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Abstract

Agriculture plays a critical role in the economy of several countries, by providing the
main sources of income, employment, and food to their rural population. However, in

recent years, it has been observed that plants and fruits are widely damaged by

different diseases which cause a huge loss to the farmers, although this loss can be

minimized by detecting plants’ diseases at their earlier stages using pattern recognition

(PR) and machine learning (ML) techniques. In this article, an automated system is

proposed for the identification and recognition of fruit diseases. Our approach is

distinctive in a way, it overcomes the challenges like convex edges, inconsistency

between colors, irregularity, visibility, scale, and origin. The proposed approach

incorporates five primary steps including preprocessing,Standard instruction requires

city and country for affiliations. Hence, please check if the provided information for

each affiliation with missing data is correct and amend if deemed necessary. disease

identification through segmentation, feature extraction and fusion, feature selection,

and classification. The infection regions are extracted using the proposed adaptive and

quartile deviation-based segmentation approach and fused resultant binary images by

employing the weighted coefficient of correlation (CoC). Then the most appropriate

features are selected using a novel framework of entropy and rank-based correlation

(EaRbC). Finally, selected features are classified using multi-class support vector

machine (MC-SCM). A PlantVillage dataset is utilized for the evaluation of the proposed

system to achieving an average segmentation and classification accuracy of 93.74%

and 97.7%, respectively. From the set of statistical measure, we sincerely believe that

our proposed method outperforms existing method with greater accuracy.

Keywords: Contrast stretching, Segmentation, Fusion, Feature extraction, Feature

selection, Classification
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1 Introduction

The plant diseases affect both quality and quantity of agricultural products by interfering

with set of processes including plant growth, flower and fruit development, and absorbent

capacity, to name but a few [1]. Therefore, early detection and classification of plant dis-

eases play a vital role in agriculture farming. Nevertheless, two possible options may be

availed — manual inspection and computer vision techniques. The former method is

quite difficult and requires a lot of efforts and time [2], while the latter is mostly followed

because of its improved performance [3]. Plants show range of symptoms from their early

to final stages, which can be easily observed on fruits and leaves/stem with the naked eye.

Therefore, set of symptoms can be categorized using computer vision (CV) and other

machine learning (ML) methods [4].

A great effort has been made in the field of CV to process visual features extracted

from fruits’ images for the recognition of multiple diseases [5]. Several existing meth-

ods worked well, but not considering different set of constraints — specifically related

to image quality [6–11], training/testing samples, number of labels, and disease com-

plexity, to name but a few [12]. In this article, two fruits are selected and four different

types of fruits’ diseases are initially focused including apple scab, apple rust, grapes rot

leaves, and grapes leaf blight. Mostly existingmethods follow a typical architecture, which

includes (a) preprocessing block, (b) segmentation block, (c) feature extraction block,

and (d) classification block. Several detection methods are employed by scholars working

in this domain including clustering, thresholding, color, shape, and texture-based meth-

ods, adaptive approaches, etc. All these methods are somewhat problem dependent and

by some means following a same trend — addressing one sort of problems while keep-

ing other problems’ parameters fixed. Therefore, no universal mechanism exists which

efficiently deals with all kind of problems.

In this article, we are primarily focusing on the classification of aforementioned diseases

by following fundamental steps. Our primary contributions are enumerated below:

1.1 Major contributions

In this article, we introduced a new automated method for the identification and recog-

nition of apple and grape diseases. The proposed method consists of five major steps:

(a) contrast stretching; (b) identification of disease part by a fusion of novel adaptive and

quartile deviation (QD)-based segmentation, which efficiently performs at the change

in scale, origin, and irregularity of infection regions; (c) feature extraction and fusion;

(d) an integrated framework of entropy and rank correlation is implemented for feature

selection; and (e) classification. Our major contributions are listed below.

1. A contrast stretching technique based on global min and max values is proposed,

which defines a contrast range to determine lower and upper threshold values.

2. An adaptive thresholding method following trapezoidal rule is proposed, which

works in two steps: (1) location of infected regions and (2) computing threshold

based on maxima and minima — calculated after taking second derivative.

3. A parallel feature fusion methodology is opted, which jointly takes advantage of

three sets of feature (color, texture, and shape)to select the most discriminant value.

4. To overcome the problem of curse of dimensionality, a feature selection

methodology is proposed, which efficiently assigns ranks to set of features based on

entropy.
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2 Literature review

Several methods exist in literature, which accurately classify fruit diseases using com-

puter vision methods [13–18]. Specifically, for the identification of apple and grape

diseases, various methods are proposed, which somehow manage to classify set of dis-

eases with acceptable accuracy and sensitivity [19–22]. In unsupervised methods, range

of algorithms are proposed including K-means clustering [23], global thresholding with

morphological operations [24], graph cut methods [25], color segmentation [26], CLPSO-

based fuzzy color segmentation [27], and adaptive approaches [28], to name but a

few.

Bhivini et al. [2] introduced a framework to classify infected regions in apples. In the

first stage of segmentation, they utilized K-means clustering to excerpt the infected region

and then extract color and texture features from the segmented part. Subsequently, fea-

ture fusion is performed using simple concatenation prior to classification using random

forest method. Similarly, Shiv et al. [5] introduced a novel method to classify apple dis-

eases based on color, texture, and shape features. The introduced method is comprised of

three fundamental steps of segmentation using K-means; extraction of color, texture, and

shape features; and classification using multi-class SVM. Following the same trend, Shiv

et al. [28] introduced an adaptive approach to detect infectious regions including apple

scab, rot, and blotch by achieving a classification accuracy of 93%. The proposed method

incorporates three primary steps of segmentation using K-means, feature extraction, and

classification using multi-class SVM.

Zhang et al. [29] followed a novel machine learning method for detecting apple dis-

eases. They made use of HSI, YUV, and gray color spaces for the removal of background

via thresholding. The infectious regions are extricated by a region growing method to

calculate shape, color, and texture features for each region. Finally, the most prominent

features are classified using SVM, which are selected using genetic algorithm (GA) and

correlation-based feature selection (CFS) method. Similarly, Soni et al. [30] identified

plant diseases by following two fundamental steps of segmentation and classification. In

the first step, ring-based segmentation is performed to identify infectious regions, fol-

lowed by the feature extraction step. A probabilistic neural network is used for the final

classification of diseases from randomly selected images acquired from the web. Lee et al.

[31] implemented a swarm optimization-based method for the identification of apple dis-

eases. Stochastic PSO algorithm finds out 10 spectral features based on pair of bands to

return distinctiveness between each pair of classes. The selected features are later utilized

by SVM to achieve improved performance. Harshal et al. [32] introduced a framework for

the identification and classification of grape diseases. They implemented a background

subtractionmethod for segmentation and later analyze the regions after passing through a

high-pass filter. Thereafter, unique fractal-based texture features are extracted and finally

classified through a multi-class SVM. They selected downy mildew and black rot diseases

for evaluation and achieved classification accuracy of 96.6%.

Pranjali et al. [33] introduced a novel approach of fused classifiers for efficient classifica-

tion of grape diseases. Initially, both SVM and ANN are utilized independently and then

a new ensembles classifier is constructed for final classification. Similarly, Awate et al.

[34] introduced a novel idea in which they utilized K-means for segmentation. Later, tex-

ture, color, morphological, and structural features are calculated, which are then subjected

to ANN classifier for final classification. A general comparison with recent methods is
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also provided in Table 1 — in terms of segmentation technique, type of features, feature

selection, classification method, disease type, and classification accuracy.

From the recent studies, it is quite clear that set of methods including fuzzy, threshold-

ing, and K-means are mostly utilized for the identification of infectious regions. Recently,

inclusion of saliency and CNN-based techniques show improved performance in this

domain of agricultural farming [38]. Moreover, color and texture features are mostly uti-

lized for final classification, but “curse of dimensionality” is somehow ignored. In this

article, we are primarily focusing on contrast stretching, infectious region segmentation,

and ultimately feature selection to avoid aforementioned problem. The contrast stretch-

ing technique improves the visual characteristics of an input image, which can help in the

segmentation phase. A proposed feature selection algorithm aids in improving the overall

classification accuracy.

3 Proposedmethod

In this section, the proposed method is explained, which incorporates series of steps

including preprocessing, image segmentation and fusion, feature extraction, fusion and

selection, and a final step of classification. Figure 1 demonstrates a working framework of

the proposed method — clearly explaining series of aforementioned steps.

3.1 Contrast stretching

Contrast stretching is mostly applied on the images in which visual contents need to

be enhanced. In this article, a global contrast stretching technique is proposed, which

directly affects the infectious regions by making themmaximally differentiable compared

to the background. This method initially finds the global maxima and minima of each

red, green, and blue channel to generate a new global minima and maxima values. These

calculated values are later utilized to find a new range of intensity values against each

channel, which in turns locate a new low and high threshold values.

Let ψ(i, j, k) is an original 3-dimensional RGB image, (256×, 256× 3) , where ψ1(i, j) =
r∑3

k=1 r
k
,ψ2(i, j) = g∑3

k=1 g
k
, and ψ3(i, j) = b∑3

k=1 b
k
represent the modified red, green, and

blue channels. Here, the red channel is fraction of red = red
red+green+blue ; therefore, we used∑

for addition of all pixel values of three channels, and their histograms are shown in

Fig. 2.

Suppose TL and TH are low and high threshold values which initialize as 0.01 and 1,

respectively. Then global maxima and minima are calculated using initial TL and TH

values as follows:

φmax(k) = Max(ψi,j); φmin(k) = Min(ψi,j) (1)

where φmax and φmin are global maximum andminimum values,Max andMin represents

the max and min functions which select the maximum and minimum values from each

channel k, where k ∈ {1 : 3} of three respective channels red, green, and blue denoted by

ψ1, ψ2, and ψ3.

The initial values of global maximum and minimum are 1 and 0. Then calculate a new

global minimum pixel image by subtracting φmin in to the original image ψ(i, j, k) and

effects are shown in Fig. 3b. The information of subtracted image is stored in a temporary

array (Tar) of size 256 × 256 and find the maximum and minimum pixel value for the

entire processed image by Eqs. 2 and 3:
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Fig. 1 A proposed framework of detection and classification of diseases in the plants and fruits

Fig. 2 Original image and red, green, and blue channels with their respective histogram. a Original image. b

Red channel. c Green channel. d Bue channel

Fig. 3 Proposed contrast stretching results. a Initial global minimum value image. b New global minimum

pixel image. c Contrast range image. d Variation removal image. e Final enhanced image



Khan et al. EURASIP Journal on Image and Video Processing         (2021) 2021:14 Page 7 of 28

φmin(new) = ψ(i, j, k) − φmin(k) (2)

φmax(new) = ψ(i, j, k) − φmax(k) (3)

These values are utilize to calculate the range of contrast by Eq. 4.

Rctr = φmax(new) × φmin(new) (4)

where Rctr denotes the contrast range image of dimension 256 × 256 as shown in Fig. 3c.

To control the variation of contrast stretching, the low threshold (TL) and high threshold

values ( TH ) are updated by Eqs. 5 and 6.

TL = TL × Rctr , TH = TH × Rctr (5)

TL = φmin(new) + TL, TH = Rctr − TH (6)

The values of low threshold and high threshold are utilized in contrast stretching cost

function to concatenate the results of each channels. The cost function produced the

new image, which is more enhanced as compared to original image. The cost function is

defined by Eq. 7:

Fcost(i, j, k) =
{
1 if Tar

TH−TL
≥ Rctr

0 if (TH − TL < Rctr)
(7)

where Fcost(i, j, k) is a resultant contrast stretched image and Rctr is contrast range value

which lies between 0 and 1. Equation 7 shows that if Tar
TH−TL

≥ Rctr , then the diseased

region in the image is enhanced; otherwise, it improves the background. Contrast stretch-

ing final results are shown in Figs. 3 and 4, which are later processed in segmentation

phase.

Fig. 4 Proposed contrast stretching results. a Original image. b Final enhanced image. c Histogram plot
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3.2 Disease identification

In this section, the proposed segmentation method is elucidated — comprising of pro-

posed segmentation and fusion methods. In the former one, a trapezoidal based adaptive

thresholding and a quartile deviation (Q.D)-based segmentation method are employed

independently, while, in the latter, binary images are fused using proposed method

of weighted coefficient of correlation. Figure 1 demonstrates set of steps for image

segmentation and fusion.

3.2.1 Trapezoidal based adaptive thresholding

Let Fcost(i, j, k) is a contrast stretched image. To identify the infectious regions, a trape-

zoidal rule is employed [39], which calculates the area of infection by utilizing max and

min pixel values.

� = Maxold − Minold

Totaln
(8)

where Totaln denotes the total number of pixels in Fcost(i, j, k). A second derivative of

an image is later computed and Eq. 8 is updated to find max and min pixel values. The

obtained pixel values are finally embedded into a cost function to extract the infectious

regions.

D(i, j) = f ′(Fcost(i, j)) di dj (9)

D2(x, y) = f
′′
D(i, j) di dj (10)

Maxup = Max
(
D2(i, j)

)
(11)

Minup = Min
(
D2(i, j)

)
(12)

where D(i, j) and D2(i, j) represent the first and second derivatives of an input image, and

Maxup and Minup are the updated max and min pixel values. These updated values are

initially compared with the old max and min values, defined in Eq. 8, and later updated to

calculate the area of infection.
∫ β

α

f (i)di = Maxup − Minup

Totaln
[D2(i, j)] (13)

∫ β

α
f (i)di representing area of the infected region, which is further utilized in the threshold

function.

T(i, j) =
{
Foreground if

∫ β

α
f (i)di ≥ ξ

Background if
∫ β

α
f (i)di < ξ

(14)

where ξ denotes pixels which are directly linked to
∫ β

α
f (i)di, and T(i, j) represents an

optimized adaptive segmented image; sample results are shown in Fig. 5.

3.2.2 Quartile deviation-based segmentation

Quartile deviation-based segmentation is a new segmentation method, which can be

directly mapped on to the input image, prior to the thresholding step to generate a binary

image. This method works on the basis of coupling — depending on the curve changes.
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Fig. 5 Proposed optimized adaptive segmentation results. a Original image. b Segmented image. c Infection

part mapped on the original image. d Contour image under mesh graph. e Contour of infection. f 3-D

contour image

The coupling points are utilized with the normalization function, because Q.D is a prop-

erty of a normal distribution. Let f (t) ∈ Fcost(i, j, k) having dimension (256 × 256 × 3),

then the initial function is defined as:
∫ μ+r

μ−r
f (t)dt = 1

2
(15)

where (μ− r) and (μ+ r) represent the points of inflection. Taking L.H.S and putting the

normalization function in Eq. 15:

= 1

σ
√
2π

∫ μ+r

μ−r
e

−1
2 (

t−μ
σ

)2dt (16)

Equating t−μ
σ

= X and simplify dt = σdX to obtain a new equation:

Q.D = 1√
2π

∫ μ+r

μ−r
e

−X2

2 dX (17)

1√
2π

∫ r
q

− r
q

e
−X2

2 dX = 1

2
(18)

According to even property of normal distribution, it will become:

1√
2π

∫ r
q

0
e

−X2

2 dX = 1

4
(19)

r

a
= 0.6745, r = 0.6745σ (20)
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where r denotes final Q.D value, which is finally utilized in desired cost function for the

extraction of infectious regions in fruits and plants. The output of the cost function is in

the form of infectious and normal pixels.

Fout(t) =
∫

1

2(1 + t)
× 1

(1 + r)3
dt (21)

Fout(t) = 1

(1 + r)3

∫
1

2(1 + t)
dt (22)

Fout(t) = 1

(1 + r)3
ln(1 + t) (23)

where t ∈ Fcost(i, j, k) and Fout(t) represents the pixels showing infection, which are set in

the threshold function to obtain a binary segmented image.

FQD(i, j) =
{
1 if Fout(t) ≥ ti

0 ifFout(t) < ti
(24)

where FQD(i, j) represents the final Q.D-based segmented image and ti denotes the cur-

rent enhanced image pixel. The Q.D segmentation results including their contour, mesh

graph, and 3-D contour images are shown in Fig. 6.

3.2.3 Image fusion

Image fusion concept is mostly employed, where information from multiple sources

(images) is consolidated into fewer images, usually a single one. In this article, a weighted

coefficient of correlation (WCoC)-based technique is implemented for pixel-based fusion

of two segmented images. Actual range of CoC lies between (−1 : 1), but in this work,

Fig. 6 Proposed Q.D-based segmentation results. a Original image. b Segmented image. c Infection part

mapped on the original image. d Contour image under mesh graph. e Contour of infection. f 3-D contour

image
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we are working on binary images; therefore, the resultant image is a binary. This method

finds a strong correlation between pixels of both images. The highest correlated pixels are

assigned higher weights, while lower correlated pixels are considered to be a background

and eliminated. Suppose {p1, p2, . . . , pn} are uncorrelated pixels from both segmented

images T(i, j) and FQD(i, j) having the same standard deviation, the correlation coefficient

is defined as:

γ12 =
∑

(p1 − p̄1)(p2 − p̄2)√∑
(p1 − p̄1)2

∑
(p2 − p̄2)2

(25)

where γ12 denotes a correlation between pixels which is initialized as γ12 = 0.

Let σ 2(p1) = S2 and σ 2(p2) = S2 so {i, j} = (u1 + u2). Let (i, j) ∈ (x, y), then the

mathematical formulation is done as:

γxy =
∑

(x − x̄)(y − ȳ)√∑
(x − x̄)2

∑
(y − ȳ)2

(26)

Then assign the weight and bias values which are selected to be 0.8 and 2.5.

γxy = Wxy ×
∑

(x − x̄)(y − ȳ)√∑
(x − x̄)2

∑
(y − ȳ)2

× bias (27)

The above equation is simplified as:

Ri,j = 0.8 × nS2

2nS2
× 2.5 = 1 (28)

where σ 2(p1) =
∑

(p1−p̄1)
2

n , S2 =
∑

(p1−p̄1)
2

n , nS2 = ∑
(p1 − p̄1)

2,
∑

(x − x̄)2 = 2nS2,∑
(y − ȳ)2 = 2nS2,

∑
(x − x̄)(y − ȳ) = nS2 and Ri,j correlate those pixels which sum is 1.

The final fusion results are shown in Fig. 7.

Fig. 7 Proposed fusion results. a Original image. b Segmented image. c Infection part mapped on the

original image. d Contour of infection. e 3-D contour image. f Contour image under mesh graph
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3.2.4 Analysis of segmentation results

For the analysis of proposed segmentation technique against each disease, we selected

400 image samples (100 against each disease — apple scab, apple rust, grapes rot leaves,

and grape leaf blight); few can be seen in Fig. 8. Three measures are implemented to show

the performance of the proposed method including accuracy, Jaccard Index, and false

negative rate — calculated as follows:

JIndex =
∣∣Ri,j ∩ S(i, j)

∣∣
∣∣Ri,j

∣∣ +
∣∣S(i, j)

∣∣ −
∣∣Ri,j ∩ S(x, y)

∣∣ (29)

Acc = TPl

Ri,j(l) + S(i, j)(l) − TPl
× 100 (30)

FNR = 100 − Acc (31)

where Ri,j is a proposed segmented image, S(i, j) is a ground truth, and TPl represents cor-

related pixels. Results in tabular are provided in Table 2, and graphical results along with

their ground truths are shown in Figs. 9 and 10. Additionally, few other sample segmen-

tation results are provided in Fig. 11. The maximum accuracy of 95.63% is achieved from

the tested images; moreover, the minimum reported negative rate is 4.37, maximum Jac-

card Index is 99.26%, overall average accuracy is 93.74%, average Jaccard Index is 94.17%,

and negative rate is 6.26%. Average results are also plotted in Fig. 12, which describes a

range of segmented accuracy on all selected images.

3.3 Feature extraction

Features play their vital role in recognizing the primary contents of an images or signals.

Therefore, in the field of pattern recognition and machine learning, set of techniques are

Fig. 8 Sample images for the identification of infection parts using the proposed segmentation algorithm
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Table 2 Performance results of the proposed identification of infection parts in the fruits and plants

Infection part identification results

Image no Accuracy (%) Jaccard Index (%) FNR (%)

1 93.10 91.73 6.90

2 94.28 92.66 5.72

3 91.17 93.63 8.83

4 95.63 92.73 4.37

5 91.63 95.80 8.37

6 90.93 90.00 9.07

7 92.79 95.20 7.21

8 89.93 99.26 10.07

9 94.97 95.79 5.03

10 90.99 92.94 9.01

11 90.44 91.58 9.56

12 88.38 92.45 11.2

13 90.36 93.52 9.64

14 88.20 90.74 11.8

15 91.76 93.80 8.24

16 92.19 94.12 7.81

17 92.71 93.73 7.29

18 93.69 94.97 6.31

19 94.90 95.16 5.10

20 94.96 95.92 6.04

Average 93.74 94.17 6.26

The bold values indicate best results

proposed [40–45]. On the one hand, optimal set of features lead to an accurate classifica-

tion, while, on the other hand, irrelevant and redundant features are one of the factors for

high misclassifications. In this article, we are not only focusing on the utilization of multi-

ple set of features but also avoiding feature redundancy by implementing a suitable feature

selection method. We utilize three different types of features including statistical, color

[46], and texture (segmented local binary patterns (SLBP)) from the segmented images.

Fig. 9 Proposed infection part detection results with ground truth image. a Original image. b Segmented

image. c Infection part mapped on the original image. d Contour of infection part. e Ground truth image
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Fig. 10 Proposed segmentation results with their respective ground truth image. a Original image. b

Segmented image. c Contour of infection part. d Infection part mapped on the original image. e Ground

truth image

For color features, RGB, HSV, LAB, and YCbCr color spaces are used and fourmeasures,

mean, standard deviation, entropy, and skewness, are calculated against each channel.

From each color space, we obtain a feature vector of size 1×12, which increases up 1×48

for all selected color spaces, and N × 48 for N images.

For statistical features, Harlick [47] is implemented, which originally used 14 fea-

tures, but we added 8 new features including correlation 2, cluster prominence, cluster

shade, dissimilarity, energy, homogeneity 1, homogeneity 2, and max probability. Addi-

tion of these features improves the overall classification accuracy but also increases the

Fig. 11 Proposed segmentation results. a Original image. b Segmented image. c Infection part mapped on

the original image. d Contour of the infection part
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Fig. 12 Proposed average segmentation results plotted in the form of boxplots

computational time. A complete mathematical description of each feature is provided in

Table 3, and the final vector size is 1 × 88.

LBP [48] belongs to a category of texture features, which captures the information

related to the neighboring pixels. In this work, ‘A’ channel from LAB color space is uti-

lized as an input for feature extraction, because it provides more information compared to

other channels. The proposed segmented local binary pattern features (SLBPF) is based

on three steps: (a) calculate the distance between extracted set of LBP features, (b) cal-

culate the statistical features of LBP, and (c) calculate the entropy features of their 8

neighborhood features. The extracted features are simply concatenated each other and

make a new feature vector of size 1 × 72.

�LBP =
n−1∑

i=0

2m S(gp − gc) (32)

where �LBP is a feature vector and S(u) =
{
1 if u ≥ 0

0 if u < 0

}
is a threshold function, n = 8,

gp denotes total number of neighbors, and gc is a pivot location [49]. Distance between

feature is calculated using relation:

�Dij =
M∑

i=1

N∑

j=1

[
f ni − f nj

]2
, n ∈ nth features (33)

where �Dij denotes the distance matrix which is later utilized to compute the mean, vari-

ance, skewness, and kurtosis. Later, these metrics are concatenated to generate a new

vector having dimension 1 × 64. The entropy features of each 8 neighboring features are

computed as:

Entf (i) = MK

8∑

i=1

(fi lnfi, ax) (34)

Entf (j) = NK

8∑

j=1

(fj lnfj, ay) (35)
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Table 3 Extraction of twenty-two GLCM features

Feature name Equation

Auto correlation φ̃R = ∑
k

∑
l(k × l)P(k, l)

Contrast φ̃C = ∑φŴ

k=1

∑φŴ

l=1 |k − l|2P(k, l)

Correlation 1 φ̃R1 = ∑φŴ−1
k=0

∑φŴ−1
l=0 (k × l)P(k, l) − φμxφμy

Correlation 2 φ̃R2 =
∑φŴ−1

k=0

∑φŴ−1
l=0 (k−φμk )(l−φμl )P(k,l)

σ

Cluster prominence φ̃P = ∑φŴ−1
k=0

∑φŴ−1
l=0 {k + l − φμx − φμy }4P(k, l)

Cluster shade φ̃S = ∑φŴ−1
k=0

∑φŴ−1
l=0 {k + l − φμxφμy }3P(k, l)

Dissimilarity φ̃D = ∑
k

∑
l P(k, l)|k − l|

Energy φ̃E = ∑
k

∑
l P(k, l)

2

Entropy φ̃H = ∑
k

∑
l P(k, l)logP(k, l)

Homogeneity 1 φ̃α1 =
∑φŴ−1

k

∑φŴ−1
l P(k,l)

1+|k−l|

Homogeneity 2 φ̃α2 =
∑φŴ−1

k

∑φŴ−1
l P(k,l)

1+(k−l)2

Maximum probability φ̃P = maxk,l P(k, l)

Sum of squares (variance) ˜
φ

∑
σ̂ 2 = ∑φŴ−1

k=0

∑φŴ−1
l=0 (k − φμ)2P(k, l)

Sum average φ̃
∑

A = ∑2φŴ−2
k=2 kPx+y(k)

Sum entropy φ̃
∑

H = −∑2φŴ−2
k=2 Px+y(k)log(Pk+l(k))

Sum variance ˜
φ

∑
σ 2 = ∑2φŴ−2

k=2 (k − φ̃H)Px+y(k)

Difference variance φ̃σ̄ 2 = σ 2(Px−y)

Difference entropy φ̃H̆ = −∑φŴ−1
k=0 Pk−l(k)log{Pk−l(k)}

Information measure of correlation 1 φ̃MR1 = φ̃H−Hxy1
max(Hx ,Hy)

Information measure of correlation 2 φ̃MR2 =
√

(1 − exp
[
−2.0

(
Hxy2 − φ̃H

)]

Inverse difference normalized φ̃D−1 = ∑
k

∑
l

P(k,l)

1+ |k−l|
φŴ

Inverse difference moment normalized φ̃DM−1 = ∑
k

∑
l

P(k,l)

1+ (k−l)2

φŴ

where ax and ay denote the neighboring ith and jth features; 8 entropy features are

extracted and concatenated with the previous vector to obtain a new feature vector hav-

ing size 1 × 72. Finally, all features are fused [50] to generate a resultant vector of size

1 × 208. The core architecture of feature extraction and selection is shown in Fig. 13.

3.4 Feature selection

To avoid redundancy, the feature selection step plays a primary role by eliminating and

discarding the irrelevant and repeated information, hence selecting themost discriminant

information. In this article, we implemented a new method based on rank correlation
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Fig. 13 An system architecture of proposed feature extraction and selection

and entropy value of fused vector. The proposed method incorporates three fundamen-

tal steps: (a) calculate the correlation between fused features, (b) find the entropy value

of fused features, and (c) selection of features with minimum entropy-correlation values.

Find the entropy value of fused features and multiply by rank correlation; (c) set a thresh-

old function to select those features, which are minimum to entropy-correlation value. It

is given that extracted fused features f1, f2, ...fn are rank from 1 to n. We need to find out

the correlation between the rank of given features. The rank correlation is defined as:

RF = n
∑

f1f2 − ∑
(f1)

∑
(f2)√

(n
∑

f 21 − (
∑

f1)2)(n
∑

f 22 − (
∑

f2)2)
(36)

where f1 and f2 represents the fused feature vector. The above equation solves and sim-

plifies as
∑

f1,
∑

f2 = n(n+1)
2 and

∑
(f1)

2,
∑

(f2)
2 = n(n+1)(2n+1)

6 . Then calculating the

difference between fused features, given as: As ϕ = f1 − f2, where ϕ denotes the differ-

ence between features and taking square both sides and apply
∑

and divided by 2 both

sides, then it will become as
∑

f1f2 = n(n+1)(2n+1)
6 −

∑
ϕ2

2 and n
∑

f1f2 − ∑
(f1)

∑
(f2) =

n2(n2−1)
12 − n

∑
ϕ2

2 . Similarly, n
∑

f 21 and n
∑

f 22 is = n2(n2−1)
12 . Put these simplifications in

Eq. 36 and becomes:

RF =
n(n2−1)

6 − ∑
ϕ2

n(n2−1)
6

(37)

RF = 1 − 6
∑

ϕ2

n(n2 − 1)
(38)

where
∑

ϕ2 = ∑
(f1)

2 + ∑
(f2)

2 − 2
∑

f1f2. Then calculate the entropy value of fused

feature vector and multiply it with the correlation. The obtained value is compared with

each feature of fused vector and select the features based of final threshold function as

follows:

EC(fi) = Entropy × (1 − 6
∑

ϕ2

n(n2 − 1)
) (39)

−−−−→
F(Vec) =

{
Remove if fi > EC(fi)

Select if fi ≤ EC(fi)
(40)
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Resultant vector
−−−−→
F(Vec) is utilized for final classification. We performed simulations

several times and found selected vector in the range of 180–195. In several exper-

iments, mostly the selected vector size is between 180 and 195. Finally, the multi-

class SVM [51] is used as a base classifier for the classification of apple and grape

diseases, and its classification results were compared with other well-known clas-

sification methods such as ensemble, decision trees, etc. Two kernel functions of

SVM are utilized in this work such as linear and radial basis function (RBF). The

linear kernel is used for binary class problem along other parameters such as ker-

nel scale is automatic, classification method is one vs one, and standardized data is

true. Similar for RBF kernel, the other parameters include a kernel scale is manual,

box constraint level is 4, multi-class method is one vs all, and gamma is initialized

as 0.3.

Algorithm 1 Detection and Classification of Fruit Diseases

Step 1: Output 1:
−−−−→
F(Vec) ← Selected Features

Step 2: Output 2:Ri,j ← Segmented Image

Step 3: Input:ψ(i, j, k) ← Original Image

Step 4: While (i: 1 to N)

Step 5: Fcost(i, j) ← Enhanced Image

Step 6: T(i, j) ← Adaptive segmented image

Step 7: FQD(i, j) ← Q.D Segmentation

Step 8: Ri,j ← Fused Image

Step 9: For (j: 1 to 15)

Step 10: JIndex ← JaccardIndex

Step 11: JDistance ← JaccardDistance

Step 12: Acc ← Accuracy

Step 13: Average ← Average accuracy

Step 14: End For

Step 15: For (k: 1 to 48)

Step 16: FV1 ← Colorfeatures

Step 17: End For

Step 18: For (l: 1 to 88)

Step 19: FV2 ← Harlick features

Step 20: End For

Step 21: For (m: 1 to 72)

Step 22: FV3 ← SLBP features

Step 23: End For

Step 24: Fused(Fv) ← Fused features

Step 25: Calculate Entropy of Fused(Fv)

Step 26: For (m: 1 to 208)

Step 27: RF ← Rank Correlation

Step 28: Entropy × (1 − 6
∑

ϕ2

n(n2−1)
)

Step 29: End For

Step 30:
−−−−→
F(Vec) ← Selected Features

Step 31: End While
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4 Experimental results and discussion

In this section, the proposed method is validated on a publicly available dataset, PlantVil-

lage [52] — containing set of diseased and healthy images (Fig. 14). To prove the

authenticity of the proposed algorithm, firstly, individual features are classified and latter

fusion and selection is applied. A 10-fold cross-validationmethodology is also opted along

with a providence of a fair comparison with other state-of-the-art classifiers including

decision trees (DT), quadratic discriminant analysis (QDA), quadratic SVM (Q-SVM),

cubic SVM (C-SVM), fine KNN (F-KNN), weighted KNN (W-KNN), ensemble boosted

trees (EBT), and ensemble subspace discriminant analysis (E-SDA). Six statistical mea-

sures are considered for the performance comparison of the proposed method, sensitivity

(Sen), specificity (Spec), precision (Prec), false positive rate (FPR), false negative rate

(FNR), and accuracy. Training/testing ratio is selected to be 50:50 having 50% training

images and 50% for the testing. All the experiments are done in Matlab 2017b, utilizing a

personal Intel Core i7 computer.

4.1 Apple scab disease

In this section, the classification results on apple scab diseases are presented. Total 2275

images of apple scab (630) and apple healthy (1645) are collected from the PlantVillage

dataset. The results are accomplished in two phases. In the first phase, the results are

obtained from each extracted set of features as depicted in Table 4 having maximum

accuracy on multi-class SVM 94.1%, 86.3%, and 72.0% for SLBP, statistical, and color

features, respectively. Then these results are compared with the proposed entropy-rank

correlation-based selection method. Table 5 shows a maximum accuracy of 97.1%, FNR

2.9%, sensitivity 96.15%, specificity 96.2%, FPR 0.039, and precision 96.10%. Proposed

results are confirmed with their confusion matrix of apple scab given in Table 6. From

Tables 4 and 5, it is clearly shown that the proposed feature selection method produced

best results as compared to individual set of features. Moreover, the proposed method

Fig. 14 Sample selected images for testing
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Table 4 Classification result on each extracted set of features for apple scab disease

Method
Features Measures

SLBP Harlick Color Sen (%) Spec (%) Accuracy (%)

DT � 82.45 88.0 82.4

� 78.40 76.0 78.4

� 54.70 44.0 54.9

QSVM � 94.25 100 94.1

� 76.30 68.0 76.5

� 56.75 52.0 56.9

CSVM � 90.25 94.04 90.2

� 69.55 66.0 66.7

� 62.70 60.0 62.7

QDA � 88.15 84.0 88.2

� 84.30 84.0 84.3

� 56.75 52.0 56.9

F-KNN � 90.25 92.0 90.2

� 70.60 72.0 70.6

� 54.85 52.0 54.9

W-KNN � 90.25 92.0 90.2

� 74.45 72.0 74.5

� 66.45 56.0 66.7

EBT � 92.25 96.0 92.2

� 78.55 84.0 78.4

� 62.90 56.0 62.7

ESDA � 92.10 92.0 92.2

� 84.30 84.0 84.3

� 70.55 68.0 70.6

MSVM � 94.15 96.0 94.1

� 86.25 84.0 86.3

� 72.40 64.0 72.5

is also compared with previous state-of-the-art methods as presented in Table 7, which

gives the authenticity of the proposed entropy-rank correlation method.

4.2 Apple rust disease

A total of 1920 images are collected from the PlantVillage dataset containing apple rust

(275) and apple healthy (1645) images. The experiments are being performed in two steps,

where in the first step classification results are obtained on each extracted set of features

Table 5 Proposed feature selection results of apple scab disease

Method FPR Precision (%) Sensitivity (%) Specificity (%) FNR (%) Accuracy (%)

DT 0.136 86.70 86.4 92.0 13.7 86.3

Q-SVM 0.078 92.15 92.1 92.0 7.8 92.2

C-SVM 0.098 90.30 90.15 88.0 9.8 90.2

QDA 0.098 90.30 90.1 88.0 9.8 90.2

F-KNN 0.176 82.40 82.3 80.0 17.6 82.4

W-KNN 0.078 92.15 92.1 92.0 7.8 92.2

EBT 0.07 92.35 92.2 96.0 7.8 92.2

ESDA 0.116 88.45 88.3 92.0 11.8 88.2

M-SVM 0.039 96.10 96.1 96.2 2.9 97.1

The bold values indicate best results
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Table 6 Confusion matrix of all experiments for selected diseases

Class Total images Healthy Unhealthy PPV/FDR

Confusion matrix for apple scab disease

Healthy 1645 98.0% 4.0% 96.0%/4.0%

Unhealthy 630 3.8% 96.2% 96.2%/3.8%

Confusion matrix for apple rust disease

Healthy 1645 92.7% 7.3% 92.7%/7.3%

Unhealthy 275 2.6% 97.4% 97.4%/2.6%

Confusion matrix for grapes rot leave disease

Healthy 423 92.5% 7.5% 92.5%/7.5%

Unhealthy 1180 0.0% 100% 100%/0.0%

Confusion matrix for grapes leaf blight disease

Healthy 423 97.0% 3.0% 97.0%/3.0%

Unhealthy 1076 4.4% 95.6% 95.6%/4.4%

The bold values indicate best results

(Table 8). Maximum accuracy achieved is on M-SVM classifier, which is 93.2%, 90.9%,

and 95.8% for SLBP, Harlick, and color features, respectively. In the second step, selected

features are utilized for classification using the proposed method — showing improved

performance (Table 9). Classification results are also confirmed using confusion matrix

given in Table 6. From Tables 8 and 9, it is quite cleared, with the proposed feature selec-

tion method, performance improved significantly. Additionally, proposed classification

results are also compared with the existing methods given in Table 7.

4.3 Grape diseases

Two types of grape diseases, grapes rot leave and grapes leaf blight, are selected in this

section for classification. Total 2679 images are collected from the PlantVillage dataset

which include grapes black rot (1180), grapes leaf blight (1076), and healthy (423). The

same trend is being followed; in the first step, classification results are obtained on each

extracted set of feature (Table 10). In Table 10, the classification results are obtained on

Table 7 Comparison with existing methods

Method Year
Comparison measures

Sen % Spec % Prec % Accuracy %

Apple scab comparison

Samajpati et al. [2] 2016 – – – 80

Dubey et al. [35] 2012 – – – 96.96

Shiv et al. [5] 2016 – – – 93.75

Lucas et al. [53] 2016 86.6 – 92.8 96.6

Proposed 2017 97.0 96.4 96.70 97.1

Apple rust comparison

Zhang et al. [29] 2017 – – – 94.28

Proposed 2017 95.05 92.7 94.3 94.70

Grapes rot leave comparison

Kharde et al. [36] 2016 – – – 95.23

Proposed 2017 96.25 92.50 97.10 96.60

Grapes leaf blight

Kharde et al. [36] 2016 – – – 92.85

Padol et al. [37] 2016 – – – 83.33

Proposed 2017 96.30 97.0 96.3 96.30

Final classification 2017 97.05 – 97.60 97.70

The bold values indicate best results
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Table 8 Classification result on each extracted set of features for apple rust disease

Method
Features Performance measures

SLBP Harlick Color Sen (%) Spec (%) Accuracy (%)

DT � 92.5 92.7 92.6

� 75.5 81.8 76.6

� 79.9 85.5 78.9

QSVM � 93.8 92.7 90.4

� 79.9 80.0 79.8

� 87.2 87.3 87.2

CSVM � 93.8 94.5 93.6

� 80.65 81.8 80.9

� 81.2 85.5 81.9

QDA � 83.25 69.1 80.9

� 79.25 76.4 78.7

� 83.8 72.7 81.9

Fine KNN � 89.5 94.5 90.4

� 77.2 80.0 77.7

� 88.5 87.3 88.3

WKNN � 92.3 87.3 91.5

� 85.9 87.3 86.2

� 86.6 83.6 86.2

EBT � 92.5 92.7 90.4

� 85.9 87.3 86.2

� 89.4 89.1 89.4

ESDA � 92.5 92.7 91.5

� 81.5 83.6 81.9

� 88.9 85.5 88.7

Multi-class SVM � 93.4 94.5 93.6

� 87.6 85.5 87.2

� 90.7 89.1 90.4

The bold values indicate best results

grapes rot leaves having accuracy 93.2%, 90.9%, and 95.8% for SLBP, Harlick, and color

features, respectively. Also, the proposed classification results of grapes leaf blight are

presented in Table 11 with maximum accuracy of 96.30%— also confirmed from the con-

fusion matrix (Table 6). Finally, the proposed results are compared with existing methods

described in Table 7, which shows that the proposed method performs significantly well

compared to existing methods.

Table 9 Classification results on the proposed feature selection approach for apple rust

Method FPR Precision (%) Sensitivity (%) Specificity (%) FNR (%) Accuracy

DT 0.157 84.90 84.30 89.1 14.9 85.1

Q-SVM 0.096 90.05 90.30 90.9 9.6 93.6

C-SVM 0.070 92.15 92.90 90.9 7.4 92.6

QDA 0.157 83.95 84.15 70.9 18.1 81.9

F-KNN 0.061 93.2 93.8 92.7 6.4 93.6

W-KNN 0.103 88.50 89.60 81.8 11.7 88.3

EBT 0.096 90.05 90.30 90.9 9.6 92.6

ESDA 0.087 91.2 91.2 92.2 8.5 92.6

M-SVM 0.048 94.30 95.50 92.5 5.3 94.7

The bold values indicate best results
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Table 10 Classification result on each extracted set of features for grapes rot leave disease

Method
Features Performance measures

SLBP Harlick Color Sen (%) Spec (%) Accuracy (%)

DT � 89.35 91.0 89.4

� 86.40 86.6 86.4

� 93.95 92.5 94.1

QSVM � 89.45 85.1 89.4

� 89.45 86.6 89.4

� 94.55 90.6 94.9

CSVM � 90.10 91.0 90.2

� 87.90 86.6 87.9

� 94.55 90.6 94.9

QDA � 90.30 80.6 90.2

� 88.0 80.6 87.9

� 93.95 92.5 94.1

Fine KNN � 88.70 83.6 88.6

� 87.15 85.1 87.1

� 95.50 92.5 95.8

WKNN � 91.75 86.6 91.7

� 82.60 82.4 82.6

� 94.70 92.5 94.9

EBT � 90.85 86.6 90.9

� 89.45 86.6 89.4

� 95.30 90.6 95.8

ESDA � 89.45 85.1 89.4

� 87.90 82.1 87.9

� 93.50 92.5 94.1

Multi-class SVM � 93.15 92.5 93.2

� 91.0 85.1 90.9

� 95.30 90.6 95.8

The bold values indicate best results

4.4 Final classification

In this section, all selected diseases are utilized for classification, and the proposed

method is directly implemented on it. The testing results are given in Table 12 having a

maximum accuracy of 97.1% on multi-class SVM. The proposed testing results are con-

firmed by their confusion matrix given in Table 13, which shows the authenticity of the

proposed method.

Table 11 Proposed classification results for grapes leaf blight

Method FPR Precision (%) Sensitivity (%) Specificity (%) FNR (%) Accuracy

DT 0.110 88.95 88.90 91.0 11.1 88.9

Q-SVM 0.081 92.10 91.85 88.1 8.1 91.9

C-SVM 0.066 93.40 93.30 91.0 6.7 93.3

QDA 0.089 92.0 90.30 80.6 9.6 90.4

F-KNN 0.083 90.60 90.35 86.6 9.6 90.4

W-KNN 0.073 91.45 91.10 86.6 8.9 91.1

EBT 0.10 89.8 89.6 86.6 10.4 89.6

ESDA 0.074 92.95 92.60 88.1 7.4 92.6

M-SVM 96.30 96.30 96.30 97.0 3.7 96.3

The bold values indicate best results
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Table 12 Proposed classification results on all selected diseases

Classification results of all selected disease

Classification method
Performance measures

FPR Sen (%) Prec (%) FNR (%) Accuracy (%)

DT 0.041 87.31 87.30 12.6 87.4

QDA 0.038 88.22 88.92 11.5 88.5

Q SVM 0.022 92.90 93.37 6.9 93.1

F-KNN 0.013 95.00 94.82 5.2 94.8

W-KNN 0.010 95.52 95.42 4.6 95.4

EBT 0.020 93.55 94.00 6.3 93.7

ESDA 0.009 95.92 96.07 4.0 96.0

M-Class SVM 0.002 97.05 97.60 2.3 97.7

The bold values indicate best results

4.5 Discussion

On a broader perspective, two primary domains are somewhat covered: (1) infected

region segmentation and (2) discriminant feature selection. A proposed method of seg-

mentation is directly relying on image fusion from two different sources— selected results

can be seen in Figs. 7, 9, 10, and 11 and Table 2 — having maximum achieved accuracy of

95.63% and average accuracy of 93.45%. In the latter phase, feature selection, three types

of features are fused by implementing a simple serial-based method, which are finalized

using the entropy-rank correlation method. Five experiments are done on selected dis-

eases, apple scab, apple rust, rot grapes leaves, grapes leaf spot, and final classification on

all diseases to achieve an accuracy of 97.1%, 94.70%, 96.60%, 96.30%, and 97.7%, respec-

tively. For validation, the classification results are obtained on individual feature type as

presented in Tables 4, 8, and 10. The proposed entropy-rank correlation results are pre-

sented in Tables 5, 9, 14, 11, and 12, which are confirmed by confusion matrix given in

Tables 6 and 13, which clearly shows the authenticity of the proposed method. Addition-

ally, 8 new statistical features improve the overall accuracy by embedding set of unique

features (Fig. 15). In Fig. 15, it is explained that when 14 texture features are computed,

then the achieved accuracies are 81.9%, 82.7%, 81.8%, and 84.5% for apple scab, rust,

grapes rot, and grape blights, respectively, whereas the addition of 8 features increases the

overall accuracy to 86.3%, 87.2%, 90.9%, and 91.7%, respectively.

In Fig. 16, the F1 score is calculated for the proposed feature selection approach. The F1

score is computed for all selected diseases such as apple scab, apple rust, grapes rot, and

grapes leaf blight. The proposed feature selection results in terms of sensitivity, precision,

F1 score, and accuracy show that the proposed feature selection method performed bet-

ter as compared to individual feature sets. Finally, a comparison is conducted with latest

techniques in Table 7 which shows that the proposed method performs significantly well

as compared to existing methods.

Table 13 Confusion matrix of the final classification

Confusion matrix: final classification

Class Total images Testing images Apple scab Apple rust Grapes rot leaves Grapes leaf blight

Apple scab 630 315 97.4% 7.3% – –

Apple rust 275 137 – 100% – –

Grapes rot leaves 1180 590 2.0% – 95.8% 2.2%

Grapes leaf blight 1076 538 – 2.0% 3.0% 95.0%

The bold values indicate best results
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Table 14 Classification results on the proposed feature selection approach for grapes rot leaves

Method FPR Precision (%) Sensitivity (%) Specificity (%) FNR (%) Accuracy

DT 0.074 92.25 92.55 94.3 7.6 92.4

Q-SVM 0.052 95.05 94.70 92.5 5.1 94.9

C-SVM 0.052 95.05 94.07 92.5 5.1 94.9

QDA 0.056 95.05 94.35 88.7 5.1 94.9

F-KNN 0.045 96.05 95.50 92.5 4.2 95.8

W-KNN 0.044 96.05 95.50 92.5 5.1 94.9

EBT 0.044 96.50 95.50 92.5 4.2 95.8

ESDA 0.053 95.05 94.70 92.5 5.1 94.9

M-SVM 0.037 97.10 96.25 92.5 3.4 96.6

The bold values indicate best results

Fig. 15 Change in original 14 texture feature results after the addition of 8 new texture features. The bottom

lines show the original features accuracy whereas the above lines present the accuracy after addition of 8

features. Moreover, the left side values of the plot indicates the accuracy values

Fig. 16 F1 score of the proposed feature selection algorithm. a F1 score for apple rot. b F1 score for apple

rust. c F1 score for grapes rot. d F1 score for grapes leaf blight
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5 Conclusion

Detection and classification of fruit diseases is an important research area in the field

of computer vision and pattern recognition. Due to the complexity and irregularity of

diseases in apple and grape leaves/fruits, several existing methods are unable to achieve

the required classification accuracy. Therefore, in this article, a new technique is imple-

mented for apple and grape disease detection and classification, which is based on fusion

of a novel adaptive thresholding and Q.D-based segmentation. Later on, set of different

features are extracted to perform a serial-based fusion. A novel entropy-rank correlation

technique is implemented for robust feature selection, which works efficiently, compared

to individual features and existing related methods in terms of accuracy, sensitivity, preci-

sion, and FPR. The proposed method works not only efficiently on WEB images but also

efficiently for publicly available datasets, which contains a lot of challenges like noise and

background complexity, to name but a few. From this research, we finally conclude that a

combination of set of different features increases the overall accuracy but also increases

the computational time and complexity. Therefore, it is somewhat mandatory to involve

a feature selection method. A segmentation step plays its role in the extraction of better

features — leading to better classification. As a future work, deep features will be utilized

instead of conventional, as well as, number of disease will be increase, but the selection

step is somewhat obligatory even with the deep features.
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