in response to q, the assignments a that specify which softmax
function contributed which document to l, and the user’s clicks c.
Samples of all four random variables can be observed. In addition,

Q A

C

user / 

environment system

L

Figure 4: Probabilistic model for comparing rankers. Condi-
tional probability tables are known only for variables in gray.

the distributions L and A are completely specified given a query q.
In the next section we show how observed samples (q, l, a, c) can
be used to estimate comparison outcomes.

4.2 Unbiased comparison
If we define a deterministic outcome function o(c, a) ∈ {−1, 0,

1} that compares the number of clicks obtained by each ranker, as
in the team draft method, then the relative quality of the two rankers
is given by the expected outcome, defined as follows:

E[o(C,A)] =
∑
c∈C

∑
a∈A

o(c, a)P (c, a). (2)

While this cannot be computed directly, it can be estimated from a
given set of n samples of the form (c, a):

E[o(C,A)] ≈ 1

n

n∑
i=1

o(ci, ai), (3)

where ci and ai are vectors containing the observed clicks and as-
signments for the i-th sample.

Eq. 3 is an unbiased estimator of the expected outcome. If this
estimator was used with deterministic ranking functions, it would
reduce to the team draft method. However, because of the smooth
credit assignment enabled by the softmax functions, it is more sen-
sitive to differences in ranking quality than the team draft method,
while still avoiding bias.

4.3 Marginalized comparison
In this section, we derive a second unbiased estimator that achieves

better reliability by marginalizing over all possible assignments for
an observed interleaved list, instead of using noisy samples from
the true distribution.

In Eq. 3, the expected outcome is estimated directly from the ob-
served clicks and assignments. However, in the probabilistic model
shown in Figure 4, the distributions for A and L are known given
an observed query q. As a result, we need not consider only the ob-
served assignments. Instead, we can consider all possible assign-
ments that could have co-occurred with each observed interleaved
list. i.e., we can marginalize over all possible values of A for each
observed interleaved list li and query qi. Marginalizing over A
leads to the following alternative estimator:

E[o(C,A)] ≈ 1

n

n∑
i=1

∑
a∈A

o(ci, a)P (a|li, qi), (4)

To estimate P (A|L,Q) we can follow Bayes’ rule:

P (A|L,Q) =
P (L|A,Q)P (A|Q)∑

a∈A P (L|a,Q)
. (5)

Since A and Q are independent, P (A|Q) = P (A). P (L|A,Q) is
the product of the probabilities of selecting the documents at each
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Figure 5: Example of an interleaved comparison using our probabilistic marginalization method with softmax functions.

rank:

P (L|A,Q) =

|L|∏
r=1

P (L[r] | A[r], L[1, r − 1], Q), (6)

where A[r] ∈ {1, 2} specifies which softmax function contributed
L[r], the document at rank r, and L[1, r− 1] is the list of all docu-
ments between ranks 1 and r − 1.

Figure 5 illustrates the resulting probabilistic method for com-
paring rankers based on implicit feedback. For an incoming query,
the system generates an interleaved document list, as described
in §4.1. After observing clicks, the system computes the proba-
bility of each possible outcome. All possible assignments are gen-
erated, and the probability of each is computed using Eq. 5. The
example shows that, while the softmax functions tie in expecta-
tion (because our method is unbiased), s2 has a higher probability
of winning, because it has a higher probability of generating the
clicked documents than s1 (because the method is sensitive to such
differences in rankings).

Generating all possible assignments and computing their prob-
abilities for a given list is computationally expensive. However,
assignments and probabilities need to be calculated only up to the
lowest observed click. In the worst case, the lowest click is at the
lowest rank of the interleaved list, which is a small constant, e.g.,
10.2 In practice, we perform computations using logs and sums
instead of probabilities and products to avoid buffer underflow.

5. EXPERIMENTS
We present three sets of experiments, designed to answer the

question: To what extent do the analytical differences between the
comparison methods translate into performance differences?

In our first set of experiments, we address this question on a large
scale. We compare a large number of ranker pairs to examine how
the analytical differences between comparison methods affect the
accuracy of ranker comparisons. In the second experiment, we use
these first results to select a small subset of ranker pairs with which
to study convergence characteristics in more detail. In the third,
we use the same subset of rankers to examine the effect of noise in
click data.

All experiments employ the same experimental setup that simu-
lates user interactions. This setup is described in the next section
(§5.1). After this, we specify our data (§5.2) and runs (§5.3).
2To further reduce computation, probabilities for documents below
a certain rank can be set to a small constant, trading a small loss in
sensitivity for gains in speed.

5.1 Experimental setup
Our experiments are based on a recently developed experimental

setup that simulates user interactions based on datasets with explicit
relevance judgments and user click models [12]. This simulator
fulfills the assumption made by all comparison methods that more
relevant documents are more likely to be clicked. Simulating user
interactions makes it possible to study the comparison methods at
different levels of noise in user clicks. In addition, the experiments
can be repeated for many comparisons.

The simulation takes as input a dataset with queries and explicit
relevance judgments and simulates user interactions as follows. It
simulates a user submitting a query by randomly sampling from the
set of available queries (with replacement).3 On the system side,
the interleaved comparison method observes the sampled query and
produces an interleaved result list that is presented to the user (sent
back to the simulator). User clicks are then simulated using a click
model and the relevance judgments provided with the dataset.

The click model simulates user interactions according to the De-
pendent Click Model (DCM) [8, 9], an extension of the cascade
model [6]. According to this model, users traverse result lists from
top to bottom. For each document they encounter, they decide
whether the document representation is promising enough to war-
rant a click (e.g., based on the title and document snippets). If,
after clicking on a document, the users’ information need is satis-
fied (likely if the document was relevant), then they stop browsing
the result list. Otherwise, they continue examining the result list
(likely if the document was not relevant).

We implement the click model following [12], with the differ-
ence that we define click and stop probabilities based on graded
relevance assessments instead of binary ones. Simulated users ex-
amine the result list starting at the top. For each document they
encounter, they decide whether to click or not, with probability
P (c|R(d)), i.e., the probability of a click given the relevance level
of the examined document R(d). While the relevance level is not
known to the user before clicking, we assume that its presentation
in the result list is informative enough to make relevant documents
more likely to be clicked. The probability that a user is satisfied
with the obtained results and stops after clicking a document with
relevance level R(d) is modeled by P (s|R(d)).

We instantiate the click model in two ways (for 5 relevance lev-

3In the absence of information about the original distribution of the
queries in the data set, we sample uniformly. An advantage of doing
so is that frequent queries cannot dominate performance. Different
query distributions may affect convergence speed, but not the qual-
itative differences between the comparison methods we evaluate.
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Table 2: Instantiations of the click model used in our experi-
ments.

perfect model

R(d) 0 1 2 3 4
P (c|R(d)) 0.00 0.20 0.40 0.80 1.00
P (s|R(d)) 0.00 0.00 0.00 0.00 0.00

realistic model

R(d) 0 1 2 3 4
P (c|R(d)) 0.05 0.10 0.20 0.40 0.80
P (s|R(d)) 0.00 0.20 0.40 0.60 0.80

els) to study the behavior of comparison methods under perfect and
realistic conditions. The perfect click model is used to examine the
behavior of comparison methods in an ideal setting. The stop prob-
abilities are 0 for all relevance levels, i.e., the user continues to ex-
amine documents regardless of the relevance of previously encoun-
tered documents. Therefore, all documents in the top 10 of each
result list are examined. The click probabilities are defined such
that highly relevant documents (R(d) = 4) are always clicked,
and that non-relevant documents (R(d) = 0) are never clicked.
Click probabilities for relevance levels between these extremes de-
crease monotonically. The realistic click model was designed to
approximate noisier click behavior. Here, highly relevant docu-
ments are most likely to be clicked (P (c|R(d) = 4) = 0.8), and
click probabilities decrease for lower relevance levels. Similarly,
stop probabilities for this model are highest after seeing a highly
relevant document and decrease for lower probabilities. Besides
the different levels of noise, the two models differ in the overall ex-
pected number of clicks, which is lower for the realistic click model
because the click probabilities are consistently lower and the stop
probabilities are higher. Table 2 lists the probabilities defined for
the two models.

The click models instantiated here are appropriate for our evalu-
ation of comparison methods, as they satisfy the assumptions made
by all these methods. In preliminary experiments, we found that the
level of noise introduced by the realistic click model is of the same
order of magnitude as observed in previous work [21]. In addition,
we observed qualitatively similar results for all other instantiations
we tested. Finer details, such as click behavior that takes relations
between documents into account are not captured. Therefore, ex-
tending our evaluation to include real-life experiments is important
future work.

5.2 Data
All experiments make use of the MSLR-WEB30k Microsoft learn-

ing to rank (MSLR) data set.4 This data set consists of approxi-
mately 30, 000 queries with 136 precomputed document features
and relevance judgments. Relevance judgments are provided on
a 5-point scale. Unless stated otherwise, our experiments use the
training set of fold 1. This set contains 18, 919 queries, with an
average of 9.6 judged documents per query.

To generate rankers to compare in our experiments, we make use
of the features provided for the documents of the data set. Specif-
ically, we take each feature to be a ranker, and formulate the task
of the comparison method as identifying the ranking features that
are expected to give the best performance. In our first set of exper-
iments, we exhaustively compare all distinct ranker pairs that can
be generated in this way. For the second and third sets, we select a
small subset that appears most suitable for more detailed analysis.

4Downloaded from http://research.microsoft.com/
en-us/projects/mslr/default.aspx.

The experiments are designed to evaluate the comparison meth-
ods’ ability to identify the better of two rankers based on (sim-
ulated) user clicks. To set the ground truth for which ranker is
better, we use NDCG based on the explicit relevance judgments
provided with the data set, following previous work [21]. We use
the complete set of documents provided with the data set to deter-
mine NDCG for the ground truth, i.e., no cut-off is used. Note that
comparisons between rankers using implicit feedback depend not
only on the true difference in NDCG between two rankers but also
on the magnitude of the difference per query and the number of
affected queries.

5.3 Runs
All our experiments evaluate the same four interleaved compari-

son methods. As baselines, we use three existing methods (cf., §2):

• balanced interleave, as described in [23].

• team draft, as introduced in [23]; as in the original, clicks
on top results are ignored when the documents are placed in
identical order by both rankers.

• document constraint, introduced in [10], as described in §2.

In addition, we evaluate the experimental condition:

• marginalized probabilities: our model using the probabilis-
tic interleave process (cf. §4.1) and the probabilistic compar-
isons defined in Eq. 4 (cf. §4.3).

Below we describe the three sets of experiments designed to assess
interleaved comparison methods in terms of accuracy, convergence
behavior, and robustness to noise.

Accuracy. The first experiment assesses the accuracy of inter-
leaved comparison methods when evaluated on a large set of ranker
pairs. We construct a ranker for each of the 136 individual features
provided with the MSLR data set. We then evaluate the interleaved
comparison methods on all 9, 180 possible distinct pairs that can be
obtained from these rankers. We evaluate the methods on this large
set of ranker pairs using the perfect click model and a fixed subset
of the data consisting of 1, 000 queries. We then compare the out-
come predicted by the interleaved comparison methods to the true
NDCG of the rankers, computed on the same set of queries. We
report on accuracy after 1, 000 queries: the percentage of pairs for
which a comparison method correctly identified the better ranker.

Convergence. Based on the findings of the first experiment, we
select a small subset of ranker pairs with which to investigate the
methods’ behavior in more detail. These experiments were de-
signed to follow the setup used in [21] as closely as possible, with
the difference that we use simulated interactions with the perfect
click model instead of real-life search engine traffic, as discussed
in §5.1. For each pair of rankers, each comparison method was run
on randomly sampled query sets of size 1 to 10, 000; queries for
which an interleaved list did not obtain any clicks were ignored.
Each experiment was repeated 1, 000 times. We evaluate each
method by computing, for each sampled query set size, the frac-
tion of these 1, 000 repetitions for which it detected a preference
for the correct ranker. We compute binomial confidence intervals
on this fraction using Wilson score intervals at the 95% level [3].

Noise. The third set of experiments assesses the robustness of in-
terleaved comparison methods to noise in click feedback. The setup
is identical to the previous one except that the realistic click model
is used instead.
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6. RESULTS AND DISCUSSION
In this section we present and discuss the results of our experi-

ments. Results from the exhaustive experiment, designed to assess
the accuracy of interleaved comparison methods are presented first
(§6.1). Based on the results of that experiment we select a subset
of rankers to further investigate the convergence of these methods
(§6.2), and their robustness to noise in click feedback (§6.3).

6.1 Accuracy
Table 3 gives an overview of the accuracy achieved by the four

interleaved comparison methods in our first set of experiments. The
highest accuracy is achieved by our probabilistic marginalization
method. It correctly identifies the better ranker for 91.4% of the
pairs. This constitutes a 1.7% increase (or 143 additional pairs)
in accuracy over the second-best run, team draft. The team draft
method achieves an accuracy of 89.8%, followed by balanced inter-
leave at 88.1%. The accuracy achieved by the document constraint
method is substantially lower (85.7%).

Table 3: Accuracy for the comparison methods on ranker pairs
constructed from individual features (after 1,000 queries).

run accuracy

balanced interleave 0.881
team draft 0.898
document constraint 0.857
marginalized probabilities 0.914

To gain further insight into the performance characteristics of each
method, we analyzed what type of ranker pairs each method judged
correctly or incorrectly. The balanced interleave, team draft, and
marginalized probabilities methods correctly identify the better rank-
er in all pairs with an NDCG difference of at least 0.05. This is
in line with [21], which found that the team draft method can be
used to reliably compare ranker pairs with a difference in NDCG
of 0.05 within approximately 1, 000 queries. The document con-
straint method made mistakes on much more distant ranker pairs,
with an NDCG difference of up to 0.12.

We further find that the document constraint method makes a
number of systematic errors, meaning that an unexpectedly large
number of pairs involving a particular ranker are judged incorrectly.
For example, a large number of comparisons involving the ranker
constructed from one of the best features, query-click count (fea-
ture id 134 in the MSLR data set), are incorrect. The ranked lists
that are generated in these cases differ substantially, so that there
is little overlap. The documents ranked highly by the better ranker
contain many more relevant documents, so more constraints involv-
ing these documents are inferred from clicks. As most of these
documents are not included in the top ranks of the worse ranker,
the inferred constraints are not counted as being violated by this
ranker, while they do count against the better ranker.

For the balanced interleave method, we also observe systematic
errors, but to a much lesser degree. These errors typically involve
pairs of rankers that are very similar, or that are likely related, such
as the minimum term frequency and the minimum tf-idf (feature
id 27 and 77, respectively). For the team draft and marginalized
probabilities methods, we found no such systematic bias. Errors
appear to be randomly distributed over ranker pairs.

The results of our first set of experiments indicate that the margi-
nalized probabilities method is more accurate than other methods.
On a large set of rankers it was able to infer the correct relation
between rankers the most often. This method, as well as balanced
interleave and team draft, are able to reliably compare rankers with
a difference in NDCG of at least 0.05 after 1, 000 queries. For

Table 4: Ranker pairs used for the second set of experiments.

pair ranking features (feature id) NDCG

“easy” ranker pairs

1 term frequency of the document url, normalized by mean
stream length (64)

0.301

mean stream length of the document url (14) 0.201

2 bm25 score on the document title (108) 0.306
maximum tf-idf on the url (84) 0.256

“problem” ranker pairs

3 click-count for a query-url pair of a search engine over a
given period (134)

0.341

boolean retrieval score on the document body (96) 0.219

4 boolean retrieval score on anchor text (97) 0.303
bm25 score on the document body (106) 0.253

5 minimum tf-idf on anchor text (77) 0.262
number of covered query terms (1) 0.231

the document constraint method, we found systematic errors even
when the difference in NDCG between two rankers was very large.

6.2 Convergence
Based on the outcomes of the first set of experiments, we selected

a small set of ranker pairs for more in-depth analysis. We used these
rankers to run a second set of experiments with a large number
of randomly sampled queries and many repetitions, to distinguish
performance characteristics due to chance from more systematic
issues.

The ranker pairs used for this second set of experiments are
shown in Table 4. For each pair, the table includes a description of
the two ranking features, the corresponding feature id in the MSLR
data set, and the NDCG that is obtained on the whole data set if the
feature is used for ranking documents for each query.

The pairs of rankers were selected as follows. First, we selected
two pairs of rankers for which all methods had correctly identified
the better ranker. These “easy” pairs have an NDCG difference
of 0.1 (pair 1) and 0.05 (pair 2) percentage points, respectively.
The second pair is on the threshold at which three of the methods
achieved perfect accuracy within 1, 000 queries, and corresponds
to the “major” experiments in [21].

Second, we selected a set of “problem” pairs, on which one or
more of the comparison methods had made mistakes. For each
method, we selected the incorrectly judged pair of rankers with the
highest difference in NDCG. Because pairs with a large difference
in NDCG are typically easier to distinguish, these pairs are most
useful for diagnosis. If the method again comes to the wrong con-
clusion after evaluation with a much larger set of queries and repe-
titions, then we can conclude that the mistake is systematic and that
similar errors will likely occur for more difficult ranker pairs with
smaller differences in NDCG.

The problematic pair selected for the document constraint me-
thod is pair 3. This method made many mistakes involving the
click-count feature (134), and we select the pair with the highest
NDCG difference (0.12). Pair 4 is the pair that was judged in-
correctly by the team draft and marginalized probabilities meth-
ods with the highest difference in NDCG (0.05). As these runs
did not appear to have systematic difficulties, we assumed that a
pair that had been judged wrong by both methods would be most
likely to point to a systematic problem. The balanced interleave
method made systematic mistakes on pairs with relatively small
differences, of which the selected pair 5 is the one with the biggest
difference in NDCG (0.03).
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Figures 6 to 9 show the results of our second set of experiments,
using the perfect click model. The figures show the fraction of
repetitions in which the hypothesized better ranker won the com-
parison (on the y-axis) vs. the number of sampled queries (on the
x-axis). A comparison method that performs well will converge to
1 quickly, meaning that it detects a preference for the correct ranker
after observing a relatively small number of samples.
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Figure 6: Results, pair 1, perfect click model (see text for re-
sults for pair 2).

Figure 6 shows the results obtained when comparing pair 1 using
(simulated) user clicks. We observe that for “easy” pairs, all meth-
ods converge to the correct decision quickly, in this case after ap-
proximately 100 observed queries. Results for pair 2 are qualita-
tively similar to those obtained for pair 1, so we only include one
of the figures due to space limitations. Convergence on pair 2 is
slower, as expected. All methods converge within 1, 000 observed
queries, a result that is in line with [21].

To further investigate what constitutes “easy” ranker pairs, we
analyzed how NDCG differences are distributed over queries. For
pair 1 and 2 we found that these differences are distributed over a
large portion of queries. Thus, a consistent NDCG difference on
a large number of queries appears to make the detection of such
differences using interleaving techniques easiest.
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Figure 7: Results, pair 3, perfect click model.

Figure 7 shows the results obtained for pair 3, which was selected
as a problematic pair for the document constraint method. Indeed,
this method is slowest to converge. However, it does identify the
hypothesized better ranker correctly, and converges within approx-
imately 2, 000 observed samples (half as fast as other methods).
Marginalized probabilities converges significantly faster than all
other methods, after only 50 observed samples.

To analyze this performance difference, we again examine the
NDCG differences between rankers and how they are distributed
over queries. We find that the relatively large difference in NDCG
is distributed over a relatively small number of queries. Thus, there
is a relatively small set of queries for which the first ranker per-
forms dramatically better than the second and a large set of queries
for which the difference is negligible, or where the second ranker is
preferred. In such situations, the magnitude of the differences be-
tween rankers can play a critical role. Our method’s use of softmax
functions and marginalization enables it to more accurately assess
these magnitudes, leading to better, faster comparisons.
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Figure 8: Results, pair 4, perfect click model.

Results for pair 4 are presented in Figure 8. This pair of rankers was
selected as problematic for the team draft and marginalized proba-
bilities methods. However, it appears that the selected pair is sim-
ply more difficult than previous ones and that this difficulty is not
specific to these two methods. Though convergence on this pair is
much slower than on those discussed previously, the marginalized
probabilities method still converges much faster than other meth-
ods (≈ 2, 000 impressions, vs. 4, 000 for the second-fastest team
draft method). Note that the document constraint method has still
not converged to a decision after 10, 000 impressions.
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Figure 9: Results, pair 5, perfect click model.

Results for the last pair of rankers we examine, pair 5, are shown in
Figure 9. This pair was selected as problematic for the balanced
interleave method. The NDCG difference of this pair is small-
est (0.03), as is the number of affected queries. The team draft
and marginalized probabilities methods quickly identify the cor-
rect ranker, with the marginalized probabilities method converging
much faster than the team draft method. The other two methods
are unable to identify the better ranker for this pair. For this pair,
the interleaved lists tend to be very similar to the worse ranker, cre-
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ating bias towards that ranker. As a result, the balanced interleave
and document constraint methods converge to the wrong decision.

Overall, results for all the pairs considered in this section show
a similar pattern. The marginalized probabilities method performs
best overall, identifying the better rankers correctly for all pairs,
and converging to the correct solution quickly, often substantially
and significantly faster than all other methods. The team draft
method performs second best, identifying the better ranker cor-
rectly in all cases and typically converging faster than the balanced
interleave and document constraint methods, which select the wrong
ranker in one case. Of course, there may exist pairs of rankers for
which the document constraint and balanced interleave methods
converge faster than team draft and probabilistic marginalization
due to bias towards the ranker that is in fact better. However, there
is in general no guarantee that these methods will select the better
ranker, no matter how large the number of observed queries.

6.3 Noise
In the previous section, we studied the performance of inter-

leaved comparison methods under simulated perfect conditions, in
which the simulated user examined all top 10 documents, clicked
on all highly relevant and no non-relevant documents (with click
probabilities decreasing for in-between relevance levels; cf. §5.1).
Here, we use a more realistic user model to study the influence
of noise on the performance of the comparison methods. Our re-
alistic click model defines click probabilities such that there is a
0.8 probability of highly relevant documents being clicked, with
click probabilities cut in half for each subsequently lower relevance
level. Stop probabilities increase with the relevance level of previ-
ously seen documents. Hence, the chance that clicks prefer a less
relevant document is higher than with the perfect model and docu-
ments ranked towards the top of the result list are more likely to be
clicked. Ideally, noise should slow the convergence of interleaved
comparison methods but not alter the final outcome.

For the third set of experiments, we omit graphs for pairs 1, 2,
and 5, as the results are very similar to those presented in the pre-
vious section. For pairs 1 and 2, all methods identify the better
ranker correctly but converge more slowly than under perfect con-
ditions. For pair 1, the correct ranker is identified after between
300 impressions (marginalized probabilities) and 500 impressions
(document constraint), respectively; for pair 2 this occurs after ap-
proximately 2, 000 impressions. For pair 2, only the marginalized
probabilities and team draft methods identify the correct rankers
(after approximately 2, 000 impressions).
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Figure 10: Results, pair 3, realistic click model.

Interesting performance differences can be seen for pairs 3 and
4. For pair 3 (Figure 10), noise affects the outcome for the docu-
ment constraint method to such an extent that the method is unable

to identify the better ranker. The reason for this change in outcome
is that the realistic user model results in noisier clicks that are more
concentrated towards the top of the result list. Documents con-
tributed by the better ranker are generally more relevant and clicked
more often in expectation. Clicks on documents other than the top-
ranked one will result in constraints that are more often violated by
the better ranker, while fewer clicks on documents contributed by
the worse ranker result in fewer violated constraints for that ranker.
This result suggests that the document constraint method is not ap-
propriate for use with noisy click feedback, especially when the
true quality difference between rankers is very large.
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Figure 11: Results, pair 4, realistic click model.

Figure 11 shows the noisy results obtained with pair 4. Only the
marginalized probabilities method correctly identifies the better ran-
ker and it converges more slowly than under perfect conditions.
None of the baseline methods identifies the correct ranker. For the
team draft method, which preferred the predicted better ranker in
the perfect setting, the influence of more realistic stop probabilities
plays a role. Previously, the simulated user examined all results in
the top 10 interleaved list, so relevant documents at similar ranks
had the same chance of being clicked. Now, the simulated user may
stop browsing the result list after clicking on the link to a document,
creating a disadvantage for one of the rankers, especially in cases
where rankers place relevant documents at similar ranks (which is
particularly likely in cases where the rankers produce similar result
lists). Here, this phenomenon creates a systematic disadvantage
for the true better ranker. This demonstrates that an insensitivity
to some changes in rankings can result in the team-draft method
inferring a preference for the wrong ranker.

Our evaluation of interleaved comparison methods with noisy
and less exhaustive user clicks shows that our marginalized prob-
abilities method is robust to such changes in click behavior. In all
cases, the method was able to correctly identify the better ranker.
As predicted, noise slowed convergence. For all the baseline meth-
ods, the addition of noise caused them to infer a preference for the
wrong ranker more often than under perfect conditions.

7. CONCLUSION
Methods for evaluating rankers using implicit feedback are pro-

mising because implicit feedback can be collected directly while
users interact with a search engine, which reduces cost and allows
tuning to the true preferences of users. Previous work introduced
the balanced interleave, document constraint, and team draft meth-
ods for comparing rankers using click feedback based on interleav-
ing lists. The team draft method has previously been shown to
reliably detect small differences between rankers in practice.

The first contribution of our paper is an analysis of interleaved
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comparison methods. We formulated criteria in terms of bias and
sensitivity and analyzed how well existing methods fulfill them. In
addition to the previously known bias of the balanced interleave
method, we identified a similar bias affecting the document con-
straint method, and a lack of sensitivity to specific differences in
ranking for the team draft method.

Our second contribution is a new, probabilistic interleaved com-
parison method that is both unbiased and sensitive to differences
between rankings. Central to the method is the use of softmax
functions, which assign to each document a non-zero probability
of being placed in the interleaved result list. As a result, click as-
signment to rankers is smoothed, yielding credit assignment that
accurately reflects the magnitude of differences between rankers.
Furthermore, we showed how the method can be made more ef-
ficient by marginalizing over all possible assignments for an ob-
served interleaved list.

We validated the results of our analysis and our proposed method
using experiments based on a recently developed simulation frame-
work. The probabilistic method for comparing rankers using click
data is more accurate than any of the previous methods. In par-
ticular, on pairs of rankers that are difficult for other methods to
compare, e.g., because the rankers perform very differently on only
a few queries, our method can correctly identify the better ranker,
with substantially and significantly fewer observed queries. In ad-
dition, the method is more robust to noise than previous methods.

Our simulation setup allowed us to undertake many comparisons
under different conditions (e.g., varying noise). However, as with
any simulation, these experiments cannot replace experiments with
real users. Therefore, in the future we aim to evaluate our method
in a real-life setting. In addition, with more reliable and faster con-
vergence, our approach can pave the way for online learning to rank
methods that require many comparisons. Applying the method in
such settings is another interesting direction for future research.
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