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We consider the probabilistic numerical scheme for fully nonlinear par-
tial differential equations suggested in [Comm. Pure Appl. Math. 60 (2007)
1081–1110] and show that it can be introduced naturally as a combination of
Monte Carlo and finite difference schemes without appealing to the theory
of backward stochastic differential equations. Our first main result provides
the convergence of the discrete-time approximation and derives a bound on
the discretization error in terms of the time step. An explicit implementable
scheme requires the approximation of the conditional expectation operators
involved in the discretization. This induces a further Monte Carlo error. Our
second main result is to prove the convergence of the latter approximation
scheme and to derive an upper bound on the approximation error. Numerical
experiments are performed for the approximation of the solution of the mean
curvature flow equation in dimensions two and three, and for two- and five-
dimensional (plus time) fully nonlinear Hamilton–Jacobi–Bellman equations
arising in the theory of portfolio optimization in financial mathematics.

1. Introduction. We consider the probabilistic numerical scheme for the ap-
proximation of the solution of a fully nonlinear parabolic Cauchy problem sug-
gested in [12]. In the latter paper a representation of the solution of the partial
differential equation (PDE) is derived in terms of the newly introduced notion of
second order backward stochastic differential equations, assuming that the fully
nonlinear parabolic Cauchy problem has a smooth solution. Then, similarly to the
case of backward stochastic differential equations which are connected to semilin-
ear PDEs, this representation suggests a backward probabilistic numerical scheme.

The representation result of [12] can be viewed as an extension of the Feynman–
Kac representation result for the linear case, which is widely used to approach the
numerical approximation problem from the probabilistic viewpoint and to take
advantage of the high-dimensional properties of Monte Carlo methods. Previ-
ously, the theory of backward stochastic differential equations provided an ex-
tension of these approximation methods to the semilinear case; see, for instance,
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Chevance [13], El Karoui, Peng and Quenez [16], Bally and Pagès [2], Bouchard
and Touzi [9] and Zhang [30]. In particular, the latter papers provide the conver-
gence of the “natural” discrete-time approximation of the value function and its
partial space gradient with the same L2-error of order

√
h, where h is the length of

the time step. The discretization involves the computation of conditional expecta-
tions, which need to be further approximated in order to produce an implementable
scheme. We refer to [2, 9] and [17] for an complete asymptotic analysis of the ap-
proximation, including the regression error.

In this paper we observe that the backward probabilistic scheme of [12] can
be introduced naturally without appealing to the notion of backward stochastic
differential equation. This is shown is Section 2, where the scheme is decomposed
into three steps:

(i) the Monte Carlo step consists of isolating the linear generator of some
underlying diffusion process so as to split the PDE into this linear part and a re-
maining nonlinear one;

(ii) evaluating the PDE along the underlying diffusion process, we obtain a
natural discrete-time approximation by using finite difference approximation in
the remaining nonlinear part of the equation;

(iii) finally, the backward discrete-time approximation obtained by the above
steps (i)–(ii) involves the conditional expectation operator, which is not com-
putable in explicit form; an implementable probabilistic numerical scheme there-
fore requires that such conditional expectations be replaced by a convenient ap-
proximation and induces a further Monte Carlo type of error.

In the present paper, we do not require the fully nonlinear PDE to have a smooth
solution, and we only assume that it satisfies a comparison result in the sense
of viscosity solutions. Our main objective is to establish the convergence of this
approximation toward the unique viscosity solution of the fully nonlinear PDE and
to provide an asymptotic analysis of the approximation error.

Our main results are the following. We first prove the convergence of the
discrete-time approximation for general nonlinear PDEs, and we provide bounds
on the corresponding approximation error for a class of Hamilton–Jacobi–Bellman
PDEs. We then consider the implementable scheme involving the Monte Carlo
error, and we similarly prove a convergence result for general nonlinear PDEs
and provide bounds on the error of approximation for Hamilton–Jacobi–Bellman
PDEs. We observe that our convergence results place some restrictions on the
choice of the diffusion of the underlying diffusion process. First, a uniform ellip-
ticity condition is needed; we believe that this technical condition can be relaxed
in future work. More importantly, the diffusion coefficient is needed to dominate
the partial gradient of the remaining nonlinearity with respect to its Hessian com-
ponent. Although we have no theoretical result showing that this condition is nec-
essary, our numerical experiments show that the violation of this condition leads
to a serious misperformance of the method; see Figure 5 below.
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Our proofs rely on the monotonic scheme method developed by Barles and
Souganidis [6] in the theory of viscosity solutions and the recent method of shaking
coefficients of Krylov [21, 23] and [22] and Barles and Jakobsen [4, 5] and [3]. The
use of the latter types of methods in the context of a stochastic scheme seems to
be new. Note, however, that our results are of a different nature than the classical
error analysis results in the theory of backward stochastic differential equations
as we only study the convergence of the approximation of the value function, and
no information is available for its gradient or Hessian with respect to the space
variable.

The following are two related numerical methods based on finite differences in
the context of Hamilton–Jacobi–Bellman nonlinear PDEs:

• Bonnans and Zidani [7] introduced a finite difference scheme which satisfies the
crucial monotonicity condition of Barles and Souganidis [6] so as to ensure its
convergence. Their main idea is to discretize both time and space, approximate
the underlying controlled forward diffusion for each fixed control by a con-
trolled local Markov chain on the grid, approximate the derivatives in certain
directions which are found by solving some further optimization problem and
optimize over the control. Beyond the curse of dimensionality which is encoun-
tered in finite difference schemes, we believe that our method is much simpler,
as the monotonicity is satisfied without any need to treat separately the linear
structures for each fixed control and without any further investigation of some
direction of discretization for the finite differences.

• An alternative finite difference scheme is the semi-Lagrangian method which
solves the monotonicity requirement by absorbing the dynamics of the underly-
ing state in the finite difference approximation (see, e.g., Debrabant and Jakob-
sen [15], Camilli and Jacobsen [11], Camilli and Falcone [10] and Munos and
Zidani [27]). Loosely speaking, this method is close in spirit to ours and corre-
sponds to freezing the Brownian motion Wh, over each time step h, to its average
order

√
h. However, it does not involve any simulation technique and requires

the interpolation of the value function at each time step. Thus, it is also subject
to the curse of dimensionality.

We finally observe a connection with the recent work of Kohn and Serfaty [20]
who provide a deterministic game theoretic interpretation for fully nonlinear par-
abolic problems. The game in question is time-limited and consists of two players.
At each time step, one tries to maximize her gain and the other to minimize it by
imposing a penalty term to her gain. The nonlinearity of the fully nonlinear PDE
appears in the penalty. Also, although the nonlinear penalty does not need to be el-
liptic, a parabolic nonlinearity appears in the limiting PDE. This approach is very
similar to the representation of [12], where such a parabolic envelope appears in
the PDE, and where the Brownian motion plays the role of Nature playing against
the player.
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The paper is organized as follows. In Section 2 we provide a natural presentation
of the scheme without appealing to the theory of backward stochastic differential
equations. Section 3 is dedicated to the asymptotic analysis of the discrete-time
approximation and contains our first main convergence result, together with the
corresponding error estimate. In Section 4 we introduce the implementable back-
ward scheme, and we further investigate the induced Monte Carlo error. We again
prove convergence and provide bounds on the approximation error. Finally, Sec-
tion 5 contains some numerical results for the mean curvature flow equation on the
plane and space, and for a five-dimensional Hamilton–Jacobi–Bellman equation
arising in the problem of portfolio optimization in financial mathematics.

NOTATION. For scalars a, b ∈ R, we write a ∧ b := min{a, b}, a ∨ b :=
max{a, b}, a− := max{−a,0} and a+ := max{a,0}. By M(n, d), we denote the
collection of all n × d matrices with real entries. The collection of all symmetric
matrices of size d is denoted by Sd , and its subset of nonnegative symmetric ma-
trices is denoted by S

+
d . For a matrix A ∈ M(n, d), we denote by AT its transpose.

For A,B ∈ M(n, d), we define A · B := Tr[ATB]. In particular, for d = 1, A and
B are vectors of R

n and A · B reduces to the Euclidean scalar product.
For a function u from [0, T ] × R

d to R, we say that u has q-polynomial growth
(resp., α-exponential growth) if

sup
t≤T ,x∈Rd

|u(t, x)|
1 + |x|q < ∞

[
resp., sup

t≤T ,x∈Rd

e−α|x||u(t, x)| < ∞
]
.

For a suitably smooth function ϕ on QT := (0, T ] × R
d , we define

|ϕ|∞ := sup
(t,x)∈QT

|ϕ(t, x)| and |ϕ|1 := |ϕ|∞ + sup
QT ×QT

|ϕ(t, x) − ϕ(t ′, x′)|
(x − x′) + |t − t ′|1/2 .

Finally, we denote the L
p-norm of an r.v. R by ‖R‖p := (E[|R|p])1/p .

2. Discretization. Let μ and σ be two maps from R+ × R
d to R

d and
M(d, d), respectively, and let a := σσT. We define the linear operator

LXϕ := ∂ϕ

∂t
+ μ · Dϕ + 1

2
a · D2ϕ.

Given a map

F : (t, x, r,p, γ ) ∈ R+ × R
d × R × R

d × Sd 
−→ F(x, r,p, γ ) ∈ R,

we consider the Cauchy problem:

−LXv − F(·, v,Dv,D2v) = 0, on [0, T ) × R
d,(2.1)

v(T , ·) = g, on R
d .(2.2)
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Under some conditions, a stochastic representation of the solution of this problem
was provided in [12] by means of the newly introduced notion of second order
backward stochastic differential equations. As an important implication, such a
stochastic representation suggests a probabilistic numerical scheme for the above
Cauchy problem.

The chief goal of this section is to obtain the probabilistic numerical scheme
suggested in [12] by a direct manipulation of (2.1)–(2.2) without appealing to the
notion of backward stochastic differential equations.

To do this, we consider an R
d -valued Brownian motion W on a filtered prob-

ability space (�, F ,F,P), where the filtration F = {Ft , t ∈ [0, T ]} satisfies the
usual completeness conditions, and F0 is trivial.

For a positive integer n, let h := T/n, ti = ih, i = 0, . . . , n, and consider the
one-step-ahead Euler discretization

X̂
t,x
h := x + μ(t, x)h + σ(t, x)(Wt+h − Wt)(2.3)

of the diffusion X corresponding to the linear operator LX . Our analysis does
not require any existence or uniqueness results for the underlying diffusion X.
However, the subsequent formal discussion assumes existence and uniqueness in
order to provide a natural justification of our numerical scheme.

Assuming that the PDE (2.1) has a classical solution, it follows from Itô’s for-
mula that

Eti ,x[v(ti+1,Xti+1)] = v(ti, x) + Eti ,x

[∫ ti+1

ti

LXv(t,Xt ) dt

]
,

where we have ignored the difficulties related to local martingale part, and where
Eti ,x := E[·|Xti = x] denotes the expectation operator conditional on {Xti = x}.
Since v solves the PDE (2.1), this gives

v(ti, x) = Eti ,x[v(ti+1,Xti+1)] + Eti ,x

[∫ ti+1

ti

F (·, v,Dv,D2v)(t,Xt ) dt

]
.

By approximating the Riemann integral and replacing the process X by its Euler
discretization, this suggest the following approximation of the value function v:

vh(T , .) := g and vh(ti, x) := Th[vh](ti, x),(2.4)

where, for a function ψ : R+ × R
d −→ R with exponential growth,

Th[ψ](t, x) := E[ψ(t + h, X̂
t,x
h )] + hF(·, Dhψ)(t, x),(2.5)

Dk
hψ(t, x) := E[Dkψ(t + h, X̂

t,x
h )], k = 0,1,2,

(2.6)
Dhψ := (D0

hψ, D1
hψ, D2

hψ)T,

and Dk is the kth order partial differential operator with respect to the space vari-
able x. The differentiation in the above scheme is to be understood in the sense of



MONTE CARLO FOR NONLINEAR PDES 1327

distributions. This algorithm is well defined whenever g has exponential growth
and F is a Lipschitz map. To see this, observe that any function with exponential
growth has weak gradient and Hessian because the Gaussian kernel is a Schwartz
function, and the exponential growth is inherited at each time step from the Lip-
schitz property of F .

At this stage, the above backward algorithm has the serious drawback of involv-
ing the gradient Dvh(ti+1, ·) and the Hessian D2vh(ti+1, ·) in order to compute
vh(ti, ·). The following result avoids this difficulty by means of an easy integration
by parts argument.

LEMMA 2.1. For every function ϕ :QT → R with exponential growth, we
have

Dhϕ(ti, x) = E[ϕ(ti+1, X̂
ti ,x
h )Hh(ti, x)],

where Hh = (Hh
0 ,Hh

1 ,Hh
2 )T and

Hh
0 = 1, Hh

1 = (σT)−1 Wh

h
, Hh

2 = (σT)−1 WhW
T
h − hId

h2 σ−1.(2.7)

PROOF. The main ingredient of the proof is the following, simple, observa-
tion. Let G be a one-dimensional Gaussian random variable with unit variance.
For any function f : R −→ R with exponential growth, we then have

E[f (G)Hk(G)] = E[f (k)(G)],(2.8)

where f (k) is the kth order derivative of f in the sense of distributions, and Hk is
the one-dimensional Hermite polynomial of degree k.

1. Now, let ϕ : Rd −→ R be a function with exponential growth. By direct
conditioning, it then follows from (2.8) that

E[ϕ(X̂
t,x
h )Wi

h] = h

d∑
j=1

E

[
∂ϕ

∂xj

(X̂
t,x
h )σji(t, x)

]
,

and therefore

E[ϕ(X̂
t,x
h )Hh

1 (t, x)] = σ(t, x)T
E[∇ϕ(X̂

t,x
h )].

2. For i = j , it follows from (2.8) that

E[ϕ(X̂
t,x
h )Wi

hW
j
h ] = h

d∑
k=1

E

[
∂ϕ

∂xk

(X̂
t,x
h )W

j
h σki(t, x)

]

= h2
d∑

k,l=1

E

[
∂2ϕ

∂xk ∂xl

(X̂
t,x
h )σlj (t, x)σki(t, x)

]
,
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and for j = i,

E
[
ϕ(X̂

t,x
h )

(
(Wi

h)
2 − h

)]= h2
d∑

k,l=1

E

[
∂2ϕ

∂xk ∂xl

(X̂
t,x
h )σli(t, x)σki(t, x)

]
.

This gives

E[ϕ(X̂
t,x
h )Hh

2 (t, x)] = σ(t, x)T
E[∇2ϕ(X̂

t,x
h )σ (t, x)].

In view of Lemma 2.1, the iteration which computes vh(ti, ·) from vh(ti+1, ·)
in (2.4)–(2.5) does not involve the gradient and the Hessian of the latter function.

�

REMARK 2.2. Clearly, different choices are involved in the integration by
parts in Lemma 2.1. One such possibility leads to the representation of Dh

2ϕ as

Dh
2ϕ(t, x) = E

[
ϕ(X̂

t,x
h )(σT)−1 Wh/2

(h/2)

WT
h/2

(h/2)
σ−1

]
.

This representation shows that the backward scheme (2.4) is very similar to the
probabilistic numerical algorithm suggested in [12].

Observe that the choice of the drift and diffusion coefficients μ and σ in
the nonlinear PDE (2.1) is arbitrary. Thus far, they have been used only in
order to define the underlying diffusion X, but our convergence result will
place some restrictions on the choice of the diffusion coefficient; see Re-
mark 3.4.

Once the linear operator LX is chosen in the nonlinear PDE, the above algo-
rithm handles the remaining nonlinearity by means of classical finite difference
approximation. This connection with finite differences is motivated by the follow-
ing formal interpretation of Lemma 2.1, where, for ease of presentation, we set
d = 1, μ ≡ 0 and σ(x) ≡ 1:

• Consider the binomial random walk approximation of the Brownian motion
Ŵtk := ∑k

j=1 wj , tk := kh, k ≥ 1, where {wj , j ≥ 1} are independent random

variables distributed as 1
2(δ√

h + δ−√
h). This then induces the following approx-

imation:

D1
hψ(t, x) := E[ψ(t + h,X

t,x
h )Hh

1 ] ≈ ψ(t, x + √
h) − ψ(t, x − √

h)

2
√

h
,

which is the centered finite difference approximation of the gradient.
• Similarly, consider the trinomial random walk approximation Ŵtk :=∑k

j=1 wj ,
tk := kh, k ≥ 1, where {wj , j ≥ 1} are independent random variables distributed
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as 1
6(δ{√3h} + 4δ{0} + δ{−√

3h}) so that E[wn
j ] = E[Wn

h ] for all integers n ≤ 4.
This then induces the following approximation:

D2
hψ(t, x) := E[ψ(t + h,X

t,x
h )Hh

2 ]

≈ ψ(t, x + √
3h) − 2ψ(t, x) + ψ(t, x − √

3h)

3h
,

which is the centered finite difference approximation of the Hessian.

In view of the above interpretation, the numerical scheme studied in this paper
can be viewed as a mixed Monte Carlo/finite difference algorithm. The Monte
Carlo component of the scheme consists of the choice of an underlying diffusion
process X. The finite difference component of the scheme consists of the approxi-
mation of the remaining nonlinearity by means of the integration by parts formula
of Lemma 2.1.

3. Asymptotics of the discrete-time approximation.

3.1. Main results. Our first main convergence results follow the general
methodology of Barles and Souganidis [6] and require that the nonlinear PDE (2.1)
satisfies a comparison result in the sense of viscosity solutions.

We recall that an upper semicontinuous (resp., lower semicontinuous) function
v (resp., v) on [0, T ] × R

d is called a viscosity subsolution (resp., supersolution)
of (2.1) if, for any (t, x) ∈ [0, T ) × R

d and any smooth function ϕ satisfying

0 = (v − ϕ)(t, x) = max
[0,T ]×Rd

(v − ϕ)

(
resp., 0 = (v − ϕ)(t, x) = min

[0,T ]×Rd
(v − ψ)

)
,

we have

−LXϕ − F(t, x, Dϕ(t, x)) ≤ (resp.,≥) 0.

DEFINITION 3.1. We say that (2.1) has comparison for bounded functions
if, for any bounded upper semicontinuous subsolution v and any bounded lower
semicontinuous supersolution v on [0, T ) × R

d satisfying

v(T , ·) ≤ v(T , ·),
we have v ≤ v.

REMARK 3.2. Barles and Souganidis [6] use a stronger notion of comparison
by accounting for the final condition, thus allowing for a possible boundary layer.
In their context, a supersolution v and a subsolution v satisfy

min{−LXv(T , x) − F(T ,x, Dv(T , x)), v(T , x) − g(x)} ≤ 0,(3.1)

max{−LXv(T , x) − F(T ,x, Dv(T , x)), v(T , x) − g(x)} ≥ 0.(3.2)
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We observe that, by the nature of our equation, (3.1) and (3.2) imply that the sub-
solution v ≤ g and the supersolution v ≥ g, that is, the final condition holds in the
usual sense, and no boundary layer can occur. To see this we suppose without loss
of generality that F(t, x, r,p, γ ) is decreasing with respect to r (see Remark 3.13).
Let ϕ be a function satisfying

0 = (v − ϕ)(T , x) = max
[0,T ]×Rd

(v − ϕ)

and define ϕK(t, ·) = ϕ(t, ·) + K(T − t) for K > 0. Then, v − ϕK also has a
maximum at (T , x), and the subsolution property (3.1) implies that

min{−LXϕ(T , x) − F(T ,x, Dϕ(T , x)) + K,v(T , x) − g(x)} ≤ 0.

For a sufficiently large K , this provides the required inequality v(T , x)−g(x) ≤ 0.
A similar argument shows that (3.1) implies that v − g ≥ 0.

In the sequel, we denote by Fr , Fp and Fγ the partial gradients of F with
respect to r , p and γ , respectively. We also denote by F−

γ the pseudoinverse of
the nonnegative symmetric matrix Fγ . We recall that any Lipschitz function is
differentiable a.e.

ASSUMPTION F. (i) The nonlinearity F is Lipschitz continuous with respect
to (x, r,p, γ ) uniformly in t , and |F(·, ·,0,0,0)|∞ < ∞;

(ii) F is elliptic and dominated by the diffusion of the linear operator LX , that
is,

∇γ F ≤ a on R
d × R × R

d × Sd;(3.3)

(iii) Fp ∈ Image(Fγ ) and |F T
p F−

γ Fp|∞ < +∞.

REMARK 3.3. Assumption F(iii) is equivalent to

|m−
F |∞ < ∞, where mF := min

w∈Rd
{Fp · w + wTFγ w}.(3.4)

This is immediately seen by recalling that, by the symmetric feature of Fγ , any
w ∈ R

d has an orthogonal decomposition w = w1 + w2 ∈ Ker(Fγ ) ⊕ Image(Fγ ),

and, by the nonnegativity of Fγ ,

Fp · w + wTFγ w = Fp · w1 + Fp · w2 + wT
2 Fγ w2

= −1
4F T

p F−
γ Fp + Fp · w1 + ∣∣1

2(F−
γ )1/2 · Fp − F 1/2

γ w2
∣∣2.

REMARK 3.4. Condition (3.3) places some restrictions on the choice of the
linear operator LX in the nonlinear PDE (2.1). First, F is required to be uniformly
elliptic, implying an upper bound on the choice of the diffusion matrix σ . Since
σσ T ∈ S +

d , this implies, in particular, that our main results do not apply to general
degenerate nonlinear parabolic PDEs. Second, the diffusion of the linear opera-
tor σ is required to dominate the nonlinearity F which implicitly places a lower
bound on the choice of the diffusion σ .
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EXAMPLE 3.5. Let us consider the nonlinear PDE in the one-dimensional
case − ∂v

∂t
− 1

2(a2v+
xx − b2v−

xx), where 0 < b < a are given constants. If we then
restrict the choice of the diffusion to be constant, it follows from Assumption F
that 1

3a2 ≤ σ 2 ≤ b2, which implies that a2 ≤ 3b2. If the parameters a and b do not
satisfy the latter condition, then the diffusion σ has to be chosen to be state- and
time-dependent.

THEOREM 3.6 (Convergence). Let Assumption F hold true, |μ|1, |σ |1 < ∞
and σ be invertible. Also, assume that the fully nonlinear PDE (2.1) has compar-
ison for bounded functions. For every bounded Lipschitz function g, there then
exists a bounded function v such that

vh −→ v locally uniformly.

In addition, v is the unique bounded viscosity solution of problem (2.1)–(2.2).

REMARK 3.7. Under the boundedness condition on the coefficients μ and σ ,
the restriction to a bounded terminal data g in the above Theorem 3.6 can be re-
laxed by an immediate change of variable. Let g be a function with α-exponential
growth for some α > 0. Fix some M > 0, and let ρ be an arbitrary smooth positive
function with

ρ(x) = eα|x| for |x| ≥ M

so that both ρ(x)−1∇ρ(x) and ρ(x)−1∇2ρ(x) are bounded. Let

u(t, x) := ρ(x)−1v(t, x) for (t, x) ∈ [0, T ] × R
d .

The nonlinear PDE problem (2.1)–(2.2) satisfied by v then becomes the following
nonlinear PDE for u:

−LXu − F̃ (·, u,Du,D2u) = 0 on [0, T ) × R
d,

(3.5)
v(T , ·) = g̃ := ρ−1g on R

d,

where

F̃ (t, x, r,p, γ ) := rμ(x) · ρ−1∇ρ + 1
2Tr[a(x)(rρ−1∇2ρ + 2pρ−1∇ρT)]

+ ρ−1F(t, x, rρ, r∇ρ + pρ, r∇2ρ + 2p∇ρT + ργ ).

Recall that the coefficients μ and σ are assumed to be bounded. It is then easy to
see that F̃ satisfies the same conditions as F . Since g̃ is bounded, the convergence
Theorem 3.6 applies to the nonlinear PDE (3.5).

REMARK 3.8. Theorem 3.6 states that inequality (3.3) (i.e., diffusion must
dominate the nonlinearity in γ ) is sufficient for the convergence of the Monte
Carlo/finite difference scheme. We do not know whether this condition is neces-
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sary:

• Section 3.4 suggests that this condition is not sharp in the simple linear case;
• however, our numerical experiments in Section 5 reveal that the method may

have poor performance in the absence of this condition; see Figure 5 below.

We next provide bounds on the rate of convergence of the Monte Carlo/finite dif-
ference scheme in the context of nonlinear PDEs of the Hamilton–Jacobi–Bellman
type in the same context as [5]. The following assumptions are stronger than As-
sumption F and imply that the nonlinear PDE (2.1) satisfies a comparison result
for bounded functions.

ASSUMPTION HJB. The nonlinearity F satisfies Assumption F(ii)–(iii) and is
of the Hamilton–Jacobi–Bellman type:

1

2
a · γ + b · p + F(t, x, r,p, γ ) = inf

α∈A
{Lα(t, x, r,p, γ )},

Lα(t, x, r,p, γ ) := 1
2 Tr[σασαT(t, x)γ ] + bα(t, x)p + cα(t, x)r + f α(t, x),

where the functions μ, σ , σα , bα , cα and f α satisfy

|μ|∞ + |σ |∞ + sup
α∈A

(|σα|1 + |bα|1 + |cα|1 + |f α|1) < ∞.

ASSUMPTION HJB+. The nonlinearity F satisfies HJB and for any δ > 0,
there exists a finite set {αi}Mδ

i=1 such that for any α ∈ A,

inf
1≤i≤Mδ

|σα − σαi |∞ + |bα − bαi |∞ + |cα − cαi |∞ + |f α − f αi |∞ ≤ δ.

REMARK 3.9. The Assumption HJB+ is satisfied if A is a separable topolog-
ical space and σα(·), bα(·), cα(·) and f α(·) are continuous maps from A to C

1/2,1
b ,

the space of bounded maps which are Lipschitz in x and 1
2 -Hölder in t .

THEOREM 3.10 (Rate of convergence). Assume that the final condition g is
bounded and Lipschitz continuous. There then exists a constant C > 0 such that:

(i) under Assumption HJB, we have v − vh ≤ Ch1/4;
(ii) under the stronger condition HJB+, we have −Ch1/10 ≤ v − vh ≤ Ch1/4.

The above bounds can be improved for some specific examples. See Section 3.4
for the linear case where the rate of convergence is improved to

√
h.

We also observe that in the PDE and finite difference literature, the rate of con-
vergence is usually stated in terms of the discretization in the space variable |�x|.
In our context of stochastic differential equations, notice that |�x| is of the order
of h1/2. Therefore, the above upper and lower bounds on the rate of convergence
correspond to those for the classical rate, |�x|1/2 and |�x|1/5, respectively.
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3.2. Proof of the convergence result. We now provide the proof of Theo-
rem 3.6 by building on Theorem 2.1 and Remark 2.1 of Barles and Souganidis [6],
which requires the scheme to be consistent, monotone and stable. Moreover, since
we are assuming (weak) comparison for the equation, we also need to prove that
our scheme produces a limit which satisfies the terminal condition in the usual
sense; see Remark 3.2.

Throughout this section, all the conditions of Theorem 3.6 are in force.

LEMMA 3.11. Let ϕ be a smooth function with bounded derivatives. Then, for
all (t, x) ∈ [0, T ] × R

d ,

lim
(t ′,x′)→(t,x)

(h,c)→(0,0)

t ′+h≤T

[c + ϕ](t ′, x′) − Th[c + ϕ](t ′, x′)
h

= −(
LXϕ + F(·, ϕ,Dϕ,D2ϕ)

)
(t, x).

The proof is a straightforward application of Itô’s formula, and is thus omitted.

LEMMA 3.12. Let ϕ,ψ : [0, T ]× R
d −→ R be two Lipschitz functions. Then,

for some C > 0,

ϕ ≤ ψ �⇒ Th[ϕ](t, x) ≤ Th[ψ](t, x) + ChE[(ψ − ϕ)(t + h, X̂
t,x
h )],

where C depends only on the constant K in (3.4).

PROOF. By Lemma 2.1, the operator Th can be written as

Th[ψ](t, x) = E[ψ(X̂
t,x
h )] + hF(t, x,E[ψ(X̂

t,x
h )Hh(t, x)]).

Let f := ψ − ϕ ≥ 0, where ϕ and ψ are as in the statement of the lemma. Let
Fτ denote the partial gradient with respect to τ = (r,p, γ ). By the mean value
theorem,

Th[ψ](t, x) − Th[ϕ](t, x) = E[f (X̂
t,x
h )] + hFτ (θ) · Dhf (X̂

t,x
h )

= E
[
f (X̂

t,x
h )

(
1 + hFτ (θ) · Hh(t, x)

)]
for some θ = (t, x, r̄, p̄, γ̄ ). By the definition of Hh(t, x),

Th[ψ] − Th[ϕ] = E
[
f (X̂

t,x
h )

(
1 + hFr + Fp.(σT)−1Wh

+ h−1Fγ · (σT)−1(WhW
T
h − hI)σ−1)],

where the dependence on θ and x has been omitted for the sake of notational
simplicity. Since Fγ ≤ a by (3.4) of Assumption F, we have 1 − a−1 ·Fγ ≥ 0, and
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therefore

Th[ψ] − Th[ϕ]
≥ E

[
f (X̂

t,x
h )

(
hFr + Fp · (σT)−1Wh + h−1Fγ · (σT)−1WhW

T
h σ−1)]

= E

[
f (X̂

t,x
h )

(
hFr + hFp · (σT)−1 Wh

h
+ hFγ · (σT)−1 WhW

T
h

h2 σ−1
)]

.

Let m−
F := max{−mF ,0}, where the function mF is defined in (3.4). Under As-

sumption F, we have K := |m−
F |∞ < ∞, so

Fp.σT−1 Wh

h
+ hFγ · σT−1 WhW

T
h

h2 σ−1 ≥ −K.

We can write

Th[ψ] − Th[ϕ] ≥ E[f (X̂
t,x
h )(hFr − hK)] ≥ −C′hE[f (X̂

t,x
h )]

for some constant C > 0, where the last inequality follows from (3.4). �

The following observation will be used in the proof of Theorem 3.10 below.

REMARK 3.13. The monotonicity result of the previous Lemma 3.12 is
slightly different from that required in [6]. However, as observed in Remark 2.1
in [6], their convergence theorem holds under this approximate monotonicity.
From the previous proof, we observe that if the function F satisfies the condition

Fr − 1
4F T

p F−
γ Fp ≥ 0,(3.6)

then the standard monotonicity condition

ϕ ≤ ψ �⇒ Th[ϕ](t, x) ≤ Th[ψ](t, x)(3.7)

holds. Using the parabolic feature of the equation, we may introduce a new func-
tion u(t, x) := eθ(T −t)v(t, x) which solves a nonlinear PDE satisfying (3.6). In-
deed, direct calculation shows that the PDE inherited by u is

−LXu − F(·, u,Du,D2u) = 0 on [0, T ) × R
d,(3.8)

u(T , x) = g(x) on R
d,(3.9)

where F(t, x, r,p, γ ) = eθ(T −t)F (t, x, e−θ(T −t)r, e−θ(T −t)p, e−θ(T −t)γ ) + θr . It
is then easily seen that F satisfies the same conditions as F, together with (3.6),
for sufficiently large θ .

LEMMA 3.14. Let ϕ,ψ : [0, T ] × R
d −→ R be two L

∞-bounded functions.
There then exists a constant C > 0 such that

|Th[ϕ] − Th[ψ]|∞ ≤ |ϕ − ψ |∞(1 + Ch).

In particular, if g is L
∞-bounded, then the family (vh)h defined in (2.4) is L

∞-
bounded, uniformly in h.
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PROOF. Let f := ϕ − ψ . Then, arguing as in the previous proof,

Th[ϕ] − Th[ψ] = E

[
f (X̂h)

(
1 − a−1 · Fγ + h|Ah|2 + hFr − h

4
F T

p F−
γ Fp

)]
,

where

Ah = 1

2
(F−

γ )1/2Fp − F 1/2
γ σT−1 Wh

h
.

Since 1 − Tr[a−1Fγ ] ≥ 0, |Fr |∞ < ∞ and |F T
p F−

γ Fp|∞ < ∞ by Assumption F, it
follows that

|Th[ϕ] − Th[ψ]|∞ ≤ |f |∞(1 − a−1 · Fγ + hE[|Ah|2] + Ch).

However, E[|Ah|2] = h
4 F T

p F−
γ Fp + a−1 · Fγ . Therefore, by Assumption F,

|Th[ϕ] − Th[ψ]|∞ ≤ |f |∞
(

1 + h

4
F T

p F−
γ Fp + Ch

)
≤ |f |∞(1 + C̄h).

To prove that the family (vh)h is bounded, we proceed by backward induction.
By the assumption of the lemma, vh(T , ·) = g is L

∞-bounded. We next fix some
i < n and assume that |vh(tj , ·)|∞ ≤ Cj for every i + 1 ≤ j ≤ n − 1. Proceeding
as in the proof of Lemma 3.12 with ϕ ≡ vh(ti+1, ·) and ψ ≡ 0, we see that

|vh(ti, ·)|∞ ≤ h|F(t, x,0,0,0)| + Ci+1(1 + Ch).

Since F(t, x,0,0,0) is bounded by Assumption F, it follows from the discrete
Gronwall inequality that |vh(ti, ·)|∞ ≤ CeCT for some constant C independent
of h. �

REMARK 3.15. The approximate function vh defined by (2.4) is only defined
on {ih|i = 0, . . . ,N} × R

d . Our methodology requires that it be extended to any
t ∈ [0, T ]. This can be achieved by any interpolation, as long as the regularity
property of vh mentioned in Lemma 3.16 below is preserved. For instance, we
may simply use linear interpolation.

LEMMA 3.16. The function vh is Lipschitz in x, uniformly in h.

PROOF. We report the following calculation in the one-dimensional case d =
1 in order to simplify the presentation.

1. For fixed t ∈ [0, T −h], we argue as in the proof of Lemma 3.12 to see that
for x, x′ ∈ R

d with x > x′,

vh(t, x) − vh(t, x′) = A + hB,(3.10)
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where, defining δ(k) := Dkvh(t + h, X̂
t,x
h ) − Dkvh(t + h, X̂

t,x′
h ) for k = 0,1,2,

A := E
[
δ(0)]+ h

(
F
(
t, x′, Dvh(t + h, X̂

t,x
h )

)− F
(
t, x′, Dvh(t + h, X̂

t,x′
h )

))
= E

[
(1 + hFr)δ

(0) + hFpδ(1) + hFγ δ(2)],
|B| := ∣∣F (t, x, Dvh(t + h, X̂

t,x
h )

)− F
(
t, x′, Dvh(t + h, X̂

t,x
h )

)∣∣≤ |Fx |∞|x − x′|,
by Assumption F(i). By Lemma 2.1, we write, for k = 1,2,

E
[
δ(k)]= E

[
δ(0)Hh

k (t, x) + vh(t + h, X̂
t,x′
h )

(
Hh

k (t, x) − Hh
k (t, x′)

)]
= E

[
δ(0)Hh

k (t, x)

+ Dvh(t + h, X̂
t,x′
h )

(
Wh

h

)k−1(
σ(t, x)−k − σ(t, x′)−k)σ(t, x′)

]
.

Dividing both sides of (3.10) by x − x′ and taking limsup, it then follows from the
above equalities that

lim sup
|x−x′|↘0

|vh(t, x) − vh(t, x′)|
(x − x′)

≤ E

[∣∣∣∣ lim sup
|x−x′|↘0

vh(t + h, X̂
t,x
h ) − vh(t + h, X̂

t,x′
h )

(x − x′)

×
(

1 + hFr + Fp

Wh

σ(t, x)
+ Fγ

W 2
h − h

σ(t, x)2h

)

+ Dvh(t + h, X̂
t,x
h )

×
(
WhFγ

−2σx(t, x)

σ (t, x)2 + hFp

σx(t, x)

σ (t, x)

)∣∣∣∣
]

+ Ch.

2. Assume vh(t + h, ·) is Lipschitz with constant Lt+h. Then,

lim sup
|x−x′|↘0

|vh(t, x) − vh(t, x′)|
(x − x′)

≤ Lt+hE

[∣∣∣∣(1 + μx(t, x)h + σx(t, x)
√

hN
)

×
(

1 + hFr + Fp

√
hN

σ(t, x)
+ Fγ N2

σ(t, x)2 − Fγ

σ(t, x)2

)

+ √
hNFγ

−2σx(t, x)

σ (t, x)2 + hFp

σx(t, x)

σ (t, x)

∣∣∣∣
]

+ Ch.
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Observe that

Fp

σx

σ
= σx

Fp√
Fγ

√
Fγ

σ
1{Fγ =0}.

Since all terms on the right-hand side are bounded, under our assumptions, it fol-
lows that |Fp

σx

σ
|∞ < ∞ (we emphasize that the geometric structure imposed in

Assumption F(iii) provides this result in any dimension). Then,

lim sup
|x−x′|↘0

|vh(t, x) − vh(t, x′)|
(x − x′)

≤ Lt+h

(
E

[∣∣∣∣(1 + μx(t, x)h + σx(t, x)
√

hN
)

×
(

1 + Fp

√
hN

σ(t, x)
+ Fγ N2

σ(t, x)2 − Fγ

σ(t, x)2

)

+ √
hNFγ

−2σx(t, x)

σ (t, x)2

∣∣∣∣
]

+ Ch

)
+ Ch.

3. Let P̃ be the probability measure equivalent to P defined by the density

Z := 1 − α + αN2, where α = Fγ

σ(t, x)2 .

Then,

lim sup
|x−x′|↘0

|vh(t, x) − vh(t, x′)|
(x − x′)

≤ Lt+h

(
E

P̃

[∣∣∣∣(1 + μx(t, x)h + σx(t, x)
√

hN
)

×
(

1 + Z−1Fp

√
hN

σ(t, x)

)

+ Z−1
√

hNFγ

−2σx(t, x)

σ (t, x)2

∣∣∣∣
]

+ Ch

)
+ Ch.

By the Cauchy–Schwarz inequality, we have

lim sup
|x−x′|↘0

|vh(t, x) − vh(t, x′)|
x − x′

≤ Lt+h

(
E

P̃

[∣∣∣∣(1 + μx(t, x)h + σx(t, x)
√

hN
)

×
(

1 + Z−1Fp

√
hN

σ(t, x)

)

+ Z−1
√

hNFγ

−2σx(t, x)

σ (t, x)2

∣∣∣∣
2]1/2

+ Ch

)
+ Ch.
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By reexpressing the expectation in terms of probability P, we have

lim sup
|x−x′|↘0

|vh(t, x) − vh(t, x′)|
x − x′

≤ Lt+h

(
E

[
Z

∣∣∣∣(1 + μx(t, x)h + σx(t, x)
√

hN
)

×
(

1 + Z−1Fp

√
hN

σ(t, x)

)

+ Z−1
√

hNFγ

−2σx(t, x)

σ (t, x)2

∣∣∣∣
2]1/2

+ Ch

)
+ Ch.

By expanding the quadratic term inside the expectation, we observe that the ex-
pectation of all the terms having

√
h is zero. Therefore,

lim sup
|x−x′|↘0

|vh(t, x) − vh(t, x′)|
(x − x′)

≤ Lt+h

(
E

P̃

[∣∣∣∣(1 + μx(t, x)h + σx(t, x)
√

hN
)

×
(

1 + Z−1Fp

√
hN

σ(t, x)

)

+ Z−1
√

hNFγ

−2σx(t, x)

σ (t, x)2

∣∣∣∣
2]1/2

+ Ch

)
+ Ch

≤ Lt+h

(
(1 + C′h)1/2 + Ch

)+ Ch,

which leads to

lim sup
|x−x′|↘0

|vh(t, x) − vh(t, x′)|
(x − x′)

≤ CeC′T/2

for some constants C,C′ > 0. �

Finally, we prove that the terminal condition is preserved by our scheme as the
time step shrinks to zero.

LEMMA 3.17. For each x ∈ R
d and tk = kh with k = 1, . . . , n, we have

|vh(tk, x) − g(x)| ≤ C(T − tk)
1/2.

PROOF. 1. By the same argument as in the proof of Lemma 3.14, we have,
for j ≥ i,

vh(tj , X̂
ti ,x
tj

) = Etj [vh(tj+1, X̂
ti ,x
tj+1

)(1 − αj + αjN
2
j )]

+ h
(
F

j
0 + Fj

r Etj [vh(tj+1, X̂
ti ,x
tj+1

)] + Fj
p · Etj [Dvh(tj+1, X̂

ti ,x
tj+1

)]),
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where F
j
0 := F(tj , X̂

ti ,x
tj

,0,0,0), αj , F
j
r , F

j
p are Ftj -adapted random variables

defined as in the proof of Lemma 3.14 at tj , and Nj = Wtj+1−Wtj√
h

has a standard
Gaussian distribution. Combining the above formula for j from i to n − 1, we see
that

vh(ti, x)E[g(X̂
ti ,x
T )Pi,n]

= +hE

n−1∑
j=i

F
j
0 + Fj

r Etj [vh(tj+1, X̂
ti ,x
tj+1

)] + Fj
p · Etj [Dvh(tj+1, X̂

ti ,x
tj+1

)],

where Pi,k := ∏k−1
j=i (1 − αj + αjN

2
j ) > 0 a.s. for all 1 ≤ i < k ≤ n and Pi,i = 1.

Obviously, {Pi,k, i ≤ k ≤ n} is a martingale for all i ≤ n, a property which will
be used later. Since |F(·, ·,0,0,0)|∞ < +∞, and using Assumption F and Lem-
mas 3.16 and 3.14, we have

|vh(ti, x) − g(x)| ≤ ∣∣E[(g(X̂
ti ,x
T ) − g(x)

)
Pi,n

]∣∣+ C(T − ti).(3.11)

2. Let {gε}ε be the family of smooth functions obtained from g by convolu-
tion with a family of mollifiers {ρε}, that is, gε = g ∗ ρε . Note that we have

|gε − g|∞ ≤ Cε, |Dgε|∞ ≤ |Dg|∞ and |D2gε|∞ ≤ ε−1|Dg|∞.(3.12)

Then, ∣∣E[(g(X̂
ti ,x
T ) − g(x)

)
Pi,n

]∣∣
≤ E[|g(X̂

ti ,x
T ) − gε(X̂

ti ,x
T )Pi,n|]

+ ∣∣E[(gε(X̂
ti ,x
T ) − gε(x)

)
Pi,n

]∣∣+ |gε − g|∞
(3.13)

≤ Cε + ∣∣E[(gε(X̂
ti ,x
T ) − gε(x)

)
Pi,n

]∣∣
≤ Cε +

∣∣∣∣E
[
Pi,n

∫ T

ti

(
Dgεb̂ + 1

2
Tr[D2gεâ]

)
(s, X̂ti ,x

s ) ds

]∣∣∣∣
+
∣∣∣∣E
[
Pi,n

∫ T

ti

Dgε(X̂
ti ,x
s )σ̂ (s) dWs

]∣∣∣∣,
where b̂(s) = b(tj , X̂

ti ,x
tj

) and σ̂ (s) = σ(tj , X̂
ti ,x
tj

) for tj ≤ s < tj+1, and â = σ̂ T σ̂ .
We next estimate each term separately.

2a. First, since {Pi,k, i ≤ k ≤ n} is a martingale,∣∣∣∣E
[
Pi,n

∫ T

ti

Dgε(X̂
ti ,x
s )σ̂ (s) dWs

]∣∣∣∣
=
∣∣∣∣∣
n−1∑
j=i

E

[
Pi,n

∫ tj+1

tj

Dgε(X̂
ti ,x
s )σ̂ (s) dWs

]∣∣∣∣∣
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≤
n−1∑
j=i

∣∣∣∣E
[
Pi,j+1

∫ tj+1

tj

Dgε(X̂
ti ,x
s )σ̂ (s) dWs

]∣∣∣∣

=
n−1∑
j=i

∣∣∣∣E
[
Pi,j σ̂ (tj )Etj

[
Pj,j+1

∫ tj+1

tj

Dgε(X̂
ti ,x
s ) dWs

]]∣∣∣∣.
Notice that

Etj

[
Pj,j+1

∫ tj+1

tj

Dgε(X̂
ti ,x
s ) dWs

]
= Etj

[
(Wtj+1 − Wtj )

2
∫ tj+1

tj

Dgε(X̂
ti ,x
s ) dWs

]

= Etj

[∫ tj+1

tj

2WsDgε(X̂
ti ,x
s ) ds

]
.

Using Lemma 2.1 and (3.12), this gives∣∣∣∣E
[
Pi,n

∫ T

ti

Dgε(X̂
ti ,x
s )σ̂ (s) dWs

]∣∣∣∣
≤ 2

n−1∑
j=i

∣∣∣∣E
[
Pi,j+1σ̂ (tj )

2 αj

h
Etj

[∫ tj+1

tj

sD2gε(X̂
ti ,x
s ) ds

]]∣∣∣∣

≤ Cε−1
n−1∑
j=i

h ≤ C′(T − ti)ε
−1.(3.14)

2b. By (3.12) and the boundedness of b and σ , we also estimate that∣∣Dgε(X̂
ti ,x
s )b̂(s, X̂ti ,x

s ) + 1
2 Tr[D2gε(X̂

ti ,x
s )â(s, X̂ti ,x

s )]∣∣≤ C + Cε−1.(3.15)

2c. Plugging (3.14) and (3.15) into (3.13), we obtain∣∣E[(gε(X̂
ti ,x
T ) − gε(x)

)
Pi,n

]∣∣≤ C(T − ti) + C(T − ti)ε
−1,

which, by (3.11), provides

|vh(ti, x) − g(x)| ≤ Cε + C(T − ti)ε
−1 + C(T − ti).

The required result follows from the choice ε = √
T − ti . �

COROLLARY 3.18. The function vh is 1/2-Hölder continuous on t uniformly
on h.

PROOF. The proof of 1
2 -Hölder continuity with respect to t could easily be

provided by replacing g and vh(tk, ·) in the assertion of Lemma 3.17 by vh(t, ·)
and vh(t ′, ·), respectively, and considering the scheme from 0 to time t ′ with time
step equal to h. Therefore, we can write

|vh(t, x) − vh(t ′, x)| ≤ C(t ′ − t)1/2,

where C can be chosen independently of t ′ for t ′ ≤ T . �
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3.3. Derivation of the rate of convergence. The proof of Theorem 3.10 is
based on Barles and Jakobsen [5], which uses switching systems approximation
and the Krylov method of shaking coefficients [21].

3.3.1. Comparison result for the scheme. Because F does not satisfy the stan-
dard monotonicity condition (3.7) of Barles and Souganidis [6], we need to intro-
duce the nonlinearity F of Remark 3.13 so that F satisfies (3.6). Let uh be the
family of functions defined by

uh(T , ·) = g and uh(ti, x) = Th[uh](ti, x),(3.16)

where, for a function ψ from [0, T ] × R
d to R with exponential growth,

Th[ψ](t, x) := E[ψ(t + h, X̂
t,x
h )] + hF(·, Dhψ)(t, x),

and set

vh(ti, x) := e−θ(T −ti )uh(ti, x), i = 0, . . . , n.(3.17)

The following result shows that the difference vh − vh is of higher order and thus
reduces the error estimate problem to the analysis of the difference vh − v.

LEMMA 3.19. Under Assumption F, we have

lim sup
h↘0

h−1|(vh − vh)(t, ·)|∞ < ∞.

PROOF. By the definition of F , we directly calculate that

vh(t, x) = e−θh(1 + hθ)E[vh(t + h, X̂
t,x
h )] + hF

(
t + h,x, Dhv

h(t, x)
)
.

Since 1 + hθ = eθh + O(h2), this shows that vh(t, x) = Th[vh](t, x) + O(h2). By
Lemma 3.14, we conclude that

|(vh − vh)(t, ·)|∞ ≤ (1 + Ch)|(vh − vh)(t + h, ·)|∞ + O(h2),

which shows, by the Gronwall inequality, that |(vh − vh)(t, ·)|∞ ≤ O(h) for all
t ≤ T − h. �

By Remark 3.13, the operator Th satisfies the standard monotonicity condi-
tion (3.7):

ϕ ≤ ψ �⇒ Th[ϕ] ≤ Th[ψ].(3.18)

The key ingredient for the derivation of the error estimate is the following compar-
ison result for the scheme.
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PROPOSITION 3.20. Let Assumption F hold true and set β := |Fr |∞. Con-
sider two arbitrary bounded functions ϕ and ψ satisfying

h−1(ϕ − Th[ϕ]) ≤ g1 and h−1(ψ − Th[ψ]) ≥ g2(3.19)

for some bounded functions g1 and g2. Then, for every i = 0, . . . , n,

(ϕ − ψ)(ti, x) ≤ eβ(T −ti )|(ϕ − ψ)+(T , ·)|∞
(3.20)

+ (T − h)eβ(T −ti )|(g1 − g2)
+|∞.

To prove this comparison result, we need the following strengthening of the
monotonicity condition.

LEMMA 3.21. Let Assumption F hold true and let β := |Fr |∞. Then, for every
a, b ∈ R+ and all bounded functions ϕ ≤ ψ , the function δ(t) := eβ(T −t)(a +
b(T − t)) satisfies

Th[ϕ + δ](t, x) ≤ Th[ψ](t, x) + δ(t) − hb, t ≤ T − h, x ∈ R
d .

PROOF. Because δ does not depend on x, we have Dh[ϕ + δ] = Dhϕ + δ(t +
h)e1, where e1 := (1,0,0). It then follows from the regularity of F that there exists
some ξ such that

F
(
t + h,x, Dh[ϕ + δ](t, x)

)= F
(
t + h,x, Dhϕ(t, x)

)
+ δ(t + h)F r

(
t + h,x, ξe1 + Dhϕ(t, x)

)
and

Th[ϕ + δ](t, x) = δ(t + h) + E[ϕ(t + h, X̂
t,x
h )] + hF

(
t + h,x, Dhϕ(t, x)

)
+ hδ(t + h)F r

(
t + h,x, ξe1 + Dhϕ(t, x)

)
= Th[ϕ](t, x) + δ(t + h)

{
1 + hF r

(
t + h,x, ξe1 + Dhϕ(t, x)

)}
≤ Th[ϕ](t, x) + (1 + βh)δ(t + h).

Since Th satisfies the standard monotonicity condition (3.18), this gives

Th[ϕ + δ](t, x) ≤ Th[ψ](t, x) + δ(t) + ζ(t),

where ζ(t) := (1 + βh)δ(t + h) − δ(t).

It remains to prove that ζ(t) ≤ −hb. From the smoothness of δ, we have δ(t +
h) − δ(t) = hδ′(t̄) for some t̄ ∈ [t, t + h). Then, since δ is decreasing in t , we see
that

h−1ζ(t) = δ′(t̄) + βδ(t + h) ≤ δ′(t̄) + βδ(t̄) ≤ −beβ(T −t̄ ),

and the required estimate follows from the restriction b ≥ 0. �
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PROOF OF PROPOSITION 3.20. We may directly refer to the similar result
of [5]. However, in our context, we give the following, simpler, proof. Observe
that we may assume without loss of generality that

ϕ(T , ·) ≤ ψ(T , ·) and g1 ≤ g2.(3.21)

Indeed, we can otherwise consider the function

ψ̄ := ψ + eβ(T −t)(a + b(T − t)
)
,

where a = |(ϕ − ψ)+(T , ·)|∞, b = |(g1 − g2)
+|∞

and β is the parameter defined in the previous Lemma 3.21, so that ψ̄(T , ·) ≥
ϕ(T , ·) and, by Lemma 3.21, ψ̄(t, x) − Th[ψ̄](t, x) ≥ h(g1 ∨ g2). Hence, (3.21)
holds true for ϕ and ψ̄ .

We now prove the required result by induction. First, ϕ(T , ·) ≤ ψ(T , ·),
by (3.21). We next assume that ϕ(t +h, ·) ≤ ψ(t +h, ·) for some t +h ≤ T . Since
Th satisfies the standard monotonicity condition (3.18), it follows from (3.21) that

Th[ϕ](t, x) ≤ Th[ψ](t, x).

On the other hand, under (3.21), the hypothesis of the lemma implies that

ϕ(t, x) − Th[ϕ](t, x) ≤ ψ(t, x) − Th[ψ](t, x).

Then, ϕ(t, ·) ≤ ψ(t, ·). �

3.3.2. Proof of Theorem 3.10(i). Under the conditions of Assumption HJB on
the coefficients, we may build a bounded subsolution vε of the nonlinear PDE, by
the method of shaking coefficients, which is Lipschitz in x, 1/2-Hölder continuous
in t and approximates uniformly the solution v:

v − ε ≤ vε ≤ v.

Let ρ(t, x) be a C∞ positive function supported in {(t, x) :∈ [0,1], |x| ≤ 1} with
unit mass and define

wε(t, x) := vε ∗ ρε, where ρε(t, x) := 1

εd+2 ρ

(
t

ε2 ,
x

ε

)
(3.22)

so that, from the convexity of the operator F ,

wε is a subsolution of (2.1), |wε − v| ≤ 2ε.(3.23)

Moreover, since vε is Lipschitz in x and 1/2-Hölder continuous in t ,

wε is C∞, and |∂β0
t Dβwε| ≤ Cε1−2β0−|β|1

(3.24)
for any (β0, β) ∈ N × N

d \ {0},
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where |β|1 := ∑d
i=1 βi , and C > 0 is some constant. As a consequence of the

consistency result of Lemma 3.11 above, we know that

Rh[wε](t, x) := wε(t, x) − Th[wε](t, x)

h

+ LXwε(t, x) + F(·,wε,Dwε,D2wε)(t, x)

converges to 0 as h → 0. The next key ingredient is to estimate the rate of conver-
gence of Rh[wε] to zero.

LEMMA 3.22. For a family {ϕε}0<ε<1 of smooth functions satisfying (3.24),
we have

|Rh[ϕε]|∞ ≤ R(h, ε) := Chε−3 for some constant C > 0.

The proof of this result is included at the end of this section. From the previous
estimate, together with the subsolution property of wε , we see that wε ≤ Th[wε]+
Ch2ε−3. It then follows from Proposition 3.20 that

wε − vh ≤ C|(wε − vh)(T , ·)|∞ + Chε−3 ≤ C(ε + hε−3).(3.25)

We now use (3.23) and (3.25) to conclude that

v − vh ≤ v − wε + wε − vh ≤ C(ε + hε−3).

Minimizing the right-hand side estimate over the choice of ε > 0, this implies the
upper bound on the error v − vh:

v − vh ≤ Ch1/4.(3.26)

3.3.3. Proof of Theorem 3.10(ii). The results of the previous section, together
with the reinforced Assumption HJB+, allow the switching system method of Bar-
les and Jakobsen [5] to be applied, which provides the following lower bound on
the error:

v − vh ≥ − inf
ε>0

{Cε1/3 + R(h, ε)} = −C′h1/10

for some constants C,C′ > 0. The required rate of convergence again follows from
Lemma 3.19, which states that the difference vh − vh is dominated by the above
rate of convergence.

PROOF OF LEMMA 3.22. Step 1. Notice that the evolution of the Euler ap-
proximation X̂

t,x
h between t and t + h is driven by a constant drift μ(t, x) and

a constant diffusion σ(t, x). Since Dϕε is bounded, it follows from Itô’s formula
that

1

h
[Eϕε(t + h, X̂x

h) − ϕε(t, x)] − LXϕε(t, x)

= 1

h
E

∫ t+h

t

(
LX̂t,x

ϕε(u, X̂x
u) − LXϕε(t, x)

)
du,
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where LX̂t,x
is the Dynkin operator associated with the Euler scheme:

LX̂t,x

ϕ(t ′, x′) = ∂tϕ(t ′, x′) + μ(t, x)Dϕ(t ′, x′) + 1
2Tr[a(t, x)D2ϕ(t ′, x′)].

Again applying Itô’s formula and using the fact that LX̂t,x
Dϕε is bounded leads to

1

h
[Eϕε(t + h, X̂x

h) − ϕε(t, x)] − LXϕε(t, x)

= 1

h
E

∫ t+h

t

∫ u

t
LX̂t,x LX̂t,x

ϕε(s, X̂
x
s ) ds du.

Using the boundedness of the coefficients μ and σ , it follows from (3.24) that for
ε ∈ (0,1),∣∣∣∣Eϕε(t + h, X̂x

h) − ϕε(t, x)

h
− LXϕε(t, x)

∣∣∣∣≤ R0(h, ε) := Chε−3.

Step 2. This implies that

|Rh[ϕε](t, x)|

≤
∣∣∣∣Eϕε(t + h, X̂

t,x
h ) − ϕε(t, x)

h
− LXϕε(t, x)

∣∣∣∣
(3.27)

+ |F(x,ϕε(t, x),Dϕε(t, x),D2ϕε(t, x)) − F(·, Dh[ϕε](t, x))|

≤ R0(h, ε) + C

2∑
k=0

|EDkϕε(t + h, X̂
t,x
h ) − Dkϕε(t, x)|,

by the Lipschitz continuity of the nonlinearity F .
By a similar calculation as in Step 1, we see that

|EDiϕε(t + h, X̂
t,x
h ) − Dϕε(t, x)| ≤ Chε−1−i , i = 0,1,2,

which, together with (3.27), provides the required result. �

3.4. The rate of convergence in the linear case. In this subsection, we special-
ize the discussion to the linear one-dimensional case

F(γ ) = cγ(3.28)

for some c > 0. The multidimensional case d > 1 can be handled similarly. Assum-
ing that g is bounded, the linear PDE (2.1)–(2.2) has a unique bounded solution

v(t, x) = E
[
g
(
x + √

1 + 2cWT −t

)]
for (t, x) ∈ [0, T ] × R

d .(3.29)

We also observe that this solution v is C∞([0, T ) × R) with

Dkv(t, x) = E
[
g(k)(x + √

1 + 2cWT −t

)]
, t < T , x ∈ R.(3.30)
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This shows, in particular, that v has bounded derivatives of any order whenever the
terminal data g is C∞ and has bounded derivatives of any order.

Of course, we can use the classical Monte Carlo estimate to produce an approx-
imation of the function v of (3.29). The objective of this section is to analyze the
error of the numerical scheme outlined in the previous sections:

vh(T , ·) = g,
(3.31)

vh(ti−1, x) = E[vh(ti, x + Wh)] + chE[vh(ti, x + Wh)H
h
2 ], i ≤ n,

where we set σ = 1 and μ = 0 for simplicity.

PROPOSITION 3.23. Consider the linear operator F of (3.28) and assume
that D(2k+1)v is bounded for every k ≥ 0. Then,

lim sup
h→0

h−1/2|vh − v|∞ < ∞.

PROOF. Since v has bounded first derivative with respect to x, it follows from
Itô’s formula that

v(t, x) = E[v(t + h,x + Wh)] + cE

[∫ h

0
�v(t + s, v + Ws)ds

]
.

Then, in view of Lemma 2.1, the error u := v − vh satisfies u(tn,Xtn) = 0 and for
i ≤ n − 1,

u(ti,Xti ) = Ei[u(ti+1,Xti+1)] + chEi[�u(ti+1,Xti+1)]
(3.32)

+ cEi

∫ h

0

[
�v(ih + s,Xih+s) − �v

(
(i + 1)h,X(i+1)h

)]
ds,

where Ei := E[·|Fti ] is the expectation operator conditional on Fti .
Step 1. Set

ak
i := E[�ku(ti,Xti )],

bk
i := E

∫ h

0
[�kv(ti−1 + s,Xti−1+s) − �kv(ti,Xti )]ds

introduce the matrices

A :=

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 1 −1
0 · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠
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and observe that (3.32) implies that the vectors ak := (ak
1, . . . , ak

n)
T and bk :=

(bk
1, . . . , b

k
n)

T satisfy Aak = chBak+1 + cBbk for all k ≥ 0, and therefore

ak = chA−1Bak+1 + cA−1Bbk,
(3.33)

where A−1 =

⎛
⎜⎜⎝

1 1 · · · 1
0 1 · · · 1
...

. . .
. . .

...

0 · · · 0 1

⎞
⎟⎟⎠ .

By direct calculation, we see that the powers (A−1B)k are given by

(A−1B)ki,j = 1{j≥i+k}
(
j − i − 1

k − 1

)
for all k ≥ 1 and i, j = 1, . . . , n.

In particular, because ak
n = 0, (A−1B)n−1ak = 0. Iterating (3.33), this gives

a0 = ch(A−1B)a1 + c(A−1B)b0 = · · · =
n−2∑
k=0

ck+1hk(A−1B)k+1bk,

and therefore

u(0, x) = a0
1 = c

n−2∑
k=0

(ch)k(A−1B)k+1
1,j bk.(3.34)

Because of

(A−1B)k1,j = 1{j≥1+k}
(
j − 2

k − 1

)
for all k ≥ 1 and j = 1, . . . , n,

we can write (3.34) as follows:

u(0, x) = c

n−2∑
k=0

(ch)k
n∑

j=k+2

(
j − 2

k

)
bk−1
j .

By changing the order of the summations in the above, we conclude that

u(0, x) = c

n∑
j=2

j−2∑
k=0

(ch)k

(
j − 2

k

)
bk−1
j .(3.35)

Step 2. From our assumption that D2k+1v is L
∞-bounded for every k ≥ 0, it

follows that

|bk
j | ≤ E

[∫ ti

ti−1

|�kv(s,Xs) − �kv(tj ,Xtj )|ds

]
≤ Ch3/2

for some constant C. We then deduce from (3.35) that

|u(0, x)| ≤ cCh3/2
n∑

j=2

j−2∑
k=0

(ch)k

(
j − 2

k

)
.
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So,

|u(0, x)| ≤ cCh3/2
n∑

j=2

(1 + ch)j−2 = cCh3/2 (1 + ch)n−1 − 1

ch
≤ C

√
h.

�

4. Probabilistic numerical scheme. In order to implement the backward
scheme (2.4), we still need to discuss the numerical computation of the condi-
tional expectations involved in the definition of the operators Th in (2.5). In view
of the Markov feature of the process X, these conditional expectations reduce to
simple regressions. Motivated by the problem of American options in financial
mathematics, various methods have been introduced in the literature for the nu-
merical approximation of these regressions. We refer to [9] and [17] for a detailed
discussion.

The chief objective of this section is to investigate the asymptotic properties
of our suggested numerical method when the expectation operator E in (2.4) is
replaced by some estimator ÊN corresponding to a sample size N :

T̃N
h [ψ](t, x) := Ê

N [ψ(t + h, X̂x
h)] + hF(·, D̂hψ)(t, x),(4.1)

T̂N
h [ψ](t, x) := −Kh[ψ] ∨ T̃N

h [ψ](t, x) ∧ Kh[ψ],(4.2)

where

D̂hψ(t, x) := Ê
N [ψ(t +h, X̂

t,x
h )Hh(t, x)], Kh[ψ] := ‖ψ‖∞(1+C1h)+C2h,

where

C1 = 1
4 |F T

p F−
γ Fp|∞ + |Fr |∞ and C2 = |F(t, x,0,0,0)|∞.

The above bounds are needed for technical reasons which were already observed
in [9].

With this notation, the implementable numerical scheme is

v̂h
N(t, x,ω) = T̂N

h [v̂h
N ](t, x,ω),(4.3)

where T̂N
h is defined in (4.1)–(4.2), and the presence of ω throughout this section

emphasizes the dependence of our estimator on the underlying sample.
Let Rb be the family of random variables R of the form ψ(Wh)Hi(Wh), where

ψ is a function with |ψ |∞ ≤ b and the Hi ’s are Hermite polynomials:

H0(x) = 1, H1(x) = x and H2(x) = xT x − h ∀x ∈ Rd.

ASSUMPTION E. There exist constants Cb,λ, ν > 0 such that

‖Ê
N [R] − E[R]‖p ≤ Cbh

−λN−ν

for every R ∈ Rb, for some p ≥ 1.
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EXAMPLE 4.1. Consider the regression approximation based on the Malliavin
integration by parts, as introduced in Lions and Reigner [24], Bouchard, Ekeland
and Touzi [8] and analyzed in the context of the simulation of backward stochastic
differential equations by [9] and [14]. Assumption E is then satisfied for every
p > 1 with the constants λ = d

4p
and ν = 1

2p
; see [9].

Our next main result establishes conditions on the sample size N and the time
step h which guarantee the convergence of v̂h

N toward v.

THEOREM 4.2. Let Assumptions E and F hold true and assume that the fully
nonlinear PDE (2.1) has comparison with growth q . Suppose, in addition, that

lim
h→0

hλ+2Nν
h = ∞.(4.4)

Assume that the final condition g is bounded Lipschitz, and the coefficients μ and
σ are bounded. Then, for almost every ω,

v̂h
Nh

(·,ω) −→ v locally uniformly,

where v is the unique viscosity solution of (2.1).

PROOF. We adapt the argument of [6] to the present stochastic context. By
Remark 3.13 and Lemma 3.19, we may assume without loss of generality that the
strict monotonicity (3.6) holds.

By (4.2), we see that v̂h is uniformly bounded. So, we can define

v̂∗(t, x) := lim inf
(t ′,x′)→(t,x)

h→0

v̂h(t ′, x′) and

(4.5)
v̂∗(t, x) := lim sup

(t ′,x′)→(t,x)

h→0

v̂h(t ′, x′).

Our objective is to prove that v̂∗ and v̂∗ are, respectively, viscosity supersolution
and subsolution of (2.1). By the comparison assumption, we shall then conclude
that they are both equal to the unique viscosity solution of the problem whose exis-
tence is given by Theorem 3.6. In particular, they are both deterministic functions.

We shall only include the proof of the supersolution property as the subsolution
property follows by the same type of argument.

In order to prove that v̂∗ is a supersolution of (2.1), we consider (t0, x0) ∈
[0, T ) × R

n, together with a test function ϕ ∈ C2([0, T ) × R
n), such that

0 = min{v̂∗ − ϕ} = (v̂∗ − ϕ)(t0, x0).

By classical manipulations, we can find a sequence (tn, xn, hn) → (t0, x0,0) such
that v̂hn(tn, xn) → v̂∗(t0, x0) and

(v̂hn − ϕ)(tn, xn) = min{v̂hn − ϕ} =: Cn → 0.
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Then, v̂hn ≥ ϕ + Cn, and it follows from the monotonicity of the operator Th that

Thn[v̂hn] ≥ Thn[ϕ + Cn].
By the definition of v̂hn in (4.3), this gives

v̂hn(t, x) ≥ Thn[ϕ + Cn](t, x) − (Thn − T̂hn)[v̂h
n](t, x),

where, for ease of notation, the dependence on Nh has been dropped. Because
v̂hn(tn, xn) = ϕ(tn, xn) + Cn, the last inequality gives

ϕ(tn, xn) + Cn − Thn[ϕ + Cn](tn, xn) + hnRn ≥ 0,

where Rn := h−1
n (Thn − T̂hn)[v̂hn](tn, xn).

We claim that

Rn −→ 0 P-a.s. along some subsequence.(4.6)

Then, after passing to the subsequence, dividing both sides by hn and sending
n → ∞, it follows from Lemma 3.11 that

−LXϕ − F(·, ϕ,Dϕ,D2ϕ) ≥ 0,

which is the required supersolution property.
It remains to show (4.6). We start by bounding Rn with respect to the error of

estimation of conditional expectation. By Lemma 3.14, |Thn[v̂hn]|∞ ≤ Khn and so
by (4.2), we can write

|(Thn − T̂hn)[v̂hn](tn, xn)| ≤ |(Thn − T̃hn)[v̂hn](tn, xn)|.(4.7)

By the Lipschitz continuity of F , we have

|(Thn − T̂hn)[v̂hn](tn, xn)| ≤ C(E0 + hnE1 + hnE2),

where

Ei = |(E − Ê)[v̂hn(tn + hn,X
xn

hn
)H

hn

i (tn, xn)]|.
Therefore,

|(Thn − T̂hn)[v̂hn](tn, xn)| ≤ C
(|(E − Ê)[R0

n]| + |(E − Ê)[R1
n]|

+ h−1
n |(E − Ê)[R2

n]|
)
,

where Ri
n = v̂hn(tn +hn, xn +σ(x)Wh)Hi(Wh), i = 1,2,3, and Hi is the Hermite

polynomial of degree i. This leads to the following estimate for the error Rn:

|Rn| ≤ C

hn

(|(E − Ê)[R0
n]| + |(E − Ê)[R1

n]| + h−1
n |(E − Ê)[R2

n]|
)
.(4.8)

Because Ri
n ∈ Rb with bound obtained in Lemma 3.14, by Assumption E we have

‖Rn‖p ≤ Ch−λ−2
n N−ν

hn
,
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so, by (4.4) we have ‖Rn‖p −→ 0, which implies (4.6). �

Finally, we discuss the choice of sample size so as to keep the same rate for the
error bound.

THEOREM 4.3. Let the nonlinearity F be as in Assumption HJB and consider
a regression operator satisfying Assumption E. Let the sample size Nh be such that

lim
h→0

hλ+21/10Nν
h > 0.(4.9)

Then, for any bounded Lipschitz final condition g, we have the following L
p-

bounds on the rate of convergence:

‖v − v̂h‖p ≤ Ch1/10.

PROOF. By Remark 3.13 and Lemma 3.19, we may assume without loss of
generality that the strict monotonicity (3.6) holds true.

We proceed as in the proof of Theorem 3.10 to see that

v − v̂h ≤ v − vh + vh − v̂h = ε + R(h, ε) + vh − v̂h.

Since v̂h satisfies (4.3),

h−1(v̂h − Th[v̂h]) ≥ −Rh[v̂h], where Rh[ϕ] := 1

h
|(Th − T̂h)[ϕ]|,

where, in the present context, Rh[v̂h] is a nonzero stochastic term. By Proposi-
tion 3.20, it follows from the last inequality that

v − v̂h ≤ C
(
ε + R(h, ε) + Rh[v̂h]),

where the constant C > 0 depends only on the Lipschitz coefficient of F , β in
Lemma 3.21 and the constant in Lemma 3.22.

Similarly, we follow the line of argument of the proof of Theorem 3.10 to show
that a lower bound holds true and therefore

|v − v̂h| ≤ C
(
ε1/3 + R(h, ε) + Rh[v̂h]).

We now use (4.9) and proceed as in the last part of the proof of Theorem 4.2 to
deduce from (4.8) and Assumption F that

‖Rh[v̂h]‖p ≤ Ch1/10.

With this choice of the sample size N , the above error estimate reduces to

‖v̂h − v‖p ≤ C
(
ε1/3 + R(h, ε) + h1/10),

and the additional term h1/10 does not affect the minimization with respect to ε.
�
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EXAMPLE 4.4. Let us illustrate the convergence results of this section in the
context of the Malliavin integration by parts regression method of [24] and [9],
where λ = d

4p
and ν = 1

2p
for every p > 1. So, for the convergence result, we

need to choose Nh of the order of h−α0 with α0 > d
2 + 4p. For the Lp-rate of

convergence result, we need to choose Nh of the order of h−α1 with α1 ≥ d
2 + 21p

5 .

5. Numerical results. In this section, we provide an application of the Monte
Carlo/finite difference scheme suggested in this paper in the context of two differ-
ent types of problems. We first consider the classical mean curvature flow equa-
tion as the simplest front propagation example. We test our backward probabilis-
tic scheme on the example where the initial data is given by a sphere, for which
an easy explicit solution is available. A more interesting geometric example in
two-dimensional space is also considered. We next consider the Hamilton–Jacobi–
Bellman equation characterizing the classical optimal investment problem in fi-
nancial mathematics. Here, we again test our scheme in two dimensions, where
an explicit solution is available, and we consider more involved examples in five
spatial dimensions, in addition to the time variable.

In all examples considered in this section, the operator F(t, x, r,p, γ ) does not
depend on the r variable. We shall then drop this variable from our notation and
simply write the scheme as

vh(T , .) := g and
(5.1)

vh(ti, x) := E[vh(ti+1, X̂
x
h)] + hF(ti, x, Dhv

h(ti, x)),

where

Dhψ := (D1
hψ, D2

hψ),

and D1
h and D2

h are defined in Lemma 2.1. We recall from Remark 2.2 that

D2
2hϕ(ti, x) = E

[
ϕ(ti + 2h, X̂

ti ,x
2h )(σT)−1

× (Wti+h − Wti )(Wti+h − Wti )
T − hId

h2 σ−1
]

(5.2)

= E

[
D1

hϕ(ti + h, X̂
ti ,x
h )(σT)−1 Wti+h − Wti

h

]
.

The second representation is the one reported in [12], where the present backward
probabilistic scheme was first introduced. These two representations induce two
different numerical schemes because once the expectation operator E is replaced
by an approximation ÊN , equality no longer holds in the latter equation for fi-
nite N . In our numerical examples below, we provide results for both methods.
The numerical schemes based on the first (resp., second) representation will be
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referred to as scheme 1 (resp., 2). An important outcome of our numerical exper-
iments is that scheme 2 turns out to have a significantly better performance than
scheme 1.

REMARK 5.1. The second scheme needs some final condition for D1
hϕ(T ,

X
T −h,x
h ). Since g is smooth in all our examples, we set this final condition to ∇g.

Since the second scheme turns out to have a better performance, we may also use
the final condition for Z suggested by the first scheme.

We finally discuss the choice of the regression estimator in our implemented
examples. Two methods have been used:

• The first method is the basis projection in the style of Longstaff and
Schwartz [25], as developed in [17]. We use regression functions with local-
ized support: on each support, the regression functions are chosen linear and the
size of the support is adaptive according to the Monte Carlo distribution of the
underlying process.

• The second method is based on the Malliavin integration by parts formula, as
suggested in [24] and further developed in [8]. In particular, the optimal expo-
nential localization function φk(y) = exp(−ηky) in each direction k is chosen
as follows. The optimal parameter ηk is provided in [8] and should be chosen for
each conditional expectation depending on k. However, our numerical experi-
ments revealed that such optimal parameters do not provide sufficiently good
performance, and more accurate results are obtained by choosing ηk = 5/

√
�t

for all values of k.

5.1. Mean curvature flow problem. The mean curvature flow equation de-
scribes the motion of a surface where each point moves along the inward normal
direction with speed proportional to the mean curvature at that point. This geomet-
ric problem can be characterized as the zero-level set S(t) := {x ∈ R

d :v(t, x) = 0}
of a function v(t, x) depending on time and space satisfying the geometric partial
differential equation

vt − �v + Dv · D2vDv

|Dv|2 = 0 and v(0, x) = g(x),(5.3)

where g : Rd −→ R is a bounded Lipschitz continuous function. We refer to [28]
for more details on the mean curvature problem and the corresponding stochastic
representation.

To model the motion of a sphere in R
d with radius 2R > 0, we take g(x) :=

4R2 − |x|2 so that g is positive inside the sphere and negative outside. We first
solve the sphere problem in three dimensions. In this case, it is well known that the
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surface S(t) is a sphere with radius R(t) = 2
√

R2 − t for t ∈ (0,R2). Reversing
time, we rewrite (5.3) for t ∈ (0, T ) with T = R2:

−vt − 1
2σ 2�v + F(x,Dv,D2v) = 0 and v(T , x) = g(x),(5.4)

where

F(x, z, γ ) := γ

(
1

2
σ 2 − 1

)
+ z · γ z

|z|2 .

We implement our Monte Carlo/finite difference scheme to provide an approx-
imation v̂h of the function v. As mentioned before, we implement four meth-
ods: Malliavin-integration-by-parts-based or basis-projection-based regression,
and scheme 1 or 2 for the representation of the Hessian.

Given the approximation v̂h, we deduce an approximation of the surface
Ŝh(t) := {x ∈ R

3 : v̂h(t, x) = 0)} by using a dichotomic gradient descent method
using the estimation of the gradient D1v estimated along the resolution. The di-
chotomy is stopped when the solution is localized within 0.01 accuracy.

REMARK 5.2. Of course the use of the gradient is not necessary in the present
context where we know that S(t) is a sphere at any time t ∈ [0, T ). The algorithm
described above is designed to handle any type of geometry.

REMARK 5.3. In our numerical experiments, the nonlinearity F is truncated
so that it is bounded by an arbitrary value taken to equal 200.

Our numerical results show that Malliavin and basis projection methods give
similar results. However, for a given number of sample paths, the basis projection
method of [17] is slightly more accurate. Therefore, all results reported for this
example correspond to the basis projection method.

Figure 1 provides results obtained with one million particles and a 10 × 10 × 10
mesh with a time step equal to 0.0125. The diffusion coefficient σ is taken to be
either 1 or 1.8. We observe that results are better with σ = 1. We also observe
that the error increases near time 0.25, corresponding to an acceleration of the
dynamics of the phenomenon and suggesting that a thinner time step should be
used at the end of simulation.

Figure 2 plots the difference between our calculation and the reference for
scheme 1 and volatility 1 and 1.8 for a varying time step. The corresponding re-
sults with scheme 2 are reported in Figure 3. We observe that some points at time
T = 0.25 are missing due to a nonconvergence of the gradient method for a diffu-
sion σ = 1.8. We observe that results for scheme 2 are slightly better than results
for scheme 1. With σ = 1, it takes 150 seconds on a Intel Nehalem processor
(2.9 GHz) to obtain the result at time t = 0.15 with the regression method, while
it takes 1500 seconds with the Malliavin method (notice that the dichotomy used
with the gradient method is a very inefficient method).
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FIG. 1. Solution of the mean curvature flow for the sphere problem.

FIG. 2. Mean curvature flow problem for different time step and diffusion: scheme 1.

FIG. 3. Mean curvature flow problem for different time step and diffusions: scheme 2.
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FIG. 4. Mean curvature flow problem in two dimensions.

In Figure 4, we finally report some numerical results for the mean curvature
flow problem in two dimensions with a more interesting geometry: the initial sur-
face (i.e., the zero-level set for v) consists of two discs with unit radius, with cen-
ters positioned at −1.5 and 1.5 and connected by a strip of unit width. We give the
resulting deformation with scheme 2 for a diffusion σ = 1, a time step h = 0.0125
and one million particles. Once again, the Malliavin-integration-by-parts-based re-
gression method and the basis projection method with 10 × 10 meshes produce
similar results. We used 1024 points to describe the surface.

One advantage of this method is the total parallelization that can be performed
to solve the problem for different points on the surface: for the results given, par-
allelization by message passing interface (MPI) was achieved.

5.2. Continuous-time portfolio optimization. We next report an application to
the continuous-time portfolio optimization problem in financial mathematics. Let
{St , t ∈ [0, T ]} be an Itô process modeling the price evolution of n financial secu-
rities. The investor chooses an adapted process {θt , t ∈ [0, T ]} with values in R

n,
where θi

t is the amount invested in the ith security held at time t . In addition, the
investor has access to a nonrisky security (bank account), where the remaining part
of his wealth is invested. The nonrisky asset S0 is defined by an adapted interest
rates process {rt , t ∈ [0, T ]}, that is, dS0

t = S0
t rt dt , t ∈ [0,1]. Then, the dynamics

of the wealth process is described by

dXθ
t = θt · dSt

St

+ (Xθ
t − θt · 1)

dS0
t

S0
t

= θt · dSt

St

+ (Xθ
t − θt · 1)rt dt,

where 1 = (1, . . . ,1) ∈ R
d . Let A be the collection of all adapted processes θ with

values in R
d which are integrable with respect to S and such that the process Xθ is
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uniformly bounded from below. Given an absolute risk aversion coefficient η > 0,
the portfolio optimization problem is defined by

v0 := sup
θ∈A

E[− exp(−ηXθ
T )].(5.5)

Under fairly general conditions, this linear stochastic control problem can be char-
acterized as the unique viscosity solution of the corresponding HJB equation. The
main purpose of this subsection is to implement our Monte Carlo/finite differ-
ence scheme to derive an approximation of the solution of the fully nonlinear
HJB equation in nontrivial situations where the state has a few dimensions. We
shall first start with a two-dimensional example where an explicit solution of the
problem is available. We will then present some results in a five-dimensional situ-
ation.

5.2.1. A two-dimensional problem. Let d = 1, rt = 0 for all t ∈ [0,1] and
assume that the security price process is defined by the Heston model [18]:

dSt = μSt dt +√
YtSt dW

(1)
t ,

dYt = k(m − Yt ) dt + c
√

Yt

(
ρ dW

(1)
t +

√
1 − ρ2 dW

(2)
t

)
,

where W = (W(1),W(2)) is a Brownian motion in R
2. In this context, it is easily

seen that the portfolio optimization problem (5.5) does not depend on the state
variable s. Given an initial state at the time origin t given by (Xt , Yt ) = (x, y), the
value function v(t, x, y) solves the HJB equation:

v(T , x, y) = −e−ηx and

0 = −vt − k(m − y)vy − 1

2
c2yvyy

(5.6)

− sup
θ∈R

(
1

2
θ2yvxx + θ(μvx + ρcyvxy)

)

= −vt − k(m − y)vy − 1

2
c2yvyy + (μvx + ρcyvxy)

2

2yvxx

.

A quasi-explicit solution of this problem was provided by Zariphopoulou [29]:

v(t, x, y) = −e−ηx

∥∥∥∥exp
(
−1

2

∫ T

t

μ2

Ỹs

ds

)∥∥∥∥
L1−ρ2

,(5.7)

where the process Ỹ is defined by

Ỹt = y and dỸt = (
k(m − Ỹt ) − μcρ

)
dt + c

√
Ỹt dWt .
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In order to implement our Monte Carlo/finite difference scheme, we rewrite (5.6)
as

−vt − k(m − y)vy − 1
2c2yvyy − 1

2σ 2vxx + F(y,Dv,D2v) = 0,
(5.8)

v(T , x, y) = −e−ηx,

where σ > 0 and the nonlinearity F : R × R
2 × S2 is given by

F(y, z, γ ) = 1

2
σ 2γ11 + (μz1 + ρcyγ12)

2

2yγ11
.

Notice that the nonlinearity F does not to satisfy Assumption F; we consider the
truncated nonlinearity

Fε,M(y, z, γ ) := 1

2
σ 2γ11 − sup

ε≤θ≤M

(
1

2
θ2(y ∨ ε)γ11 + θ

(
μz1 + ρc(y ∨ ε)γ12

))

for some ε,n > 0 jointly chosen with σ so that Assumption F holds true. In this
form, the forward two-dimensional diffusion is defined by

dX
(1)
t = σ dW

(1)
t and dX

(2)
t = k

(
m − X

(2)
t

)
dt + c

√
X

(2)
t dW

(2)
t .(5.9)

In order to guarantee the nonnegativity of the discrete-time approximation of the
process X(2), we use the implicit Milstein scheme [19]:

X(2)
n = X

(2)
n−1 + km�t + c

√
X

(2)
n−1ξn

√
�t + 1

4c2�(ξ2
n − 1)

1 + k�t
,(5.10)

where (ξn)n≥1 is a sequence of independent random variables with distribution
N(0,1).

Our numerical results correspond to the following values of the parameter: μ =
0.15, c = 0.2, k = 0.1, m = 0.3, Y0 = m, ρ = 0. The initial value of the portfolio
is x0 = 1, and the maturity T is taken equal to one year. With these parameters,
the value function is computed from the quasi-explicit formula (5.7) to be v0 =
−0.3534.

We also choose M = 40 for the truncation of the nonlinearity. This choice turns
out to be critical, as an initial choice of M = 10 produced an important bias in the
results.

The two schemes have been tested with the Malliavin and basis projection meth-
ods. The latter was applied with 40 × 10 basis functions. We provide numerical
results corresponding to two million particles. Our numerical results show that the
Malliavin and basis projection methods produce very similar results and achieve
good accuracy. With two million particles, we calculate the variance of our esti-
mates by performing 100 independent calculations:

• the results of the Malliavin method exhibit a standard deviation smaller than
0.005 for scheme 1 (except for a step equal to 0.025 and a volatility equal to
1.2, where the standard deviation jumped to 0.038) and smaller than 0.002 for
scheme 2, with a computing time of 378 seconds for 40 time steps;
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FIG. 5. Difference between calculation and reference for schemes 1 and 2.

• the results of the basis projection method exhibit a standard deviation smaller
than 0.002 for scheme 1 and smaller than 0.0009 for scheme 2, with a computing
time of 114 seconds for 40 time steps.

Figure 5 provides the plots of the errors obtained by the integration-by-parts-
based regression with schemes 1 and 2. All solutions have been calculated as av-
erages of 100 calculations. We first observe that for a small diffusion coefficient
σ = 0.2, the numerical performance of the algorithm is very poor: surprisingly, the
error increases as the time step shrinks to zero, and the method seems to be biased.
This numerical result hints that the requirement that the diffusion should dominate
the nonlinearity in Theorem 3.6 might be a sharp condition. We also observe that
scheme 1 has a persistent bias, even for a very small time step, while scheme 2
exhibits a better convergence toward the solution.

5.2.2. A five-dimensional example. We now let n = 2 and assume that the in-
terest rate process is defined by the Ornstein–Uhlenbeck process:

drt = κ(b − rt ) dt + ζ dW
(0)
t .

While the price process of the second security is defined by a Heston model, the
first security’s price process is defined by a CEV-SV model (see, e.g., [26] for a
presentation of these models and their simulation):

dS
(i)
t = μiS

(i)
t dt + σi

√
Y

(i)
t S

(i)
t

βi
dW

(i,1)
t , β2 = 1,

dY
(i)
t = ki

(
mi − Y

(i)
t

)
dt + ci

√
Y

(i)
t dW

(i,2)
t ,

where (W(0),W(1,1),W(1,2),W(2,1),W(2,2)) is a Brownian motion in R
5, and

where, for simplicity, we have considered a zero correlation between the security
price process and its volatility process.

Since β2 = 1, the value function of the portfolio optimization problem 5.5 does
not depend on the s(2) variable. Given an initial state (Xt , rt , S

(1)
t , Y

(1)
t , Y

(2)
t ) =

(x, r, s1, y1, y2) at the time origin t , the value function v(t, x, r, s1, y1, y2) satisfies



1360 A. FAHIM, N. TOUZI AND X. WARIN

the HJB equation

0 = −vt − (Lr + LY + LS1
)v − rxvx

− sup
θ1,θ2

{
θ1 · (μ − r1)vx + θ1σ

2
1 y1s

2β1−1
1 vxs1

+ 1

2
(θ2

1 σ 2
1 y1s

2β1−2
1 + θ2

2 σ 2
2 y2)vxx

}
(5.11)

= −vt − (Lr + LY + LS1
)v − rxvx

+ ((μ1 − r)vx + σ 2
1 y1s

2β1−1
1 vxs1)

2

2σ 2
1 y1s

2β1−2
1 vxx

+ ((μ2 − r)vx)
2

2σ 2
2 y2vxx

,

where

Lrv = κ(b − r)vr + 1

2
ζ 2vrr , LY v =

2∑
i=1

ki(mi − yi)vyi
+ 1

2
c2
i yivyiyi

and

LS1
v = μ1s1vs1 − 1

2
σ 2

1 s1y1vs1s1 .

In order to implement our Monte Carlo/finite difference scheme, we rewrite (5.11)
as

−vt − (Lr + LY + LS1
)v − 1

2σ 2vxx

+ F((x, r, s1, y1, y2),Dv,D2v) = 0,(5.12)

v(T , x, r, s1, y1, y2) = −e−ηx,

where σ > 0, and the nonlinearity F : R5 × R
5 × S2 is given by

F(u, z, γ ) = 1

2
σ 2γ11 − x1x2z1

+ ((μ1 − x2)z1 + σ 2
1 x4x

2β1−1
3 γ1,3)

2

2σ 2
1 x4x

2β1−2
3 γ11

+ ((μ2 − x2)z1)
2

2σ 2
2 x5γ11

,

where u = (x1, . . . , x5). We next consider the truncated nonlinearity

Fε,M(u, z, γ ) := 1

2
σ 2γ11 − x1x2z1

+ sup
ε≤|θ |≤M

{(
θ · (μ − r1)z1 + θ2

2 σ 2
2 (x5 ∨ ε)

)
γ11

+ θ1σ
2
1 (x4 ∨ ε)(x3 ∨ ε)2β1−1γ13

+ 1

2
θ2

1 σ 2
1 (x3 ∨ ε)(x4 ∨ ε)2β1−2

}
,
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where ε,M > 0 are jointly chosen with σ so that Assumption F holds true. In this
setting, the forward two-dimensional diffusion is defined by

dX
(1)
t = σ dW

(0)
t ,

dX
(2)
t = κ

(
b − X

(2)
t

)
dt + ζ dW

(1)
t ,

dX
(3)
t = μ1X

(3)
t dt + σ1

√
X

(4)
t X

(3)
t

β1
dW

(1,1)
t ,(5.13)

dX
(4)
t = k1

(
m1 − X

(4)
t

)
dt + c1

√
X

(4)
t dW

(1,2)
t ,

dX
(5)
t = k2

(
m2 − X

(5)
t

)
dt + c2

√
X

(5)
t dW

(2,2)
t .

The component X
(2)
t is simulated according to the exact discretization

X
(2)
tn = b + e−k�t (X(2)

tn−1
− b

)+ ζ

√
1 − exp(−2κ�t)

2κ
ξn,

where (ξn)n≥1 is a sequence of independent random variables with distribution
N(0,1). The following scheme for the price of the asset guarantees nonnegativity
(see [1]):

lnX(3)
n = lnX

(3)
n−1 + (

μ1 − 1
2σ 2

1
(
X

(3)
n−1

)2(β1−1)
X

(4)
n−1

)
�t

+ σ1
(
X

(3)
n−1

)βi−1
√

X
(4)
n−1�W(1,2)

n ,

where �W
(1,2)
n := W

(1,2)
n − W

(1,2)
n−1 . We take the parameters μ1 = 0.10, σ1 = 0.3

and β1 = 0.5 for the first asset, k1 = 0.1, m1 = 1 and c1 = 0.1 for the diffusion
process of the first asset. The second asset is defined by the same parameters as in
the two-dimensional example: μ2 = 0.15, c2 = 0.2, m = 0.3 and Y

(2)
0 = m. As for

the interest rate model we take b = 0.07, X
(2)
0 = b, ζ = 0.3.

The initial values of the portfolio asset prices are all set to 1. For this test case we
first use the basis projection regression method with 4×4×4×4×10 meshes and
three millions particles which, for example, takes 520 seconds for 20 time steps.
Figure 6 contains the plot of the solution obtained by scheme 2, with different
time steps. We only provide results for the implementation of scheme 1 with a
coarse time step because the method was found to diverge with a thinner time
step. We observe that there is still a difference for a very thin time step with the
three considered values of the diffusion. This seems to indicate that more particles
and more meshes are needed. While carrying out many calculations, we observed
that for the thinner time step mesh, the solution sometimes diverges. We therefore
report the results corresponding to thirty million particles with 4 × 4 × 4 × 4 × 40
meshes. First, we note that with this discretization, all results are converging as the
time step goes to zero: the exact solution seems to be very close to −0.258. During
our experiments with thirty million particles, the scheme was always converging,
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FIG. 6. The five-dimensional financial problem and its results for different volatilities with 3 million
particles (left) and 30 million particles (right).

with a very low variance for the results. A single calculation takes 5100 seconds
with 20 time steps.

REMARK 5.4. With thirty million particles, the required memory forced us to
use 64-bit processors with more than 4 GB of memory.

5.2.3. Conclusion on numerical results. The Monte Carlo/finite difference al-
gorithm has been implemented with both schemes suggested by (5.2), using the
basis projection and Malliavin regression methods. Our numerical experiments
reveal that the second scheme performs better, both in term of results and time of
calculation for a given number of particles, independently of the regression method
used.

We also provided numerical results for different choices of the diffusion para-
meter in the Monte Carlo step. We observed that small diffusion coefficients lead
to poor results, which hints that the condition that the diffusion must dominate the
nonlinearity in Assumption F(iii) may be sharp. On the other hand, we also ob-
served that large diffusions require high-level refinements of the meshes and large
numbers of particles, leading to lengthy computational times.

Finally, we note that a reasonable choice for the diffusion could be time and state
dependent, as in the classical importance sampling method. We have not attempted
any experiments in this direction, and we eventually hope to have some theoretical
results on how to choose optimal drift and diffusion coefficients for the Monte
Carlo step.

Acknowledgments. We are grateful to Mete Soner, Bruno Bouchard, Denis
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