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ABSTRACT 

The use of aluminum alloys in the design of naval 
structures offers the benefit of light-weight ships that can travel 
at high-speed.  However, the use of aluminum poses a number 
of challenges for the naval engineering community including 
higher incidence of fatigue-related cracks.  Early detection of 
fatigue induced cracks enhances maintenance of the ships and 
is critical for preventing the catastrophic failure of the hull.  
Furthermore, monitoring the integrity of the aluminum hull can 
provide valuable information for estimating the residual life of 
hull components.  This paper presents a model-based damage 
detection methodology for fatigue assessment of hulls that are 
instrumented with a long-term hull monitoring system.  At the 
core of the data driven damage detection approach is a 
Bayesian model updating algorithm enhanced with systematic 
enumeration and pruning of candidate solutions.  The Bayesian 
model updating approach significantly reduce the 
computational effort by systematically narrowing the search 
space using errors functions constructed using the estimated 
modal properties associated with the condition of the structure.  
This study proposes the use of the Bayesian model updating 
technique to detect damage in an aluminum panel modeled 
using high-fidelity finite element models.  The performance of 
the proposed damage detection method is tested through 
simulation of a progressively growing fatigue crack introduced 
in the vicinity of a welded stiffener element.  An experimental 
study verifies the accuracy of the proposed damage detection 
method using an aluminum plate excited with a controlled 
excitation in the laboratory. 

INTRODUCTION 
Aluminum alloys are increasingly being used as the choice 

of material for ship hulls, especially in high-speed vessels, 
where the relatively light-weight and high corrosion resistance 
properties of the material is attractive.  However, the design and 
operation of ships with aluminum hulls has been fairly recent in 
the naval community.  Long-term monitoring and evaluation of 
aluminum hull performance with respect to hull aging and 
fatigue accumulation (or related damage) is needed.  Fatigue-
related damage in aluminum alloys often appear as widespread 
micro-cracks; this is in contrast to the large-size fatigue cracks 
of steel alloys that lead to rapid strength deterioration of the 
system.  While steel vessels would need immediate attention 
upon the initiation of fatigue cracking, high-speed aluminum 
hulls can remain in operation even after the initiation of micro-
cracks because of the ductile mechanical characteristic of the 
material.  However, close monitoring and evaluation of hull 
health has the potential to extend the operational life of high-
speed aluminum vessels by ensuring micro-cracks do not 
nucleate into more severe cracks that undermine the hull 
performance.   

Frequent inspection of ship hulls can extend the 
operational life of a ship since the detection of the onset of 
damage can reduce overall ship life-cycle costs.  However, 
current visual inspections of the entire hull are both costly and 
labor-intensive.  Therefore, the instrumentation of a structural 
health monitoring (SHM) system coupled with an effective 
damage detection methodology can reduce the cost of 
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inspection by providing inspectors with a prioritized list of 
probable areas of damage.  Such a list would effectively narrow 
down the areas of the hull requiring detailed inspections 
(perhaps by conducting nondestructive testing with ultrasonic 
waves, etc.). 

This study presents the development of a model-based 
damage detection algorithm for autonomous structural health 
monitoring of aluminum hull structures.  The area of damage in 
the structure is estimated by comparing the structural 
characteristics of the “true” structure (damaged or undamaged) 
and finite element “trial” models.  The probability associated 
with a hypothesized damage state (e.g., location and size) is 
evaluated through the calculation of an error between the “true” 
and “trial” models.  In the proposed algorithm, the probability 
distribution of the probable damage area (i.e., fatigue crack 
path) is sharpened by repeatedly applying a Bayesian inference 
algorithm [1, 2].  The error distribution in the model-updating 
algorithm is treated as a discrete function and does not require 
computationally expensive integration as is commonly 
associated with other Bayesian analyses.  To sample the 
posterior parameter distribution, other Bayesian approaches 
implemented with the Markov Chain Monte Carlo (MCMC) 
method and genetic algorithms (GA) were reported with 
successful performance in detecting structural damage 
detection [3-5].  However, these approaches are 
computationally expensive and do not always guarantee the 
convergence of a solution.  To reduce the computational effort, 
the Bayesian damage detection algorithm proposed herein is 
enhanced with a branch-and-bound search technique where the 
search space is systematically narrowed through enumeration 
and pruning of candidate model solutions [6].   

In this study, two types of error functions are constructed to 
estimate the error intrinsic to a hypothesized damage state.  The 
first error function compares the model properties (modal 
frequency and mode shape) of the “true” and “trial” models.  
The second error function is based on the flexibility of the 
structure.  The proposed model updating algorithm using both 
objective functions is tested numerically and later verified 
through experimentation using an aluminum plate with a crack 
intentionally introduced near a welded stiffener element. 

THEORETICAL BACKGROUND AND ALGORITHM 

MODEL UPDATING FOR DAMAGE DETECTION 
A general class of damage detection algorithms is based on 

model updating [7].  In such methods, model parameters are 
varied until the model approximates the behavior of the true 
observed system.  Here, changes in model parameters are 
correlated to the condition of the structure (damage versus 
undamaged).  To identify an optimal model, model parameters 
are varied with model and observed system outputs used to 
evaluate an objective (or error) function.  Model parameters 
that minimize the objective functions can be defined in both the 
time- and frequency-domains.  An appropriate objective 
function is one that takes into account the fundamental behavior 

of the system in both its damaged and undamaged states, yet is 
compatible with the experimental data available. 

Consider a simple plate structure.  The governing equation 
describing the dynamic behavior of a vibrating plate can be 
written in the following generalized form [8]: 

 

ݓସ׏ܦ  ൅ ݄ߩ
డమ௪

డ௧మ ൌ ,ݔሺݍ ,ݕ  ሻ  Eq. 1ݐ

 
where ܦ is the flexural rigidity and is defined as: 
 

ܦ   ൌ
ா௛య

ଵଶሺଵି௩మሻ
 Eq. 2 

 
Here, ݓ denotes the vertical displacement of the plate, 
,ݔሺݍ ,ݕ  ሻ is the normal load distribution function on the top ofݐ
the plate, ߩ is the plate density, ݄ is the plate thickness,  ܧ is the 
Young’s (elastic) modulus and ݒ is the Poisson ratio.   

For modeling purposes, fatigue crack damage can be 
represented by a change in the stiffness of the plate at a damage 
location.  More specific, a crack is equivalent to a drastic 
reduction in the material elastic modulus in the locations of the 
crack.  For a finite element model with ܰ total elements, the 
effective elastic modulus can be expressed in discrete form as: 
 
ᇱܧ  ൌ ሼܧଵ, ,ଶܧ ڮ , ,௜ܧ ,௜ାଵܧ ڮ , ,௜ା௡ܧ ڮ , ,ேିଵܧ  ேሽ Eq. 3ܧ
 
If the model contains ݊ damaged elements whose effective 
Young’s modulus in the damaged state is reduced by the factor 
݇ ሺ൏ 1ሻ, then the moduli ܧ௜ାଵ through ܧ௜ା௡ would be replaced 
by ݇ܧ௜ାଵ, ڮ ,  .௜ା௡ in Eq.3ܧ݇

Model updating in the damage detection problem can be 
formulated as a combinatorial optimization problem that seeks 
to find an optimal ܧᇱ that minimizes a defined objective 
function that compares the FEM model output using the 
hypothesized, ܧᇱ, and the output derived from actual 
measurements taken from the structure.  This inverse problem 
can be posed as a combinatorial optimization problem for 
finding the optimal set of ݊ elements, whose effective elastic 
modulus:  
 
ௗܧ    ൌ ൛݇ܧ௜ାଵ, ڮ ,  ௜ା௡ൟ Eq. 4ܧ݇,௜ା௡ିଵܧ݇
 
represents the damage state of the real structure. 

BAYESIAN FORMULATION 
The model updating procedure adopted is based on a 

Bayesian probabilistic approach which utilizes the parameters 
measured or estimated from collected signals or data (which 
may contain uncertainties and noise).  Unlike a deterministic 
optimization formulation, the state space search must reflect the 
relative degree of belief on the estimates of the optimal subset 
(i.e., ܧௗ, in this case).  Let ܯ denote the hypothesized damage 
states of the model.  The calculation of the error that exists 
between the “true” structure and the FEM “trial” model (ݏሻ is 
based on the measured or estimated structural parameters.  The 
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updated estimates on the damage of the structure are expressed 
as the posterior distribution based on Baye’s rule as follows 

 

ሻݏ|ܯሺ݌  ൌ
௣ሺ௦|ெሻ௣ሺெሻ

௣ሺ௦ሻ
ן  ሻ Eq. 5ܯሺ݌ሻܯ|ݏሺ݌

 
where ݌ሺݏ|ܯሻ is the posterior distribution function for a 
hypothesis ܯ given the measured or estimated parameters, s. 
 ሻ is the priorܯሺ݌ ,ሻ is termed the likelihood functionܯ|ݏሺ݌
probability of the hypothesis and ݌ሺݏሻ is treated here as some 
normalization constant.  Therefore, by collecting the likelihood 
function (the objective function associate with error for the 
given data set), the posterior distribution ݌ሺݏ|ܯሻ becomes a 
better estimate than prior probability ݌ሺܯሻ as the process goes 
on.  For instance, if the initial estimate of the probable area of 
damage is assumed distributed uniformly over the structure 
before the application of the algorithm, the most likely 
damaged areas are revealed with relatively higher posterior 
estimates by the repeated applications of the Bayesian inference 
algorithm. 

BRANCH AND BOUND 
The selection of the most probable events from all 

conceivable possibilities using the Bayesian probabilistic 
approach can be systematized using various “optimal” search 
methods; otherwise a random search in optimal subspace 
becomes a computationally intractable task.  In this study, the 
Branch and Bound (BB) technique is applied to reduce the 
search space in the model updating process.  The BB technique 
is a general search method originally developed for discrete 
optimization problems and is a powerful technique for 
controlling the size of a search space used in model updating 
[6].   As illustrated in Figure 1, the BB algorithm initially starts 
its search from some random subspaces (i.e., leaf nodes 
associated with Branch 1 in Figure 1).  The algorithm continues 
to take an additional sample (i.e., an additional element in the 
hypothesized subset) at each leaf node to improve their 
estimates.  As the search proceeds, the branches associated with 
large “errors” are pruned and the search is bounded by 
evaluating the remaining branches.  Therefore, the probable 
damage area in a system can be systematically narrowed by 
implementing the BB technique in the Bayesian formulation.  
Moreover, the computational effort and accuracy of the 
estimates for the optimal subset (i.e., ܧௗ) can be aggressively 
controlled by selecting an optimal pruning rate at each branch. 

THE OBJECTIVE (ERROR) FUNCTIONS 
The errors associated with each leaf node in the BB 

algorithm are evaluated using the objective functions that 
consider the difference in the structural characteristics of the 
true (damaged) structure and a trial FEM model with properties 
resembling the damaged structure.  In this study, two objective 
functions based on frequency domain information (i.e., modal 
properties) are considered.  The first approach is named the 
“Direct Mode-Based Approach (DMBA)” and evaluates the 
difference in the modal properties (modal frequencies and mode 

shape) of the true damaged structure and the trial FEM model 
independently.  The DMBA method then calculates the error 
function as the sum of the errors associated with each property.  
The other method is named the “Flexibility-Based Approach 
(FBA)” and evaluates an error function using modal properties 
in a combined manner using the flexibility matrix. 

DIRECT MODE-BASED APPROACH (DMBA) 
The objective function of the DMBA, ܬ஽ெ஻஺, considers a 

weighted combination of differences in  modal frequency (߱) 
and mode shape (߶).  Here, the objective function is formulated 
as follows: 

  

஽ெ஻஺ܬ  ൌ ∑ ൬
ఠ೔

೟ೝೠ೐ିఠ೔
೟ೝ೔ೌ೗

ఠ೔
೟ೝ೔ೌ೗ ൰

ଶ

൅ α ∑
൫ଵିඥெ஺஼೔൯

మ

ெ஺஼೔

௡
௜ୀଵ

௡
௜ୀଵ   Eq. 6 

 
where 

௜ܥܣܯ  ൌ
ฬ൫థ೔

೟ೝೠ೐൯
೅

ቀథ೔
೟ೝ೔ೌ೗ቁฬ

మ

൜൫థ೔
೟ೝೠ೐൯

೅
൫థ೔

೟ೝೠ೐൯ൠ൜ቀథ೔
೟ೝ೔ೌ೗ቁ

೅
ቀథ೔

೟ೝ೔ೌ೗ቁൠ
  Eq. 7 

 
The objective function considers ݊ modes with ߱௜

௧௥௨௘ and 
߱௜

௧௥௜௔௟ being the modal frequencies of a true structure and a trial 
model, respectively, for the ݅௧௛ mode.  The scalar parameter 
 ௜ is the modal assurance criteria (MAC) and provides aܥܣܯ
measure of correlation (with 0 ൑ ௜ܥܣܯ ൑ 1) between the true 
observed ݅௧௛ mode, ߶௜

௧௥௨௘, and the ݅௧௛ mode of the trial model 
߶௜

௧௥௜௔௟,  The weighting term, α, allows the objective function to 
weight the mode shape differences relative to the modal 
frequencies.  The coordinates (i.e., the entries) of the true and 
trial mode shapes are evaluated only at the locations of the 
sensors, based on the measurements obtained either from an 
experiment or an FEM simulation. 

FLEXIBILITY-BASED APPROACH (FBA) 
The FBA method formulates an objective function based 

on the difference between the flexibility matrices that 
correspond to the true and trial models.  The inverse 

 
 

Figure 1. Branch and Bound technique. 
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relationship between the flexibility matrix and the square of 
modal frequency renders the flexibility matrix as less sensitive 
to high frequency modes.  This unique characteristic allows for 
the inclusion of lower order modes in a truncated flexibility 
matrix.  This feature has attracted many researchers to explore 
flexibility as a core element in developing structural damage 
detection algorithms [e.g., 9-13].  

When the mode shapes are mass-normalized (i.e., 
ഥߔܯഥ்ߔ ൌ  ܨ and the flexibility matrix ܭ the stiffness matrix ,(ܫ
are related to the modal properties as follows: 

 
ܭ  ൌ  Eq. 8  ܯഥ்ߔഥΩߔܯ
 
and  
 

ܨ  ൌ ഥ்ߔഥΩିଵߔ ൌ ∑ ଵ

ఠ೔
మ ߶ത௜߶ത௜

்ே
௜ୀଵ  Eq. 9  

 
where ܯ is the mass matrix, ߔഥ ൌ ሾ߶തଵ ߶തଶ … ߶തேሿ is the mode 
shape matrix, Ω ൌ diagሺ߱௜

ଶሻ is the modal frequencies matrix 
(or spectral matrix), and ܰ is the number of degrees of freedom 
(DOF) in the system.  Any arbitrarily scaled or normalized 
mode shape ߶௜ is related to the mass-normalized mode as: 

 
 ߶ത௜ ൌ ߶௜݀௜ Eq. 10 

 
where ݀௜ is a mass normalization constant for the ݅௧௛ mode.  

Suppose only a few (lower) modes are available, for 
example from experimental tests, a truncated flexibility matrix 
is obtained as:  

 

௧௥௨௡ܨ  ൌ ∑ ቀ
ௗ೔

ఠ೔
ቁ

ଶ
߶ത௜ ߶ഥ ௜

்௡
௜ୀଵ  Eq. 11 

 

where ݊݊ is the number of modes available. 
Let’s define the difference (Δܨ௧௥௨௡) between the flexibility 

matrices of the true (damaged) structure and the trial FE model 
as: 

 
 Δܨ௧௥௨௡ ൌ ௧௥௨௡ ܨ

௧௥௨௘ െ ௧௥௨௡ ܨ
௧௥௜௔௟ Eq. 12 

 

When a trial FE model reasonably resembles the damaged 
structure with true damage, the difference in flexibility matrices 
is close to zero (exactly zero if there is no measurement noise 
nor modeling error).  The scalar magnitude on the difference in 
the flexibility matrices can be measured by  calculating the 
Frobenius norm of Δܨ௧௥௨௡: 

 

 ԡΔܨ௧௥௨௡ԡி ൌ ට∑ ∑ ௜௝ݔ
ଶ

௝௜  Eq. 13 

which vanishes when all matrix elements ݔ௜௝ are zero (meaning 
the FEM model perfectly matches the observed structure). 

The difference in the flexibility matrices can also be further 
decomposed into singular values by singular value 
decomposition (SVD): 

 
 Δܨ௧௥௨௡ ൌ ்ܷܸܵ Eq. 14 

 
where ்ܸ and ܷ are matrices of singular vectors, ܵ is the 
diagonal matrix whose elements are the singular values, ݏ௜.  
Since the Frobenius norm is invariant under unitary 
multiplication, the SVD of the Δܨ௧௥௨௡ yields 

  
ԡΔܨ௧௥௨௡ԡி ൌ ԡ்ܷܸܵԡி
ൌ ԡܵԡி

ൌ ටݏଵ
ଶ ൅ ଶݏ

ଶ ൅ ڮ ൅ ோݏ
ଶ 

  Eq. 15 

 

where ܴ is the rank of Δܨ௧௥௨௡. 
Since the mode shapes experimentally obtained are 

arbitrary scaled, the mass normalization constants (݀௜) are 
required to properly compute the flexibility matrix of the real, 
true structure.  One approach to extracting the mass 
normalization constant is based on testing the structure with a 
perturbed mass matrix (by adding a known mass at a certain 
location) and examining the sensitivity of the eigenvalues [14, 
15].  In this study, mass normalization constants estimated 
using  the FEM model are updated at each trial and applied to 
the experimentally obtained (and not mass normalized) mode 
shapes.  That is, the constants are extracted by comparing the 
mass-normalized mode shapes and displacement-normalized 
mode shapes, where both mode shapes are available as options 
in many commercial FEM programs (e.g., ABAQUS). 

 

EXPERIMENTAL TESTBED: ALUMINIUM PLATE WITH 
A WELDED STIFFNER 

STRUCTURAL CHARACTERISTICS 
The proposed Bayesian model-updating algorithm is 

applied to the problem of damage detection in a stiffened 
aluminum plate (Figure 2a).  The design of this structural 
component is intended to include a geometric complexity that 
commonly found in aluminum ship hull structures.  The 
aluminum plate includes an area with high stress concentration 
due to the presence of a welded stiffener.  Such areas are likely 
locations for fatigue-related damage (i.e., fatigue crack).  
Knowledge of this fact allows one to customize the model 
updating algorithm to prioritize the search of this area.  The 
aluminum plate is 24 in by 48 in and is 0.249 in thick.  In 
addition, the plate has a stiffener plate (2 in ×18 in × 0.249 in) 
and they are rigidly welded by a TIG weld.  Three different 
crack paths initiating from the heat affected zone (HAZ) around 
the welded stiffener plate are considered as example damage 
scenario cases (Figure 2b). 
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Aluminum stiffener plate 
2"by 18", 0.249" thick

Aluminum base plate 24" 
by 48", 0.249" thick

Cracked elements
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Figure 2. (a) Schematic of the base structure; (b) crack 

paths considered in analysis.  

The structural characteristics of the plate structure are first 
estimated using a general-purpose FEM analysis program 
(namely, ABAQUS).  The base plate and stiffener plate are 
modeled with 4-node reduced integration, doubly curved shell 
elements with hourglass control (S4RSW) [16].  These plates 
are assumed to be rigidly connected.  The mesh size of the plate 
elements are 1 in × 1 in.  The elastic modulus of the undamaged 
 ሻ elements is 10300 ksi while for the cracked elements, theܧ)
elastic modulus is reduced 10-6 times the original modulus 
ௗܧ ) ൌ ܧ ൈ 10ି଺).  The mass density of the aluminum is 
assumed to be 2.489×10-7 slug/in3.  The Lanczos frequency 
analysis method in ABAQUS provides the modal properties 
(i.e., modal frequency and mode shape) of the base structure.  
For example, changes in the modal properties of the plate with 
the inclusion of a crack (path 1 in Figure 2b) are summarized in 
Table 1.  The modal frequencies of the structure drop by 1 to 
6% with noticeable decrease in the frequencies observed in the 
second to fourth modes.  The changes in mode shapes are 
evaluated using the modal assurance criteria (MAC) (i.e., the 
correlation between the undamaged and damaged mode 
shapes).  Noticeable changes are observed for the higher modes 
(fourth and fifth modes) as intuitively expected. 

EVALUATION OF THE OBJECT FUNCTIONS 
The performances of the proposed objective (error) 

functions are evaluated using the crack paths shown in Figure 
2b.  Two necessary conditions of the objective functions are 
first tested.  The first is the capability of the objective function 
to identify the starting location of crack path (i.e., initial crack 
identification).  The other condition is the monotonicity 
condition which states that the objective function 

monotonically decrease as the hypothesized cracked elements 
used in the trial model are increasingly included element by 
element along the true targeted damage path.  The parameters 
considered when evaluating the objective functions are: 1) 
objective function type, 2) number of truncated modes, 3) 
location of the sensors (see Figure 3b), and 4) the location and 
size of the crack paths (see Figure 2b).  Uncertainty in the 
measurement is not considered during these preliminary 
evaluations on the objective functions.  The test parameters are 
summarized in Table 2. 

Table 1. Changes in structural characteristics. 
 
Modes (i) 1 2 3 4 5 
Frequency 

(Hz): no crack 
25.640 39.840 69.516 90.557 123.01 

Frequency 
(Hz): cracked 

25.302 38.049 67.620 85.364 121.09 

Change in 
frequency (%) 

-1.318 -4.495 -2.727 -5.735 -1.561 

MAC (i, i) 0.997 0.999 0.997 0.924 0.960 
 

Table 2. Performance tests of object functions.  
 

Test Type 
Object 

Function 
Modes 

Number of 
Sensors 

Crack Path 

MT, ICI 
DMBA, 

FBA 
1-5, 1-4,  

2-5 
6, 8, 12 1, 2, 3 

MT: Monotonicity, ICI: Initial Crack Identification, DMBA: Direct 
Mode-Based Approach, FBA: Flexibility-Based Approach 
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Figure 3. (a) Element number around the welds; (b) sensor 
locations. 
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Figure 4. Initial error distribution around the stiffener weld.

 
Figure 5. Error distribution around weld using the DMBA 

method. 

 
Figure 6. Error distribution around weld using the FBA 

method. 

  
Figure 6. Monotonic decrease of error on crack path. 
 

 
Figure 7. Effect of sensor locations in monotonicity 

condition. 

The initial shape of the probability error distribution 
around the welded stiffener is first examined for the structure 
with no damage (Figure 4).  Both the DMBA and FBA methods 
give similar error distributions with elevated errors at the 
location of element 20 (weld toe area; see Figure 3a for details).  
For Figure 4, the modes are truncated to consider the 2nd 
through 5th modes.  As shown in Figures 4 and 5, the error 

distributions are sensitive to the inclusion of crack damages.  In 
Figure 5, the DMBA method has a tendency to show small 
errors in the vicinity of the initiation of the crack paths (as 
denoted by the vertical dotted line in the plots).  However, the 
method does not appear to be sensitive enough to identify the 
exact location of the true crack element (Figure 6).  The 
truncation of modes does not affect the shape of the error 
distribution for the DMBA method.  The FBA method shows an 
error function with a nearly concave shape which indicates a 
high probability for the existence of the true cracked element 
around the objective function minima.  The concave shape 
becomes smoother and more obvious when the 1st mode is 
excluded in the calculation of the FBA objective function (i.e., 
the case with the 2nd through 5th modes included).  This result 
demonstrates, to some extent, that the FBA method has a better 
initial crack identification capability when compare to the 
DMBA method. 
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The monotonicity condition is necessary to ensure that the 
Bayesian inference method increase in likelihood for the 
probable area of damage with trial (hypothesis).  Figure 7 
shows the strong monotonicity of the error function along all 
three crack paths considered in this study.  Here, the number of 
cracked elements increases from the crack initiation on the 
weld side of the crack paths.  For example, for crack path 1, 
there are 8 elements that have reduced Young’s moduli 
corresponding to the simulated crack.  The x-axis in Figure 7 
represents the number of elements along the crack path used in 
the hypothesized model.  In Figure 8, the sensitivity of the 
number of sensors on damage detection (see Figure 3b) is 
examined.  As shown, the objective functions do not appear to 
exhibit sensitivity to the number of sensors used.  

EXPERIMENTAL VALIDATIONS 

TEST DESCRIPTIONS 
The aluminum plate previously modeled in the numerical 

simulations was manufactured in full-scale to examine the 
performance of the proposed Bayesian damage detection 
algorithm in the noisy sensing environment common in real-life 
applications (Figure 9).  A 18 in long stiffener plate was welded 
to the base plate with 1 in long discrete TIG welds at 5 
locations (with a spacing of 3.6 in) to avoid excessive 
distortions that might result from weld heat.  In addition, the 
base plate was pre-heated using a gas torch to increase the 
speed of the welding process.  A simple straight cut was made 
by a vertical band saw to represent a fatigue crack in the base 
plate (Figure 9a).   The base plate was fixed to stiff steel bars 
along the shorter edges of the plate using 8-3/8 in aluminum 
bolts.  The assemblage was then rigidly connected to the 
concrete strong floor of the Structural Engineering Laboratory 
at the University of Michigan.   A specimen without a crack 
was also prepared to estimate the material properties of the 
plates for the FEM model.  

Two types of tests were conducted.  One are modal 
hammer tests which a single input impact load at the center line 
of the specimen away from the weld and crack damage area 
(Figure 9b).  The other tests use ambient excitations where the 
specimen is tapped by hands at random locations with quasi-
random loads.  The tests were repeated 3 and 5 times for the 
undamaged and cracked specimens, respectively (Table 3).  

MODAL PROPERTIES 
The impact hammer tests are used to identify the 

structure’s modal properties.  Impulse response functions can 
be converted to the frequency domain to obtain the frequency 
response functions of the plate.  Figure 10 shows the Fourier 
spectra of the vertical acceleration responses measured at each 
sensor location for impact hammer tests (impacted at the plate 
center, see Figure 9c).  The circles in the plots indicate the 
peaks identified in the spectrum.  The modal frequencies 
identified repeatedly appeared in the spectra from test to test 
(Table 4).  The modes involving torsional movement (e.g., the 
second, fourth and fifth modes) were excited only at the edge of 

 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
Figure 9. (a) Test specimen; (b) test view; (c) dimension of 

specimen. 
 

Table 3. Test protocol. 
 

Name Type Spec. 
# of 

Sensor 
Impact 

Location 
Times 

IH1C hammer cracked 6 center 5 
IH2C hammer cracked 8 center 5 
H1C hand cracked 6 random 5 
H2C hand cracked 8 random 5 
IH1N hammer no crack 6 center 3 
IH2N hammer no crack 8 center 3 
H1N hand no crack 6 random 3 
H2C hand no crack 8 random 3 
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the plate, and thus were hardly identified at sensors positioned 
at the center of the plate (e.g., node 3 and 4).  This led to lower 
periodicity numbers for those modes.  Table 5 summarizes the 
modal frequency estimates for the cracked specimen in terms of 
mean values, standard deviations and periodicity.  For the hand 
tapping tests, the estimated frequencies were almost equal to 
those obtained from the impact hammer tests. 

BASE MODEL TUNING 
The nominal structural properties assigned in the FE model 

(i.e., plate thickness, Young’s modulus) were updated before the 
application of the proposed Bayesian model updating algorithm 
used for damage detection.  The thickness of the base plate and 
the stiffener plate both measured 0.241” (the nominal value was 
0.249”).  Using the test results from the undamaged specimen, 
the Young’s modulus of the plates in their undamaged state was 
estimated to be 91% of the nominal value while the density of 
the aluminum plate was assumed to be the nominal value.  A 
series of parametric analyses were conducted to achieve 
minimal modal errors.  The mode shapes of the updated 
undamaged plate model are compared to the mode shapes 
experimentally obtained in Figure 11.  Excellent agreement 
exists in all five modes.  Table 6 summarizes the comparison 
between the FEM model and the undamaged plate. 

 
Figure 10. Fourier spectra of vertical vibrations at sensor 

nodes 1 through 6 
 

Table 6. Modal frequency estimates
 

Mode 
Modal frequency MAC 

Test (Hz) FEM (Hz) Diff (%) (%) 
1 25.21 25.167 -0.161 0.9976 
2 36.41 37.893 3.840 0.9826 
3 65.61 67.362 2.597 0.992 
4 85.50 85.135 -0.656 0.982 
5 123.37 120.43 -2.426 0.9318 

 
 
 

 
 

Figure 11. Mode shape comparison between impact 
hummer test results and FE model prediction 

Table 4. Modal frequency estimates for cracked specimen in 
the impact hummer tests (5 test runs) 

 

Mode 
Mean Frequency 

(Hz) 
Standard 
Deviation 

Periodicity 
(%) 

1 25.21 0.000 100 
2 36.41 0.031 70 
3 65.61 0.000 100 
4 85.50 0.180 50 
5 123.37 0.027 80 

 
Table 5. Modal frequency estimates for cracked specimen in 

hand tapping tests (3 test runs) 
 

Mode 
Mean 

Frequency 
(Hz) 

Standard 
Deviation 

Periodicity 
 (%) 

From 
Hammer 
test (%) 

1 25.12 0.018 100 0.357 
2 36.33 0.017 77.8 0.220 
3 65.61 0.021 100 0.000 
4 85.99 0.021 55.6 -0.573 
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(a) the DMBA method 

 

 

 
(b) the FBA method 

Figure 12. Probable area of damage. 

 
DAMAGE DETECTION 

The proposed Bayesian model updating algorithm was 
applied to detect the damaged area in the test specimen.  The 
modal properties of the specimen were estimated using the 
results from the impact hammer tests.    The objective functions 
were formulated using the DMBA and FBA methods.  The 2nd 
through 5th modes were considered in the truncated analyses.  
The initial hypothesized area of damage was the location in the 
vicinity of the stiffener weld.  The analyses were repeated for 
three different pruning ratios applied in the BB pruning process 
(i.e., 33.3%, 50% and 76.7%).  The pruning process followed 
the branching of the survived candidate subsets.  The 
approximate time durations of the Bayesian damage detection 
analyses with DMBA methods were 30 min, 2 h 30 min, and 14 
h 20 min for the pruning ratios of 33.3%, 50% and 76.7%, 
respectively.  With the FBA method, the analyses took 1 h 10 
min, 6 h 50 min, and 47 h 30 min for the pruning ratios of 
33.3%, 50% and 76.7%, respectively. 

Figure 12 shows the histogram for the probable damage 
location for two objective functions (i.e., DMBA and FBA).  
The appearances of each element were counted in the candidate 
subsets survived in each pruning process.  The rule for the 
counting process was as follows: for an N-length candidate 
(i.e., a candidate subset with N cracked elements), i th element 
was counted for i times so that elements positioned close to and 
far from the initial search area were equally evaluated for their 
appearances.  In the histogram plots, the elements filled with 
darker color posses higher probabilities of damage (in this case, 
crack damage). 

The DMBA method did not perform well and the probable 
damaged area was dispersed far away from the cracked 
elements (e.g., true crack path was pruned at the 4th branching 
process when the pruning ratio was 33.3%).  The area of the 
probable damage became narrower as the pruning ratio 
increased.  The FBA method successfully identified the 
damaged location in the vicinity of the true crack path (e.g., 
true crack path was ranked as the 3rd among all candidate 
solutions when the pruning ratio was 33.3%).  The elements 
colored dark correlated well with the location of the true crack 
even with large pruning ratios (e.g., 76.7%).  This fact indicated 
that with the selection of appropriate objective functions, 
significant computational time could be easily saved without 
sacrificing accuracy of the damage detection method. 

CONCLUSIONS 
The proposed Bayesian model updating method provides a 

probabilistic methodology for evaluating hypothesized damage 
states of an analytical model based on the use of measurement 
data.  In addition, a Branch and Bound (BB) search method is 
used to prune the model state space resulting in significant 
speed-up in its execution.  At the core of the Bayesian model 
updating method is the use of an objective function that 
evaluates how close a hypothesized model output is relative to 
the measurement data obtained from the real structure.  In this 
study, two objective functions were considered including the 
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direct mode based approach (DMBA) and the flexibility based 
approach (FBA).  The proposed algorithm was used to detect 
fatigue crack damage in an aluminum plate reinforced by a 
stiffener element welded to its top surface.  Based on the 
experimental results obtained, the FBA objective function 
proved more accurate at hypothesizing the correct location of 
crack damage.  The FBA method proved effective even when 
large pruning rates were adopted as a way of attaining 
computational speed-up.  The authors will continue to 
investigate the performance of the Bayesian model updating 
algorithm with various objective functions.  Furthermore, more 
complex aluminum hull sub-assemblages will also be tested 
under varying crack damage cases to assess the effectiveness of 
the method.   
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