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A Probabilistic Particle Control Approximation of

Chance Constrained Stochastic Predictive Control
Lars Blackmore, Masahiro Ono, Askar Bektassov and Brian C. Williams

Abstract—Robotic systems need to be able to plan control
actions that are robust to the inherent uncertainty in the real
world. This uncertainty arises due to uncertain state estimation,
disturbances and modeling errors, as well as stochastic mode
transitions such as component failures. Chance constrained con-
trol takes into account uncertainty to ensure that the probability
of failure, due to collision with obstacles, for example, is below
a given threshold.

In this paper we present a novel method for chance constrained
predictive stochastic control of dynamic systems. The method
approximates the distribution of the system state using a finite
number of particles. By expressing these particles in terms of
the control variables, we are able to approximate the original
stochastic control problem as a deterministic one; furthermore
the approximation becomes exact as the number of particles tends
to infinity. This method applies to arbitrary noise distributions,
and for systems with linear or jump Markov linear dynamics
we show that the approximate problem can be solved using
efficient Mixed Integer Linear Programming techniques. We also
introduce an importance weighting extension that enables the
method to deal with low probability mode transitions such as
failures. We demonstrate in simulation that the new method is
able to control an aircraft in turbulence and can control a ground
vehicle while being robust to brake failures.

I. INTRODUCTION

Robust control of robotic systems has received a great deal

of attention in recent years [53], [40], [47], [12], [36], [39].

Robotic systems need to be able to plan control actions that are

robust to the inherent uncertainty in the real world. This un-

certainty arises due to uncertain state estimation, disturbances,

and modeling errors, as well as stochastic mode transitions

such as component failures. Many authors have investigated

control under set-bounded uncertainty, for example [44], [19],

[6], [31], [18]. In this case, robust control ensures that failure

is prevented under all possible uncertainties.

In many cases, for example wind disturbances, uncertainty

is best represented using a stochastic model, rather than a

set-bounded one[4]. The problem of control under stochas-

tic uncertainty has been researched extensively, for exam-

ple [7], [41], [54], [38]. Early approaches such as Linear

Quadratic Gaussian control[7] used the certainty equivalence

principle[3]; this enables uncertain variables to be replaced

with their expectations, and control laws to be designed in

terms of these expectations. For unconstrained problems with

linear systems and Gaussian noise, controllers can be designed

that are optimal with regard to the original stochastic control

problem.
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Alternative approaches expressed certain classes of stochas-

tic control problem as a Markov Decision Process (MDP)[43].

For discrete state spaces, value iteration can be used to find

the control policy that maximizes expected reward. Continuous

state spaces can be handled by discretization, however the

problem quickly becomes intractable as the number of dis-

crete states grows[27]; hence the application of this approach

to dynamic systems with high-dimensional continuous state

spaces has been limited.

Predictive stochastic control takes into account probabilistic

uncertainty in dynamic systems and aims to control the pre-

dicted distribution of the system state in some optimal manner

over a finite planning horizon[41], [28], [43], [57]. This is a

very challenging problem, since we must optimize over the

space of possible future state distributions. Furthermore, with

stochastic uncertainty it is typically not possible to prevent

failure in all possible cases. Instead, previous authors have

proposed a chance constrained formulation[41], [50]. Chance

constraints specify that the probability of failure must be below

a given threshold. Failure can be defined as collision with

an obstacle, or failure to reach a goal region. This chance-

constrained formulation is a powerful one, as it enables the

user to specify a desired level of conservatism, which can be

traded against performance. In this paper we are concerned

with the problem of chance constrained predictive control

under stochastic uncertainty.

Recent work has considered chance-constrained predictive

control of linear systems when all forms of uncertainty are

additive and Gaussian, and the feasible region is convex. A

number of authors suggested approaches that pose the stochas-

tic control problem as an equivalent deterministic optimization

problem[32], [25], [5], [50], [12].

For many problems the assumptions of additive Gaussian

noise and convex feasible regions do not apply. In the present

paper we describe a new approach that relaxes these assump-

tions, and applies to a more general class of system than

previous approaches. The key idea behind the new approach

is to approximate all probability distributions using a finite set

of samples, or particles. We then approximate the stochastic

predictive control problem as a deterministic one, with the

property that as the number of particles tends to infinity, the

approximation tends to the original stochastic problem. This

method can handle arbitrary, even multimodal, distributions,

and in principle can deal with nonlinear systems. However

we show that in the case of stochastic linear systems with

uncertain parameters and Jump Markov Linear Systems, the

resulting optimization problem can be solved efficiently using

Mixed Integer Linear Programming(MILP)[26]. Jump Markov

Linear Systems are convenient tools for representing robotic
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systems subject to random component failures[56], [23], [13].

The new method designs optimal control inputs that ensure

chance constraints are satisfied despite both component fail-

ures and continuous uncertainty, such as disturbances.

The idea of approximating stochastic control problems

and stochastic optimization problems using sampling was

previously proposed by a number of authors. These ap-

proaches use samples to approximate the expectation of a

cost function, yielding a deterministic optimization problem

that minimizes the approximated expectation. Samples are

variously referred to as ‘particles’[21], [24], ‘simulations’[52]

and ‘scenarios’[55], [36], [14]. In the Pegasus system, [36]

propose the conversion of an MDP with stochastic transitions

into an equivalent one where all randomness is represented in

the initial state. The method draws a finite number of samples,

or scenarios, from the initial state, and finds the policy that

optimizes the sample mean of the reward for the scenarios.

In a similar manner, [24] proposed a method for predictive

control that approximates the expected cost of a given control

sequence using a finite number of samples. [2] used particles to

approximate the value function and its gradient in an optimal

stochastic control problem, and used a gradient search method

to find a locally optimal solution. In the case of optimal sensor

scheduling, [52] employed a similar approximation method,

but in this case used Stochastic Approximation to minimize

the cost function. This approach is guaranteed to converge to

a local optimum under certain assumptions. [55] introduced a

scenario-based approach to stochastic constraint programming.

This approach handles chance-constrained problems, but is

however limited to discrete decision spaces. [58] considered

sample-based approximations of robust controller synthesis

problems, while [51] proposed sample-based approximations

of multistage stochastic optimization problems, where cer-

tain decisions can be made after the realizations of some

uncertain variables are observed. In both [58] and [51], an

approximation of the expected cost is minimized, and analytic

results are given that describe how many samples are required

to guarantee, in a probabilistic sense, a particular level of

approximation error. [35] considers single-stage stochastic

optimization problems in which the goal is to minimize

expected cost, and proposes a method that draws samples at

each step of an iterative optimization scheme. Again, analytic

characterizations of the approximation error introduced by

sampling are provided.

In this paper we extend this work in four ways. First, we

incorporate constraints on the probability of failure, enabling

chance constrained stochastic control with continuous decision

variables. Control with constraints on the probability of events

is a powerful capability that is also a much more challenging

problem than control with only constraints on expected values,

for example. Second, we show that in the case of stochastic

linear dynamic systems and Jump Markov Linear Systems,

the approximated chance constrained control problem can

be solved to global optimality using Mixed Integer Linear

Programming in an efficient manner. Third, we use importance

weighting to ensure that low-probability mode transitions such

as failures are handled in an efficient manner. Finally, we can

handle non-convex feasible regions.

Our approach was first published in [9], [11]. Concurrently

with this [14] introduced a sampling approach to solve chance-

constrained feedback control problems for convex feasible

regions; they use a bounding approach to determine how

many times the constraints must be sampled to ensure chance

constraint satisfaction. This approach can be applied to chance-

constrained predictive control problems, however, as noted

by [17], the bounding approach introduces conservatism, and

is restricted to convex problems. Conservatism means that

the true probability of constraint violation is below the al-

lowable level specified by the chance constraint. Excessive

conservatism can lead to unnecessarily high cost solutions

and infeasibility. In Section IX we provide an empirical

comparison of our approach with that of [14].

Another approach for chance-constrained control with non-

Gaussian uncertainty was previously proposed by [29], and

uses a Monte Carlo Markov Chain (MCMC) framework[45]

to find an approximately optimal control input through

simulation-based optimization. This works by estimating the

distribution of a random variable, which is constructed so

that the peaks of the distribution coincide with the optimal

decision value. The estimation process is then carried out by

MCMC[45]. Analytic results on the convergence of MCMC

are given by [30] and [46]. Unlike our proposed approach

based on MILP, MCMC does not rely on linear system dynam-

ics and can handle cases where the distribution of the random

variables depends on the system state. However, for robotic

control problems, the MCMC approach has the disadvantage

of being sensitive to manually-chosen parameters such as

the burn-in period and the “peakedness” parameter[29]. In

Section VIII we provide an empirical comparison of our

approach with that of [29].

We demonstrate our new method in simulation using two

scenarios. First, we consider control of an unmanned aircraft

subject to turbulence and uncertain localization. Second, we

consider control of a wheeled robotic vehicle with failure-

prone brakes. The results show that the method is effective

in solving the approximated stochastic control problem, and

that for a large number of particles the approximation error

becomes small.

II. PROBLEM STATEMENT

In this paper we consider a discrete-time dynamic system

with state x ∈ R
nx , control inputs u ∈ R

nu and model

parameters θ ∈ R
nθ . Disturbances ν ∈ R

nx act on the system.

The future states of the system are defined by the following

functions:

x1 = f1(x0,u0, ν0, θ0) (1)

x2 = f2(x0,u0,u1, ν0, ν1, θ0, θ1)

...

xT = fT (x0,u0:T−1, ν0:T−1, θ0:T−1).

We use xt to denote the value of variable x at time t, and use

x1:T to denote the sequence 〈x1, · · · ,xT 〉.
We consider the case where the initial state, model pa-

rameters and disturbances are uncertain, but are modeled as
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random variables. In this case the future states are also random

variables, whose distributions depend on the control inputs. We

are concerned with the following optimal, chance constrained

stochastic control problem:

Problem 1 (Chance-constrained control problem).

Minimize:

E[h(u0:T−1,x1:T )]
subject to:

p(x1:T /∈ F ) ≤ δ

E[x1:T ] ∈ G,

u0:T−1 ∈ U .

Here h(·) is a cost function defined over the control inputs and

system state trajectory. F is an operator-defined feasible region

for the system state trajectory. G is an operator-defined feasible

region for the expected state trajectory. U is an operator-

defined feasible region for the control inputs. In words, the

problem under consideration is to design a finite, optimal

sequence of control inputs, taking into account probabilistic

uncertainty, which ensures that the state of the system leaves

a given feasible region F with probability at most δ, and

keeps the expected state within another feasible region G. In

the case of vehicle path planning, F can be defined so that

the system state is in a goal region at the final time step,

and avoids a number of obstacles at all time steps. G can be

defined so that the expected velocity is identically zero at the

final time. Optimality can be defined in terms of minimizing

control effort, or time to reach the goal, for example. Note

that we impose a joint chance constraint; that is, one over the

multidimensional variable x1:T . This is in contrast to prior

work that considered chance constraints over scalar variables,

for example [15], [16].

We consider three sources of uncertainty:

1) The initial state is specified as a probabilistic distribution

over possible states. This uncertainty arises because the

system state cannot be observed directly; hence we must

estimate a distribution over the system state from noisy

observations.

2) Disturbances act on the system state. These are modeled

as stochastic processes. In the case of aircraft path plan-

ning, this may represent wind or turbulence disturbances.

3) The system parameters are not known exactly. This may

arise due to approximate modeling (through lineariza-

tion, for example), or because of random jumps. These

jumps can model component failures, for example.

We assume that the distributions of the uncertainty men-

tioned here are known. We make no assumptions about the

form the distributions take, except that the random variables

are independent of the control inputs. We also assume that

we can generate samples from the uncertain distributions. For

notational simplicity, in the following we do not consider

uncertainty in the feasible region F . The extension to this

form of uncertainty is straightforward.

The key idea behind solving this stochastic control problem

is to approximate all distributions using samples, or particles,

and then solve the resulting deterministic problem. In Sec-

tion III we review some results relating to sampling from

random variables. In Section IV we then describe the new

approach in detail.

III. SAMPLING FROM RANDOM VARIABLES

Previous work has shown that approximating the probability

distribution of a random variable using samples, or particles,

can lead to tractable algorithms for estimation and control

[21]. Here we review some properties of samples drawn from

random variables.

Suppose that we are given two multivariate probability dis-

tributions p(x) and q(x). We would like to calculate properties

of the target distribution p(x), such as the expectation:

EX [f(X)] =

∫

f(x)p(x)dx (2)

In many cases this integral cannot be evaluated in closed form.

Instead we approximate the value by drawing N independent,

identically distributed random samples x
(1), · · · ,x(N) from

the proposal distribution q(x), and calculating the weighted

sample mean:

ÊX [f(X)] =
1

N

N
∑

i=1

wif(x(i)) wi =
p(x(i))

q(x(i))
, (3)

where wi is known as the importance weight. As long as

q(x) > 0 for all x such that p(x) > 0, and under weak

assumptions on the boundedness of f(·) and the moments of

p(x), from the strong law of large numbers[8], we have the

convergence property:

ÊX [f(X)] −→ EX [f(X)] as N −→ ∞. (4)

Hence the expectation, which could not be evaluated exactly in

closed form, can be approximated as a summation over a finite

number of particles. Notice also that we have approximated the

expectation over the target distribution, by drawing samples

from the proposal distribution. In the simplest case, we can set

p(x) = q(x) and sample directly from the target distribution;

this is known as fair sampling. However prior work has shown

that other choices of q(x) can significantly improve algorithm

performance. We elaborate on this in Section VI.

The convergence property (4) can also be used to approx-

imate the probability of a certain event, such as the event

f(x) ∈ A. This is given exactly by:

PA =

∫

f(x)∈A

p(x)dx. (5)

This expression is equivalent to the expectation:

PA = EX [g(x)] g(x) =

{

0 f(x) ∈ A

1 f(x) /∈ A.
(6)

We can therefore approximate PA as:

P̂A =
1

N

N
∑

i=1

wig(x(i)), (7)

Note that this expression is simply the weighted fraction of

particles for which f(x(i)) ∈ A. Assuming that evaluating
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f(·), and checking whether a given value is in A, are both

straightforward, calculating P̂A is also; we simply need to

count how many of the propagated particles f(x(i)) fall within

A. By contrast, evaluating PA as in (5) requires a finite

integral over an arbitrary probability distribution, where even

calculating the bounds on the integral may be intractable.

Hence the particle-based approximation is extremely useful,

especially given the convergence property:

P̂A −→ PA as N −→ ∞, (8)

again, given assumptions on the boundedness of f(·) and

the moments of p(x)[8]. In Section IV we use this property

to approximate the stochastic control problem defined in

Section II.

IV. OUTLINE OF CHANCE-CONSTRAINED PARTICLE

CONTROL METHOD

In this section we describe a new method for approximating

the general chance constrained stochastic control problem

described in Section II. The new method works by approx-

imating all probabilistic distributions with particles, thereby

approximating an intractable stochastic optimization problem

as a tractable deterministic optimization problem. By solving

this deterministic problem we obtain an approximate solution

to the original stochastic problem (Problem 1), with the

additional property that as the number of particles used tends

to infinity, the approximation becomes exact. The new chance

constrained particle control method is given in Table I and is

illustrated in Figure 1.

This general formulation can encompass a very broad range

of chance-constrained problems. In the algorithm outline we

have omitted two key parts; first, how to perform the result-

ing optimization efficiently and second, how to choose the

proposal distribution q(·). In Section V we show that in the

case of linear and Jump Markov Linear Systems and polygonal

feasible regions, the optimization can be solved using efficient

Mixed Integer Linear Programming methods. In Section VI

we discuss the choice of proposal distribution and design a

proposal to improve performance with low probability fault

transitions.

V. MILP FORMULATION OF PARTICLE CONTROL

PROBLEM

A. Linear Systems

We first restrict our attention to the case of uncertain linear

system dynamics and polygonal feasible regions. Furthermore,

we assume that the cost function h is piecewise linear. Previous

work has shown that optimal path planning with obstacles for

vehicles such as aircraft or satellites can be posed as predic-

tive control design for linear systems in polygonal feasible

regions[49], [44]. Optimality can be defined in terms of fuel

use or time, for example. We extend this work by showing

that the particle control method outlined in Section IV can be

used to design control inputs for linear systems that ensure

chance constraints are satisfied under probabilistic uncertainty

in the initial state and disturbances.

1) Generate N samples from the proposal distribution
q(x0, ν0:T−1, θ0:T−1) defined over the initial state, distur-
bances and model parameters. Calculate the weight wi for
each sample according to (3).

2) Express the distribution of the future state trajectories ap-

proximately as a set of N particles. Each particle x
(i)
1:T

corresponds to the state trajectory given a particular set of

samples
˘

x
(i)
0 , ν

(i)
0:T−1, ν

(i)
0:T−1

¯

, and depends explicitly on
the control inputs u0:T−1, which are yet to be generated.

x
(i)
1:T =

2

6

6

6

6

4

x
(i)
1

x
(i)
2

...

x
(i)
T

3

7

7

7

7

5

, x
(i)
t = ft(x

(i)
0 ,u0:t−1, ν

(i)
0:t−1, θ

(i)
0:t−1).

(9)

3) Approximate the chance constraints in terms of the generated
particles.Using the result in (8) the probability of failure is
approximated as follows:

p(x1:T /∈ F ) =

Z

x1:T /∈F

p(x1:T )dx1:T ≈
1

N

N
X

i=1

wig(x
(i)
1:T ),

where g(·) is defined in (6). The approximated chance
constraint is then:

1

N

N
X

i=1

wig(x
(i)
1:T ) ≤ δ. (10)

In other words, a weighted fraction of no more than δ of the
particles can fall outside of the feasible region. Note that a
particle represents a state trajectory over the entire planning
horizon.

4) Approximate the constraints on the expected state using the
sample mean approximation. For example:

E[x1:T ] ∈ G becomes
1

N

N
X

i=1

wix
(i)
1:T ∈ G. (11)

5) Approximate the expected cost in terms of particles

ĥ !
1

N

N
X

i=1

wih(u0:T−1,x
(i)
1:T ) ≈ E[h(u0:T−1,x1:T )]

(12)

6) Solve deterministic constrained optimization problem:

Minimize ĥ over control inputs u0:T−1 ∈ U subject to:

1

N

N
X

i=1

wig(x
(i)
1:T ) ≤ δ,

1

N

N
X

i=1

wix
(i)
1:T ∈ G (13)

TABLE I. Chance Constrained Particle Control Algorithm

We consider the linear discrete time system model:

xt+1 = A(θt)xt + B(θt)ut + νt, (14)

where A(θt) indicates that the matrix A is a function of the

parameters θt. Substituting this system model into (9) we

obtain the following equation for x
(i)
t :

x
(i)
t =

t−1
∑

j=0

(

t−j
∏

l=2

A(θ
(i)
l−1)

)

(

B(θ
(i)
j )uj + ν

(i)
j

)

+

t−1
∏

l=0

A(θ
(i)
l )x

(i)
0 .

(15)
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Obstacle 1 

Obstacle 2 

Goal Region 

Particles approximating 
initial state distribution 

Particles approximating 

final state distribution 

10% of particles collide 

with obstacle 1 at time 3 

t=0 

t=1 

t=2 

t=3 

t=4 

Expected 
vehicle path 

Fig. 1. Illustration of new particle control method in a vehicle path
planning scenario. The feasible region is defined so that the plan is
successful if the vehicle avoids the obstacles at all time steps and is in
the goal region at the final time step. The objective is to find the optimal
sequence of control inputs so that the plan is successful with probability
at least 0.9. The particle control method approximates this so that at
most 10% of the particles fail. In this example all weights wi are 1.

Note that this is a linear function of the control inputs, and

that x
(i)
0 , ν

(i)
j and θ

(i)
j are all known values, as generated in

Step 1 of Table I. Hence each particle x
(i)
1:T is a known linear

function of the control inputs. Furthermore, the sample mean

of the particles is a known linear function of the control inputs.

To impose the approximate chance constraint (10), we need

to constrain the weighted fraction of particles that fall outside

of the feasible region. To do so, we first define a set of N
binary variables z1, · · · , zN , where zi ∈ {0, 1}. These binary

variables are defined so that zi = 0 implies that particle i falls

inside the feasible region. We then constrain the weighted sum

of these binary variables:

1

N

N
∑

i=1

wizi ≤ δ (16)

This constraint ensures that the weighted fraction of particles

falling outside of the feasible region is at most δ. We now

describe how to impose constraints such that:

zi = 0 =⇒ x
(i)
1:T ∈ F, (17)

first for convex polygonal feasible regions, then for non-

convex polygonal feasible regions.

1) Convex Feasible Regions: A convex polygonal feasible

region F defined for the state trajectory x1:T is defined as a

conjunction of convex polygonal constraints Ft for each time

step 1, . . . , T , such that:

x1:T ∈ F ⇐⇒
∧

t=1,··· ,T

xt ∈ Ft (18)

 

a
t3
'x

t
= b

t 3
 

a
t2
'x

t
= b

t 2
 

a
t1
'x

t
= b

t1
 

4t
a  

3t
a  

1t
a  

2t
a  

a
t4
'x

t
= b

t 4
 

Ft 

Fig. 2. Two-dimensional convex polygonal feasible region Ft defined
for the state at time t. The vectors at1, · · · ,atNt

are the unit outward
normals to the Nt line segments that define the feasible region.

O1 

O2 
O3 

a
12
'x = b

12  

a
14
'x = b

14

a
11
'x = b

11  

a
13
'x = b

13  

F 

Fig. 3. Two-dimensional non-convex polygonal feasible region F . The
feasible region is the complement of several convex obstacles (shaded).
Each obstacle Oj is defined by the Nj vector normals aj1, · · · ,ajNj

.

In turn, the polygonal feasible region Ft is defined as a

conjunction of linear constraints a
′

tlxt ≤ btl for l = 1, · · · , Nt,

where atl is defined as pointing outwards from the polygonal

region. Then, as illustrated in Fig. 2, xt lies within Ft if and

only if all of the constraints are satisfied:

xt ∈ Ft ⇐⇒
∧

l=1,··· ,Nt

a
′

tlxt ≤ btl. (19)

We now use ‘Big M ’ techniques to ensure that the constraint

(17) is satisfied. We impose the following constraints:

a
′

tlx
(i)
t − btl ≤ Mzi ∀t ∀l, (20)

where M is a large positive constant. A value of zi = 0 implies

that, for particle i, every constraint is satisfied for every time

step, whereas for large enough M , a value of zi = 1 leaves

particle i unconstrained. We therefore have:

zi = 0 =⇒
{

x
(i)
t ∈ Ft ∀t

}

=⇒ x
(i)
1:T ∈ F, (21)

as required.
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2) Non-convex Feasible Regions: Predictive control within

a non-convex feasible region is a much more challenging prob-

lem than control within a convex feasible region[44]. However,

as shown by [49], vehicle path planning with obstacles can be

posed as such a problem, hence it is of great interest.

A polygonal non-convex feasible region can, in general, be

defined as the complement of L polygonal infeasible regions,

as shown in Figure 3. In other words, the state trajectory x1:T

is in the feasible region if and only if all obstacles are avoided

for all time steps. As noted by [49], avoidance of a polygonal

obstacle can be expressed in terms of a disjunction of linear

constraints. That is, the system state at time t, avoids obstacle

Oj , defined as in Figure 3, if and only if:
∨

l=1,...,Nj

a
′

jlxt ≥ bjl (22)

In a similar manner to [49], we introduce binary variables

dijtl ∈ {0, 1} that indicate whether a given constraint l for a

given obstacle Oj is satisfied by a given particle i at a given

time step t. The constraint:

a
′

jlx
(i)
t − bjl + Mdijtl ≥ 0, (23)

means that dijtl = 0 implies that constraint l in obstacle Oj is

satisfied by particle i at time step t. Again M is a large positive

constant. We now introduce binary variables eijt ∈ {0, 1} that

indicate whether a given obstacle Oj is avoided by a given

particle i at a given time step t. The constraint:

Nj
∑

l=1

dijtl − (Nj − 1) ≤ Meijt, (24)

ensures that eijt = 0 implies that at least one constraint in

obstacle Oj is satisfied by particle i at time step t. This in

turn implies that obstacle Oj is avoided by particle i at time

step t.
Next, we introduce binary variables gij ∈ {0, 1} that

indicate whether a given obstacle Oj is avoided by particle

i at all time steps. The constraints:

T
∑

t=1

eijt ≤ Mgij ,

L
∑

j=1

gij ≤ Mzi, (25)

ensure that gij = 0 implies that obstacle j is avoided at all time

steps by particle i, and that zi = 0 implies that all obstacles are

avoided at all time steps by particle i. Hence, for non-convex

feasible regions F ,

zi = 0 =⇒ x
(i)
1:T ∈ F, (26)

as required.

B. Particle Control for Jump Markov Linear Systems

A special case of the linear dynamics (14) that is of

particular interest for robotics is the Jump Markov Linear

System (JMLS)[56], [23], [13], [20]. A JMLS is a system

whose model parameters θ take on values from a finite set.

In this case θt is referred to as the discrete state, or mode,

and xt is referred to as the continuous state; hence a JMLS is

a form of a hybrid discrete-continuous system. Without loss

of generality we assume that θt is an integer in the range

1, . . . , nθ. The dynamics of a JMLS are defined as:

xt+1 = A(θt)xt + B(θt)ut + νt, (27)

where θt is a Markov chain that evolves according to a

transition matrix T ∈ R
nθ×nθ such that:

p(θt+1 = j|θt = i) = Tij . (28)

Here Tij denotes the (i, j)’th element of matrix T . The

variable νt is a disturbance process whose distribution can

take any form, but is assumed to be known.

In order to apply the particle control approach of Section IV

to JMLS, we sample from discrete mode sequences, initial

continuous state and continuous disturbances according to a

proposal distribution q(x0, ν0:T−1, θ0:T−1). Given a discrete

mode sequence and samples for all of the uncertain contin-

uous variables, the future system state trajectory is a known

deterministic function of the control inputs. Now each particle

provides a sample of the future hybrid discrete-continuous

state trajectory as a function of the control inputs. Since JMLS

are a special case of the uncertain linear dynamics (14), each

particle is a linear function of the control inputs.

C. Expected State Constraints

In Step 4 of Table I we approximate the expected state

constraints as constraints on the sample mean of the particles.

Since the sample mean is a linear function of the control

inputs, for a polygonal feasible regions G, these constraints

can be posed as Mixed Integer Linear constraints using ‘Big

M’ techniques following a similar development to that in

Section V-A. For the sake of brevity, we omit the details here

but refer the reader to [10].

D. Control Constraints

Since the controls are u0:T−1 are deterministic, the con-

straint u0:T−1 ∈ U can be handled without approximation

using standard approaches for predictive control. For polyg-

onal U , this results in Mixed Integer Linear constraints; for

details see [10].

E. Cost Function

The optimal, chance constrained control problem requires

that we minimize the expected cost E[h]. The true expectation

is given by:

E[h] =

∫

h(u0:T−1,x1:T )p(x1:T )dx1:T . (29)

Since p(x1:T ) can be an arbitrary distribution, this integral

is intractable in most cases. We therefore approximate the

expectation using the sample mean as in (3):

ĥ =
1

N

N
∑

i=1

wih(u0:T−1,x
(i)
1:T ). (30)

This expression can be evaluated without integration, and

converges to the true expectation as the number of particles

approaches infinity. Furthermore, since we assume that h is a

piecewise linear function of the state and control inputs, the

expression for ĥ in (30) is also piecewise linear.
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F. Summary of MILP Formulation

To summarize, the approximated stochastic predictive con-

trol problem defined in Section IV defines a constrained op-

timization problem. If the proposal distribution q(·) is chosen

so that the weights wi do not depend on the control inputs,

and the system to control is either linear or Jump Markov

linear, we can express the approximated chance constraint (10)

and the approximated expectation constraint (11) using linear

constraints on the control inputs. These constraints involve

integer variables indicating whether a particular particle stays

within the feasible region. Furthermore, the approximated cost

function (30) is piecewise linear in the control inputs. Hence

the chance-constrained particle control problem can be posed

as a Mixed Integer Linear Program. The resulting optimization

finds the best sequence of control inputs such that at most a

weighted fraction δ of the particles falls outside of the feasible

region. This weighted fraction approximates the probability

of the future state trajectory falling outside of the feasible

region, and as the number of particles tends to infinity, the

approximation becomes exact. The optimality criterion and

constraints on the expected state are also approximated in

terms of particles, and the approximation becomes exact as

the number of particles tends to infinity. While MILPs are

worst-case exponential, in the average case they can be solved

very quickly using commercially-available software [26] as we

demonstrate in Section VII.

VI. CHOOSING A PROPOSAL DISTRIBUTION

We now consider the problem of choosing a proposal

distribution q(·). A considerable amount of work in estimation

has shown that the ‘best’ proposal distribution depends heavily

on the particular problem being addressed, and a great deal

of work has focussed on developing proposal distributions for

specific applications, for example [23], [34], [22]. This applies

equally to control problems.

A proposal distribution must meet the following criteria.

First, we must ensure that q(·) > 0 wherever p(·) > 0. Second,

in order for the optimization to be posed as a MILP, p(·)/q(·)
cannot be a function of the control inputs u. Third, we must

be able to sample from q(·).
These criteria are all met by the ‘fair’ proposal distribu-

tion q(·) = p(·). In Sections VII-A and VII-B, we show

empirically that the fair proposal distribution is effective in

two different scenarios that have only continuous dynamics.

This is, however, not the case for hybrid systems with low-

probability mode transitions such as failures. We demonstrate

this empirically in Section VII-C. The key insight is that these

discrete jumps in the system dynamics have a large effect on

the optimal, chance constrained control strategy, compared to

the probability of such jumps occurring. In this section we

design a proposal distribution that addresses this problem.

We consider proposal distributions of the following factored

form:

q(x0, ν0:T−1, θ0:T−1) = p(x0, ν0:T−1|θ0:T−1)q(θ0:T−1).
(31)

In other words, we use the fair distribution over initial state and

disturbances, but use a proposal distribution q(θ0:T−1) defined

over mode sequences. To sample from this distribution, we first

generate samples of the mode sequence from q(θ0:T−1), and

for each sample θ
(i)
0:T−1 we generate samples of x0 and ν0:T−1

from their true joint distribution. With this factorization, the

importance weight has a particularly simple form:

wi =
p(x

(i)
0 , ν

(i)
0:T−1|θ

(i)
0:T−1)p(θ

(i)
0:T−1)

p(x
(i)
0 , ν

(i)
0:T−1|θ

(i)
0:T−1)q(θ

(i)
0:T−1)

=
p(θ

(i)
0:T−1)

q(θ
(i)
0:T−1)

. (32)

We must now choose q(θ0:T−1) in order to address the prob-

lem of low-probability mode sequences. In order to motivate

our choice of q(θ
(i)
0:T−1), we present two unsuitable candidates.

First, consider a fair sampling approach:

q(θ0:T−1) = p(θ0:T−1). (33)

With this proposal, low-probability mode sequences are rarely

sampled. Such sequences include those where a particular

component, such as the brakes on a car, has transitioned into a

‘failed’ mode. In this case the control sequence generated by

the particle control approach is strongly dependent on whether

a sequence with the ‘failed’ mode is sampled. If no such brake

failure is sampled, the algorithm will not design a control

sequence that is robust to such failures. The proposal (33)

is unsuitable, because it yields a high probability that no fault

transitions will be sampled.

Next consider a proposal equal to the pseudo-uniform dis-

tribution q(θ0:T−1) = U(θ0:T−1), where U(·) assigns an equal

probability to each mode sequence for which p(θ0:T−1) > 0.

More precisely:

U(θ0:T−1) =

{

1/np p(θ0:T−1) > 0

0 p(θ0:T−1) = 0,
(34)

where np is the number of mode sequences for which

p(θ0:T−1) > 0. Using this proposal ensures that sequences

involving faults are sampled with the same likelihood as

the mode sequence without failures (which in reality has

much higher probability). This solves the problem of failure

sequences being sampled too infrequently. We assume for

now that there is only one mode sequence without failures,

which we refer to as the nominal mode sequence θnom
0:T−1. The

drawback in using this proposal is that there is a significant

likelihood that the nominal mode sequence is not sampled.

If this occurs, the deterministic optimization will typically be

infeasible; achieving most control tasks requires a non-zero

probability of the system components operating nominally.

To address the problem of low-probability sequences, we

instead use the following ‘failure-robust’ proposal:

q∗(θ0:T−1) =

{

Pnom θ0:T−1 = θnom
0:T−1

1−Pnom

np−1 θ0:T−1 ,= θnom
0:T−1,

(35)

where:

Pnom = 1 − (1 − λ)1/N , (36)

and N is the number of particles. This proposal ensures

that the nominal mode sequence is sampled at least once

with probability λ, and shares the remaining probability space

evenly among the remaining mode sequences. This increases

the probability of sampling a failure sequence. In Section VII
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we give an empirical analysis that shows that this proposal

distribution significantly outperforms the fair proposal distri-

bution (33) when there are low-probability transitions such

as failures. Note that, while we have assumed here a single

nominal sequence, the extension to multiple nominal mode

sequences is straightforward.

VII. RESULTS

In this section we demonstrate the new particle control

approach in simulation using three scenarios. In Section VII-A

the method is used to control an aircraft within a flight enve-

lope in heavy turbulence, while in Section VII-B the method

is used to generate chance constrained, optimal paths for

an aircraft operating in an environment containing obstacles.

These scenarios do not consider component failures, and so in

Section VII-C the method is applied to the problem of ground

vehicle control with failure-prone brakes.

In each of these examples the system dynamics are stable;

in the case of the aircraft examples, stability is provided by an

inner-loop controller, while for the ground vehicle, stability is

provided by friction. As with all approaches that plan open-

loop control actions for stochastic systems, it is important that

either the system dynamics are stable or the planning horizon

is short relative to the disturbance covariance. If neither of

these hold, the system state covariance will typically grow to

be too large for there to exist a feasible solution that satisfies

the chance constraints.

A. Chance Constrained Predictive Control in a Convex Fea-

sible Region

The new particle control method was used to generate

chance constrained predictive control inputs for an aircraft

performing an altitude change maneuver in turbulence. In this

scenario, successful execution means that the aircraft remains

within a defined flight envelope. An example is shown in

Figure 4. Note that the feasible region here is convex in the

space of state trajectories; there is a convex constraint on each

vector x1, . . . ,xT , hence the block vector x1:T is constrained

to be in a convex region.

For the aircraft model, we use the linearized longitudinal

dynamics of a Boeing 747 travelling at Mach 0.8. Since

the angle of attack of most aircraft is low in normal oper-

ation, linearizing the dynamics about the equilibrium state

or trim state of the aircraft yields a good approximation to

the true dynamics, which can be used to develop control

algorithms[33]. We assume that there is an inner-loop con-

troller issuing elevator commands, which is an altitude-hold

autopilot. This controller consists of a fixed-gain proportional

full-state feedback controller defined so that:

at = K
(

xt − x
r
t

)

x
r
t =

[

0 0 0 0 ut

]′

. (37)

where at is the elevator angle at time step t and ut ∈ ℜ is the

desired altitude setpoint at time step t. The aim of the chance-

constrained predictive controller is to issue the altitude setpoint

commands ut to the autopilot in an optimal manner, so that the

aircraft breaks the flight envelope with a probability of at most

δ. Using the controller in (37), the closed-loop dynamics of

the aircraft can be expressed in the discrete-time form of (14)

with:

A =













0.99 0.024 −1.20 −27.1 4.4E−3

−0.16 0.32 −10.0 −31.4 −0.029
2E − 6 1E − 6 0.013 0.011 1.5E−5

−1.8E−4 1.7E−4 −4.4E−3 −0.156 −1.3E−4

0.032 −1.04 20.3 1.02E3 0.9













,

(38)

and:

B =













−4.48E−3

0.030
−1.5E−5

1.28E−4

0.079













, (39)

where time increments of 2s were used in the discretization,

and where we have used aEb to denote a × 10b. We use a

planning horizon of 20 increments.

Disturbances due to turbulence have been studied exten-

sively and are modeled as stochastic noise processes that are

far from Gaussian[4]. In this section the process noise νt is

drawn from the Dryden turbulence model described in Military

Specification MIL-F-8785C [1]. We assume heavy turbulence,

as defined in MIL-F-8785C, with a low-altitude wind velocity

of 25m/s.

Optimality is defined in terms of fuel consumption, and we

assume the following relationship between fuel consumption

h and elevator angle at time t, at:

h =

T−1
∑

t=0

|at|. (40)

Since we assume an inner loop controller issues elevator angle

commands, at depends on the disturbances that act on the

aircraft; for example, if a fixed altitude is commanded by the

predictive controller, the autopilot will issue larger elevator

commands in order to reject large disturbances than for smaller

ones. Since the disturbances are stochastic, we cannot directly

optimize the fuel consumption defined in (40). Therefore, we

instead optimize the expected fuel consumption E[h].
We impose a maximum elevator deflection of 0.5 radians,

modeling actuator saturation. Again, since elevator deflection

depends on stochastic disturbances, we cannot prevent actu-

ator saturation with absolute certainty. We instead define a

chance constraint that, approximated using the particle control

method, ensures that actuator saturation occurs with at most

a given probability. In the results shown here we define this

probability to be zero, thereby ensuring that saturation occurs

with approximately zero probability. We do not explicitly

model nonlinearities due to saturation, instead considering the

plan to have failed if saturation occurs.

The initial state distribution was generated using a particle

filter. The particle filter tracked the system state for ten time

steps leading up to time t = 0 while the aircraft held

altitude. Observations of pitch rate and altitude were made

subject to additive Rayleigh noise[42]. This non-Gaussian

noise means that a particle filter will typically outperform a
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Fig. 4. Path of particles for typical solution to flight envelope scenario.
100 particles were used and the desired probability of failure is 0.1. Ten
particles fall outside of the flight envelope.

Kalman Filter[21]. The number of particles used for estimation

was the same as that used for control.

Figure 4 shows a typical solution generated by the particle

control algorithm for 100 particles. Here we use the fair

proposal distribution q(·) = p(·), i.e. disturbance samples

are generated using the MIL-F-8785C turbulence model[1].

The desired probability of failure is 0.1, and ten particles fall

outside of the flight envelope.

The true probability of failure for a given plan was estimated

using 106 random simulations. Since the generated plan de-

pends on the values sampled from the various probability dis-

tributions, 40 plans were generated for each scenario. Figure 5

shows the results for a desired probability of failure of 0.1. It

can be seen that the mean probability of error gets closer to

the desired value as the number of particles increases, and that

the variance decreases. For 200 particles, the approximation is

close; the mean is 0.1073 and the standard deviation is 0.0191.

Hence the particle control algorithm can generate optimal

solutions to problems that are close to the full stochastic

control problem with relatively few particles. Figure 6 shows

the time taken to solve the Mixed Integer Linear Program for

this example as a function of the number of particles.

B. Chance Constrained Vehicle Path Planning with Obstacles

The new particle control method was also applied to a UAV

path planning scenario with obstacles, wind and uncertain

localization. In this scenario, successful execution means that

the UAV is in the goal region at the end of the time horizon,

and that the UAV avoids all obstacles at all time steps within

the horizon.

Previous work[49] has shown that, for the purposes of

path planning, an aircraft operating in a two-dimensional

environment can be modeled as a double integrator with

velocity and acceleration constraints. This model is based on

the assumption that an inner-loop autopilot can be used to drive

the UAV to a given waypoint, as long as the velocity does

not go below a minimum value or above a maximum value,

and maximum acceleration levels are not exceeded. Turn

rate constraints are handled conservatively using acceleration

magnitude constraints. We use the same aircraft model and
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design control inputs. The desired probability of error was 0.1, shown as
the dashed line. The results shown are for 40 sets of designed control
inputs, with the dots denoting the mean and the error bars denoting
the standard deviation of the probability of error. As the number of
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Fig. 6. MILP solution time for particle control with Boeing 747 example.
The specified maximum probability of failure was 0.1.

assume a maximum aircraft velocity of 50m/s, time steps

of 1s, and a planning horizon of 10s. We use a fixed-gain

proportional full-state feedback controller for the inner-loop

autopilot, defined such that:

at = K
(

xt − x
r
t

)

x
r
t =

















ux,t

0
0

uy,t

0
0

















ut !

[

ux,t

uy,t

]

, (41)

where ut is the waypoint command at time step t, and at is

the acceleration vector applied to the double integrator aircraft

model at time step t. The aim of the chance-constrained

predictive controller is to issue the waypoint commands ut to

the autopilot in an optimal manner, so that the aircraft collides
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with an obstacle with a probability of at most δ. After time-

discretization, the closed-loop aircraft dynamics are given in

the form of (14) by:

A =

















1.1 −4.9 −6.8 0 0 0
0.59 −2.7 −4.1 0 0 0
−0.26 1.7 2.8 0 0 0

0 0 0 1.1 −4.9 −6.8
0 0 0 0.59 −2.7 −4.1
0 0 0 −0.26 1.7 2.8

















, (42)

and:

B =

















0.57 0
0.053 0
−0.044 0

0 0.57
0 0.053
0 −0.044

















. (43)

Uncertain disturbances, due to wind, act on the UAV. We use

the Dryden wind model with a low-altitude wind speed of

15m/s and light turbulence, as defined in MIL-F-8785C. We

assume an inner-loop controller that acts to reject disturbances.

As in Section VII-A, uncertainty in localization leads to

uncertainty in the initial position of the UAV. The obstacle

map used is shown in Figure 7. Optimality was again defined

in terms of fuel consumption, which we assume is related to

input acceleration as follows:

h =

T−1
∑

t=0

{

|ax,t| + |ay,t|
}

at !

[

ax,t

ay,t

]

. (44)

Here ax,t and ay,t are the commanded accelerations at time t
in the x and y directions respectively. In order to reduce the

solution time of the resulting MILP problem we employed an

iterative deepening technique described in the Appendix. As

in Section VII-A we use a fair proposal distribution.

Results for the scenario are shown in Figures 7 and 8. Fifty

particles were used for these examples. Figure 7 shows that

if a probability of failure of 0.04 or above is acceptable, the

planned path of the UAV can go through the narrow corridor

at (−50, 200). It can be seen that exactly two particles collide

with the obstacles as expected. For a lower probability of

failure, however, the planned path is more conservative as

shown in Figure 8. This path avoids the narrow corridor at

the expense of fuel efficiency.

C. Chance Constrained Control with Component Failures

The new particle control method was applied to a ground

vehicle brake failure scenario. In this scenario, the wheeled

vehicle starts at rest at a distance of 8m from its goal. The

vehicle can apply acceleration and braking inputs. The brakes

can fail, however, in which case braking has no effect. The

vehicle’s expected position, conditioned on nominal brake

operation, must arrive at the goal in the minimum possible

time. Overall failure of the plan is defined as collision of the

vehicle with a wall, which is situated 4m past the goal. The

situation is illustrated in Figure 9.

The vehicle is modeled as a Jump Markov Linear System

with two operational modes such that θt ∈ {1, 2}. In mode 1,

!!"# !!## !$"# !$## !"# # "# $## $"# !## !"#

"#

$##

$"#

!##

!"#

%##

%"#

&##

'()*

+
()
*

!!" !## !#" !$# !$" !%#

&##

&!"

&!#

&'"

&'#

&("

&(#

&)"

&)#

*""

+,-.

/
,-
.

Fig. 7. Path of particles for typical solution to UAV path planning problem
for a probability of failure of 0.04. Obstacles are in blue, while the goal
is in red and dashed. At this level of conservatism, the aircraft is able to
pass through the narrow corridor. The particle control method ensures
that at most two particles out of fifty collide with the obstacles, as shown
inset. This solution has a fuel cost of 73.98.
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Fig. 8. Path of particles for typical solution to UAV path planning problem
for a probability of failure of 0.02. Obstacles are in blue, while the
goal is in red and dashed. At this level of conservatism, the aircraft no
longer passes through the narrow corridor, but goes around the largest
obstacle. This solution has a fuel cost of 74.72. Hence the reduced
probability of failure comes at the expense of fuel.

θ = 1 and the brakes are functional while in mode 2, θ = 2
and braking has no effect:

A(1) = A(2) =

[

0.9 0
1 1

]

B(1) =

[

1 −1
0 0

]

B(2) =

[

1 0
0 0

]

(45)

The transition matrix as defined in (28) is given by:

T =

[

0.999 0.001
0.0 1.0

]

. (46)

The controls issued by the chance-constrained predictive con-

troller are defined by:

ut =

[

aa,t

ab,t

]

, (47)

where aa,t ≥ 0 is the commanded acceleration, and ab,t ≥ 0
is the commanded deceleration due to braking. The switching
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Fig. 9. Illustration of ground vehicle brake failure scenario. The expected
vehicle position must arrive at the goal in the minimum possible time,
while avoiding collision with the wall.
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Fig. 10. Typical solution for a maximum probability of failure of 0.01, with
100 particles. The vehicles arrives at the goal within 6s, but will collide
with the wall if a brake failure occurs. This particular solution gives a true
probability of failure of approximately 0.006.

dynamics in (45) and (46) mean that if the brakes are func-

tional, at every time step there is a probability of 0.001 that

they become faulty. Once faulty, the brakes remain faulty. The

brakes are initially functional, and the initial vehicle state is

known exactly, however random acceleration disturbances act

on the vehicle. Also, frictional forces proportional to velocity

act to decelerate the vehicle. A planning horizon of 20 time

steps was used, with time intervals of 1s.

The particle controller must generate control inputs that are

robust to both continuous disturbances and to the possibility of

brake failure. Intuitively, the optimal strategy depends heavily

on the desired level of conservatism. A race car driver, who

can tolerate a relatively high probability of failure, would

accelerate as hard as possible and brake as hard as possible to

achieve the minimum-time solution. A bus driver, on the other

hand, must achieve a probability of failure of close to zero,

and would therefore accelerate more slowly and brake more

gradually. Both of these strategies are generated by the particle

control method. Figure 10 shows a typical solution generated

by the particle control approach for a maximum probability of

failure of 0.01, using the proposal distribution (35). Figure 11

shows a typical solution for a maximum probability of failure

of 10−6. The more conservative solution takes 9s, while the

more aggressive solution takes only 6s.

We now demonstrate that the failure-robust proposal distri-

bution (35) enables the particle controller to take into account

the low probability brake failures. Figure 12 shows a typical

solution generated using a fair proposal distribution. In this

0 5 10 15 20

0

20

40

60

80

100

Time(s)

P
e

rc
e

n
ta

g
e

 e
ff

o
rt

 

 

acceleration effort

braking effort

0 5 10 15 20

0

5

10

15

P
o

s
it
io

n
(m

)

 

 

Wall

Goal

Particles

Fig. 11. Typical solution for a maximum probability of failure of 10−6,
with 100 particles. The vehicle travels more slowly and arrives within
9s, which is later than with the more aggressive solution. In the case of
brake failure, however, friction brings the vehicle to rest before collision
with the wall. This solution is therefore robust to brake failure, giving a
probability of failure of approximately 1.0× 10−6.
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Fig. 12. Typical solution with fair proposal distribution for a maximum
probability of failure of 10−6, with 100 particles. Top: Planned particle
distribution. Because no particles have sampled the brake failure, the
controller plans aggressively. Bottom: Monte Carlo simulations of true
state trajectory. In reality, there is a probability of approximately 0.0050

that a brake failure occurs at or before t = 5s, causing the vehicle to
collide with the wall.

case, the algorithm did not sample any of the failure transitions

and so has generated an inappropriately aggressive control

policy that does not take into account the possibility of brake

failure. Figure 13 shows a typical solution generated using

the failure-robust proposal. By increasing the probability of

sampling failure transitions, the importance weighting has

taken into account brake failure, generating an appropriately

conservative plan. Figure 14 compares the fair proposal

distribution approach against the failure-robust proposal in

terms of the true probability of failure. In this example the

desired probability of failure was 10−6. The failure-robust

proposal achieves a true probability of failure dramatically
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Fig. 13. Typical solution with failure-robust proposal distribution for a
maximum probability of failure of 10−6, with 100 particles. Top: Planned
particle distribution (importance weights not shown). Many particles
have sampled brake failures, hence the controller plans taking brake
failures into account. Bottom: Monte Carlo simulations of true state
trajectory. The vehicle collides with the wall with a probability of approx-
imately 1.0× 10−6.
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Fig. 14. True probability of failure against number of particles for fair
proposal and failure-robust proposal. The desired probability of failure
was 10−6. The failure-robust proposal achieves a true probability of
failure dramatically closer to the desired value than the fair sampling
case. With a very small particle set, the effect of the failure-robust
proposal is diminished since the probability of sampling the nominal
sequence must be high in order to satisfy constraints on the probability
of a feasible solution.

closer to the desired value than the fair proposal. Notice also

that for larger particle sets the fair proposal approaches the

failure-robust one, except that the variance is much greater in

the fair-proposal case. This is because on the rare occasion

that brake failure transitions are sampled, the solution is very

different from the average case. This variance is particularly

undesirable for control. The MILP solution times for this

example are shown in Figure 15.

VIII. COMPARISON WITH MONTE CARLO MARKOV

CHAIN METHODS

One alternative approach to chance-constrained control with

non-Gaussian uncertainty and continuous decision variables
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Fig. 15. MILP solution time for ground vehicle problem. The specified
maximum probability of failure was 0.01.

was previously proposed by [29]. This approach uses a Monte

Carlo Markov Chain (MCMC) framework[45] to find an

approximately optimal control input through simulation-based

optimization. This works by estimating the distribution of

a random variable, which is constructed so that the peaks

of the distribution coincide with the optimal decision value.

The estimation process is then carried out by MCMC[45].

In this section we first discuss differences between the two

approaches, and then provide a performance comparison.

MCMC has two main advantages over the new particle

control approach. First, it is not restricted to linear system dy-

namics and second, the distributions of the uncertain variables

can be functions of the state and control inputs. There are two

key disadvantages, however. The first is that the convergence

of MCMC is sensitive to a number of parameters. These

parameters must be tuned carefully by hand to achieve good

performance, a process which in [29] takes several iterations.

Second, MCMC is more computationally expensive than our

MILP approach for the Boeing 747 altitude envelope problem

described in Section VII-A, as we show in this section.

The MCMC optimization approach proposed in [29] con-

verts a chance-constrained problem to an unconstrained

stochastic optimization problem that penalizes constraint vio-

lation. Applying this approach to Problem 1, the cost function

is:

h̃(u0:T−1,x1:T ) =

{

e−h(u0:T−1,x1:T ) + Λ x1:T ∈ F

1 x1:T /∈ F,
(48)

where Λ is a parameter used to reward constraint satisfaction.

It is shown in [29] that the maximizer of (48) will satisfy the

original chance constraint p(x1:T /∈ F ) ≤ δ if Λ is chosen

such that:

Λ =
1 − P̂

δ − P̂
, (49)

where P̂ is the probability of constraint violation for some

known feasible solution. To minimize suboptimality, P̂ should

be minimized.

The MCMC approach of [29] was applied to the Boeing 747

problem described in Section VII-A with a maximum proba-

bility of failure of δ = 0.1. We were able to find a feasible
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Fig. 16. Best MCMC solution after 10, 000 iterations, or 13.4 hours of
computation. The solution is feasible, but has a cost of 16.3 compared
to particle control’s average cost of 1.84.

solution with P̂ = 5 × 10−5, which gives Λ = 10.0045. We

used a uniform proposal distribution for the altitude setpoints

u0:T−1, with minimum and maximum values of 19750ft
and 21750ft respectively. These values were chosen since

they are the minimum and maximum values of the flight

path envelope. The cost h(·) was as defined in (40), and

the constraints were defined by the flight envelope shown

in Figure 4. The MCMC approach generates J independent

samples of the random variables per iteration. Larger J is

more computationally intensive, but concentrates the resulting

distribution around the optimal solution. We varied J from

1 to 50 in our experiments. MCMC uses a ‘burn-in’ period

to allow the Markov Chain to reach a stationary distribution.

Samples obtained during this period are discarded. We used a

‘burn-in’ period of one tenth of the total number of iterations;

Figure 16 shows the best solution found using the MCMC

approach after 10, 000 iterations, or 13.4 hours of computation.

The best solution was found using J = 10. After this many

iterations, the solution is feasible, but has a very high cost of

16.3 compared to particle control’s average cost of 1.83. This

high cost is due to the unnecessary altitude changes that can be

seen in Figure 16. The true probability of failure was estimated

using 106 Monte Carlo simulations to be approximately zero,

indicating a high degree of conservatism in the plan.

The particle control approach proposed in this paper solves

this problem in seconds for reasonable levels of approxi-

mation error (see Figures 5 and 6) and achieves a much

lower cost. The particle control approach is therefore more

computationally efficient that the MCMC approach of [29].

We acknowledge that it might be possible to improve the

performance of MCMC by further manual tuning of the

optimization parameters, however our attempts to do so did

not yield any improvement. Furthermore, the necessity for

manual tuning makes the MCMC approach less appropriate

for autonomous robotic applications. For J = 1 and J = 5, for

example, MCMC did not find a feasible solution after 10, 000
iterations.

IX. COMPARISON WITH SCENARIO METHOD

An alternative approach to solving chance-constrained con-

vex optimization problems was proposed by [14]. This sce-

nario approach can be applied to chance constrained predictive

control problems with non-Gaussian noise and linear system

dynamics. Unlike the particle control approach presented in

this paper, the scenario approach is limited to convex feasible

regions. In this section we compare the two approaches for

a problem with a convex feasible region and discuss key

differences between the algorithms. The key idea behind the

scenario method of [14] is to generate samples of the uncertain

variables, referred to as scenarios, and to ensure that the

constraints are satisfied for all scenarios. [14] provide an

elegant bounding result that specifies how many scenarios are

sufficient to ensure that the chance constraints are satisfied

with a certain confidence. Denoting the state sequence for each

scenario as x
(i)
1:T , the result specifies that:

x
(i)
1:T ∈ F i = 1, . . . , Ns =⇒ p

(

p(x1:T /∈ F ) ≤ δ
)

≥ β,
(50)

where Ns is the number of scenarios specified by the analytic

result of [14], as a function of the confidence parameter β, the

chance constraint value δ and the dimension of the problem.

The scenario method and the particle control method take

two different approaches to dealing with the intractability

of the full chance constrained problem stated in Section II.

While particle control approximates the chance constrained

problem using samples, the scenario method bounds the

chance constrained problem using samples. Bounding and

approximation are two common solutions for dealing with

intractable problems. Bounding techniques have the advantage

of guaranteeing that constraints are satisfied, while approxima-

tion techniques often do not. If the bound used is too loose,

however, the solution returned by the bounding approach can

be highly conservative, leading to excessive cost and even

infeasibility[37]. We now show empirically that this is indeed

the case when comparing the scenario approach of [14] and

the particle control approach presented in this paper.

We used the scenario approach of [14] to solve the aircraft

altitude control problem described in Section VII-A. The

maximum probability of failure was set to δ = 0.1 and the con-

fidence parameter was set to β = 0.999. For these parameters,

the analytic result of [14] specifies that Ns = 1439 scenarios

are sufficient to ensure that the chance constraints are satisfied

with high probability. Since the plan generated depends on

the sampled values, we ran the scenario approach 40 times.

The true probability of failure of the solution was estimated

using 106 Monte Carlo simulations. The mean probability of

failure was 5.2 × 10−4 and the variance was 5.4 × 10−4.

Hence on average for this example, the scenario approach

gives a probability of failure almost 200 times less than the

allowable value, indicating a high degree of conservatism. As

shown in Figure 5, particle control with 200 particles has an

average probability of failure of 0.107 and a variance of 0.019.

While the approximation technique of particle control does not

provide guarantees that the chance constraints are satisfied, it

avoids the conservatism of the bounds used in the scenario
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technique. This is further reflected in the cost of the solution,

which for the scenario approach has an average of 2.07 and

for particle control has an average of 1.84.

X. CONCLUSION

In this paper we have presented a novel approach to optimal,

chance constrained stochastic control that takes into account

probabilistic uncertainty due to disturbances, uncertain state

estimation, modeling error and stochastic mode transitions so

that the probability of failure is less than a defined threshold δ.

While we did not consider uncertainty in the feasible region,

the extension is straightforward; this can be used to model,

for example, uncertainty in obstacle location. The new method

approximates the original stochastic problem as a deterministic

one using a number of particles. By controlling the trajectories

of these particles in a manner optimal with regard to the

approximated problem, the method generates approximately

optimal solutions to the original chance constrained problem.

Furthermore the approximation error tends to zero as the

number of particles tends to infinity. By using a particle-based

approach, the new particle control method is able to handle

arbitrary probability distributions. We demonstrate the method

in simulation and show that the true probability of failure tends

to the desired probability of failure as the number of particles

used increases. Furthermore the time taken to find the globally

optimal solution is significantly less than existing Monte Carlo

Markov Chain approaches to chance-constrained control.
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APPENDIX

Here we describe the approach used to reduce the time

required for the UAV obstacle avoidance problem in Sec-

tion VII-B. This approach reduces the average solution time,

while still guaranteeing that the globally optimal solution is

found, if one exists. The key observation is that, since the so-

lution time for MILP is exponential in the size of the problem,

solving many small MILPs is faster than solving one large one.

Our approach uses this, solving many small MILPs instead

of one large one, while still guaranteeing that eventually the

returned solution is the globally optimal, feasible solution

to the full MILP. This is inspired by iterative deepening

approaches used in graph search[48]. We use fullMILP

to denote the MILP encoding the entire chance constrained

particle control problem. The approach proceeds as follows:

1) Initialize subMILP as having one randomly chosen

particle from fullMILP and no obstacles. k ← 0.

2) Solve subMILP to global optimality to get solution

Solution(k).

3) Check whether all constraints in fullMILP are satis-

fied by Solution(k).

4) If yes, return Solution(k) and stop.

5) If no, check if subMILP=fullMILP. If yes, return

infeasible. Otherwise add to subMILP the particle

and the obstacle in fullMILP with the greatest con-

straint violation.

6) k ← k + 1. Go to Step 2.

Since constraints are only added to subMILP and never

removed, we know that the cost of each successive so-

lution Solution(k) cannot decrease. Therefore, once

Solution(k) is a feasible solution to fullMILP, we

know that Solution(k) is the globally optimal, feasi-

ble solution to fullMILP. Constraints and particles are

added until a feasible solution to fullMILP is found or

subMILP=fullMILP, in which case we know no feasible

solution to fullMILP exists. Hence the iterative deepening

procedure above guarantees finding the globally optimal so-

lution if one exists. In practice we found that the approach

enables the solution to be found much more quickly than

simply solving fullMILP directly.
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