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ABSTRACT. A series representation of the Macdonald function is obtained using the properties of
a probability density function and its moment generating function. Some applications of the result

are discussed and an open problem is posed.
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1. INTRODUCTION.

Kadell [8] used the prohabilistic approach to prove Ramanujan’s 13, sum. Ismail [6] gave the
most natural proof of Ramanujan ;4 sum that extended to multivariate hypergeometric functions.
Some algebraic and other techniques are used to provide simple proofs of the established identities,
see[l, 4,5, 6, 8, 9]. In this paper we have used probabilistic approach to derive a series representation
[2, p. 100] of the Macdonald function. Some applications of the result are discussed and an open

problem is posed.

2. MAIN RESULTS.
LEMMA 2.1. For Re(z) > 0

00
T Ka(z) /o t" exp(—zcosht)coshat dt  if n is even,

dam

/wt" exp(—zcosht)sinhatdt if n is odd.
o

PROOF. It follows from the integral representation [3, p. 358]
K.(2) = /m exp(~z cosh t) cosh(at)dt,
0

of the Macdonald function K,(z), Rez>0.
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THEOREM 2.1. Let 0 <t <1 and Rez > 0. Then,

Ko (2:v/T=1) = (1=1)°2 3 Koyr(22)(2t)" /7! (2.1)
r=0
PROOF. Let us define the function I(a, 8) by
Ia,B) = /oo z° lexp(—z — Bz~ )dz, —oo<a<oo, $>0. (2.2)
o

Then, the function defined by
f(@) = (I(e, B)) *2* texp(—z - Bz™Y), >0, >0 (2.3)

is the probability density function (pdf). It may be noted that the pdf (2.3) has appeared in an
earlier work. This is the limiting case @ — 0 of theorem 1.11 in [7].

The r-th non-central moment of the random variable X having (2.3) as its pdf is given by

IR (T
E(X") = /o 2 (e)de = Spo S (2.4)
The moment generating function (mgf) of f(z) is given by
E(e') = /0°° ¢ f(z)dz = ﬁ /0°° e exp(~(1 =)z — Br~Y)dz, 0<t<l.  (25)
Substituting (1 — t)z = 7 in (2.5) and simplifying we get
try I(avﬂ(l _ t))
B = T tetia py (26)
The relation
B(e*) = Y. B(X)5
r=0 °
yields,
I, B(1-1)) _ i Ha+r1,B) 7
(1-tel{e,f) = IKa,B) 1
or
I(a, B(1 - 1) = [E Ia+1,6) t—,} (1-t)e. (1)
r=0 :
It is known [3, p. 340] that
I(a, B) = 287 Ko(2y/B), —o0 <a < oo, Ref > 0. (2.8)

From (2.7) and (2.8) we get
oo tf
Ka(2y/B(1-1)) = (1= ) 3 B Kasr(2y/B) . (2.9)
r=0 °
The substitution 8 = 2% in (2.9) yields the proof of the theorem.

In particular when a = 0 and 8 = 2? in (2.9) we get

K2/ =0) = 3 ("Kn(2)) ) (2.10)

n=0
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which shows that Ko(zy/T —1) is the generating function of X (z/2)"K.(z), n=0,1,2,3,... .
An immediate consequence of the theorem is the following result which provides the closed form
solution to the representation of the first derivative with respect to the order of the Macdonald
function at the integral values of the order. The problem remains open for the higher derivatives and
the other values of the order of the function.
COROLLARY 2.1. For Re(z) > 0,

9 _ln_ = _,‘_J_]il_@_z_)
e Ko(2)lazn = 5 - § jln =)t

PROOF. Differentiating both sides of (2.1) with respect to a we get

ai [K,,(Qz\/l - t] =(1-t)°" Z [a {Kasr(22)} + = ln(l — ) K40 (22) (t:,) . (2.11)
a !
However, it follows from the lemma that
a ...
E; [Aa(z)]cx:O = 0 (212)
Therefore, substituting a = 0 in (2.10) and using the series representation of In(1 — ¢) and (2.11) we
get )
t 1{t ¢ t t
z (Kaur(22)],0 ﬂ St — - ZK (22) (’ ) . (2.13)
“~ B Mo 2\1T 2 n pa]

Equating the coefficients of ¢* in (2.12) yields the desired proof.
COROLLARY 2.2. For Re z > 0,

nt g T Kn(22).

% 1
t exp(—2z cosh t)sinh(nt)dt = =
7 texa( Jsinh(nt)dt = 5 22 32 et

PROOF. This follows from the lemma and Corrollary 2.1.

In particular when n = 2 we get
/ t exp{—2z cosh t)sinh(2t)dt = = [I\ (22) + 2zK,(22)], (2.14)

which does not seem to be known in the literature.
We state here an open problem the solution to which will have far-reaching consequences in the

generalization of the inverse Gaussian distribution.

STATEMENT OF THE OPEN PROBLEM. Find the relationship of Z&a

functions for n > 2.

with the other special

80"
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