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A probabilistic model for the
discrimination of visual number

MICHIEL P. van OEFFELEN and PETER G. VOS
University ofNijmegen, Nijmegen, The Netherlands

This paper proposes a probabilistic model of how humans identify the number of dots within a
briefly presented visual display. The model is an application of Thurstone's law of comparative
judgment, and it is assumed that the internal representation of numerosity consists of log
spaced random variables. The discrimination between any two different numerosities is con
sequently described as a function of maximin, where max and min are the larger and smaller
numbers, respectively. The model was tested in two experiments in which the Weber fraction for
numerosity, corresponding with the critical ratio of max and min, was found to have the value of
.162. It was concluded that the classical span of subitizing numerosity is but a special case of
the span of discrimination.

If one is asked to estimate under time pressure the
number (n) of dots in a display, response accuracy
appears to be high when the number of dots does not
exceed about 6, but decreases rapidly for larger
values of n. Under self-paced task conditions, re
sponse latencies show a similar pattern. Latencies are
very fast for small numbers and slow down con
siderably for n larger than about 6. Taves (1941)
studied judgments of numerousness and stated that
two mechanisms were involved-one used for up to 7
dots, the other for larger fields. For the first men
tioned discriminatory process, Kaufman, Lord,
Reese, and Volkman (1949)proposed the term "subi
tizing.'

Bourdon (1908) suggested that small numbers of
dots are apprehended by immediate cognition: "1, 2,
3,4 are thus sensations just like green, red, round, or
square; the quality of twoness of a group of objects is
essentially perceived in the same way as the quality
red or round" (p. 430; translation by the authors).
There are certainly reasons for doubting the supposi
tion that subitizing is some sort of purely holistic in
formation processing as Bourdon suggested. One
such reason is the frequently reported finding that
latencies also tend to increase within the subitizing
range. Woodworth and Schlosberg (1954) noticed
that the differences in question fit well with what is
known about choice reaction times: "The bigger a
difference, the more quickly it is perceived; and the
(relative) difference between 1 and 2 is greater than
that between 2 and 3, and so on up the scale. In
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identifying 5 dots you have to distinguish this num
ber from 4 and 6; identifying 2 dots, you need only
make the easier discrimination between 2 dots and 1
and 3" (p. 98). This hypothesis was considered
further by Averbach (1963) in a study on the span of
visual apprehension. He suggested that the discrim
ination of visual number may depend on the ratio of
the difference in magnitude between two numbers
and the magnitude of an actually presented number.
If that ratio is at least as large as the (hypothetical)
Weber fraction for visual number, then, according to
Averbach, judgmental accuracy and speed would
have the characteristics attributed to subitizing
number.

Moyer and Landauer (1967) measured reaction
time for deciding which of two simultaneously pre
sented digits was larger and observed that reaction
time decreased monotonically as the difference be
tween the two numbers increased. In interpreting
their data, they suggested that the displayed numerals
were converted to analogue magnitudes, and a com
parison was then made between the magnitudes in
much the same way that comparisons are made be
tween physical stimuli. The "internal magnitude"
should then be a nonlinear compressed function of
the magnitude of the digit. In such compressive spac
ing, 8 and 9 would be closer together on the internal
scale than 7 and 8, 7 and 8 closer together than 6 and
7, and so on.

The present paper proposes a simple theory for the
discrimination of visual number. The theory essen
tially is an application ofThurstone's law of compara
tive judgment (Thurstone, 1927; Torgerson, 1958).

Modelof Number Discrimination
We consider stimuli consisting of sets of n dots. All

physical aspects of the dots, such as brightness and
area, are kept constant throughout. Moreover, ar-
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Now, supposing that the subject is briefly presented
a display containing n dots, we can specify the proba
bility that the subject will report the correct number
n as follows:

rangement of dots within a stimulus is considered to
be random. Hence, a stimulus is described by the
number, n, of dots only.

We suppose that the discriminability of such stim
uli obeys Thurstone's law of comparative judgment
(Thurstone, 1927; Torgerson, 1958). Briefly sum
marized, this law states that a (presented) stimulus
triggers a discriminal process in which the external
stimulus value n is transformed into some value on
an internal psychological continuum. Because of
internal noise factors' acting on the transmission of
number information, the internal representation of
number is described by a random variable:

The subscript I in the conditional probability Pl(n In)
indicates that all integer values are alternatives. The
lower and upper integral limens, C(n;n - 1) and
C(n;n + 1), denote the category bounds for correct
responses to n.

It is not important to know, a priori, the precise
form of the psychological function Qn in Equation 2.
Any positive monotonic function could be reason
able. Here, it is assumed that Qn is a logarithmic
function. This choice satisfies Fechner's law as it
was incorporated in Thurstone's (1929) theory of
comparative judgments of visual numerosity. It then
follows that the category bounds C(n;n - 1) and
C(n;n + 1) are positioned exactly halfway between the
internal representations of nand n - 1 for C(n;n - 1).
and n and n + 1 for C(n;n + 1) (Parducci, 1963). Con
sequently, Equation 2 can be rewritten as:
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we then find 0= .1080. With this value for 0, we can
determine Pl(n I n) for all n. Figure 1 shows these
conditional probabilities as a function of n.

In a situation where n is briefly presented, and the
choice is between two alternatives, nand m, the
probability that a subject will respond with n is:
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really are z scores, because they are the integral limits
of a standardized normal distribution. For reasons of
parsimony, we assume the dispersion value On to be
constant for all n, On == 0, that is, On is only affected
by internal noise due to momentary fluctuations of
the organism regardless of the magnitude of n. To get
some idea of what value the dispersion °of the inter
nal representation should have, we can estimate °
from the frequently reported finding that Pl(7 I 7) =
.5 (see, for instance, Averbach, 1963; Hunter & Sigler,
1940). From
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it follows directly that: Figure 1. PI<n I n) plotted as a function of n, for 0 = .1080.
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and Defining nr as that number, larger than n, that can be
discriminated from n 50% of the time, weget:

Pn,m(nln) =-1-1
00

exp (_r2)dY.
(8)

V2ii 1 min 2
2(jlnmaX

Defining "max" for the maximum value of nand m,
and "min" for the minimum value of both, we can
then write the general expression for the conditional
probability that a response n will be given when n is
presented in the presence of an alternative m:

The Weber fraction is a constant, so that the relation
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must hold. While nl is smaller than n, it then easily
follows that the limen to the left of n, n - nJ, is
smaller than that to the right of n (n, - n), More
over, a closer examination of the equation stated
above leads to the following peculiar relation:
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Pn m(n I n) is illustrated in Figure 2 for n = 12, alter
native m=lO, and 0=.1080. P12,l0(12112) is the
surface under the normal distribution function

or
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extending from Yzln(1O . 12) to infinity. The Weber
threshold is defined usually as the 50070 correct dis
crimination between two stimuli. Operationally, this
difference limen is a stimulus difference that is no
ticed 75% of the time. From Pn m(nIn) = .75, we can
derive (1l2o)ln(max/min), from which the Weber
fraction for visual number, Wb=(max-min)/min is
easilycalculated. It should be noted that the limen to
the left (smaller numbers) of an actually presented
number is closer to that number than the limen to the
right of it (larger numbers). More specifically, de
fining n, as that number, smaller than n, that can be
discriminated from n 50% of the time, we get for the
Weber fraction:

n-nl
Wb=-

n1 (9)

This relation represents well the asymmetric charac
ter of number discrimination. For instance, if 25 is
the number limen to the left of 30, 36 should be the
limen to the right of 30 because 25 . 36= (30)2.

At this point, it is necessary to refer to an early
study of Crossman (1956), in which the need for a
quantitative measure of "discriminability" was
pointed out. He considered two to be discriminated
signals S, and S2 as points in a space of one dimen
sion located at the distances x., X2 from the origin.
The ease of distinguishing between S, and S2 was ex
pected to depend on the "distance" between x, and
X2. In the case of numbers, he did know from experi
ments that the distance depended on the ratio rather
than on the absolute differences between the num
bers. So, he took logarithms and measure in the
space of log x. The' 'distance" then became

Figure 2. P 11,10(12 I 12) Is the surface under the normal distribu
tion function (1/oy'"1ii)exp - ([In(12) -xJ'}l2o' extending from
Y2ln(10 '12) to infinity. Again, 0 = .1080.
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This "D function" gives the ease of discrimination
between S, and S2" The reciprocal of D has been
named a "confusion function," since it measures
the tendency to confuse S, and S2. From our
model it follows that the detectability d' is (1/20)
log(m~/min), which closely resembles the distance
function D as formulated by Crossman.

The remainder of this article is a report of two ex
periments, one threshold experiment (Experiment 1)
and one RT experiment (Experiment 2), in which the
discrimination hypothesis was tested.
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of (t - s), In Figure 4, one can see that the profiles,
each belonging to a particular s, expanded with in
creasing magnitude of s.

As is usually done, we chose the difference limen at
the.75 level, which means that a difference between s
and t is noticed 50010 of the time. From Figure 4,
limens were then measured at the intersection points
of the profiles at the .7S chance level. In Figure S,
limens to the left (smaller numbers) and to the right
of s (larger numbers) are plotted as a function of s.
One can see that for each s the difference limen to the
left was always smaller than the limen to the right of
s. In Figure 5 the regression lines are also drawn.
[Limens for larger numbers (I), rho =.96; limens: 33: 34: 35: 36: 37:
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Witbin Each Row Are Schematized Test Numbers t That Are

Neighboring Numbers of a Row-8pecifics

EXPERIMENT 1 • .. ..

Figure 3. Tbree examples of stimuli used In the experiments.

~ g=!,,-§

Figure 4. p.,t<s I s) as a function of d=t-s. s= B('), s= 11 (0),
s= t6 (*), s=20 (0), s= 15 (+), s=30 (').
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Figure 5. Threshold values to the left (*) and to the right (+) are
plotted as a function of s, The corresponding regression lines are
also drawn.

Method
Subjects. Four (three males, I female) experimentally naive

undergraduate psychology students were paid for their participa
tion in the experiment.

Stimuli. Dot patterns that differed in numbers of dots, as
schematized in Table I, were constructed. Six numbers (8, 12, 16,
20, 2S, and 30) are called standard numbrs, s; the other numbers
are called test numbers, t. Within each row of Table I is pre
sented one standard s, to the left and right of which are test num
bers that are neighboring numbers of a row-specific s. For each
number n, 30 different configurations were constructed according
to a pseudorandom procedure. This procedure started with parti
tioning a 10x 10 square matrix into four quadrants. The n dots of
a particular stimulus were then placed randomly in the matrix cells
with the constraint that each quadrant contained about the same
number of dots. Each stimulus was unique with respect to its con
figuration. The stimuli are illustrated with three examples shown
in Figure 3.

Procedure. Participants were tested individually in a quiet
laboratory room. The stimuli were presented on a 27 x 20 em video
monitor situated approximately 7S em from the participant and at
eye level. Dot diameter was 2 mm, and the shortest of the distances
from one dot to another was 8 mm, Each time a sequence of 60
stimuli, consisting of 30 stimuli with number t and 30 stimuli with
a to this t belonging row specific number s (see Table I) was
presented. Following the two-alternative forced-choice method,
participants were told in advance what values t and s had, and were
instructed to answer "yes" when s was presented and "no" when t
was presented. Order of presentation of the 60 stimuli was ran
domized. Each stimulus was presented for a fixed duration of
100 msec. The task was self-paced; a stimulus appeared on the
screen 1,000 msec after the participant had pushed a button. The
experimenter recorded the participants' responses. Whenever a
participant committed an error, he or she received immediate
verbal feedback ("wrong") from the experimenter. Following the
60 trials, the participant rested a few minutes. The next stimulus
sequence contained 60 stimuli with a new t and a new s. Each par
ticipant completed three sessions spread out over 2 or 3 con
secutive days, with each session taking about 90 min. The ex
periment was controlled by a POP-11I4S system.

Results
The percentage of correct responses on any s, pre

sented with each particular alternative t, was calcu
lated over all subjects. The conditional chances, Ps,t
(s I s) were derived by dividing the percentages by
tOO. Figure 4 shows these frequencies as a function
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EXPERIMENT 2

Method
Subjects. Two young adults took part in the experiment and

were paid fortheir participation.
Stimuli. The stimuli were the same as those use in Experi

ment I, with the exception that the standards, s, took the values
of8, 20, and 30. Consequently, only neighboring numbers of these
standards served astest stimuli, t (see Table I).

expect very short latencies as well as very high ac-
. curacy. On the other hand, if 29 dots are presented
for discrimination from 30, then only the strategy of
counting would produce the correct response, a strat
egy that would increase response time drastically.
Thus, somewhere between 20 and 29, there is one
number (or more) which, in direct comparison with
n = 30, will sometimes be estimated and sometimes be
counted. Consequently, one might expect that laten
cies are distributed according to a bimodal distri
bution, one peak representing the counting times and
the other representing immediate estimation times.

for smaller numbers (II),' rho = .95]. From regression
line II, we derived (max-min)/min= .164. From re
gression line I, we derived (max - min)/max = .139,
from which we calculated that (max - minj/min =
.162. We obtained the Weber fraction dS/S = (max
min)/min as the mean of both values resulting from I
and II: Wb= .163. From the relative limens to the
right, .164, and to the left, .139, of a particular num
ber,' we obtained (nl/n)(nr/n) = 1.164x .861= 1.0022.

In Figure 6 Psis I s) is plotted as a function of
max/min. In Equation 8, we postulated a relation
between Ps,t(s I s) and max/min. A likelihood pro
cedure was used here to determine the value of the
dispersion a, given the chances Ps,t(s I s) and the ratio
max/min. A value of .1317 was found for a. With
this value, the chances Ps,t(s I s) were recalculated as
a function of max/min and plotted (solid curve) in
Figure 6 as the best fit through the measured Ps,t
(s I s). We then determined the value max/min for
which Ps,t(s I s)= .75. This ratio was found to be
1.162, from which the Weber fraction dS/S = (max 
min)/min = .162 was easily calculated.

To examine the hypothesis that a normal distribu
tion function should underlie the discrimination pro
cess, we plotted the chances P, t(s I s) on a proba
bilistic scale as a function of (l/2a)ln(max/min) (see
Figure 7). This is identical to transforming P, t(s I s)
to z scores and then plotting them on a linear scale.
It should be noted that (l/2a)ln(max/min) are also
z scores. As we can see, there exists a strong linear
relation between the transformed P, t(s I s) and
(l/2a)ln(max/min), a finding that confirms the
normal distribution hypothesis.

The analysis of the results presented above was
based upon the assumption that the psychological
transform from external stimulus value n to internal
representation em was logarithmic in nature (i.e.,
Fechner's law was satisfied). If a less stringent as
sumption had been made, fulfilling only the property
of positive monotonicity, then conjoint measurement
methods could be used to specify the nature of the
function in question and to test equality of variances.
If it is assumed that the cumulative distribution func
tion can be approximated by the logistic function
F(x) = (1+ e-Xtl, then analysis of variance methods
can be used to test the additivity properties. Both of
these tests would require a factorial design.

The differential sensitivity of visual number can
also be studied by letting each stimulus be present on
the monitor until the subject gives the response. In
this case, any possible strategy such as counting, subi
tizing, or estimating is applicable. It is reasonable to
suppose that the selection of the strategy will be
determined largely by whether the difference between
two numbers to be discriminated is above threshold.
Consider two stimuli comprising 20 and 30 dots.
From Experiment 1, we know that they are easy to
discriminate from each other. Therefore, one should
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Figure 9. Standard deviations of tbe means depicted In Figure 8,
plotted as a function of d = t - s.

Figure 10. Distribution of reaction times on s = 30 for tbe condi
tions s,t '" (30,23), (30,25), and (30,27).

Figure 8. For two subjects, mean reaction time plotted as a
function of d = t - s. S =8 (.), s=20(*), s=30 (0).

Procedure. The procedure was in all respects identical to the
one followedin Experiment I, except for the following: Each stim
ulus now remained visible until the response, mediated by a
microphone (Sennheiser headset), had surpassed a previously
selected critical level. The subject was instructed to respond with
"yes" whenever s was presented and with "no" whenever t was
presented. He or she was asked to respond as accurately and as
rapidly as possible. Latencies were registered automatically. The
experimenter, who had a list of stimulus specifications, scored
each response according to whether it was correct or incorrect,
and then entered it into the computer. Whenever the participant
committed an error, he or she received immediate feedback
("wrong") from the experimenter. Prior to each session, a se
quence of stimuli containing only one dot was given. In order to
determine the eventual latency differences with respect to verbal
ization of the response in question, participants responded yes or
no in an alternate manner to these singledot stimuli.

DISCUSSION

The results of Experiment 2 agree with the findings
of Experiment 1, both with respect to the predicted
threshold location and the asymmetry of the right
and left-handed thresholds. Threshold values mea
sured in Experiment 2 were, as a rule, slightly smaller
than those obtained in Experiment 1, which probably
reflects procedural differences between the two ex
periments. In the situation of Experiment 2, in which
the participant had sufficient time to process the vi
sual information and had also been instructed to give
the correct answer as rapidly as possible, he or she
would probably choose a safe strategy (counting)
rather than a risky one (estimating). The bimodal
shape of the distribution of latencies in those situa
tions in which the difference between the numbers
was around threshold suggested that the subject fol-

Results
The analysis was based on all correct responses

given to presented s stimuli. The frequency of in
correct responses was in general not more than 10070
and typically occurred to stimuli near threshold. Fig
ure 8 shows, for s values of 8, 20, and 30, the mean
reaction times as a function of the difference t - s.
As we can see in Figure 8, there was not only a de
crease in RT as a function of increase in d, but also
marked differences in the absolute magnitude of the
latencies. In Figure 9, the standard deviations (SD)
of the means depicted in Figure 8 are plotted as a
function of d. One can see that, for s =20 and s =30,
deviations culminated at values of d which were
roughly the same as values for the limens derived in
Experiment 1. Finally, the distribution of reaction
times is illustrated for s as compared with three
different test stimuli (t =23, 25, and 27), which were,
respectively, above, around, and below discrimina
tion threshold (Figure 10). While the distribution for
the conditions of s, t =(30,23) and s,t =(30,27) point
to a unimodal pattern, it is apparently dichotomized
in the case of s,t =(30,25). .



lowed a strategy of counting roughly half of the time
and a strategy of estimation half of the time. It is also
possible, however, that the bimodal shape was af
fected by shifts in speed-accuracycriteria. In order to
control for this rather awkward phenomenon, a much
more laborious experimental and analytical design
would be needed. Thus, one could vary systemati
cally speed-accuracy instructions for the same task
and simultaneously fit frequencies of correct
responses and RT data.

The results of Experiments I and 2 support
Averbach's hypothesis that the span of visual
apprehension is limited by the mutual discrimina
bility of visual numbers. Pairwise discrimination be
tween the small numbers 1, 2, 3, 4, 5, and 6 can be
done easily, because their ratio (max - min)/min lies
well above the Weber fraction of .162. The numbers
6 and 7 can also be discriminated from each other
more than 500/0 of the time, but not 7 and 8. There is
confusion between 7 and 8 more than 50% of the
time. This result led us to conclude that the number
six should be the upper limit of the span of apprehen
sion. However, in an imaginarysituation in whichonly
even numbers are possible, the numbers 2, 4, 6, 8, 10,
and 12 can all be distinguished from each other over
50% of the time. In that case, the number 12 should
be the upper limit of visual apprehension. Moreover,
any pairwise discrimination between two numbers of
which the ratio (max - min)/min lies above the
Weber fraction can be made more than 50% of the
time. Therefore, our results strongly support
Crossman's (1956) conclusion that the idea that the
mind can grasp only a small number of objects at
once remains quite unsupported by the evidence, if
indeed it has any meaning at all.

So far, we have neglected the influence of pattern
on number discrimination. Sometimes a 100%
correct identification of four dots has been found
(Kaufman et al., 1949), while we found PI(4 I 4) =
.76, a value deduced from discrimination results of
the larger numbers 16 and 20, or 20 and 25. But, for
these larger numbers, pattern recognition does not
make much sense. Pattern recognition becomes
relevant, however, in the case of very small numbers:
three dots nearly always make a triangle, for
example, and four may often make a recognizable
quadrilateral (Neisser, 1966, p. 42). Thus, apart
from pure-number discrimination based on proba
bility concepts, discrimination between small
numbers can be facilitated by pattern effects.

Larger numbers of dots (n > 10) have been shown
to be underestimated (Indow & Ida, 1977). In pair
wise comparison between two numbers, the discrim
ination is hardly influenced by underestimation be
cause both numbers are underestimated. However,
direct identification should lead to more erroneous
results when n > 10, so PI(n I n) should then be
smaller, as depicted in Figure 1. To avoid these un-
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derestimation problems, a correction to our discrim
ination model can be made by substituting for the ob
jective number n (numerosity) its subjective equiv
alent m (numerousness). For instance, Indow and
Ida showed that, for randomly arranged dot pat
terns with n > 10, the subjective number m was ex
ponentially related to the numerosity n as m =n".

Both factors, pattern recognition when n __ 4 and
underestimation when n > 10, do not make much
sense when the number of dots is six, so we may
safely retain the conclusion that the upper limit of the
span of apprehension (n =6) is due to discrimination
on a probability basis only.

It is interesting to discuss our discrimination model
in relation to the findings of Hunter and Sigler
(1940). They showed that it took more light to see
two black dots than it did to see one dot. Moreover,
to reach a 50% level of correct responses on plates
containing two or more dots, successively greater
amounts of light were needed. The Bunson-Roscoe
law, I . t = constant, was valid here for numbers of
dots up to n =8. In our experiments, intensity was far
above threshold. The only source of noise we
assumed was in the transmission of number informa
tion appearing as a constant dispersion, 0, in the in
ternal representation of number. But, if we should
decrease intensity, it might well be possible that ex
ternal noise relatively increases which emerges as an
extra noise component, 0e, in our internal representa
tion, so 0 I -+ 0i+ 0e' PI(n I n) then decreases mono
tonically with increasing 0 and, therefore, becomes a
function of both intensity I and exposure time t. It
would be interesting to investigate the proper rela
tionship between the dispersion 0 and intensity
and/or exposure time.

At this point, we would like to say a word about
the end effects that are frequently reported in
number-naming tasks. For instance, Averbach (1963)
used a limited set of response alternatives, the
numbers 1 to 13, and the task was to ascertain the
briefly presented numbers of dots. To him, it seemed
difficult to explain the constant superiority of 13over
12 and of 12 over 11, not only in terms of more cor
rect, but in having fewer false alarms as well. In our
model, PI(n I n) is the frequency of correct responses
to n, while n could be any integer. Limiting the set of
alternatives should improve the task for numbers at
the end of this limited set. While PI(13 I 13) is repre
sented by the surface of the standard normal dis
tribution function, extending from (l/20)ln(I2113)
to (1120)ln(14/13), Pn=l•...,13(13 I 13) is represented
by the surface, extending from (l/20)ln(12113) to
infinity, so Pn=l, ..., 13(13 I 13) > PI(13 I 13). Or,
saying it with words, the transformation to internal
representation admits a chance of responding 14
when 13 are presented, but the subject knows from
instruction (or else, from experience) that there is no
14, so he responds with 13. All possible responses
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larger than 13 become 13. Of course, this superiority
of responding with 13 might bias the response of 12
over 11.

Many studies have dealt with the immediate ap
prehension of number. It was assumed that there was
some number, n, of discrete objects that the mind
could immediately perceive. The empirical question,
then, was the value of n. In general, little discussion
was devoted to the actual phenomenon. For instance,
Beckwith and Restle (1966) merely called the under
lying process "a somewhat mysterious but very rapid
and accurate perceptual method." Finally, in this
study we have shown that "subitizing" (Kaufman
et al., 1949), "the span of apprehension" (Averbach,
1963), "the span of attention" (Fernberger, 1921;
Freeman, 1912), and "the span of discrimination"
(Hunter & Sigler, 1940) all point to the same hypo
thetical construct, and that they do not refer to dif
ferent behavioral phenomena. Number discrimi
nation, and therefore number identification, is
governed by probability concepts operating in a log
space. Those numbers for which it mutually holds
that [(max- min)/min] > Wb, with max and min the
larger and smaller numbers in question, can all be
discriminated from each other more than 50070 of the
time. This set of numbers collapses to the classical
span of apprehension when the difference between
two neighboring numbers is restricted to one. These
are the small numbers with an upper limit of six, for
six can be discriminated from seven above threshold,
but seven cannot from eight.
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