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Abstract. We introduce a model for molecular reactions based on probabilistic rewriting rules. We
give a probabilistic algorithm for rule applications as a semantics for the model and we show how
a probabilistic transition system can be derived from it. We use the algorithm in the development
of an interpreter for the model, which we use to simulate the evolution of molecular systems. In
particular, we show the results of simulation of a real example of enzymatic activity. Moreover, we
apply the probabilistic model checker PRISM to the transition system derived by the model of this
example, and we show the results of model checking of some illustrative properties.

1. Introduction

In the past few years people have become aware that biological processes can be described using means
originally developed by computer scientists to model systems of interacting components. This permits
simulation of system behaviour and verification of properties. Among the many formalisms that have
been applied to biology there are, for instance, Petri Nets [19, 17], Hybrid Systems [1], and the π–
calculus [23, 8]. In particular, a stochastic variant of the latter, based on algorithm given by Gillespie in
[11], has been used for the development of a simulator for molecular systems [20, 22]. Moreover, models
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for the design of reactive systems have been applied to multicellular organisms [14, 13] and some new
formalisms have been proposed to describe biomolecular and membrane interactions [5, 7, 9, 18].

In this paper we introduce a probabilistic model for biomolecular interaction, in particular enzymatic
activity, which is based on a set of rewrite rules whose application depends on a probability. Each rule
describes a reaction, which is a transformation of one or more biomolecules. We givw an interpreta-
tion algorithm and a formal semantics for the model and we prove their equivalence. We developed a
prototype implementation of the interpreter for the model, which permits to follow the evolution of a
biomolecular system. The interpreter is written in SICStus Prolog [24]. The formal semantics, given as
a transition system, permits to verify properties of a system by model checking.

The use of rules with a probability is not new. Probabilistic grammars and their applications have
been considered by several authors (see as an example [10]). A stochastic calculus has been proposed
in [20] for describing molecular processes. The novelty of our approach is the use of probabilities for
modelling both the effects of concentration of reactants and speed of reactions.

We used our model to study a real case of enzymatic activity, namely the reactions in the calf eye due
to enzyme Sorbitol Dehydrogenase [16]. We show some results both of the interpreter and of the PRISM
model checker [21].

In Section 2, we introduce the model and we define the formal syntax of a biochemical system.
In Section 3, we define a step semantics for the model by giving a probabilistic algorithm to compute
the step of the system. Moreover, we show how this algorithm allows the derivation of a probabilistic
transition system which describes the possible evolutions of a biochemical system. In Section 4, we
show the results of simulation and model checking of the Sorbitol Dehydrogenase activity and, finally,
in Section 5, we give some conclusions.

2. Modelling Molecular Systems

With the term molecular system we denote a chemical solution in which some reactions may occur.
A chemical solution contains molecules that are compositions of one or more elementary particles. The
definition of elementary particle may depend on the level of detail used to describe reactions: for instance,
for a chemist elementary particles can be atoms, while for a biologist they can be proteins and enzymes.
Hence, for the sake of generality, in the definition of molecules we assume an infinite set E of elementary
particles, without giving details of what they correspond to in the real world.

We now give the formal definition of molecules and solutions.

Definition 2.1. (Solutions)
Molecules m and solutions S are given by the following grammar:

m ::= X
∣

∣ m−m

S ::= 0

∣

∣ m
∣

∣ S, S

where X is any particle of E , 0 stands for the empty solution, m−m represents the complexation of two
molecules, and S, S represents the union of two solutions. With S we denote the set of all the possible
solutions.
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With #(m) we denote the length of the molecule m, for example, if m = X1−. . .−Xk, where
X1, . . . Xk ∈ E , then #(m) = k. We denote with E∗ the infinite set of molecules. With En we denote
the set of molecules of length at most equal to n, namely the set {m ∈ E ∗ | #(m) ≤ n}. We remark
that ∀n > 0, E ⊆ En ⊂ E∗. We define the concentration of a molecule m in a solution S (denoted with
[m]S) as the number of occurrences of m in S. Finally, we denote with #(S) the density of the solution
S. Intuitively, the density of a solution S represents the number of elementary particles that compose
the solution. Formally, if S = 0 we have that #(S) = 0, while if S = m1,m2, . . . ,mk we have that
#(S) =

∑k
i=1 #(mi).

Definition 2.2. (Structural congruence)
The structural congruence for solutions ≡ is the smallest equivalence relation satisfying the following
laws:

S1, S2 ≡ S2, S1 (S1, S2), S3 ≡ S1, (S2, S3) S,0 ≡ S

m1−m2 ≡ m2−m1 (m1−m2)−m3 ≡ m1−(m2−m3)

The structural congruence allows us to consider the equivalence classes induced by such a relation
as (possibly empty) multisets. For instance, let S≡ be the multiset representing the equivalence class of
the solution S; the operator ∈ can be defined as follows:

m ∈ S≡ ⇐⇒ ∃S′ s.t. m,S′ ≡ S

Moreover, union and intersection are as follows:

S′
≡ ∪ S′′

≡ = (S′, S′′)≡

S′
≡ ∩ S′′

≡ = S≡ where [m]S =

{

min([m]S′ , [m]S′′) if m ∈ S′ and m ∈ S′′

0 otherwise

Other operators and relations such as \ and ⊂ can be easily defined in terms of ∪ and ∩. In what follows
we will use all these operator also with solutions. For instance, with S ′ ∪ S′′ we will mean one of the
solutions in the equivalence class S ′

≡ ∪ S′′
≡. Formally, S = S ′ ∪ S′′ if and only if S≡ = S′

≡ ∪ S′′
≡.

Now we describe how chemical reactions may occur in a solution. A chemical reaction is repre-
sented by a probabilistic rewrite rule transforming some molecules of a solution into some others. The
probability of the rule will be used to model the speed of the reaction: the faster is the chemical reac-
tion, the higher should be the probability of the corresponding rule. In Section 3 we will describe how
probabilities are used in the application of the rules and we will show that also the concentrations of the
molecules play an important role.

Definition 2.3. (Probabilistic Rules)
A probabilistic rule (or reaction) is a triple (S, P, S ′) where S and S ′ are solutions and P is a function
from E∗ into [ 0, 1 [ .

In order to describe all the reactions that may occur in a solution, we consider a set of rules. We
require that rules of the set satisfy some constraints of well–formedness. These constraints will allow us
to define the semantics of the calculus and to guarantee the finiteness of the states (different solutions)
that can be reached by applying rules in accordance with the semantics.
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Definition 2.4. (Well–formed set of rules)
A set of rules R = {(S1, P1, S

′
1), . . . . . . , (Sn, Pn, S

′
n)} is well–formed if it satisfies the following

conditions:

1. for all (Si, Pi, S
′
i) ∈ R:

(a) Si ∩ S
′
i = ∅

(b) #(Si) = #(S′
i)

(c) Pi(m) > 0 if m ∈ Si , Pi(m) = 0 otherwise

(d) if m ≡ m′ then Pi(m) = Pi(m
′)

2. for all m ∈ E∗:

P I(m) = (1 −
∑n

i=0 Pi(m)) > 0

3. if (Si, Pi, S
′
i) ∈ R then for all j ∈ 1, . . . , n if Si ≡ Sj and S′

i ≡ S′
j then i = j.

The value of P I(m) is said to be the probability of inaction of m. We denote the (not well–formed) rule
(m,P I ,m) with RI

m and the infinite set {RI
m | m ∈ E∗} with RI .

The intuition is that a rule (S, P, S ′) is applied to a solution containing S, in particular to a chosen S
among the many possible ones contained in the solution, and that the rules to be applied are chosen with
a probability. By condition 1 we require that there are no molecules in the left hand side of a rule that are
left unchanged after application (a), and that the overall number of elementary particles is preserved (b).
Namely, molecules may form complexes and complexes may be split, but without changing the overall
number of elementary particles.

As we shall say, the probability of the rule is a function of the probabilities of the molecules in the
rule, and we require that the probability is greater than zero for the molecules in the left hand side of
the rule and it is zero otherwise (c), and that occurrences of structurally congruent molecules have the
same probability (d). Condition 2 expresses the requirement that the sum of the probabilities of all the
possible transformations of a certain molecule is less than 1, leaving the possibility that the molecule is
not transformed. This is expressed by the probability of inaction.

Condition 3 excludes rules that have both the same left hand side and the same right hand side (but
possibly different probabilities), modulo structural congruence.

Example 2.1. Consider the following set of rules:

R = {R1 = ({A,B}, P1, {A−B}), R2 = ({A−B}, P2, {A,B})}

where P1(A) = P1(B) = 2
3 and P2(A−B) = 1

2 . We have that the set of rules of inaction RI is as
follows:

RI ={R3 = ({A}, P3, {A}), R4 = ({B}, P4, {B}), R5 = ({A−B}, P5, {A−B})}

∪ {({X}, PX , {X}) | for all X in E∗ \ {A,B,A−B}}

where P I(A) = P3(A) = 1
3 , P I(B) = P4(B) = 1

3 , P I(A−B) = P5(A−B) = 1
2 and PX(X) = 1

for all X in E∗ \ {A,B,A−B}. Therefore, the set of rules R is well–formed.
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Now we define (well–formed) molecular systems. In what follows we assume all sets of rules and all
systems to be well–formed.

Definition 2.5. (System)
A molecular system is a pair (S,R), where S is a solution and R = {(S1, P1, S

′
1), . . . , (Sn, Pn, S

′
n)} is

a finite set of probabilistic rules. A molecular system (S,R) is well–formed if R is well–formed.

3. A Semantics for Molecular Reactions

In this section we describe how molecular systems evolve over time. Roughly speaking, a system per-
forms a sequence of steps which depend on the solutions and on the probabilistic rules that can be applied
to them. Each step may consist of the application of more than one rule in R∪RI . Each molecule must
be involved in exactly one application of a rule. Therefore, a solution behaves as a fully parallel system
in which elements are able to perform reactions with a certain probability distribution. After a step we
obtain a new solution.

Now we introduce a probabilistic algorithm, namely Step(S), for describing how a system (S,R)
executes a step. The analysis of this algorithm allows us to compute the probability of S to be transformed
into a new solution S ′ in a single step. We then use this result in the definition of a probabilistic transition
system for molecular reactions.

The algorithm Step(S), shown below, is a recursive algorithm that (1) chooses an element in S, (2)
applies a rule to it, possibly involving other elements, and (3) recursively executes on the rest of the
solution. It is immediate to see that the algorithm is linear in the number of molecules of the solution
|S |.

Algorithm 1 Step(S)

choose m in S

let R1, . . . , Rn be the only rules in R∪RI such that Ri = (Si, Pi, S
′
i), m ∈ Si, Si ⊆ S

choose Rj = (Sj, Pj , S
′
j) in R1, . . . , Rn with probability Pj(m)

Pn
i=1

Pi(m)

if S \ Sj = ∅ then return S ′
j else return (S ′

j ∪ Step(S \ Sj))

In Step(S) there are two probabilistic choices: the first selects a molecule m in the solution S and the
second selects one of the probabilistic rules that can be applied to m. Since all instances of all molecules
in S have the same probability of being chosen, the probability of choosing an instance of a molecule m
is:

p(m) =
[m]S
|S |

The probability p(m) reflects the concentration of the molecule m in S.
Given m, one of the rules in R ∪ RI has to be applied to it. The only rules that can be applied

are the ones in which m appears in the left hand side, and such that all the elements in the left hand
side are contained in the solution S. We denote these rules with R1, . . . , Rn; the probability to apply
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Ri = (Si, Pi, S
′
i), for 1 ≤ i ≤ n, corresponds to Pi(m) normalized to the sum of the probabilities of

R1, . . . , Rn, that is:

p(Ri | m) =
Pi(m)

P1(m) + . . .+ Pn(m)

Now we can compute the probability of S to be transformed into S ′ in one step, that is the probability
of S′ to be equal to the result of Step(S). This is done by calculating the probabilities of all the possible
runs of Step(S), then by discarding the runs that lead to something different from S ′, and finally by
summing up the probabilities of the remaining ones.

Definition 3.1. (Probability of a step)
The probability of S ′ = Step(S) in a system (S,R) is as follows:

p(S, S′,R) =











1 if S = ∅ = S′

0 if #(S) 6= #(S′)
∑k

i=1
p(mi)

∑ni

j=1
p(Rj | mi)p(S\Sj , S

′\S′

j ,R) otherwise

where m1, . . . ,mk are all the molecules in S and R1, . . . , Rni
, where Rj = (Sj , Pj , S

′
j), are all the

probabilistic rules that can be applied to mi in S.

We now give a couple of propositions about the probability of a step. The first proposition implies
that the probability of performing a step from a solution in a certain equival class to another solution
in another class depends only on the classes of the solutions. The second proposition implies that the
probability of a step is a well–defined probability distribution over equivalence classes.

Proposition 3.1. Given a well–formed set of rules R and solutions S1, S2, S
′
1, S

′
2 such that S1 ≡ S2 and

S′
1 ≡ S′

2, it holds p(S1, S
′
1,R) = p(S2, S

′
2,R).

Proof:
Follows directly from the definition of p(S, S ′,R) and by the well–formedness of R. ut

Proposition 3.2. Given a well–formed set of rules R and a solution S, it holds:
∑

S′
≡⊂S

p(S, S′,R) = 1

Proof:
We prove the proposition by induction on the number of molecules in S.

The definitions of p(m) and of p(Ri | m) guarantee that
∑k

i=1 p(mi) = 1 and
∑ni

j=1 p(Rj | mi) = 1.
It is easy to verify that the proposition holds for |S |= 0 and |S |= 1. Assuming by induction hypothesis
that, given an index j,

∑

S′
≡⊂S p(S \ Sj, S

′ \ Sj ,R) = 1, we have that
∑

S′
≡⊂S p(S, S

′,R) = 1. ut

Example 3.1. We recall the set of rules R given in Example 2.1. The probability p({A,B}, {A−B},R)
of a solution A,B to be transformed in one step into A−B is computed as follows:

p({A,B}, {A−B},R) =

p(A)
(

p(R1 | A)p(∅,∅,R) + p(R3 | A)p({B}, {A−B} \ {A},R)
)

+ p(B)
(

p(R1 | B)p(∅,∅,R) + p(R4 | B)p({A}, {A−B} \ {B},R)
)
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where it is easy to check that p({A}, {A−B},R) = p({B}, {A−B},R) = 0, therefore:

p({A,B}, {A−B},R) =
1

2
· (

2

3
· 1 +

1

3
· 0) +

1

2
· (

2

3
· 1 +

1

3
· 0) =

2

3

and similarly it is possible to compute p({A,B}, {A,B},R) = 1

3
, p({A−B}, {A,B},R) = 1

2
and

p({A−B}, {A−B},R) = 1

2
.

Now, in order to verify properties of molecular systems we define the Molecular Probabilistic Tran-
sition System (MPTS), that is a probabilistic transition system in which each state corresponds to an
equivalence class of solutions and each transition corresponds to a possible application of the Step algo-
rithm for a given system (S,R).

Definition 3.2. (Molecular Probabilistic Transition System)
Given a system (S,R), the Molecular Probabilistic Transition System (MPTS) of the system is a tuple
M = (Q,S≡,R, δ, π) where:

• Q is a set of states, namely the set of equivalence classes of solutions composed by molecules in
E∗; S≡ ∈ Q is the initial state.

• δ ⊆ Q×Q is a set of transitions.

• π : δ → [0, 1] is a probability function that returns the probability associated with a transition.
Namely, given a transition e = (S≡, S

′
≡), π(e) = p(S, S ′,R).

The following proposition states the correspondence between steps of the system, as computed by
the algorithm, and transitions of the MPTS.

Proposition 3.3. (Correctness)
Given a system (S,R) and the corresponding MPTS M = (Q,S≡,R, δ, π), there exists e ∈ δ such that
e = (S≡, S

′
≡) with π(e) = p(S, S ′,R) if and only if there is S ′ = Step(S) with probability p(S, S ′,R).

Moreover, it holds ∀S ∈ Q
∑

(S≡,S′
≡)∈δ π(S≡, S

′
≡) = 1.

Proof:
By the construction of the MPTS and by Propositions 3.1 and 3.2. ut

A path from a state S≡ to a state S ′
≡ in a MPTS M is a sequence of transitions δ0, . . . , δn such that

δ0 = (S≡, S
1
≡), . . . , δi = (Si

≡, S
i+1
≡ ), . . . , δn = (Sn

≡, S
′
≡) for some states S1

≡, . . . , S
n
≡. The probability

of a path is the product of the probabilities of its transitions. We say that a state of a MPTS is reachable
if there exists a path form the initial state to such state having probability greater than zero.

The well-formedness of molecular systems allows us to prove that the number of reachable states in
a MPTS is finite.

Proposition 3.4. (Finiteness)
Given a well-formed molecular system (S,R), the number of reachable states in the corresponding
MPTS M = (Q,S≡,R, δ, π) is finite.
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Proof:
If R = ∅, then p(S, S ′,R) = 1 if S ≡ S ′, and p(S, S ′,R) = 0 otherwise. Hence, the only reachable
state in M is S≡.

If R = {R1, . . . , Rn} with n ≥ 1, then the constraint #(Si) = #(S′
i) of well-formedness guarantees

that all the reachable states correspond to classes of solutions with density #(S). Moreover, the finiteness
of the set of rules and of the size of the initial solution implies that the number of elementary particles
that can occur during the evolution is finite too. Hence, we have that the possible states are at most
as many as the possible classes of solutions with density #(S) and containing at most finitely many
different elementary particles, thus also the possible states are finitely many. ut

Example 3.2. We recall the set of rules R of Example 2.1 and the probabilities computed in Example
3.1. The MPTS M = (Q, {A,B}≡,R, δ, π) of system ({A,B},R) is shown in Figure 1.

��
��
{A, B}

*

1
3 j

2
3

Y 1
2

�

1
2

��
��
{A−B}

Figure 1. Example of Molecular Probabilistic Transition System.

4. An Application

In this section we report on some experimental results about the simulation of the activity of a molecular
system and of model-checking its properties.

We take as an example some reactions in the calf eye: here the enzyme Sorbitol Dehydrogenase
(SDH) catalyzes the reversible oxidation of sorbitol and other polyalcohols to the corresponding keto–
sugars (the accumulation of sorbitol in the calf eye has been proposed as the primary event in the develop-
ment of sugar cataract in the calf [16]). The reactions are shown in the following scheme:

E + NADH
k1




k2

E−NADH

E−NADH + F
k3




k4

E−NAD+ + S E−NAD+ k5




k6

E +NAD+

where E represents the enzyme Sorbitol Dehydrogenase, S and F represent sorbitol and fructose, re-
spectively, NADH represents the nicotinamide adenine dinucleotide, and NAD+ is the oxidized form of
NADH; k1, . . . , k6 are the kinetic constants.

The enzyme E may react with NADH and NAD+ giving the complexes E−NADH and E−NAD+,
respectively. Moreover, the E−NADH complex may react with a molecule of fructose F giving a complex
E−NAD+ and a molecule of sorbitol S. All the reactions are reversible and occur with different speeds
according to their kinetic constants.
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1. ({E,NADH}, {(E, 0.0054), (NADH, 0.0062)}, {E−NADH})

2. ({E−NADH, F}, {(E−NADH, 0.000002), (F, 0.000002)}, {E−NAD+, S})

3. ({E−NAD+}, {(E−NAD+, 0.227)}, {E,NAD+})

4. ({E,NAD+}, {(E, 0.00057), (NAD+, 0.00061)}, {E−NAD+})

5. ({E−NAD+, S}, {(E−NAD+, 0.000007), (S, 0.000008)}, {E−NADH, F})

6. ({E−NADH}, {(E−NADH, 0.033)}, {E,NADH})

7. ({E}, {(E, 0.99403)}, {E})

8. ({S}, {(S, 0.999992)}, {S})

9. ({F}, {(F, 0.999998)}, {F})

10. ({NADH}, {(NADH, 0.999998)}, {NADH})

11. ({NAD+}, {(NAD+, 0.99939)}, {NAD+})

12. ({E−NADH}, {(E−NADH, 0.966998)}, {E−NADH})

13. ({E−NAD+}, {(E−NAD+, 0.772993)}, {E−NAD+})

Figure 2. Probabilistic rules for Sorbitol Dehydrogenase

The above chain of reactions is expressed by the probabilistic rules in Figure 4. Probabilities associ-
ated with each rule are chosen taking into account kinetic constants, given in [16]. Note that our model
could be used to infer unknown kinetic constants by assuming different probabilities in the simulation of
the considered system, until one does not obtain the expected results.

4.1. Simulation

We implemented the interpreter using SICStus Prolog [24]. The input of the interpreter are an initial
solution and a set of probabilistic rules describing the behaviour of the biological system. The interpreter
gives the concentration of the molecules at each step. The initial solution used for the simulation experi-
ment is given in Table 1. The results of the interpreter are shown in Figure 3. We see that, after an initial
stabilization phase, the concentration of the sorbitol becomes nearly 10 times the one of the fructose.

E S F NADH NAD
+

E−NADH E−NAD
+

5 100 100 100 100 0 0

Table 1. Initial solution for the simulation of the activity of the Sorbitol Dehydrogenase.

4.2. Model Checking

Model checking is an automatic method for deciding whether a system satisfies a set of properties ex-
pressed in a probabilistic temporal logic. In [6], symbolic model checking is shown to be feasible for
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Figure 3. Simulation of the activity of the Sorbitol Dehydrogenase. The concentration of the sorbitol (thick line)
becomes nearly 10 times greater than the concentration of the fructose (thin line)

analyzing biological systems and advantageous over simulation when querying and validating formal
models for biology. Some interesting queries one may consider when model checking the probabilistic
evolutions of molecular systems are the following:

• Given a solution S, is there a pathway for synthesizing a molecule m?

• From a solution S, is it possible to synthesize a molecule m without neither creating nor using a
molecule m′?

• Given a solution S, what is the probability for synthesizing a molecule m within a given amount
of time?

• Can a molecule m reach a concentration greater than a given value τ? With which probability?

• Which states may produce a concentration for m greater than τ?

• Which states may produce a null concentration for m with a probability greater than p?

• Is a given relationship r between concentrations always satisfied?

The PRISM model checker

PRISM [21] is a probabilistic model checker that allows modelling and analyzing systems which ex-
hibit a probabilistic behaviour. Given a description of the system to be modelled, PRISM constructs a
probabilistic model that can be either a discrete-time Markov chain (DTMC), a Markov decision process
(MDP), or a continuous-time Markov chain (CTMC) [15]. On the constructed model PRISM can check
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properties specified by using a temporal logic (Probabilistic Computation Tree Logic (PCTL) [12, 4, 3]
for DTMCs and MDPs, and Continuous Stochastic Logic (CSL) [2] for CTMCs).

We used the model of CTMC for describing in PRISM the molecular reactions in the bovine lens,
and we used the CSL specification language to specify properties of the system. The syntax of CSL is
given by the following grammar:

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P∼p[ψ] | S∼p[ψ]

ψ ::= Xφ | φU Iφ | φUφ

where a is an atomic proposition, ∼∈ {<,≤,≥, >} is a relational operator, p ∈ [0, 1] is a probability,
and I is an interval of reals.

An atomic proposition a is satisfied or not by a given state of a system. Symbol X denotes the
“next state operator”, symbol U denotes the “until” operator, and U I represents the “bounded until”.
Intuitively, φ1Uφ2 is satisfied when the formula φ1 holds until φ2 holds; φ1U

Iφ2 is satisfied if φ1 holds
and then φ2 becomes true at some time instant t within the interval I (t ∈ I). Formula P∼p[ψ] is satisfied
by a given set of computations if and only if the overall probability p′ of the computations satisfying a
path formula ψ is such that p′ ∼ p. Formula S∼p[ψ] asserts that the steady–state probability p′ of being
in a state satisfying ψ is such that p′ ∼ p. The steady state probability is the probability of being in a
certain state in the long run. Finally, we notice that the PRISM model checker permits to know the actual
probability that a certain behaviour is observed by defining properties in the following way:

P=? [ψ]

S=? [ψ]

where [ψ] is either a path formula for P or a state formula for S .

Model Checking the Bovine Lens

In this section we show the results obtained by verifying some illustrative properties on a PRISM specifi-
cation of the molecular reactions arising in the bovine lens. Therefore, we translated the MPTS obtained
according to the probabilities in Figure 2, into a PRISM specification. In particular, having fixed the
initial concentrations of the molecules involved in the reactions in the bovine lens (thus obtaining an
initial solution for the MPTS), we studied the probability that, at a given time T , the concentration of S
was greater than the concentrations of F , and vice–versa, that the concentration of F was greater than
the concentration of S. Moreover, we studied the probability that after a few time the concentration of
the enzyme E was null.In Table 2 we show the concentrations of molecules in the initial solutions. We
studied the probabilities mentioned above, according to different values of the initial concentration of E.

As we have seen, the molecular reactions in the bovine lens transform molecules of F and NADH into
molecules of S and NAD+. In Figure 4 we show the probability that the concentration of S becomes
greater than the concentration of F and vice–versa. In particular we checked the properties:

P=?[true U≤T [S] > [F ]] P=?[true U≤T [S] < [F ]]

where T is fixed to 10000 and the initial concentration of E varies between 1 and 10. As expected,
confirming the results of simulation, the probability that [S] > [F ] is greater than the probability that
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Figure 4. Probability that the concentration of the sobitol becomes greater than the concentration of the fructose
and vice–versa, by varying the initial concentration of the enzyme.

S F NADH NAD
+

E−NADH E−NAD
+

25 25 25 25 0 0

Table 2. Concentrations of molecules in the initial solution used for model checking. Properties are checked by
varying the initial concentration of the enzyme.

[S] < [F ]. Furthermore, the latter increases when the initial concentration of the enzyme increases. This
happens because the activity of the enzyme is proportional to its concentration.

Finally, Figure 5 shows the probability that the concentrations of E reaches a value 0 by varying its
initial value. The checked property is:

P=?[true U≤T [E] = 0]

where T is fixed to the very small value 5. This property shows the affinity of the enzyme with NAD+

and NADH, because [E] is equal to zero when the enzyme is bound to them. The fact that the probability
is close to one when the initial concentration is small demonstrates that the affinity is good. The proba-
bility decreases with greater initial values of [E] because we considered a very small value for T , which
corresponds to a very short initial time interval.

5. Conclusions

We have introduced a model for molecular reactions that deals with quantitative aspects of biochemical
systems (speed of reactions) by using probabilities. Among the formalisms we have mentioned ([5, 7,
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Figure 5. Probability that the concentrations of the enzyme reaches 0 by varying its initial value.

8, 9, 13, 14, 18, 19, 20, 23]) only [19] and [20] deal with quantitative aspects. In particular [20] uses
probabilities to model speed of reactions, but with a different approach. In fact, in [20] the kinetic
constants of the reactions and the concentrations of the reactants are used to compute rates, and rates are
used to choose among possible reactions. Instead, we use concentration of reactants in order to choose
one molecule of the solution, and we use probabilities that are related to kinetic constants in order to
choose the reaction that has to occur.

We implemented an interpreter based on the model. We used it for simulating reactions of a real bio-
logical system and we used a model checker for verifying their properties. An extensive experimentation
will allow tuning the model with the longtime aim of offering a working tool to biologists.
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