
A Probabilistic Model for Multimodal Hash Function
Learning

Yi Zhen and Dit-Yan Yeung
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
{yzhen,dyyeung}@cse.ust.hk

ABSTRACT
In recent years, both hashing-based similarity search and
multimodal similarity search have aroused much research
interest in the data mining and other communities. While
hashing-based similarity search seeks to address the scala-
bility issue, multimodal similarity search deals with appli-
cations in which data of multiple modalities are available.
In this paper, our goal is to address both issues simultane-
ously. We propose a probabilistic model, called multimodal
latent binary embedding (MLBE), to learn hash functions
from multimodal data automatically. MLBE regards the bi-
nary latent factors as hash codes in a common Hamming
space. Given data from multiple modalities, we devise an
efficient algorithm for the learning of binary latent factors
which corresponds to hash function learning. Experimental
validation of MLBE has been conducted using both syn-
thetic data and two realistic data sets. Experimental results
show that MLBE compares favorably with two state-of-the-
art models.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.4 [Information Systems Appli-
cations]: Miscellaneous; G.3 [Mathematics of Comput-
ing]: Probability and Statistics—Probabilistic algorithms

Keywords
Hash Function Learning, Binary Latent Factor Models,
Multimodal Similarity Search, Metric Learning

1. INTRODUCTION
Similarity search, a.k.a. nearest neighbor search, is a fun-

damental problem in many data mining, database, and in-
formation retrieval applications [1, 34]. Given a query doc-
ument1, the similarity search problem can be regarded as

1In this paper, we use the term ‘document’ in a generic sense

finding one or more nearest neighbors of the query from a
database according to some similarity measure chosen.

There are two challenging issues to address in similarity
search, namely, the scalability and task-specificity issues [1,
33]. The scalability issue addresses the challenge when the
database searched is of very large scale, possibly contain-
ing millions or even billions of documents. As for the task-
specificity issue, the concern is that the similarity measure
used should not be a generic one, but it should be specific to
the application at hand to ensure that the nearest neighbors
found are relevant.

Two major approaches have been proposed to address the
scalability issue. One approach employs tree-based meth-
ods to organize data using data structures based on trees [3,
11]. The other approach uses hashing-based methods to map
documents into bins such that collisions in the hash table
reflect nearest neighbor relationships [12, 10, 9]. Although
tree-based methods work well on low-dimensional data, they
can easily degenerate into brute-force search as the data
dimensionality increases. This limitation makes tree-based
methods unappealing for real applications in which high di-
mensionality is commonly encountered. On the contrary,
hashing-based methods can index data with compact binary
codes and hence can perform very fast search without suf-
fering from the curse of dimensionality.

The most well-known hashing-based methods belong to
the locality-sensitive hashing (LSH) family [5, 17, 7, 2],
in which hash functions are constructed (but not learned)
based on random projections or permutations. Due to their
simplicity and effectiveness, LSH algorithms have been suc-
cessfully applied to many applications [19, 37, 42]. However,
they often generate very long codes mainly due to their data
independence nature. In other words, the hash functions are
designed for some standard similarity measures which may
not suit the application at hand. This is an example of the
task-specificity issue in similarity search.

To address the two issues mentioned above, some research
attempts in the past few years pursue a data-dependent ap-
proach by applying machine learning techniques to learn the
hash functions from data automatically. We refer to this new
direction as hash function learning (HFL).

To the best of our knowledge, Shakhnarovich et al. [35]
made the first attempt to learn hash functions using a well-
known machine learning algorithm, namely, a boosting al-
gorithm [32]. Later, a method called semantic hashing [31]
was proposed based on stacked restricted Boltzmann ma-

to refer to data from any modality, such as text, image, audio
or even their combinations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6/12/08... $15.00.

940

chines (RBMs) [16]. Using a large image database consist-
ing of millions of images [36], it has been demonstrated that
these two methods are much more effective than LSH. In
a subsequent method called spectral hashing [40], a met-
ric learning approach is used and the hash codes are found
by spectral decomposition. Although spectral hashing is
faster and more effective than the previous two methods, it
takes a restrictive and unrealistic assumption that the data
are uniformly distributed in a hyper-rectangle. Several new
methods have since been proposed to relax this restrictive
assumption, such as self-taught hashing [44], binary recon-
structive embeddings [18], distribution matching [22], and
shift-invariant kernel hashing [29]. Compared to spectral
hashing, they have shown superior performance. Some more
recent HFL methods focus on hashing in several special and
important settings, including kernelized hashing [26, 14, 27],
semi-supervised hashing [38, 39, 23], composite hashing [43],
and active hashing [45].

Most existing HFL methods can only be applied to uni-
modal data. However, for a growing number of applications,
it is also common to conduct similarity search on multimodal
data with data belonging to multiple modalities. For exam-
ple, given an image about a historic event, one may want
to find some text articles that describe the event in detail.
As a result, developing multimodal HFL methods is a very
worthwhile research direction to explore. Up to now, how-
ever, only very few such attempts have been made [6, 20].

In this paper, we study hashing-based similarity search in
the context of multimodal data. We propose a probabilistic
latent factor model, called multimodal latent binary embed-
ding (MLBE), to learn hash functions from multimodal data
automatically. As a generative model, the hash codes are
binary latent factors in a common Hamming space which
determine the generation of both intra-modality and inter-
modality similarities as observed either directly or indirectly.
Given data from multiple modalities, we devise an efficient
algorithm for learning the binary latent factors based on
maximum a posteriori (MAP) estimation. Compared to its
counterparts [6, 20], MLBE can:

(a) be interpreted easily in a principled manner;

(b) be extended easily;

(c) avoid overfitting via parameter learning;

(d) support efficient learning algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces some recent related work. Section 3
presents our model and the learning algorithm. Experimen-
tal validation of MLBE conducted using both synthetic data
and two realistic data sets is presented in Section 4. Finally,
Section 5 concludes the paper.

2. RELATED WORK
Our work bears some resemblance to metric learning which

aims at learning similarity or distance measures from data [41].
Such data-dependent similarity measures are generally more
effective than their data-independent counterparts. Although
a lot of research has been conducted on metric learning,
multimodal metric learning is still largely unexplored even
though multimodal data are commonly found in many ap-
plications. Some recent efforts have been made on non-

hashing-based methods [21, 28]. Compared with hashing-
based methods, these methods do not have the merits of
low storage requirement and high search speed.

To the best of our knowledge, Bronstein et al. proposed
the first hashing-based model, called cross-modal similar-
ity sensitive hashing (CMSSH) thereafter, for multimodal
similarity search [6]. Specifically, given a set of similar and
dissimilar point pairs, CMSSH constructs two groups of lin-
ear hash functions (for the bimodal case) such that, with
high probability, the Hamming distance after mapping is
small for similar points and large for dissimilar points. In
their formulation, each hash function (for one bit) can be
obtained by solving a singular value decomposition (SVD)
problem and the hash functions are learned sequentially in
a standard boosting manner. However, CMSSH ignores the
intra-modality relational information which could be very
useful [40].

Recently, Kumar et al. extended spectral hashing [40] to
the multi-view case, leading to a method called cross-view
hashing (CVH) [20]. The objective of CVH is to minimize
the inter-view and intra-view Hamming distances for similar
points and maximize those for dissimilar points. The opti-
mization problem is relaxed to several generalized eigenvalue
problems which can be solved by off-the-shelf methods.

Both CMSSH and CVH have archieved successes in sev-
eral applications but they also have some apparent limita-
tions. First, both models can only deal with vectorial data
which may not be available in some applications. Besides,
they both involve eigendecomposition operations which may
be very costly especially when the data dimensionality is
high. Furthermore, CMSSH has been developed for shape
retrieval and medical image alignment applications and CVH
for people search applications in the natural language pro-
cessing area. These applications are very different from
those studied in this paper.

Our work is also related to binary latent factor models [25,
15] but there exist some significant differences. First, the
binary latent factors in MLBE are used as hash codes for
multimodal similarity search, while the latent factors in [25,
15] are treated as cluster membership indicators which are
used for clustering and link prediction applications. More-
over, the model formulations are very different. In MLBE,
the prior distributions on the binary latent factors are sim-
ple Bernoulli distributions, but in [25, 15], the priors on the
binary latent factors are Indian buffet processes [13]. Fur-
thermore, from a matrix factorization point of view, MLBE
simultaneously factorizes multiple matrices but the method
in [25] factorizes only one matrix.

3. MULTIMODAL LATENT BINARY EM-
BEDDING

We present MLBE in detail in this section. We use bold-
face uppercase and lowercase letters to denote matrices and
vectors, respectively. For a matrix A, its (i, j)th element is
denoted by Aij .

3.1 Model Formulation
For simplicity of our presentation, we focus exclusively on

the bimodal case in this paper, but it is very easy to extend
MLBE for more than two modalities. As a running example,
we assume that the data come from two modalities X and

941

πik λjkUik Vjk

Wx Wyθx θy

φx φy

aφ, bφ cφ, dφ

aθ, bθ cθ, dθ

αu, βu αv, βv

K K

I

J

K(K + 1)/2 K(K + 1)/2

S
y
jj′Sxii′

S
xy
ij

w

eφ, fφ

φ

Figure 1: Graphical model representation of MLBE

Y corresponding to the image modality and text modality,
respectively.

The observations in MLBE are intra-modality and inter-
modality similarities. Specifically, there are two symmet-
ric intra-modality similarity matrices Sx ∈ RI×I and Sy ∈
RJ×J , where I and J denote the number of data points in
modality X and that in modality Y, respectively. In case
the observed data are only available in the form of feature
vectors, different ways can be used to convert them into
similarity matrices. For the image data X , the similarities
in Sx could be computed from the corresponding Euclidean
distances between feature vectors. For the text data Y, the
similarities in Sy could be the cosine similarities between
bag-of-words representations.

In addition, there is an inter-modality similarity matrix
Sxy ∈ {1, 0}I×J , where 1 and 0 denote similar and dissim-
ilar relationships, respectively, between the corresponding
entities. Note that it is common to specify cross-modal
similarities this way, because it is very difficult if not im-
possible to specify real-valued cross-modal similarities ob-
jectively. The binary similarity values in Sxy can often be
determined based on their semantics. Take multimedia re-
trieval for example, if an image and a text article are both
for the same historic event, their similarity will be set to 1.
Otherwise, their similarity will be 0.

Our probabilistic generative model has latent variables
represented by several matrices. First, there are two sets
of binary latent factors, U ∈ {+1,−1}I×K for X and V ∈
{+1,−1}J×K for Y, where each row in U or V corresponds
to one data point and can be interpreted as the hash code of
that point. In addition, there are two intra-modality weight-
ing matrices, Wx ∈ RK×K for X and Wy ∈ RK×K for Y,
and an inter-modality weighting variable w > 0. The basic
assumption of MLBE is that the observed intra-modality
and inter-modality similarities are generated from the bi-
nary latent factors, intra-modality weighting matrices and
inter-modality weighting variable. Note that the real-valued
weighting matrices and weighting variable are needed for
generating the similarities because the values in the latent
factors U and V are discrete.

The graphical model representation of MLBE is depicted
in Figure 1, in which shaded nodes are used for observed
variables and empty ones for latent variables as well as pa-
rameters which are also defined as random variables. The
others are hyperparameters, which will be denoted collec-
tively by Ω in the sequel for notational convenience.

We first consider the likelihood functions of MLBE. Given
U,V,Wx,Wy, θx and θy, the conditional probability den-
sity functions of the intra-modality similarity matrices Sx

and Sy are defined as

p(Sx | U,Wx, θx) =

I∏
i=1

I∏
i′=1

N (Sxii′ | uTi Wxui′ ,
1

θx
),

p(Sy | V,Wy, θy) =

J∏
j=1

J∏
j′=1

N (Syjj′ | v
T
j W

yvj′ ,
1

θy
),

where ui and ui′ denote the ith and i′th rows of U, vi and
vj′ denote the jth and j′th rows of V, and N (x | µ, σ2) is
the probability density function of the univariate Gaussian
distribution with mean µ and variance σ2.

Given U,V and w, the conditional probability mass func-
tion of the inter-modality similarity matrix Sxy is given by

p(Sxy | U,V, w) =

I∏
i=1

J∏
j=1

[
Bern(Sxyij | γ(wuTi vj))

]Oij
,

where Bern(x | µ) is the probability mass function of the
Bernoulli distribution with parameter µ, Oij is an indicator
variable which is equal to 1 if Sxyij is observed and 0 oth-
erwise, and γ(x) = 1/(1 + exp(−x)) is the logistic sigmoid
function to ensure that the parameter µ of the Bernoulli
distribution is in the range (0, 1).

To complete the model formulation, we also need to define
prior distributions on the latent variables and hyperprior dis-
tributions on the parameters. For the matrix U, we impose
a prior independently and identically on each element of U
as follows:2

p(Uik | πik) = Bern(Uik | πik),

p(πik | αu, βu) = Beta(πik | αu, βu),

where Beta(µ | a, b) is the probability density function of the
beta distribution with hyperparameters a and b. This par-
ticular choice is mainly due to the computational advantage
of using conjugate distributions so that we can integrate out
πik, as a form of Bayesian averaging, to give the following
prior distribution on U:

p(U | αu, βu) =

I∏
i=1

K∏
k=1

Bern(Uik |
αu

αu + βu
).

Similarly, we define the prior distribution on V as:

p(V | αv, βv) =

J∏
j=1

K∏
k=1

Bern(Vjk |
αv

αv + βv
).

For the weighting matrices Wx and Wy, we impose Gaus-
sian prior distributions on them:

p(Wx | φx) =

K∏
k=1

K∏
d=k

N (W x
kd | 0,

1

φx
),

p(Wy | φy) =

K∏
k=1

K∏
d=k

N (W y
kd | 0,

1

φy
).

The weighting variable w has to be strictly positive to
enforce a positive relationship between the inner product

2Conventionally, the Bernoulli distribution is defined for dis-
crete random variables which take the value 1 for success and
0 for failure. Here, the discrete random variables take values
from {−1,+1} instead assuming an implicit linear mapping
from {0, 1}.

942

of two hash codes and the inter-modality similarity. So we
impose the half-normal prior distribution on w:

p(w | φ) = HN (w | φ) = e−
φ
2
w2

√
2φ

π
.

Because the parameters θx, θy, φx, φy and φ are all random
variables, we also impose hyperprior distributions on them.
The gamma distribution is used for all these distributions:

p(θx | aθ, bθ) = Gam(θx | aθ, bθ),
p(θy | cθ, dθ) = Gam(θy | cθ, dθ),
p(φx | aφ, bφ) = Gam(φx | aφ, bφ),

p(φy | cφ, dφ) = Gam(φy | cφ, dφ),

p(φ | eφ, fφ) = Gam(φ | eφ, fφ),

where Gam(τ | a, b) = 1
Γ(a)

baτa−1e−bτ denotes the proba-

bility density function of the gamma distribution with hy-
perparameters a and b, and Γ(·) is the gamma function.

3.2 Learning
With the probabilistic graphical model formulated in the

previous subsection, we can now devise an algorithm to learn
the binary latent factors U and V which give the hash codes
we need. A fully Bayesian approach would infer the poste-
rior distributions of U and V, possibly using some sampling
techniques. However, such methods are often computation-
ally demanding. For computational efficiency, we devise an
efficient alternating learning algorithm in this paper based
on MAP estimation.

We first update Uik while fixing all other variables. To
find the MAP estimate of Uik, we define a loss function with
respect to Uik in Definition 3.1:

Definition 3.1.

Lik =− θx
2

I∑
l6=i

[(
Sxil − uTl W

xu+
i

)2

−
(
Sxil − uTl W

xu−i

)2
]

− θx
2

[(
Sxii − u+

i

T
Wxu+

i

)2

−
(
Sxii − u−i

T
Wxu−i

)2
]

+

J∑
j=1

Oij

[
Sxyij log

ρ+
ij

ρ−ij
+ (1− Sxyij) log

1− ρ+
ij

1− ρ−ij

]
+ log

αu
βu
,

where u+
i is the ith row of U with Uik = 1, u−i is the ith

row of U with Uik = −1, ρ+
ij = γ(wvTj u

+
i), and ρ−ij =

γ(wvTj u
−
i).

With Lik, we can state the following theorem:

Theorem 3.1. The MAP solution of Uik is equal to 1 if
Lik ≥ 0 and −1 otherwise.

The proof of Theorem 3.1 can be found in Appendix A.1.
Similarly, we have Definition 3.2 and Theorem 3.2 for the

MAP estimation of V. The proof of Theorem 3.2 is similar
and so it is omitted in the paper due to page limitations.

Definition 3.2.

Qjl =− θy
2

J∑
l6=j

[(
Syjl − vTl W

yv+
j

)2

−
(
Syjl − vTl W

yv−j

)2
]

− θy
2

[(
Syjj − v+

j

T
Wyv+

j

)2

−
(
Syjj − v−j

T
Wyv−j

)2
]

+

I∑
i=1

Oij

[
Sxyij log

λ+
ij

λ−ij
+ (1− Sxyij) log

1− λ+
ij

1− λ−ij

]
+ log

αv
βv
,

where v+
j is the jth row of V with Vjk = 1, v−j is the jth

row of V with Vjk = −1, λ+
ij = γ(wuTi v

+
j), and λ−ij =

γ(wuTi v
−
i).

Theorem 3.2. The MAP solution of Vik is equal to 1 if
Qjl ≥ 0 and −1 otherwise.

With U, φx and θx fixed, we can compute the MAP es-
timate of Wx using Theorem 3.3 below. The proof is in
Appendix A.2.

Theorem 3.3. The MAP solution of Wx is

wx =

(
ATM2A +

φx
θx

M1

)−1

ATM2s
x,

where wx is a K2-dimensional column vector taken in a
columnwise manner from Wx, sx is an I2-dimensional col-
umn vector taken in a columnwise manner from Sx, A =
U ⊗U, M1 is a diagonal matrix with each diagonal entry
equal to 1 if it is the linear index of the upper-right portion
of Wx and 0 otherwise, and M2 is similarly defined but with
a different size which is determined by Sx.

Similarly, we have Theorem 3.4 for Wy.

Theorem 3.4. The MAP solution of Wy is

wy =

(
BTM̃2B +

φy
θy

M1

)−1

BTM̃2s
y,

where wy, sy,B and M̃2 are also defined similarly.

To obtain the MAP estimate of w, we minimize the nega-
tive log posterior p(w | U,V,Sxy, φ), which is equivalent to
the following objective function:

Lw =
φ

2
w2

−
I∑
i=1

J∑
j=1

{
Oij

[
Sxyij log λij +

(
1− Sxyij

)
log (1− λij)

]}
,

where λij = γ
(
wuTi vj

)
.

Although the objective function is convex with respect to
w, there is no closed-form solution. Nevertheless, due to its
convexity, we can obtain the global minimum easily using a
gradient descent algorithm. The gradient can be evaluated
as follows:

∇w = φ · w (1)

−
I∑
i=1

J∑
j=1

{
Oij

[
Sxyij (1− λij)uTi vj −

(
1− Sxyij

)
λiju

T
i vj

]}
.

As for the parameters, closed-form solutions exist for their
MAP estimates which are summarized in the following the-
orem.

943

Theorem 3.5. The MAP estimates of θx, θy, φx, φy and
φ are:

θx =
I(I + 1) + 4(aθ − 1)

4bθ + 2
∑I
i=1

∑I
i′=i

(
Sxii′ − uTi W

xui′
)2 , (2)

θy =
J(J + 1) + 4(cθ − 1)

4dθ + 2
∑J
j=1

∑J
j′=j

(
Syjj′ − vTj W

yvj′
)2 , (3)

φx =
K(K + 1) + 4(aφ − 1)

4bφ + 2
∑K
k=1

∑K
d=k (W x

kd)
2
, (4)

φy =
K(K + 1) + 4(cφ − 1)

4dφ + 2
∑K
k=1

∑K
d=k (W y

kd)
2
, (5)

φ =
2eφ − 1

2fφ + w2
. (6)

Theorem 3.5 can be proved easily. Briefly speaking, we
first find the posterior distribution of each parameter and
then compute the optimal value by setting its derivative to
zero. Details of the proof are omitted here.

To summarize, the learning algorithm of MLBE is pre-
sented in Algorithm 1.

Algorithm 1: Learning algorithm of MLBE

Input : Sx, Sy, Sxy – similarity matrices
O – observation indicator variables for Sxy

K – number of hash functions
Ω – hyperparameters

begin
Initialize all the latent variables and parameters
except Wx,Wy;
while not converged do

Update Wx using Theorem 3.3;
Update φx using Equation (4);
Update each element of U using Theorem 3.1;
Update θx using Equation (2);
Update Wy using Theorem 3.4;
Update φy using Equation (5);
Update each element of V using Theorem 3.2;
Update θy using Equation (3);
Update w by gradient descent using
Equation (1);
Update φ using Equation (6).

end

3.3 Out-of-Sample Extension
Algorithm 1 tells us how to learn the hash functions for

the observed bimodal data based on their intra-modality
and inter-modality similarities. However, the hash codes can
only be computed this way for the training data. In many
applications, after learning the hash functions, it is necessary
to obtain the hash codes for out-of-sample data points as
well. One naive approach would be to incorporate the out-
of-sample points into the original training set and then learn
the hash functions from scratch. However, this approach is
computationally unappealing due to its high computational
cost especially when the training set is large.

In this subsection, we propose a simple yet very effective
method for finding the hash codes of out-of-sample points.
The method is based on a simple and natural assumption
that the latent variables and parameters for the training

data can be fixed while computing the hash codes for the
out-of-sample points.

Specifically, we first train the MLBE model using some
training data selected from both modalities.3 Using the
latent variables and parameters learned from the training
points, we can find the hash codes for the out-of-sample
points by applying Theorem 3.1 or Theorem 3.2. For illus-
tration, Algorithm 2 shows how to compute the hash code
for an out-of-sample point x∗ from modality X using the
latent variables and parameters learned from two training
sets X̂ and Ŷ. It is worth noting that the hash code for
each out-of-sample point can be computed independently.
The implication is that the algorithm is highly paralleliz-
able, making it potentially applicable to very large data sets.
The same can also be done to out-of-sample points from the
other modality with some straightforward modifications.

Algorithm 2: Algorithm for out-of-sample extension

Input : Ŝx – intra-modality similarities for x∗ and X̂
Ŝxy – inter-modality similarities for x∗ and Ŷ
Û, V̂,Ŵx, ŵ, θ̂x – learned variables
αu, βu – hyperparameters

begin
Initialize u∗;
while not converged do

Update each element of u∗ using Theorem 3.1.

end

3.4 Complexity Analysis
The computational cost of the learning algorithm is mainly

spent on updating U,V,Wx,Wy and w.
The complexity of updating an entry Uik is O(IK2 +JK),

which grows linearly with the number of points in each
modality. Updating Wx requires inverting a K2 ×K2 ma-
trix. Since K is usually very small, this step can be per-
formed efficiently. The complexity of evaluating the gradi-
ent ∇w is linear in the number of observations of the inter-
modality similarities. We note that the complexity can be
greatly reduced if the similarity matrices are sparse, which
is often the case in real applications.

4. EXPERIMENTS
We first present an illustrative example on synthetic data

in Section 4.1. It is then followed by experiments on two
publicly available real-world data sets. Section 4.2 presents
the experimental settings and then Sections 4.3 and 4.4
present the results. The code and data can be downloaded
at http://www.cse.ust.hk/~dyyeung/code/mlbe/.

4.1 Illustration on Synthetic Data
There are four groups of data points with each group con-

sisting of 50 points. We associate each group with one of four
hash codes, namely, [1, 1,−1,−1], [−1,−1, 1, 1], [1,−1, 1,−1]
and [−1, 1,−1, 1], and use a 200 × 4 matrix H to denote
the hash codes of all 200 points. We generate Wx and
Wy from N (· | 1, 0.01) and N (· | 5, 0.01), respectively.

3We do not make any assumption on how the training data
are selected. They may be selected randomly for simplicity
or carefully based on how representative they are. Random
selection is used in our experiments.

944

50 100 150 200

50

100

150

200 −4

−2

0

2

4

(a) HHT

50 100 150 200

50

100

150

200 −2

−1

0

1

2

3

4

(b) UUT

50 100 150 200

50

100

150

200 −2

−1

0

1

2

3

4

(c) VVT

50 100 150 200

50

100

150

200 −2

−1

0

1

2

3

4

(d) UVT

Figure 2: Illustration of MLBE

Based on the latent representation, we generate the sim-
ilarity matrices Sx and Sy using N (Sxil | hTi Wxhl, 0.01)
and N (Syjl | h

T
i W

yhl, 0.01), respectively. Moreover, we set

Sxyij = 1 if hi = hj and Sxyij = 0 otherwise, assuming that
all entries in Sxy are observed, i.e., Oij = 1,∀i, j.

Based on the similarities generated, we train MLBE to
obtain the hash codes U and V. Because the bits of the
hash codes are interchangeable, it is more appropriate to use
inner products of the hash codes to illustrate the similarity
structures, as shown in Figure 2. Note that the whiter the
area is, the more similar the points involved are. Figure 2(a)
depicts the ground-truth similarity structure, Figure 2(b)
and 2(c) show the learned intra-modality similarity structure
for each modality, and Figure 2(d) shows the learned inter-
modality similarity structure. As we can see, the whiter
areas in the last three subfigures are in the same locations
as those in Figure 2(a). In other words, both the intra-
modality and inter-modality similarity structures revealed
by the learned hash codes are very close to the ground truth,
showing the effectiveness of MLBE.

4.2 Experimental Settings
We have conducted several comparative experiments on

two real-world data sets, which are, to the best of our knowl-
edge, the largest publicly available multimodal data sets that
are fully paired and labeled. Both data sets are bimodal
with the image and text modalities but the feature repre-
sentations are different. Each data set is partitioned into a
database set and a separate query set.

We compare MLBE with CMSSH4 and CVH5 on two com-
mon cross-modal retrieval tasks. Specifically, we use a text
query to retrieve similar images from the image database
and use an image query to retrieve similar texts from the
text database. Since the data sets are fully labeled, mean-
ing that each document (image or text) has one or more
semantic labels, it is convenient to use these labels to decide
the ground-truth neighbors.

We use mean Average Precision (mAP) as the perfor-
mance measure. Given a query and a set of R retrieved

4The implementation is kindly provided by the authors.
5Because the code is not publicly available, we implemented
the method ourselves.

documents, the Average Precision (AP) is defined as

AP =
1

L

∑R

r=1
P (r) δ(r),

where L is the number of true neighbors in the retrieved set,
P (r) denotes the precision of the top r retrieved documents,
and δ(r) = 1 if the rth retrieved document is a true neighbor
and δ(r) = 0 otherwise. We then average the AP values over
all the queries in the query set to obtain the mAP measure.
The larger the mAP, the better the performance. In the
experiments, we set R = 50.

We also report two types of performance curves, namely,
precision-recall curve and recall curve. Given a query set
and a database, both curves can be obtained by varying the
Hamming radius of the retrieved points and evaluating the
precision, recall and number of retrieved points accordingly.

For MLBE, the intra-modality similarity matrices are com-
puted based on the feature vectors. We first compute the
Euclidean distance d between two feature vectors and then
transform it into a similarity measure s = e−d

2/2σ2

, where
the parameter σ2 is fixed to 1 for both data sets. The inter-
modality similarity matrices are simply determined by the
class labels. Since MLBE is not sensitive to the hyperparam-
eters, we simply set all of them to 1. Besides, we initialize
U and V using the results of CVH, set the initial values of
θx, θy, φx, φy to 0.01, and use a fixed learning rate 10−4 for
updating w.

In all the experiments, the size of the training set, which is
randomly selected from the database set for each modality,
is set to 300 and only 0.1% of the randomly selected entries
of Sxy are observed.6 To be fair, all three models are trained
on the same training set.

4.3 Results on Wiki Data Set
The Wiki data set is generated from a group of 2,866

Wikipedia documents provided by [30]. Each document is an
image-text pair and is labeled with exactly one of 10 seman-
tic classes. The images are represented by 128-dimensional
SIFT [24] feature vectors. The text articles are represented
by the probability distributions over 10 topics, which are de-
rived from a latent Dirichlet allocation (LDA) model [4]. We
use 80% of the data as the database set and the remaining
20% to form the query set.

The mAP values for MLBE and the two baselines are re-
ported in Table 1. The precision-recall curves and recall
curves for the three methods are plotted in Figure 3.

Table 1: mAP comparison on Wiki

Task Method
Code Length

K = 8 K = 16 K = 24

Image Query
vs.

Text Database

MLBE 0.3810 0.2561 0.1915
CVH 0.2592 0.2190 0.1767

CMSSH 0.2438 0.2014 0.1757
Text Query

vs.
Image Database

MLBE 0.4955 0.3209 0.2143
CVH 0.3474 0.3094 0.2576

CMSSH 0.2044 0.2286 0.2256

We can see that MLBE significantly outperforms CVH
and CMSSH when the code length is small. As the code

6We have tried larger training sets, e.g., of sizes 500 and
1,000, in our experiments but there is no significant perfor-
mance improvement. So we omit the results due to space
limitations.

945

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

Recall

P
re

ci
si

on

Image Query vs. Text Database

MLBE
CVH
CMSSH

(a) K = 8

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

on

Text Query vs. Image Database

MLBE
CVH
CMSSH

(b) K = 8

0 5 10 15

x 10
5

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Image Query vs. Text Database

MLBE
CVH
CMSSH

(c) K = 8

0 5 10 15

x 10
5

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Text Query vs. Image Database

MLBE
CVH
CMSSH

(d) K = 8

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Recall

P
re

ci
si

on

Image Query vs. Text Database

MLBE
CVH
CMSSH

(e) K = 16

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

P
re

ci
si

on

Text Query vs. Image Database

MLBE
CVH
CMSSH

(f) K = 16

0 5 10 15

x 10
5

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Image Query vs. Text Database

MLBE
CVH
CMSSH

(g) K = 16

0 5 10 15

x 10
5

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Text Query vs. Image Database

MLBE
CVH
CMSSH

(h) K = 16

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Recall

P
re

ci
si

on

Image Query vs. Text Database

MLBE
CVH
CMSSH

(i) K = 24

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Recall

P
re

ci
si

on

Text Query vs. Image Database

MLBE
CVH
CMSSH

(j) K = 24

0 5 10 15

x 10
5

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Image Query vs. Text Database

MLBE
CVH
CMSSH

(k) K = 24

0 5 10 15

x 10
5

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Text Query vs. Image Database

MLBE
CVH
CMSSH

(l) K = 24

Figure 3: Precision-recall curves and recall curves on Wiki

length increases, the performance gap gets smaller. We con-
jecture that MLBE may get trapped in local minima during
the learning process when the code length is too large.

Besides, we observe that as the code length increases, the
performance of all three methods degrades. We note that
this phenomenon has also been observed in [38, 23]. A pos-
sible reason is that the learned models will be farther from
the optimal solutions when the code length gets larger.

4.4 Results on Flickr Data Set
The Flickr data set consists of 186,577 image-tag pairs,

which are pruned from the NUS dataset [8] by keeping the
pairs that belong to one of the 10 largest classes. Each pair
is annotated by at least one of 10 labels. The image features
are 500-dimensional SIFT features and the text features are
1000-dimensional vectors obtained by performing PCA on
the original tag occurrence features. We use 99% of the
data as the database set and the remaining 1% to form the
query set.

Table 2: mAP comparison on Flickr

Task Method
Code Length

K = 8 K = 16 K = 24

Image Query
vs.

Text Database

MLBE 0.6322 0.6608 0.5104
CVH 0.5361 0.4871 0.4605

CMSSH 0.5155 0.5333 0.5150
Text Query

vs.
Image Database

MLBE 0.5626 0.5970 0.4296
CVH 0.5260 0.4856 0.4553

CMSSH 0.5093 0.4594 0.4053

The mAP results are reported in Table 2. Similar to
the results on Wiki, we observe that MLBE outperforms

its counterparts by a large margin when the code length is
small.

The corresponding precision-recall curves and recall curves
are plotted in Figure 4. We note that MLBE has the best
overall performance.

5. CONCLUSIONS
In this paper, we have presented a novel probabilistic

model for multimodal hash function learning. As a latent
factor model, the model regards the binary latent factors as
hash codes and hence maps data points from multiple modal-
ities to a common Hamming space in a principled manner.
Although finding exact posterior distributions of the latent
factors is intractable, we have devised an efficient alternating
learning algorithm based on MAP estimation. Experimen-
tal results show that MLBE compares favorably with two
state-of-the-art models.

For our future research, we will go beyond the point esti-
mation approach presented in this paper to explore a more
Bayesian treatment based on variational inference for en-
hanced robustness. We would also like to extend MLBE
to determine the code length K automatically from data.
This is an important yet largely unaddressed issue in exist-
ing methods. Besides, we also plan to apply MLBE to other
tasks such as multimodal medical image registration.

6. ACKNOWLEDGMENTS
This research has been supported by General Research

Fund 621310 from the Research Grants Council of Hong
Kong.

946

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Image Query vs. Text Database

MLBE
CVH
CMSSH

(a) K = 8

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Text Query vs. Image Database

MLBE
CVH
CMSSH

(b) K = 8

0 1 2 3 4

x 10
8

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Image Query vs. Text Database

MLBE
CVH
CMSSH

(c) K = 8

0 1 2 3 4

x 10
8

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Text Query vs. Image Database

MLBE
CVH
CMSSH

(d) K = 8

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Image Query vs. Text Database

MLBE
CVH
CMSSH

(e) K = 16

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Text Query vs. Image Database

MLBE
CVH
CMSSH

(f) K = 16

0 1 2 3 4

x 10
8

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Image Query vs. Text Database

MLBE
CVH
CMSSH

(g) K = 16

0 1 2 3 4

x 10
8

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Text Query vs. Image Database

MLBE
CVH
CMSSH

(h) K = 16

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Image Query vs. Text Database

MLBE
CVH
CMSSH

(i) K = 24

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Text Query vs. Image Database

MLBE
CVH
CMSSH

(j) K = 24

0 1 2 3 4

x 10
8

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Image Query vs. Text Database

MLBE
CVH
CMSSH

(k) K = 24

0 1 2 3 4

x 10
8

0

0.2

0.4

0.6

0.8

1

No. of Retrieved Points

R
ec

al
l

Text Query vs. Image Database

MLBE
CVH
CMSSH

(l) K = 24

Figure 4: Precision-recall curves and recall curves on Flickr

7. REFERENCES
[1] A. Andoni. Nearest Neighbor Search: the Old, the

New, and the Impossible. PhD thesis, Massachusetts
Institute of Technology, 2009.

[2] A. Andoni and P. Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high
dimensions. Communications of the ACM,
51(1):117–122, 2008.

[3] S. Arya, D. M. Mount, N. S. Netanyahu,
R. Silverman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching in fixed
dimensions. Journal of the ACM, 45(6):891–923, 1998.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
Dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. In STOC, 1998.

[6] M. M. Bronstein, A. M. Bronstein, F. Michel, and
N. Paragios. Data fusion through cross-modality
metric learning using similarity-sensitive hashing. In
CVPR, 2010.

[7] M. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, 2002.

[8] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T.
Zheng. NUS-WIDE: A real-world web image database
from National University of Singapore. In CIVR, 2009.

[9] A. Dasgupta, R. Kumar, and T. Sarlos. Fast
locality-sensitive hashing. In KDD, 2011.

[10] K. Eshghi and S. Rajaram. Locality sensitive hash

functions based on concomitant rank order statistics.
In KDD, 2008.

[11] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An
algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical
Software, 3(3):209–226, 1977.

[12] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. In VLDB, 1999.

[13] T. L. Griffiths and Z. Ghahramani. Infinite latent
feature models and the Indian buffet process. In NIPS
18, 2005.

[14] J. He, W. Liu, and S.-F. Chang. Scalable similarity
search with optimized kernel hashing. In KDD, 2010.

[15] K. A. Heller and Z. Ghahramani. A nonparametric
Bayesian approach to modeling overlapping clusters.
In AISTATS, 2007.

[16] G. E. Hinton and R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–509, 2006.

[17] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In STOC, 1998.

[18] B. Kulis and T. Darrell. Learning to hash with binary
reconstructive embeddings. In NIPS 22, 2009.

[19] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In ICCV, 2009.

[20] S. Kumar and R. Udupa. Learning hash functions for
cross-view similarity search. In IJCAI, 2011.

[21] D. Lee, M. Hofmann, F. Steinke, Y. Altun, N. D.
Cahill, and B. Schölkopf. Learning similarity measure

947

for multi-modal 3D image registration. In CVPR,
2009.

[22] R.-S. Lin, D. A. Ross, and J. Yagnik. SPEC hashing:
Similarity preserving algorithm for entropy-based
coding. In CVPR, 2010.

[23] W. Liu, J. Wang, S. Kumar, and S.-F. Chang.
Hashing with graphs. In ICML, 2011.

[24] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[25] E. Meeds, Z. Ghahramani, R. Neal, and S. T. Roweis.
Modeling dyadic data with binary latent factors. In
NIPS 19, 2006.

[26] Y. Mu, J. Shen, and S. Yan. Weakly-supervised
hashing in kernel space. In CVPR, 2010.

[27] M. Norouzi and D. J. Fleet. Minimal loss hashing for
compact binary codes. In ICML, 2011.

[28] N. Quadrianto and C. H. Lampert. Learning
multi-view neighborhood preserving projections. In
ICML, 2011.

[29] M. Raginsky and S. Lazebnik. Locality-sensitive
binary codes from shift-invariant kernels. In NIPS 22,
2009.

[30] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle,
G. R. Lanckriet, R. Levy, and N. Vasconcelos. A new
approach to cross-modal multimedia retrieval. In ACM
MM, 2010.

[31] R. Salakhutdinov and G. E. Hinton. Semantic hashing.
In SIGIR Workshop on Information Retrieval and
Applications of Graphical Models, 2007.

[32] R. E. Schapire. A brief introduction to Boosting. In
IJCAI, 1999.

[33] G. Shakhnarovich. Learning Task-Specific Similarity.
PhD thesis, Massachusetts Institute of Technology,
2005.

[34] G. Shakhnarovich, T. Darrell, and P. Indyk, editors.
Nearest-Neighbor Methods in Learning and Vision:
Theory and Practice. MIT Press, March 2006.

[35] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose
estimation with parameter-sensitive hashing. In ICCV,
2003.

[36] A. Torralba, R. Fergus, and Y. Weiss. Small codes and
large image databases for recognition. In CVPR, 2008.

[37] F. Ture, T. Elsayed, and J. Lin. No free lunch: Brute
force vs. locality-sensitive hashing for cross-lingual
pairwise similarity. In SIGIR, 2011.

[38] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised
hashing for scalable image retrieval. In CVPR, 2010.

[39] J. Wang, S. Kumar, and S.-F. Chang. Sequential
projection learning for hashing with compact codes. In
ICML, 2010.

[40] Y. Weiss, A. Torralba, and R. Fergus. Spectral
hashing. In NIPS 21, 2008.

[41] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell.
Distance metric learning with application to clustering
with side-information. In NIPS 15, 2002.

[42] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu.
Complementary hashing for approximate nearest
neighbor search. In ICCV, 2011.

[43] D. Zhang, F. Wang, and L. Si. Composite hashing
with multiple information sources. In SIGIR, 2011.

[44] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught
hashing for fast similarity search. In SIGIR, 2010.

[45] Y. Zhen and D.-Y. Yeung. Active hashing and its
application to image and text retrieval. Data Mining
and Knowledge Discovery, To appear.

APPENDIX
A. PROOF OF THEOREMS

A.1 Proof of Theorem 3.1
To obtain the MAP solution of Uik, it suffices to compare

the following two posterior probabilities:

p+ = Pr(Uik = 1 | U−ik,V,Wx, w,Sx,Sxy, θx),

p− = Pr(Uik = −1 | U−ik,V,Wx, w,Sx,Sxy, θx).

Specifically, we compute the log ratio of the two probabil-
ities, which is larger than or equal to zero if p+ ≥ p− and
smaller than zero otherwise. The log ratio can be evaluated
as follows:

log
Pr(Uik = 1 | U−ik,V,Wx, w,Sx,Sxy, θx)

Pr(Uik = −1 | U−ik,V,Wx, wSx,Sxy, θx)

= log
Pr(Sx | Uik = 1, U−ik,W

x, θx)

Pr(Sx | Uik = −1, U−ik,Wx, θx)

+ log
Pr(Sxy | Uik = 1, U−ik, w,V)

Pr(Sxy | Uik = −1, U−ik, w,V)

+ log
Pr(Uik = 1 | αu, βu)

Pr(Uik = −1 | αu, βu)

=− θx
2

I∑
l6=i

[(
Sil − uTl W

xu+
i

)2

−
(
Sil − uTl W

xu−i

)2
]

− θx
2

[(
Sii − u+

i

T
Wxu+

i

)2

−
(
Sii − u−i

T
Wxu−i

)2
]

+

J∑
j=1

Oij

[
Sxyij log

ρ+
ij

ρ−ij
+ (1− Sxyij) log

1− ρ+
ij

1− ρ−ij

]
+ log

αu
βu
,

where U−ik denotes all the elements in U except Uik. The
log ratio thus computed gives exactly Lik. This completes
the proof.

A.2 Proof of Theorem 3.3
The negative log of the posterior distribution of Wx can

be written as:

− log p(Wx | Sx,U, θx, φx) (7)

=− logP (Wx | φx)− logP (Sx | U,Wx, θx) + C̃

=
φx
2

K∑
k=1

K∑
d=k

(W x
kd)

2 +
θx
2

I∑
i=1

I∑
i′=i

(
Sxii′ − uTi W

xui′
)2

+ C̃

=
φx
2
wxTM1w

x +
θx
2

(sx −Awx)T M2 (sx −Awx) + C̃

=
1

2
wxT

(
θxA

TM2A + φxM1

)
wx − θxsxTM2Awx + C̃,

where C̃ is a constant term independent of Wx.
Setting the derivative of Equation (7) to zero, we get

wx =

(
ATM2A +

φx
θx

M1

)−1

ATM2s
x.

This completes the proof.

948

