
The Annals of Applied Probability
2015, Vol. 25, No. 3, 1189–1231
DOI: 10.1214/14-AAP1020
© Institute of Mathematical Statistics, 2015

A PROBABILISTIC WEAK FORMULATION OF MEAN FIELD
GAMES AND APPLICATIONS1

BY RENÉ CARMONA AND DANIEL LACKER

Princeton University

Mean field games are studied by means of the weak formulation of
stochastic optimal control. This approach allows the mean field interactions
to enter through both state and control processes and take a form which is
general enough to include rank and nearest-neighbor effects. Moreover, the
data may depend discontinuously on the state variable, and more generally its
entire history. Existence and uniqueness results are proven, along with a pro-
cedure for identifying and constructing distributed strategies which provide
approximate Nash equlibria for finite-player games. Our results are applied to
a new class of multi-agent price impact models and a class of flocking models
for which we prove existence of equilibria.

1. Introduction. The methodology of mean field games initiated by Lasry
and Lions [32] has provided an elegant and tractable way to study approximate
Nash equilibria for large-population stochastic differential games with a so-called
mean field interaction. In such games, the players’ private state processes are cou-
pled only through their empirical distribution. Borrowing intuition from statistical
physics, Lasry and Lions study the system which should arise in the limit as the
number of players tends to infinity. A set of strategies for the finite-player game
is then derived from the solution of this limiting problem. These strategies form
an approximate Nash equilibrium for the n-player game if n is large, in the sense
that no player can improve his expected reward by more than εn by unilaterally
changing his strategy, where εn → 0 as n → ∞; see [27]. An attractive feature of
these strategies is that they are distributed, in the sense that the strategy of a single
player depends only on his own private state.

Mean field games have seen a wide variety of applications, including models of
oil production, volatility formation, population dynamics and economic growth;
see [23, 31–33] for some examples. Independently, Huang, Malhamé and Caines
developed a similar research program under the name of Nash certainty equivalent.
The interested reader is referred to [27] and [26] and the papers cited therein.
They have since generalized the framework, allowing for several different types of
players and one major player.
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The finite-player games studied in this paper are summarized as follows. For i =
1, . . . , n, the dynamics of player i’s private state process are given by a stochastic
differential equation (SDE)

dXi
t = b

(
t,Xi,μn,αi

t

)
dt + σ

(
t,Xi)dWi

t , Xi
0 = ξ i,(1.1)

where μn is the empirical distribution of the states

μn = 1

n

n∑
j=1

δXj .(1.2)

The drift b may depend on time, player i’s private state (possibly its history), the
distribution of the private states (possibly their histories), and player i’s own choice
of control αi

t . Here, Wi are independent Wiener processes, and ξ i are independent
identically distributed random variables independent of the Wiener processes, and
each player has the same drift and volatility coefficients. Moreover, each player i

has the same objective, which is to maximize

E

[∫ T

0
f
(
t,Xi,μn, qn

t , αi
t

)
dt + g

(
Xi,μn)] where qn

t = 1

n

n∑
j=1

δ
α

j
t

over all admissible choices of αi , subject to the constraint (1.1). Note that the run-
ning reward function f may depend upon the empirical distribution of the controls
at time t , in addition to the same arguments as b. This is part of the thrust of the pa-
per. Of course, each player’s objective depends on the actions of the other players,
and so we look for Nash equilibria.

Intuitively, if n is large, because of the symmetry of the model, player i’s con-
tribution to μn is negligible, and he may as well treat μn as fixed. This line of
argument leads to the derivation of the mean field game problem, which has the
following structure:

(1) fix a probability measure μ on path space and a flow ν : t �→ νt of measures
on the control space;

(2) with μ and ν frozen, solve the standard optimal control problem:⎧⎪⎨⎪⎩ sup
α

E

[∫ T

0
f (t,X,μ, νt , αt ) dt + g(X,μ)

]
, s.t.

dXt = b(t,X,μ,αt) dt + σ(t,X)dWt, X0 = ξ ;
(1.3)

(3) find an optimal control α, inject it into the dynamics of (1.3) and find the
law �x(μ, ν) of the optimally controlled state process, and the flow �α(μ, ν) of
marginal laws of the optimal control process;

(4) find a fixed point μ = �x(μ, ν), ν = �α(μ, ν).

This is to be interpreted as the optimization problem faced by a single represen-
tative player in a game consisting of infinitely many independent and identically
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distributed (i.i.d.) players. In the first three steps, the representative player deter-
mines his best response to the other players’ states and controls which he treats as
given. The final step is an equilibrium condition; if each player takes this approach,
and there is to be any consistency, then there should be a fixed point. Once exis-
tence and, perhaps, uniqueness of a fixed point are established, the second problem
is to use this fixed point to construct approximate Nash equilibrium strategies for
the original finite-player game. These strategies will be constructed from the opti-
mal control for the problem of step (2), corresponding to the choosing (μ, ν) to be
the fixed point in step (1).

The literature on mean field games comprises two streams of papers: one based
on analytic methods and one on a probabilistic approach.

Lasry and Lions (e.g.,[23, 32], etc.) study these problems via a system of par-
tial differential equations (PDEs). The control problem gives rise to a Hamilton–
Jacobi–Bellman equation for the value function, which evolves backward in time.
The law of the state process is described by a Kolmogorov equation, which evolves
forward in time. These equations are coupled through the dependence on the law
of the state process, in light of the consistency requirement (4). This approach
applies in the Markovian case, when the data b, σ , f and g are smooth or at
least continuous functions of the states and not of their pasts. Results in this di-
rection include two broad classes of mean field interactions: some have consid-
ered local dependence of the data on the measure argument, such as functions
(x,μ) �→ G(dμ(x)/dx) of the density, while others have studied nonlocal func-
tionals, which are continuous with respect to a weak or Wasserstein topology.

More recently, several authors have taken a probabilistic approach to this prob-
lem by using the Pontryagin maximum principle to solve the optimal control
problem. See, for example, [6, 10, 11]. Typically in a stochastic optimal control
problem, the backward stochastic differential equations (BSDEs) satisfied by the
adjoint processes are coupled with the forward SDE for the state process through
the optimal control, which is generally a function of both the forward and back-
ward parts. When the maximum principle is applied to mean field games, the
forward and backward equations are coupled additionally through the law of the
forward part. Carmona and Delarue investigate this new type of forward–backward
stochastic differential equations (FBSDEs) in [9]. It should be noted that there is
a similar but distinct way to analyze the infinite-player limit of large-population
games, leading to the optimal control of stochastic dynamics of McKean–Vlasov
type. Early forms of a stochastic maximum principle for this new type of control
problem were given in [4, 7, 34]. A general form of this principle was given in [10]
where it was applied to the solution of the control problem. A comparison of these
two asymptotic regimes is given in [12].

The aim of this paper is to present a new probabilistic approach to the analysis of
mean field games with uncontrolled diffusion coefficients. Assuming σ = σ(t, x)

contains neither a mean field term nor a control, we obtain a general existence
result. Under stronger assumptions, we prove a modest extension of the uniqueness



1192 R. CARMONA AND D. LACKER

result of Lasry and Lions [32]. Finally, we provide a construction of approximate
Nash equilibria for finite-player games in the spirit of [11], in the case that b has
no mean field term.

Our analysis is based on the weak formulation of stochastic optimal control
problems, sometimes known as the martingale approach; see, for example, [15,
18, 37]. This approach depends heavily on the nondegeneracy of σ and its inde-
pendence of the control, and in our case, it is also important that σ has no mean
field term. The strong formulation of the problem, as in [11], would require that
the state SDEs have strong solutions when controls are applied. The two formu-
lations are compared in Remark 7.12. One of the main conveniences of the weak
formulation is that weak existence and uniqueness of the state SDE require much
less regularity in the coefficients, which are allowed to be path dependent and
merely measurable in the state variable. Also, the value function solves a back-
ward stochastic differential equation (BSDE), and necessary and sufficient condi-
tions for the optimality of a control follow easily from the comparison principle
for BSDEs. This method is discussed by El Karoui, Peng and Quenez in [18], Peng
in [37] and perhaps most thoroughly by Hamadène and Lepeltier in [24].

Our results allow for the mean field interaction (at least in the running reward
function f ) to occur through the control processes in addition to the state pro-
cesses. This seems quite important for many practical applications and has received
very little attention thusfar in the literature of mean field games. A very recent
paper of Gomes and Voskanyan [22] uses PDE methods to study these types of
interactions in the deterministic case, σ ≡ 0, under the name extended mean field
games. Under strong continuity and convexity assumptions, they obtain existence
as well as some regularity of the solutions, and interestingly they are able to allow
for general dependence of the running objective f on the joint law of the state and
control processes. Our setting is very different: notably σ > 0, and our convexity
and continuity assumptions are much weaker.

We also allow for very general nonlocal mean field interactions, including but
not limited to weakly or Wasserstein continuous functionals. Among the natural
interactions that have not yet been addressed in the mean field games literature
which we are able to treat, we mention the case of coefficients which depend on
the rank (Example 5.9 in Section 5), or on the mean field of the individual’s nearest
neighbors (Section 2.2). Our framework also includes models with different types
of agents, similar to [27]. Moreover, f does not need to be strictly convex, and
may in fact be identically zero. A final novelty of our results worth emphasizing
is that they apply in non-Markovian settings and require no continuity in the state
variable.

For the sake of illustration, we present two applications which had been touted
as models for mean field games, without being solved in full generality. First we
study price impact models in which asset price dynamics depend naturally on the
rates of change of investors’ positions, inspired by the model of Carlin et al. [8]. As
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a second application of our theoretical results, we discuss a model of flocking pro-
posed by Nourian et al. in [35] to provide a mechanism by which flocking behavior
emerges as an equilibrium, as a game counterpart of the well-known Cucker–
Smale model, [14]. In [35], the authors identify the mean field limit and, under
the assumption that there exists a unique solution to the limiting mean field game,
construct approximate Nash equilibria for the finite-player games. While flocking
is often-defined mathematically as a large time phenomenon (case in point, the
stationary form of the mean field game strategy is considered in [35]), we treat the
finite horizon case to be consistent with the set-up of the paper, even though this
case is most often technically more challenging. We provide existence and approx-
imation results for both their model and two related nearest-neighbor models.

This paper is organized as follows. We introduce the two practical applications
in Section 2. The price impact models of Section 2.1 motivate the analysis of mean
field games in which players interact through their controls, while Section 2.2 de-
scribes the flocking model of [35] as well as two related nearest-neighbor models.
Then, Section 3 provides precise statements of the assumptions used throughout
the paper and the main existence and uniqueness results. Section 4 explains the
construction of approximate Nash equilibria for the finite-player game. The as-
sumptions of the main theorems are discussed in more detail in Section 5, along
with important examples. In Section 6 the general theory is specialized to the ap-
plications of Section 2. The proofs of the main theorems of Sections 3 and 4 are
given in Sections 7 and 8, respectively.

2. Applications.

2.1. Price impact models. To motivate our generalization of the class of mean
field games worthy of investigation, we present a simple multi-agent model of
price impact which leads to mean field interaction through the control processes.
The model is along the lines of Almgren and Chriss’s model [3] for price impact,
or rather its natural extension to an n-player competitive game given by Carlin,
Lobo and Viswanathan in [8]. The latter model is highly tractable, modeling a flat
order book from which each agent must execute a fixed order. We instead model
a nonlinear order book and use fairly general reward functions. See [1, 21] for a
discussion of order book mechanics as well as a discussion of resilience, a concept
we do not address. In our model, after each trade, the order book reconstructs itself
instantly around a new mid-price St , and with the same shape. At each time t ,
each agent faces a cost structure given by the same transaction cost curve c :R →
[0,∞], which is convex and satisfies c(0) = 0. We consider only order books with
finite volume; an infinite value for c(α) simply means that the volume α is not
available. Flat order books are common in the literature, though not realistic: they
correspond to quadratic transaction costs c.

We work on a filtered probability space (	,F,F = (Ft )t∈[0,T ],P ) supporting
n + 1 independent Wiener processes, W 1, . . . ,Wn and B . Let S denote the asset
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price, Ki the cash of agent i, and Xi his position. Each agent controls his trading
rate αi

t and his position evolves according to

dXi
t = αi

t dt + σ dWi
t .

The noise term σ dWi
t models a random stream of demand that a broker may

receive from his clients. If a single agent i places a market order of αi
t when the

mid-price is St , the transaction costs him αi
t St + c(αi

t ). Hence, the changes in cash
of agent i are naturally given by

dKi
t = −(αi

t St + c
(
αi

t

))
dt.

Assuming c is differentiable on its domain, the marginal price per share of this
trade is St + c′(αi

t ), meaning that the agent receives all of the volume on the order
book between the prices St and St + c′(αi

t ). The order book should recenter some-
where in this price range, say at St + γ c′(αi

t )/n, where γ > 0. The factor of 1/n

is irrelevant when n is fixed, but it is the right scaling factor for obtaining a mean
field approximation.

In a continuous-time, continuous-trading model with multiple agents, it is not
clear how simultaneous trades should be handled. Somewhat more realistic are
continuous-time, discrete-trade models, which many continuous-trade models are
designed to approximate. In a continuous-time, discrete-trade model, it is rea-
sonable to assume that agents never trade simultaneously, given that there is
a continuum of trade times to choose from. We choose to model this in our
continuous-trade setting in the following manner: when the n agents trade at rates
α1

t , . . . , α
n
t at time t , agent i still pays αi

t St + c(αi
t ), but the total change in price is

γ

n

n∑
i=1

c′(αi
t

)
.

Finally, the mid-price is modeled as an underlying martingale plus a drift repre-
senting a form of permanent price impact,

dSt = γ

n

n∑
i=1

c′(αi
t

)
dt + σ0 dBt .

Note that the particular case c(α) = α2 corresponds to the influential Almgren–
Chriss model [3]. The wealth V i

t of agent i at time t , as pegged to the mid-price,
is given by V i

0 + Xi
t St + Ki

t , which leads to the following dynamics:

dV i
t =

(
γ

n

n∑
j=1

c′(αj
t

)
Xi

t − c
(
αi

t

))
dt + σ0X

i
t dBt + σSt dWi

t .(2.1)

We assume that the agents are risk-neutral and seek to maximize their expected
terminal wealths at the end of the trading period, including some agency costs
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given by functions f and g, so that the objective of agent i is to maximize

J i = E

[
V i

T −
∫ T

0
f
(
t,Xi

t

)
dt − g

(
Xi

T

)]
.

Price impact models are most often used in optimal execution problems for high
frequency trading. Because of their short time scale, the fact that St as defined
above can become negative is not an issue in practice. In these problems, one often
chooses g(x) = mx2 for some m > 0 in order to penalize left over inventory. The
function f is usually designed to provide an incentive for tracking a benchmark,
say the frequently used market volume weighted average price (VWAP) and a
penalty slippage.

If the control processes are square integrable and the cost function c has at
most quadratic growth, the volumes Xi

t and the transaction price St are also square
integrable and the quadratic variation terms in (2.1) are true martingales. So after
using Itô’s formula, we find

J i = E

[∫ T

0

(
γ

n

n∑
j=1

c′(αj
t

)
Xi

t − c
(
αi

t

)− f
(
t,Xi

t

))
dt − g

(
Xi

T

)]
.

Treating Xi as the state processes, this problem is of the form described in the
Introduction. The general theory presented in the sequel will apply to this model
under modest assumptions on the functions c, f and g, ensuring existence of ap-
proximate Nash equilibria. Intuitively, when n is large, a single agent may ignore
his price impact without losing much in the way of optimality. This model could be
made more realistic in many ways, but we believe any improvement will preserve
the basic structure of the price impact, which naturally depends on the mean field
of the control processes. It should be mentioned that the risk-neutrality assump-
tion is crucial and hides a much more difficult problem. Without risk-neutrality,
we would have to keep track of V and S as state processes. More importantly, the
Brownian motion B would not disappear after taking expectations, and this would
substantially complicate the mean field limit.

2.2. Flocking models. The position Xi
t and velocity V i

t of individual i change
according to

dXi
t = V i

t dt,

dV i
t = αi

t dt + σ dWi
t ,

where αi
t is the individual’s acceleration vector, Wi are independent d-dimensional

Wiener processes, and σ > 0 is a d × d matrix (usually d = 2 or d = 3). The
objective of individual i is to choose αi to minimize

E

[∫ T

0

∣∣αi
t

∣∣2
R +

∣∣∣∣∣1n
n∑

j=1

(
V

j
t − V i

t

)
φ
(∣∣Xj

t − Xi
t

∣∣)∣∣∣∣∣
2

Q

dt

]
.(2.2)
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Here, φ : [0,∞) → [0,∞) is a nonincreasing function, and |x|Q := x�Qx and
|x|R := x�Rx for x ∈ R

d , where Q and R are positive semidefinite d × d ma-
trices. The |αi

t |2R term penalizes too rapid an acceleration, while the second term
provides an incentive for an individual to align his velocity vector with the aver-

age velocity of the flock. The weights φ(|Xj
t − Xi

t |) emphasize the velocities of
nearby (in position) individuals more than distant ones. In [35], drawing inspira-
tion from [14], φ is of the form

φ(x) = c
(
1 + x2)−β

, β ≥ 0, c > 0.(2.3)

Our existence and approximation results apply to the model above as well as
a related model in which the weights in (2.2) take a different form. Namely, in-
dividual i may give nonzero weight only to those individuals it considers to be
neighbors, where the set of neighbors may be determined in two different ways.
Nearest neighbor rules pre-specify a radius r > 0, and an individual i’s neighbors
at time t are those individuals j with |Xj

t − Xi
t | ≤ r . Letting Ni

t denote the set of
such j and |Ni

t | its cardinality, the objective function is

E

[∫ T

0

∣∣αi
t

∣∣2
R +

∣∣∣∣ c

|Ni
t |
∑

j∈Ni
t

(
V

j
t − V i

t

)∣∣∣∣2
Q

dt

]
.(2.4)

This is inspired by what is now known as Vicsek’s model, proposed in [40] and
studied mathematically in [30]. On the other hand, recent studies such as [5] pro-
vide evidence that birds in flocks follow so-called k-nearest neighbor rules, which
track only a fixed number k ≤ n of neighbors at each time. The corresponding ob-
jective function is the same, if we instead define Ni

t to be the set of indices j of the
k closest individuals to i (so of course |Ni

t | = k). Note that there are no “ties;” that

is, for each distinct i, j, l ≤ n and t > 0, we have P(|Xi
t − X

j
t | = |Xi

t − Xl
t |) = 0.

3. Mean field games. We turn now to a general discussion of the mean field
game models which we consider in this paper. We collect the necessary notation
and assumptions in order to state the main existence, uniqueness and approxima-
tion theorems.

3.1. Construction of the mean field game. Let B(E, τ) denote the Borel
σ -field of a topological space (E, τ). When the choice of topology is clear, we
use the abbreviated form B(E). For a measurable space (	,F), let P(	) denote
the set of probability measures on (	,F). We write μ � μ′ when μ is absolutely
continuous with respect to μ′, and μ ∼ μ′ when the measures are equivalent. Given
a measurable function ψ :	 → [1,∞), we set

Pψ(	) =
{
μ ∈ P(	) :

∫
ψ dμ < ∞

}
,

Bψ(	) =
{
f :	 →R measurable, sup

ω

∣∣f (ω)
∣∣/ψ(ω) < ∞

}
.
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We define τψ(	) to be the weakest topology on Pψ(	) making the map μ �→∫
f dμ continuous for each f ∈ Bψ(	). The space (Pψ(	), τψ(	)) is generally

neither metrizable nor separable, which will pose some problems. We define the
empirical measure map en :	n →P(	) by

en(ω1, . . . ,ωn) = 1

n

n∑
j=1

δωj
.

Notice that en need not be B(Pψ(	), τψ(	))-measurable, but this will not be an
issue.

DEFINITION 3.1. Given measurable spaces E and F , we say that a function
f :P(	) × E → F is empirically measurable if

	n × E  (x, y) �→ f
(
en(x), y

) ∈ F

is jointly measurable for all n ≥ 1.

Let C := C([0, T ];Rd) be the space of R
d -valued continuous functions on

[0, T ] endowed with the sup-norm ‖x‖ := sups∈[0,T ] |x(s)| and fix a Borel mea-
surable function ψ :C → [1,∞) throughout. It will play a role similar to the
“Lyapunov-like” function of Gärtner [20], controlling a tradeoff between integra-
bility and continuity requirements. Some comments on the choice of ψ follow in
Remark 3.7. For any μ ∈ P(C) and t ∈ [0, T ], the marginal μt denotes the image
of μ under the coordinate map C  x �→ xt ∈ R

d .
We use the notation λ0 ∈ P(Rd) for the initial distribution of the infinitely many

players’ state processes. Let 	 := R
d × C, define ξ(x,ω) := x and W(x,ω) := ω

and let P denote the product of λ0 and the Wiener measure, defined on B(	).
Define Ft to be the completion of σ((ξ,Ws) : 0 ≤ s ≤ t) by P -null sets of B(	),
and set F := (Ft )0≤t≤T . We work with the filtered probability space (	,FT ,F,P )

for the remainder of the section. For k ∈ N and q ≥ 1 define the space H
q,k to be

the set of progressively measurable h : [0, T ] × 	 →R
k satisfying

E

[(∫ T

0
|ht |2 dt

)q/2]
< ∞.

For a martingale M , we denote by E(M) its Doleans stochastic exponential. We
now state assumptions on the data which will stand throughout the paper. Unless
otherwise stated, Pψ(C) is equipped with the topology τψ(C).

The following Assumptions (S) are implicitly assumed throughout the paper.

ASSUMPTIONS (S) (Standing assumptions).

(S.1) The control space A is a compact convex subset of a normed vector
space, and the set A of admissible controls consists of all progressively measurable
A-valued processes. The volatility σ : [0, T ]×C →R

d×d is progressively measur-
able. The drift b : [0, T ]×C ×Pψ(C)×A →R

d is such that (t, x) �→ b(t, x,μ, a)
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is progressively measurable for each (μ, a), and a �→ b(t, x,μ, a) is continuous
for each (t, x,μ).

(S.2) There exists a unique strong solution X of the driftless state equation

dXt = σ(t,X)dWt, X0 = ξ,(3.1)

such that E[ψ2(X)] < ∞, σ(t,X) > 0 for all t ∈ [0, T ] almost surely, and
σ−1(t,X)b(t,X,μ,a) is uniformly bounded.

We will elaborate on these and the subsequent assumptions in Section 6 below,
but for now let us make a few remarks. If σ has linear growth, ψ(x) = 1 + ‖x‖p ,
and

∫
Rd |x|2pλ0(dx) < ∞, then indeed E[ψ2(X)] < ∞. Compactness of A is a

strong assumption which will be used in several places, in particular to ensure that
P(A) is compact. Boundedness of σ−1b is also restrictive, but it will be crucial
to ensure that the Hamiltonian is a uniformly Lipschitz function of the adjoint
variable. See Remark 5.8 for more details and some comments about relaxing these
assumptions.

From now on, X denotes the unique solution of (3.1). For each μ ∈ Pψ(C) and
α ∈A, define a measure P μ,α on (	,FT ) by

dP μ,α

dP
= E

(∫ ·
0

σ−1b(t,X,μ,αt) dWt

)
T

.

By Girsanov’s theorem and boundedness of σ−1b, the process Wμ,α defined by

W
μ,α
t := Wt −

∫ t

0
σ−1b(s,X,μ,αs) ds

is a Wiener process under P μ,α , and

dXt = b(t,X,μ,αt) dt + σ(t,X)dW
μ,α
t .

That is, under P μ,α , X is a weak solution of the state equation. Note that P μ,α

and P agree on F0; in particular, the law of X0 = ξ is still λ0. Moreover, ξ and W

remain independent under P μ,α .

REMARK 3.2. It is well known that the nonsingularity assumption (S.2) of σ

guarantees that F coincides with the completion of the filtration generated by X. It
is thus implicit in the definition of A that our admissible controls can be written in
closed-loop form, that is, as deterministic functions of (t,X).

We now state the assumptions on the reward functions entering the objectives
to be maximized by the players. Throughout, P(A) is endowed with the weak
topology and its corresponding Borel σ -field.

(S.3) The running reward f : [0, T ]×C×Pψ(C)×P(A)×A →R is such that
(t, x) �→ f (t, x,μ, q, a) is progressively measurable for each (μ, q, a) and a �→
f (t, x,μ, q, a) is continuous for each (t, x,μ, q). The terminal reward function
g :C ×Pψ(C) →R is such that x �→ g(x,μ) is Borel measurable for each μ.
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(S.4) There exist c > 0 and an increasing function ρ : [0,∞) → [0,∞) such
that∣∣g(x,μ)

∣∣+ ∣∣f (t, x,μ, q, a)
∣∣≤ c

(
ψ(x) + ρ

(∫
ψ dμ

))
∀(t, x,μ, q, a).

Since ψ ≥ 1, this is equivalent to the same assumption but with ψ replaced by
1 + ψ .

(S.5) The function f is of the form

f (t, x,μ, q, a) = f1(t, x,μ, a) + f2(t, x,μ, q).

REMARK 3.3. The only restrictive assumption among (S.3)–(S.5) is (S.5).
Combined with the assumption that b does not depend on q , assumption (S.5)
renders the maximizer(s) of the Hamiltonian independent of the P(A) argument.
Separation assumptions of this sort are common in mean field games literature,
largely for this reason; cf. [32].

Given a measure μ ∈ Pψ(C), a control α ∈ A and a measurable map [0, T ] 
t �→ qt ∈ P(A), we define the associated expected reward by

Jμ,q(α) := E
μ,α

[∫ T

0
f (t,X,μ,qt , αt ) dt + g(X,μ)

]
,

where E
μ,α denotes expectation with respect to the measure P μ,α . Considering μ

and q as fixed, we are faced with a standard stochastic optimal control problem,
the value of which is given by

V μ,q = sup
α∈A

Jμ,q(α).

DEFINITION 3.4. We say a measure μ ∈ Pψ(C) and a measurable function
q : [0, T ] → P(A) form a solution of the MFG if there exists α ∈ A such that
V μ,q = Jμ,q(α), P μ,α ◦ X−1 = μ and P μ,α ◦ α−1

t = qt for almost every t .

3.2. Existence and uniqueness. Some additional assumptions are needed for
the existence and uniqueness results. Define the Hamiltonian h : [0, T ] × C ×
Pψ(C) × P(A) × R

d × A → R, the maximized Hamiltonian H : [0, T ] × C ×
Pψ(C) ×P(A) ×R

d →R and the set on which the supremum is attained by

h(t, x,μ, q, z, a) := f (t, x,μ, q, a) + z · σ−1b(t, x,μ, a),

H(t, x,μ, q, z) := sup
a∈A

h(t, x,μ, q, z, a),(3.2)

A(t, x,μ, q, z) := {
a ∈ A :h(t, x,μ, q, z, a) = H(t, x,μ, q, z)

}
,

respectively. Note that A(t, x,μ, q, z) does not depend on q , in light of assump-
tion (S.5), so we shall often drop q from the list of arguments of A and use the
notation A(t, x,μ, z). Note also that A(t, x,μ, z) is always nonempty, since A is
compact and h is continuous in a by assumptions (S.1) and (S.3).



1200 R. CARMONA AND D. LACKER

ASSUMPTION (C). For each (t, x,μ, z), the set A(t, x,μ, z) is convex.

It will be useful to have notation for the driftless law and the set of equivalent
laws,

X := P ◦ X−1 ∈ Pψ(C),

PX := {
μ ∈ Pψ(C) :μ ∼ X

}
.

ASSUMPTION (E) (Existence assumptions). For each (t, x) ∈ [0, T ] × C the
following maps are sequentially continuous, using τψ(C) on PX and the weak
topology on P(A):

PX × A  (μ, a) �→ b(t, x,μ, a),

PX ×P(A) × A  (μ, q, a) �→ f (t, x,μ, q, a),

PX  μ �→ g(x,μ).

THEOREM 3.5. Suppose Assumptions (E) and (C) hold. Then there exists a
solution of the MFG.

REMARK 3.6. It is worth emphasizing that sequential continuity is often eas-
ier to check for τψ(C), owing in part to the failure of the dominated convergence
theorem for nets. For example, functions like

μ �→
∫ ∫

φ(x, y)μ(dx)μ(dy)

for bounded measurable φ are always sequentially continuous, but may fail to be
continuous.

REMARK 3.7. The function ψ enters the assumptions in two essential ways.
On the one hand, the functions b, f and g should be τψ(C)-continuous in their
measure arguments as in Assumption (E). On the other hand, the solution of the
SDE dXt = σ(t,X)dWt should possess ψ2-moments as in (S.2), and the growth
of f and g should be controlled by ψ , as in (S.4). There is a tradeoff in the choice
of ψ : larger ψ makes the latter point more constraining and the former less con-
straining.

The following uniqueness theorem is inspired by Lasry and Lions [32]. They
provide counterexamples to show that one should not expect uniqueness in much
generality, unless one assumes that the time horizon is small, and the coefficients
are suitably Lipschitz (e.g., [27]).
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ASSUMPTIONS (U). (U.1) For each (t, x,μ, z), the set A(t, x,μ, z) is a sin-
gleton;

(U.2) b = b(t, x, a) has no mean field term;
(U.3) f (t, x,μ, a) = f1(t, x,μ) + f2(t,μ, q) + f3(t, x, a) for some f1, f2

and f3;
(U.4) for all μ,μ′ ∈ Pψ(C),∫
C

[
g(x,μ) − g

(
x,μ′)+ ∫ T

0

(
f1(t, x,μ) − f1

(
t, x,μ′))dt

](
μ − μ′)(dx) ≤ 0.

THEOREM 3.8. Suppose Assumptions (U) holds. Then there is at most one
solution of the MFG.

COROLLARY 3.9. Suppose Assumptions (E) and (U) hold. Then there exists
a unique solution of the MFG.

REMARK 3.10. The following simple extension of the above formulation
allows more heterogeneity among agents. Work instead on a probability space
	 = 	′ × R

d × C, where 	′ is some measurable space which will model addi-
tional time-zero randomness. We may then fix an initial law λ0 ∈ P(	′ ×R

d) and
let P be the product of λ0 and Wiener measure. Letting (θ, ξ,W) denote the coor-
dinate maps, we work with the filtration generated by the process (θ, ξ,Ws)0≤s≤T .
The data b, σ , f and g may all depend on θ . In the finite-player game, the agents
have i.i.d. initial data (θ i, ξ i), known at time zero, where ξ i is the initial state and
θi can encode other differences between the agents. For example, in a price impact
model, perhaps a fraction ρ ∈ [0,1] of the agents need to liquidate but the rest
do not; this can be modeled using such a θ which equals c > 0 with probability ρ

and 0 otherwise, and setting g(X, θ) = θ |XT |2 for some c > 0. This generalization
complicates the notation but changes essentially none of the analysis.

4. Approximate Nash equilibria for finite-player games. Before proving
these theorems, we discuss how a solution of the MFG may be used to construct
an approximate Nash equilibrium for the finite-player game, using only distributed
controls. Additional assumptions are needed for the approximation results:

ASSUMPTIONS (F).

(F.1) b = b(t, x, a) has no mean field term;
(F.2) for all (t, x,μ, q, a), f (t, x,μ, q, a) = f (t, x,μt , q, a), where μt de-

notes the image of μ under the map C  x �→ x·∧t ∈ C;
(F.3) the functions b, f and g are empirically measurable, as in Definition 3.1,

using the progressive σ -field on [0, T ] × C and Borel σ -fields elsewhere;
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(F.4) for each (t, x), the following functions are continuous at each point satis-
fying μ ∼ X :

Pψ(C) ×P(A) × A  (μ, q, a) �→ f (t, x,μ, q, a),

Pψ(C)  μ �→ g(x,μ);
(F.5) there exists c > 0 such that, for all (t, x,μ, q, a),∣∣g(x,μ)

∣∣+ ∣∣f (t, x,μ, q, a)
∣∣≤ c

(
ψ(x) +

∫
ψ dμ

)
.

REMARK 4.1. The continuity assumption (F.4) is stronger than Assump-
tion (E). Indeed, in Assumption (E) we required only sequential continuity on
a subset of the space Pψ(C). Assumption (F.2) is simply progressive measurability
of f with respect to the measure argument, which in fact was not needed for the
results of Section 3. Analogs of the result of this section are possible when (F.1)
fails, under stronger continuity requirements. Namely, σ−1b, f and g should be
continuous in μ uniformly in the other arguments, and σ−1b should be uniformly
Lipschitz in μ with respect to total variation. However, we refrain from elaborating
on this result, as it seems suboptimal and the proof is quite long.

Adhering to the philosophy of the weak formulation, we choose a single conve-
nient probability space on which we define the n-player games, simultaneously for
all n. Assumptions (C) and (F) stand throughout this section [as does Assump-
tions (S), as always]. We fix a solution of the MFG (μ̂, q̂) throughout, whose
existence is guaranteed by Theorem 3.5, with corresponding closed-loop control
α̂(t, x); see Remark 3.2. Consider a probability space (	,F,P ) supporting a se-
quence (W 1,W 2, . . .) of independent d-dimensional Wiener processes, indepen-
dent Rd -valued random variables (ξ1, ξ2, . . .) with common law λ0, and processes
(X1,X2, . . .) satisfying

dXi
t = b

(
t,Xi, α̂

(
t,Xi))dt + σ

(
t,Xi)dWi

t , Xi
0 = ξ i .

For each n, let Fn = (Fn
t )t∈[0,T ] denote the completion of the filtration generated

by (X1, . . . ,Xn) by null sets of F . Let Xi denote the completion of the filtration
generated by Xi . Note that Xi are independent and identically distributed and
that the process (ξ i,W i

t )0≤t≤T generates the same filtration X
i , as in Remark 3.2.

Abbreviate αi
t = α̂(t,Xi). These controls are known as distributed controls.

We now describe the n-player game for fixed n. The control space An is the
set of all Fn-progressively measurable A-valued processes; the players have com-
plete information of the other players’ state processes. On the other hand, An

n is
the n-fold Cartesian product of An, or the set of F

n-progressively measurable
An-valued processes. Let μn denote the empirical measure of the first n state pro-
cesses as defined in the introduction by (1.2). For β = (β1, . . . , βn) ∈A

n
n, define a
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measure Pn(β) on (	,Fn
T ) by the density

dPn(β)

dP
:= E

(∫ ·
0

n∑
i=1

(
σ−1b

(
t,Xi, βi

t

)− σ−1b
(
t,Xi, αi

t

))
dWi

t

)
T

.

Under Pn(β), for each i = 1, . . . , n, Xi is a weak solution of the SDE

dXi
t = b

(
t,Xi, βi

t

)
dt + σ

(
t,Xi)dW

βi,i
t ,

where

Wβi,i· := W· −
∫ ·

0

[
σ−1b

(
t,Xi, βi

t

)− σ−1b
(
t,Xi, αi

t

)]
dt

is a d-dimensional Pn(β)-Wiener process. Note that Xi
0 are i.i.d. with common

law λ0 under any of the measures Pn(β) with β ∈ A
n
n. For β = (β1, . . . , βn) ∈ A

n
n,

the value to player i of the strategies β is defined by

Jn,i(β) := E
Pn(β)

[∫ T

0
f
(
t,Xi,μn, qn(βt ), β

i
t

)
dt + g

(
Xi,μn)],

where, for a = (a1, . . . , an) ∈ An, we define

qn(a) := 1

n

n∑
i=1

δai .

Note that the joint measurability assumption (F.3) guarantees that g(Xi,μn) is
Fn

T -measurable, while (F.2) and (F.3) ensure that f (t,Xi,μn, qn(βt ), β
i
t ) and

b(t,Xi, βi
t ) are progressively measurable with respect to F

n.

THEOREM 4.2. Assume Assumptions (C) and (F) hold, and let (μ̂, q̂) denote
a solution of the MFG, with corresponding closed-loop control α̂ = α̂(t, x); see
Remark 3.2. Then the strategies αi

t := α̂(t,Xi) form an approximate Nash equil-
brium for the finite-player game in the sense that there exists a sequence εn ≥ 0
with εn → 0 such that, for 1 ≤ i ≤ n and β ∈ An,

Jn,i

(
α1, . . . , αi−1, β,αi+1, . . . , αn)≤ Jn,i

(
α1, . . . , αn)+ εn.

REMARK 4.3. The punchline is that αi is X
i-adapted for each i. That is,

player i determines his strategy based only on his own state process. As explained
earlier, such strategies are said to be distributed. The theorem tells us that even
with full information, there is an approximate Nash equilibrium consisting of dis-
tributed controls, and we know precisely how to construct one using a solution of
the MFG. Note that the strategies (αi)i∈N also form an approximate Nash equilib-
rium for any partial-information version of the game, as long as player i has access
to (at least) the filtration X

i generated by his own state process.
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5. Discussion of the assumptions and examples. This section discusses
some important special cases of the assumptions of Sections 3 and 4. Assump-
tions (C) and (U) are examined first, before we turn to Assumptions (S), (E)
and (F).

5.1. Assumptions (C) and (U). Assumption (C) [resp., (U.1)] is crucial for
the fixed point (resp., uniqueness) argument and holds when the Hamiltonian
h(t, x,μ, q, z, a) is concave (resp., strictly concave) in a, for each (t, x,μ, q, z),
which is a common assumption in control theory. For example, Assumption (C)
[resp., (U.1)] holds if b is affine in a, and f is concave (resp., strictly concave)
in a. More generally, we can get away with quasiconcavity in the previous state-
ments. Note that if f ≡ 0, then A(t, x,μ,0) = A, and thus condition (U.1) fails
except in trivial cases. However, Assumption (C) frequently holds even in the ab-
sence of a running reward function f ≡ 0; the optimal control in such a case is
typically a bang-bang control.

EXAMPLE 5.1 (Monotone functionals of measures). Here we provide some
examples of the monotonicity assumption (U.4) of Theorem 3.8. For any of the
following g, we have∫

C

[
g(x,μ) − g

(
x,μ′)](μ − μ′)(dx) ≤ 0 ∀μ,μ′ ∈ Pψ(C).

• g(x,μ) = φ1(x)+φ2(μ) for some φ1 :C →R and φ2 :Pψ(C) →R. In this case,
there is equality for all μ,μ′.

• g(x,μ) = |φ(x)− ∫
C φ(y)μ(dy)|2 for some φ :C →R. If, for example, φ(x) =

x, then this payoff function rewards a player if his state process deviates from
the average.

• g(x,μ) = − ∫
Rd φ(|x − y|)μT (dy), where φ : [0,∞) → [0,∞) is bounded,

continuous and positive definite. A special case is when φ is bounded, non-
increasing, and convex; see Proposition 2.6 of [21].

5.2. Assumptions (S), (E) and (F). Standard arguments give:

LEMMA 5.2. Assume that ψ0 :Rd → [1,∞) is either ψ0(x) = 1 + |x|p for
some p ≥ 1 or ψ0(x) = ep|x| for some p > 0, and let ψ(x) = supt∈[0,T ] ψ0(xt ).
If
∫
Rd ψ0(x)2λ0(dx) < ∞, σ > 0, |σ(·,0)| ∈ L2[0, T ] and |σ(t, x) − σ(t, y)| ≤

c‖x − y‖ for some c > 0, then (S.2) holds as long as σ−1b is bounded.

The measurability requirement (F.3) is unusual, but not terribly restrictive. The
more difficult assumption to verify is that of continuity, (F.4). Common assump-
tions in the literature involve continuity with respect to the topology of weak con-
vergence or more generally a Wasserstein metric. For a separable Banach space
(E,‖ · ‖E) and p ≥ 1, let

Wp
E,p

(
μ,μ′) := inf

π

∫
E

‖x − y‖p
Eπ(dx, dy),
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where the infimum is over all π ∈ P(E × E) with marginals μ and μ′. When
ψE,p(x) = 1+‖x‖p

E , it is known that WE,p metrizes the weakest topology making
the map PψE,p

(E)  μ �→ ∫
φ dμ continuous for each continuous function φ ∈

BψE,p
(E); see Theorem 7.12 of [41]. Thus WE,p is weaker than τψE,p

(C), which
proves the following result.

LEMMA 5.3. Let ψ = ψC,p , p ≥ 1. Suppose f and g are (sequentially) con-
tinuous in (μ, q, a) at points with μ ∼ X , for each (t, x), using the metric WC,p

on Pψ(C). Then (F.4) holds.

In most applications the coefficients are Markovian; that is,

f (t, x,μ, q, a) = f̂ (t, xt ,μt , q, a) for some f̂ .

Note that for any μ,μ′ ∈ P(C), p ≥ 1 and t ∈ [0, T ],
WRd ,p

(
μt,μ

′
t

)≤WC,p

(
μ,μ′),

and thus the previous proposition includes Markovian data. Note also that assump-
tion (F.4) demands continuity in the measure argument only at the points which
are equivalent to X . Of course, if σ does not depend on X or is uniformly bounded
from below, then Xt ∼ L for all t > 0, and thus in the Markovian case we need
only to check that f̂ is continuous at points which are equivalent to Lebesgue
measure. At no point was a Markov property of any use, and this is why we
chose to allow path-dependence in each of the coefficients. Moreover, continu-
ity in the spatial variable was never necessary either. Indeed, we require only
that dXt = σ(t,X)dWt admits a strong solution, as in assumption (S.2), which
of course covers the usual Lipschitz assumption. The most common type of mean
field interaction is scalar and Markovian, so we investigate such cases carefully.

PROPOSITION 5.4 (Scalar dependence on the measure). Consider a function
of the form

f (t, x,μ, q, a) =
∫
C
F(t, xt , yt , q, a)μ(dy) =

∫
Rd

F (t, xt , y, q, a)μt(dy),

where F : [0, T ]×R
d ×R

d ×P(A)×A →R is jointly measurable and jointly con-
tinuous in its last two arguments whenever the first three are fixed. Let ψ0 :Rd →
[1,∞) be lower semicontinuous, and suppose there exists c > 0 such that

sup
(t,a)∈[0,T ]×A

∣∣F(t, x, y, q, a)
∣∣≤ c

(
ψ0(x) + ψ0(y)

)
for all (x, y) ∈ R

d ×R
d . Let ψ(x) = supt∈[0,T ] ψ0(xt ) for x ∈ C. Then f satisfies

the relevant parts of assumptions (S.3), (S.4), (E), (F).
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PROOF. Note that ψ :C → [1,∞) is lower-semicontinuous and thus measur-
able. Note also that the function C  y �→ F(t, x, yt , q, a) ∈ R is in Bψ(C) for
each (t, x, q, a) ∈ [0, T ] ×R

d ×P(A) × A, and thus f is indeed well defined for
μ ∈ Pψ(C). Property (F.2) is obvious, and property (F.5) follows from the inequal-
ity

∣∣f (t, x,μ, q, a)
∣∣≤ c

(
ψ0(xt ) +

∫
C
ψ0(yt )μ(dy)

)
.

The measurability assumption (F.3) is easy to verify. Assumption (E) will follow
from (F.4), which we prove now.

Fix (t, x) ∈ [0, T ]×C, and let E = P(A)×A. Let F0(y, η) := F(t, xt , y, η) for
(y, η) ∈R

d ×E. Fix (μ,η) ∈ Pψ(C)×E and a net (μα, ηα) converging to (μ,η).
We also have μα

t → μt in τψ0(R
d). Note that

f
(
t, x,μα, ηα)− f (t, x,μ,η) =

∫
Rd

(
F0
(
y,ηα)− F0(y, η)

)
μα

t (dy)

+
∫
Rd

F0(y, η)
(
μα

t − μt

)
(dy).

The second term clearly tends to zero. For the first term, fix ε > 0. Since E is com-
pact metric, the function R

d  y �→ F0(y, ·) ∈ C(E) is measurable, using the Borel
σ -field generated by the supremum norm on the space C(E) of continuous real-
valued functions of E; see Theorem 4.55 of [2]. Thus, by Lusin’s theorem (Theo-
rem 12.8 of [2]), there exists a compact set K ⊂ R

d such that
∫
Kc ψ0 dμt < ε and

K  y �→ F0(y, ·) ∈ C(E) is continuous. Since |F0(y, η′)| ≤ c(ψ0(xt ) + ψ0(y))

for all (y, η′) ∈ R
d × E,∣∣∣∣∫

Rd

(
F0
(
y,ηα)− F0(y, η)

)
μα

t (dy)

∣∣∣∣≤ sup
y∈K

∣∣F0
(
y,ηα)− F0(y, η)

∣∣
+ 2c

∫
Kc

(
ψ0(xt ) + ψ0(y)

)
μα

t (dy).

It follows from the compactness of E and Lemma 5.6 below that the restriction
of F0 to K × E is uniformly continuous. Since K is compact, we use Lemma 5.6
again in the other direction to get supy∈K |F0(y, ηα) − F0(y, η)| → 0. Since also

lim
∫
Kc

(
ψ0(xt ) + ψ0(y)

)
μα

t (dy) =
∫
Kc

(
ψ0(xt ) + ψ0(y)

)
μt(dy)

≤ (
1 + ψ0(xt )

)
ε,

we have

lim sup
∣∣∣∣∫

Rd

(
F0
(
y,ηα)− F0(y, η)

)
μα

t (dy)

∣∣∣∣≤ 2c
(
1 + ψ0(xt )

)
ε. �
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COROLLARY 5.5. Let F and ψ0 be as in Proposition 5.4, and suppose

f (t, x,μ, q, a) = G

(
t, xt ,

∫
Rd

F (t, xt , y, q, a)μt(dy), q, a

)
,

where G : [0, T ]×R
d ×R×P(A)×A →R is jointly measurable and continuous

in its last three arguments. If also∣∣G(t, x, y, q, a)
∣∣≤ c

(
ψ0(x) + |y|)

for some c > 0, then f satisfies the relevant parts of assumptions (S.3), (S.4),
(E), (F).

We will occasionally need the following simple lemma, which was used in the
proof of Proposition 5.4. Its proof is straightforward and thus omitted.

LEMMA 5.6. Let E and K be topological spaces with K compact, let G :E ×
K → R, and let x0 ∈ E be fixed. Then G is jointly continuous at points of {x0} ×
K if and only if G(x0, ·) is continuous and x �→ supy∈K |G(x,y) − G(x0, y)| is
continuous at x0.

EXAMPLE 5.7 (Geometric Brownian motion). Requiring σ−1b to be bounded
rather than σ−1 and b each to be bounded notably allows for state processes of a
geometric Brownian motion type. For example, if d = 1, our assumptions allow
for coefficients of the form

b(t, x,μ, a) = b̂(t,μ, a)xt ,

σ (t, x) = σ̂ (t)xt ,

where σ̂ (t) > 0 for all t and σ̂−1b̂ is bounded.

REMARK 5.8. We close the subsection with a remark on the assumption of
boundedness of σ−1b, which could certainly be relaxed. The reason for this as-
sumption lies in the BSDE (7.1) for the value function; boundedness of σ−1b

equates to a standard Lipschitz driver, as covered in [36]. The results of Hamadène
and Lepeltier in [24] may be applied if b and σ have linear growth in x, and σ

is bounded below, but this increases the technicalities and rules out a direct appli-
cation of the results of [25]. However, we only really need [25] in order to treat
mean field interactions in the control, and thus our analysis should still work un-
der appropriate linear growth assumptions. Our assumptions of boundedness of
σ−1b and compactness of A unfortunately rule out common linear-quadratic mod-
els, but, nonetheless, the same general techniques could be used to study a large
class of linear-quadratic problems (still, of course, with uncontrolled volatility) in
which both these assumptions fail. More care is required in the choice of admis-
sible controls, and the BSDE for the value function becomes quadratic in z; this
program was carried out for stochastic optimal control problems in [19], and could
presumably be adapted to mean field games.
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5.3. Additional examples. Corollary 5.5 allows us to treat many mean field
interactions which are not weakly continuous, as they may involve integrals of
discontinuous functions. This is useful in the following examples.

EXAMPLE 5.9 (Rank effects). Suppose an agent’s reward depends on the
rank of his state process among the population. That is, suppose d = 1 and
f (t, x,μ, q, a) involves a term of the form G(μt(−∞, xt ]), where G : [0,1] → R

is continuous. Such terms with G monotone are particularly interesting for appli-
cations, as suggested for a model of oil production in [23]. The intuition is that an
oil producer prefers to produce before his competitors, in light of the uncertainty
about the longevity of the oil supply. The state process X represents oil reserves,
and G should be decreasing in their model. Proposition 5.4 shows that the inclusion
of such terms as μt(−∞, xt ] in f or g is compatible with all of our assumptions.
If b contains such rank effects, no problem is posed for Assumptions (S) and (E),
but of course (F.1) is violated.

EXAMPLE 5.10 (Types). In [27], Huang, Malhamé and Caines consider mul-
tiple types of agents, and a dependence on the mean field within each type. The
number of types is fixed, and an agent cannot change type during the course of
the game. Using the construction of Remark 3.10, we may model this by giving
each agent a random but i.i.d. type at time zero. Alternatively, in some models
an agent’s type may change with his state (or with time, or with his strategy); for
example, a person’s income bracket depends on his wealth. Suppose, for exam-
ple, that A1,A2, . . . ,Am ⊂ R

d are Borel sets of positive Lebesgue measure, and
define Fi :P(Rd) → P(Rd) by Fi(μ)(B) := μ(B ∩ Ai)/μ(Ai) when μ(Ai) > 0
and Fi(μ) = 0 otherwise. As long as σ is bounded away from zero, then Xt ∼ L
where L is again Lebesgue measure on R

d , and indeed Fi are τ1(R
d)-continuous

at points μ ∼ Xt . So we can treat functionals of the form

f (t, x,μ, q, a) = G
(
t, xt ,F (μt), q, a

)
,

where F = (F1, . . . ,Fm), and G : [0, T ] ×R
d × (P(Rd))m ×P(A) × A →R.

6. Applications revisited. Before proving the main results, we return briefly
to the models presented in Section 2, for which we demonstrate the applicability
of the existence and approximation Theorems 3.5 and 4.2.

6.1. Price impact models. We restrict our attention to finite-volume order
books. We suppose that A ⊂ R is a compact interval containing the origin,
c′ :A →R is continuous and nondecreasing, σ > 0, f : [0, T ] × R → R and
g :R →R are measurable, and finally that there exists c1 > 0 such that∣∣f (t, x)

∣∣+ ∣∣g(x)
∣∣≤ c1e

c1|x| for all (t, x) ∈ [0, T ] ×R.
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Let c(x) = ∫ x
0 c′(a) da. Assume that Xi

0 are i.i.d. and that their common distri-
bution λ0 ∈ P(R) satisfies

∫
R

ep|x|λ0(dx) < ∞ for all p > 0. In the notation of
the paper, we have b(t, x,μ, a) = a, σ(t, x) = σ , f (t, x,μ, q, a) = γ xt

∫
A c′dq −

c(a) − f (t, xt ), g(x,μ) = g(xT ) and ψ(x) = ec1‖x‖.
It is quite easy to check the assumptions of the previous sections, at least with

the help of Lemma 5.2 below, yielding the following theorem. Moreover, in this
simple case we can estimate the rate of convergence, as proven at the end of Sec-
tion 8.

PROPOSITION 6.1. Under the above assumptions, the existence and approx-
imation theorems 3.5 and 4.2 apply to the price impact model. Moreover, in the
approximation theorem, there exists a constant C > 0 such that

εn ≤ C/
√

n.

6.2. Flocking models. To work around the degeneracy of the diffusion
(Xi,V i), we consider only V i as the state variable and recover Xi by making
the coefficients path-dependent. Let b(t, v,μ, a) = a, σ > 0 constant, g ≡ 0, and
A ⊂ R

d compact convex. Define ι : [0, T ] × C → R
d and I : [0, T ] × P(C) →

P(Rd) by

ι(t, v) :=
∫ t

0
vs ds, I (t,μ) := μ ◦ ι(t, ·)−1.

Note that ι(t, V i) represents the position of the individual at time t ; we are assum-
ing each individual starts at the origin to keep the notation simple and consistent,
although any initial distribution of positions could be accounted for by using the
construction of Remark 3.10. For flocking models, (2.2) is captured by choosing a
running reward function of the form

f (1)(t, v,μ, a) = −|α|2R −
∣∣∣∣∫C μ

(
dv′)(v′

t − vt

)
φ
(∣∣ι(t, v′ − v

)∣∣)∣∣∣∣2
Q

.

The minus signs are only to turn the problem into a maximization, to be consis-
tent with the notation of the rest of the paper. Recall that φ : [0,∞) → [0,∞) is
nonincreasing and thus Borel measurable. Assume the initial data V i are i.i.d. and
square-integrable, with law λ0 ∈ P2(R

d). Take ψ(x) = 1+‖x‖2 for x ∈ C. For the
nearest-neighbor model, we use

f (2)(t, v,μ, a)

= −|α|2R −
∣∣∣∣ c

I (t,μ)(B(ι(t, v), r))

∫
C
μ
(
dv′)(v′

t − vt

)
1B(ι(t,v),r)

(
ι
(
t, v′))∣∣∣∣2

Q

,

where r > 0 was given, and B(x, r ′) denotes the closed ball of radius r ′ centered at
x. Consider the second term above to be zero whenever I (t,μ)(B(ι(t, v), r)) = 0.
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Finally, for the k-nearest-neighbor model, we choose η ∈ (0,1) to represent a fixed
percentage of neighbors, which amounts to keeping k/n fixed in the finite-player
game as we send n → ∞. We define r :P(Rd) ×R

d → [0,∞) by

r(μ, x, y) := inf
{
r ′ > 0 :μ

(
B
(
x, r ′))≥ y

}
,

and

f (3)(t, v,μ, a)

= −|α|2R −
∣∣∣∣ cη
∫
C
μ
(
dv′)(v′

t − vt

)
1B(ι(t,v),r(I (t,μ),ι(t,v)),η)

(
ι
(
t, v′))∣∣∣∣2

Q

.

It is straightforward to check that the objective (2.4) for the nearest-neighbor mod-
els is equivalent to maximizing

E

∫ T

0
f (1)(t, V i,μn,αi

t

)
dt where μn = 1

n

n∑
j=1

δV j ,

replacing f (1) by f (2) in the case of the k-nearest-neighbor model.

PROPOSITION 6.2. Under the above assumptions, the existence and approxi-
mation theorems 3.5 and 4.2 apply to each of the flocking models.

PROOF. Assumptions (S.1), (S.4), (S.5), (C), (F.1), (F.2) and (F.5) are easy to
check. Lemma 5.2 below takes care of (S.2). Also, (S.3) and (F.3) are clear for
f (1) and f (2), and follow from Lemma 6.3 below for f (3). It remains to check
the continuity assumption (F.4). For f (1), this follows from Proposition 5.4 below.
Apply Itô’s formula to tWt to get

ι(t,X) =
∫ t

0
Xs ds =

∫ t

0
(ξ + σWs)ds = tξ + σ tWt − σ

∫ t

0
s dWs.

Since ξ and W are independent, we see that I (t,X ) ∼ L for t ∈ (0, T ], where L
denotes Lebesgue measure on R

d . Hence I (t,μ) ∼ L for μ ∼ X , and so μ �→
1/I (t,μ)(B(x, r)) is τψ(C)-continuous at points μ ∼ X , for each (x, r) ∈ R

d ×
(0,∞). This along with Proposition 5.4 below establish (F.4) for f (2). Finally, we
prove (F.4) for f (3). Fix (t, v) ∈ (0, T ] × C, and define

Bμ := B
(
ι(t, v), r

(
I (t,μ), ι(t, v), η

))
,

F (μ) :=
∫
C

(
v′
t − vt

)
1Bμ

(
ι
(
t, v′))μ(dv′),

for μ ∈ Pψ(C). In light of Lemma 5.3 and the discussion preceding it, it suffices
to show F is WC,2-continuous at points μ ∼X . Let μn → μ in WC,2 with μ ∼ X ,
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and note that I (t,μ) ∼ I (t,X ) ∼ L. Then

F
(
μn)− F(μ) =

∫
C

(
v′
t − vt

)
(1Bμn − 1Bμ)

(
ι
(
t, v′))μ(dv′)

+
∫
C

(
v′
t − vt

)
1Bμn

(
ι
(
t, v′))[μn − μ

](
dv′)

=: In + IIn.

Note that I (t,μn) → I (t,μ) weakly, and thus

r
(
I
(
t,μn), ι(t, x), η

)→ r
(
I (t,μ), ι(t, x), η

)
by Lemma 6.3. Since 1Bμn → 1Bμ holds L-a.e. [and thus I (t,μ)-a.e.] and

∫
C(v

′
t −

vt )[μn − μ](dv′) → 0, the dominated convergence theorem yields In → 0. To
show IIn → 0, note that note that

I
(
t,
(
v′
t − vt

)
μn(dv′))→ I

(
t,
(
v′
t − vt

)
μ
(
dv′)) weakly.

Since the latter measure is absolutely continuous with respect to Lebesgue mea-
sure, Theorem 4.2 of [38] implies

IIn = [
I
(
t,
(
v′
t − vt

)
μn(dv′))− I

(
t,
(
v′
t − vt

)
μ
(
dv′))](Bμn) → 0.

In fact, we should consider separately the positive and negative parts of each of the
d components of the signed vector measures (v′

t − vt )μ
n(dv′), since Theorem 4.2

of [38] is stated only for nonnegative real-valued measures. �

LEMMA 6.3. The function r is empirically measurable, and r(·, x, y) is
weakly continuous at points μ ∼ L.

PROOF. To prove measurability, note that for any c > 0,

{
(z, x, y) : r

(
en(z), x, y

)
> c

}=
{
(z, x, y) :

1

n

n∑
i=1

1B(x,c)(zi) < y

}

is clearly a Borel set in (Rd)n × R
d × (0,1) for each n. To prove continu-

ity, let μn → μ weakly in P(Rd) with μ ∼ L. Let ε > 0. Since μ ∼ L,
the map r �→ μ(B(x, r)) is continuous and strictly increasing. Thus the in-
verse function r(μ, x, ·) is also continuous, and we may find δ > 0 such that
|r(μ, x, y)−r(μ, x, z)| < ε whenever |z−y| ≤ δ. Theorem 4.2 of [38] tells us that
μn(B) → μ(B) uniformly over measurable convex sets B , since μ � L. Hence,
for n sufficiently large,

sup
(x,r)∈Rd×(0,∞)

∣∣μ(B(x, r)
)− μn

(
B(x, r)

)∣∣< δ.
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Thus, for sufficiently large n,

r(μn, x, y) = inf
{
r ′ > 0 :μ

(
B
(
x, r ′))≥ y + (μ − μn)

(
B
(
x, r ′))}

≥ inf
{
r ′ > 0 :μ

(
B
(
x, r ′))≥ y − δ

}
= r(μ, x, y − δ) ≥ r(μ, x, y) − ε,

and similarly

r(μn, x, y) ≤ inf
{
r ′ > 0 :μ

(
B
(
x, r ′))≥ y + δ

}= r(μ, x, y + δ)

≤ r(μ, x, y) + ε. �

7. Proofs of existence and uniqueness theorems. This section is devoted
to the proofs of the existence and uniqueness results of Theorems 3.5 and 3.8.
Throughout the section, we work with the canonical probability space described
in the second paragraph of Section 3. Since BSDEs will be used repeatedly, it is
important to note that the classical existence, uniqueness, and comparison results
for BSDEs do indeed hold in our setting, despite the fact that F is not the Brownian
filtration. The purpose of working with the Brownian filtration is of course for
martingale representation, which we still have with our slightly larger filtration:
it follows from Theorem 4.33 of [29], for example, that every square integrable
F-martingale (Mt)0≤t≤T admits the representation Mt = M0 +∫ t

0 φs dWs for some
φ ∈ H

2,d . However, note that in our case the initial value of the solution of a BSDE
is random since F0 is not trivial.

To find a fixed point for the law of the control, we will make use of the space
M of positive Borel measures ν on [0, T ] × P(A) [using the weak topology on
P(A)] whose first projection is Lebesgue measure; that is, ν([s, t]×P(A)) = t − s

for 0 ≤ s ≤ t ≤ T . Endow M with the weakest topology making the map ν �→∫
φ dν continuous for each bounded measurable function φ : [0, T ] × P(A) → R

for which φ(t, ·) is continuous for each t . This is known as the stable topology,
which was studied thoroughly by Jacod and Mémin in [28]. In particular, since A is
a compact metrizable space, so is P(A), and thus so is M. Note that a measure ν ∈
M disintegrates into ν(dt, dq) = νt (dq) dt , where the measurable map [0, T ] 
t �→ νt ∈ P(P(A)) is uniquely determined up to almost everywhere equality. For
any bounded measurable function F :P(A) → R

k , we extend F to P(P(A)) in
the natural way by defining

F(ν) :=
∫
P(A)

ν(dq)F (q).

In this way, F(δq) = F(q) for q ∈ P(A).

REMARK 7.1. Because of condition (S.5), the aforementioned convention
will not lead to any confusion regarding the meaning of H(t, x,μ, ν, z), for
ν ∈ P(P(A)). In particular, it is consistent with the relationship

H(t, x,μ, ν, a) := sup
a∈A

h(t, x,μ, ν, z, a),
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since the only dependence of h on ν is outside of the supremum.

For each (μ, ν) ∈ Pψ(C) × M, we now construct the corresponding control
problem. The standing Assumptions (S) are in force throughout, and the following
construction is valid without any of the other assumptions. Recall the definitions of
h and H from (3.2) in Section 3. That (t, x, z) �→ H(t, x,μ, νt , z) is jointly mea-
surable for each (μ, ν) follows, for example, from the measurable maximum The-
orem 18.19 of [2]. Boundedness of σ−1b guarantees that H is uniformly Lipschitz
in z. Since μ ∈ Pψ(C), it follows from assumptions (S.2) and (S.4) that g(X,μ) ∈
L2(P ) and that (H(t,X,μ, νt ,0))0≤t≤T = (supa f (t,X,μ, νt , a))0≤t≤T ∈ H

2,1.
Hence the classical result of Pardoux and Peng [36] (or rather a slight exten-
sion thereof, as remarked above) applies, and there exists a unique solution
(Yμ,ν,Zμ,ν) ∈ H

2,1 ×H
2,d of the BSDE

Y
μ,ν
t = g(X,μ) +

∫ T

t
H
(
s,X,μ, νs,Z

μ,ν
s

)
ds −

∫ T

t
Zμ,ν

s dWs.(7.1)

For each α ∈A, we may similarly solve the BSDE

Y
μ,ν,α
t = g(X,μ) +

∫ T

t
h
(
s,X,μ, νs,Z

μ,ν,α
s , αs

)
ds −

∫ T

t
Zμ,ν,α

s dWs

= g(X,μ) +
∫ T

t
f (s,X,μ, νs, αs) ds −

∫ T

t
Zμ,ν,α

s dWμ,α
s .

Since Wμ,α is a Wiener process under P μ,α and Yμ,α is adapted, we get

Y
μ,ν,α
t = E

μ,α

[
g(X,μ) +

∫ T

t
f (s,X,μ, νs, αs) ds

∣∣∣Ft

]
.

In particular, E[Yμ,ν,α
0 ] = Jμ,ν(α).

It is immediate from the comparison principle for BSDEs (e.g., Theorem 2.2
of [18]) that E[Yμ,ν

0 ] ≥ E[Yμ,ν,α
0 ] = Jμ,ν(α) for each α ∈ A, and thus E[Yμ,ν

0 ] ≥
V μ,ν . By a well-known measurable selection theorem (e.g., Theorem 18.19 of [2]),
there exists a function α̂ : [0, T ] × C ×Pψ(C) ×R

d → A such that

α̂(t, x,μ, z) ∈ A(t, x,μ, z) for all (t, x,μ, z),(7.2)

and such that for each μ the map (t, x, z) �→ α̂(t, x,μ, z) is jointly measurable
with respect to the progressive σ -field on [0, T ] × C and B(Rd). Letting

α
μ,ν
t := α̂

(
t,X,μ,Z

μ,ν
t

)
,(7.3)

the uniqueness of solutions of BSDEs implies Y
μ,ν
t = Y

μ,ν,αμ,ν

t , which in turn
implies V μ,ν = Jμ,ν(αμ,ν) since Jμ,ν(αμ,ν) ≤ V μ,ν .

The process αμ,ν is an optimal control, but so is any process in the set

A(μ, ν) := {
α ∈A :αt ∈ A

(
t,X,μ,Z

μ,ν
t

)
dt × dP -a.e.

}
.(7.4)
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Define � :Pψ(C) ×A→ P(C) ×M by

�(μ,α) := (
P μ,α ◦ X−1, δ

P μ,α◦α−1
t

(dq) dt
)
.

The goal now is to find a point (μ, ν) ∈ Pψ(C) × M for which there exists
α ∈ A(μ, ν) such that (μ, ν) = �(μ,α). In other words, we seek a fixed point
of the set-valued map (μ, ν) �→ �(μ,A(μ, ν)) := {�(μ,α) :α ∈ A(μ, ν)}. Note
that under condition (U.1), αμ,ν is the unique element of A(μ, ν) (up to almost
everywhere equality), and this reduces to a fixed point problem for a single-valued
function.

REMARK 7.2. It is worth emphasizing that the preceding argument demon-
strates that the set A(μ, ν) is always nonempty, under only the standing Assump-
tions (S).

REMARK 7.3. The main difficulty in the analysis is the adjoint process
Zμ,ν . Note that for each (μ, ν) there exists a progressively measurable function
ζμ,ν : [0, T ] × C → R

d such that Z
μ,ν
t = ζμ,ν(t,X). If we choose a measurable

selection α̂ as in (7.2), any weak solution of the following McKean–Vlasov SDE
provides a solution of the MFG:{

dXt = b
(
t,X,μ, α̂

(
t,X,μ, ζμ,ν(t,X)

))
dt + σ(t,X)dWt,

X ∼ μ, μ ◦ (α̂(t, ·,μ, ζμ,ν(t, ·)))−1 = νt a.e.

The notation X ∼ μ means that μ should equal the law of X. This map ζμ,ν is
typically quite inaccessible, which is why we do not appeal to any existing results
on McKean–Vlasov equations, even when ν is not present. All such results require
some kind of continuity of the map

(x,μ) �→ b
(
t, x,μ, α̂

(
t, x,μ, ζμ,ν(t, x)

))
,

as far as the authors know. It is possible to make assumptions on the data which
would guarantee, for example, that ζμ,ν(t, ·) is continuous, but continuous depen-
dence on μ would be a much trickier matter.

7.1. Some results of set-valued analysis. We precede the main proofs with
some useful lemmas. Without Assumptions (U), the optimal controls need not be
unique, and thus we will need a fixed point theorem for set-valued maps. We first
summarize some terminology from set-valued analysis.

For a point y in a metric space (E,d) and δ > 0, let B(y, δ) denote the
open ball of radius δ centered at y. Similarly, for F ⊂ E, let B(F, δ) = {x ∈
E : infy∈F d(x, y) < δ}. For two subsets F,G of E, we (abusively) define

d(F,G) := sup
y∈G

d(F,y) = sup
y∈G

inf
x∈F

d(x, y).
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Note that d is not symmetric. If K is another metric space, a set-valued function
� :K → 2E is said to be upper hemicontinuous at x ∈ K if for all ε > 0 there
exists δ > 0 such that �(B(x, δ)) ⊂ B(�(x), ε). It is straightforward to prove that
� is upper hemicontinuous at x ∈ K if and only if d(�(x),�(xn)) → 0 for every
sequence xn converging to x.

In order to relax somewhat the convexity assumption of Kakutani’s fixed point
theorem, we adapt results of Cellina in [13] to derive a slight generalization of
Kakutani’s theorem, which will assist in the proof of Theorem 3.5.

PROPOSITION 7.4. Let K be a compact convex metrizable subset of a lo-
cally convex topological vector space, and let E be a normed vector space. Sup-
pose � :K → 2E is upper hemicontinuous and has closed and convex values,
and suppose φ :K × E → K is continuous. Then there exists x ∈ K such that
x ∈ φ(x,�(x)) := {φ(x, y) :y ∈ �(x)}.

PROOF. Let Gr(�) := {(x, y) ∈ K × E :y ∈ �(x)} denote the graph of �. By
Cellina’s result (Theorem 1 of [13]), for each positive integer n we may find a con-
tinuous (singe-valued) function γn :K → E such that the graph of γn is contained
in the 1/n neighborhood of Gr(�). That is, for all x ∈ K ,

d
((

x, γn(x)
)
,Gr(�)

) := inf
{
d
((

x, γn(x)
)
, (y, z)

)
:y ∈ K,z ∈ �(y)

}
< 1/n,

where d denotes some metric on K × E. Since K  x �→ φ(x, γn(x)) ∈ K is
continuous, Schauder’s fixed point theorem implies that there exists xn ∈ K such
that xn = φ(xn, γn(xn)). By Lemma 17.8 and Theorem 17.10 of [2], �(K) :=⋃

x∈K �(x) ⊂ X is compact, and Gr(�) is closed. Thus Gr(�) ⊂ K × �(K) is
compact. Since d((xn, γn(x)),Gr(�)) → 0 and Gr(�) is compact, there exist a
subsequence xnk

and a point (x, y) ∈ Gr(�) such that (xnk
, γnk

(xnk
)) → (x, y).

This completes the proof, since y ∈ �(x) and since continuity of φ yields

x = limxnk
= limφ

(
xnk

, γnk
(xnk

)
)= φ(x, y). �

A special case of Berge’s maximum theorem (Theorem 17.31 of [2]) will be
useful:

THEOREM 7.5 (Berge’s theorem). Let E be a metric space, K a com-
pact metric space and φ :E × K → R a continuous function. Then γ (x) :=
maxy∈K φ(x, y) is continuous, and the following set-valued function is upper
hemicontinuous and compact-valued:

E  x �→ arg max
y∈K

φ(x, y) := {
y ∈ K :γ (x) = φ(x, y)

} ∈ 2K.
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7.2. Proof of Theorem 3.5 (existence). We now turn toward the proof of The-
orem 3.5. In what follows, we always use the topology τψ(C) on Pψ(C), except
when stated otherwise. Despite its simplicity, we state the following result as a
lemma for later references.

LEMMA 7.6. Let (E,E) and (F,F) be measurable spaces, and let μ,ν ∈
P(E) with ν � μ. If X :E → F is measurable, then

dν ◦ X−1

dμ ◦ X−1 ◦ X = E
μ

[
dν

dμ

∣∣∣∣X] μ-a.s.

LEMMA 7.7. For any q ∈R with |q| ≥ 1, we have (recall that X := P ◦ X−1)

Mq := sup
(μ,α)∈Pψ(C)×A

∫ (
d�(μ,α)/dX

)q
dX < ∞.(7.5)

PROOF. Recall that σ−1b is bounded, say by c > 0. Fix (μ,α) ∈ Pψ(C) ×
A. Letting Nt := ∫ t

0 σ−1b(t,X,μ,αt) dWt , we see that [N,N]T ≤ T c2, and thus,
since q(q − 1) ≥ 0,

E(N)
q
T = E(qN)T exp

(
q(q − 1)[N,N]T /2

)≤ E(qN)T exp
(
q(q − 1)T c2/2

)
.

Hence, Lemma 7.6 and Jensen’s inequality yield∫ (
d�(μ,α)/dX

)q
dX = E

[
E
[
dP μ,α/dP |X]q]≤ E

[(
dP μ,α/dP

)q]
≤ exp

(
q(q − 1)T c2/2

)
.

Since this bound is independent of (μ,α), we indeed have Mq < ∞. �

In terms of the notation from Lemma 7.7, let M := max(M2,M−1). Let

Q :=
{
μ ∈ Pψ(C) :μ ∼ X ,

∫
(dμ/dX )2 dX ≤ M,

(7.6) ∫
(dX /dμ)dX ≤ M

}
.

By construction, the range of � is contained in Q×M. Critical to our fixed point
theorem is the following compactness result, which probably exists in various
forms elsewhere in the literature. Part of the result may be found, for example,
in Lemma 6.2.16 of [16]. But, for lack of a concise reference, and to keep the
paper fairly self-contained, we include a complete proof of the following:

PROPOSITION 7.8. The space (Q, τψ(C)) is convex, compact and metrizable.
Moreover, τ1(C) and τψ(C) induce the same topology on Q.
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PROOF. Of course, by τ1(C) we mean τφ(C) with φ ≡ 1. Define

Q1 =
{
μ ∈ P(C) :μ � X ,

∫
(dμ/dX )2 dX ≤ M

}
,

Q2 =
{
μ ∈ P(C) :μ ∼ X ,

∫
(dX /dμ)dX ≤ M

}
.

Clearly, each set is convex. We will show that Q1 is compact and metrizable under
τ1(C), that Q2 is τ1(C)-closed and that τ1(C) and τψ(C) induce the same topology
on Q1.

Let q ∈ R with |q| ≥ 1. The set Kq := {Z ∈ L1(X ) :Z ≥ 0 X -a.s.,
∫ |Z|q dX ≤

M} is clearly convex. It is also norm-closed: if Zn → Z in L1(X ) with Zn ∈
Kq , then Zn → Z X -a.s. along a subsequence, and thus Fatou’s lemma yields∫ |Z|q dX ≤ lim inf

∫ |Zn|q dX ≤ M . Hence, Kq is weakly closed; see Theo-
rem 5.98 of [2]. For q > 1, the set Kq is uniformly integrable and thus weakly
compact, by the Dunford–Pettis theorem; moreover, Kq is metrizable, since it is
a weakly compact subset of separable Banach space (Theorem V.6.3 of [17]).
Now, for μ � X , define F(μ) := dμ/dX . Then F is a homeomorphism from
(Q2, τ1(C)) to K−1 equipped with the weak topology of L1(X ), and so Q2 is
τ1(C)-closed. Similarly, F is a homeomorphism from (Q1, τ1(C)) to K2 with the
weak topology, and so (Q1, τ1(C)) is compact and metrizable.

It remains to prove that τ1(C) and τψ(C) coincide on Q1. Let φ ∈ Bψ(C) with
|φ| ≤ ψ , μ ∈ Pψ(C) and ε > 0, and define U = {ν ∈ Pψ(C) : | ∫ φ d(ν − μ)| < ε}.
Since τψ(C) is stronger than τ1(C), it suffices to find a τ1(C)-neighborhood V of
μ with V ∩Q1 ⊂ U ∩Q1. First, note that for any c > 0 and ν ∈ Q1, the Cauchy–
Schwarz inequality yields(∫

{ψ≥c}
ψ dν

)2

≤
∫ (

dν

dX

)2

dX
∫
{ψ≥c}

ψ2 dX ≤ M

∫
{ψ≥c}

ψ2 dX .

Since
∫

ψ2 dX < ∞ by (S.2), we may find c > 0 such that
∫
{ψ≥c} ψ dν ≤ ε/3 for

all ν ∈ Q1. Then, for any ν ∈ Q1,∣∣∣∣∫ φ d(ν − μ)

∣∣∣∣≤ ∣∣∣∣∫{ψ<c}
φ d(ν − μ)

∣∣∣∣+ ∣∣∣∣∫{ψ≥c}
φ dν

∣∣∣∣+ ∣∣∣∣∫{ψ≥c}
φ dμ

∣∣∣∣
≤ 2ε

3
+
∣∣∣∣∫{ψ<c}

φ d(ν − μ)

∣∣∣∣.
Set V = {ν ∈ P(C) : | ∫{ψ<c} φ d(ν − μ)| < ε/3}, so that V ∩Q1 ⊂ U ∩Q1. Since
|φ| ≤ ψ , we have φ1{ψ<c} ∈ B1(C), and thus V ∈ τ1(C). �

The next two lemmas pertain to the Zμ,ν terms that arise in the BSDE repre-
sentations above; in particular, a kind of continuity of the map (μ, ν) �→ Zμ,ν is
needed.
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LEMMA 7.9. Suppose Assumption (E) holds. Then for each (t, x) ∈ [0, T ] ×
C, the function Q × P(A) × R

d  (μ, q, z) �→ H(t, x,μ, q, z) is continuous, and
the set-valued function Q×R

d  (μ, z) �→ A(t, x,μ, z) is upper hemicontinuous.

PROOF. Since Q is metrizable by Lemma 7.8, this is simply a combination of
Assumption (E) with Theorem 7.5, using E =Q×P(A)×R

d and K = A. Recall
from (S.1) that A is compact. �

LEMMA 7.10. Suppose Assumption (E) holds. Suppose (μn, νn) → (μ, ν) in
Q×M, using τψ(C) on Q. Then

lim
n→∞E

[∫ T

0

∣∣Zμn,νn

t − Z
μ,ν
t

∣∣2 dt

]
= 0.

PROOF. Note that the functions H(s, x,μ′, ν′, ·) have the same Lipschitz con-
stant for each (t, x,μ′, ν′), coinciding with the uniform bound for σ−1b. Assump-
tion (S.4) implies

E

[∫ T

0

∣∣H (t,X,μn, νn
t ,0

)∣∣2 dt

]
= E

[∫ T

0
sup
a∈A

∣∣f (t,X,μ′, ν′
t , a

)∣∣2 dt

]

≤ 2c2TE
[
ψ2(X)

]+ 2c2Tρ2
(∫

ψ dμn

)
for all 1 ≤ n ≤ ∞, where (μ∞, ν∞) := (μ, ν). Since μn ∈ Pψ(C) and μn → μ in
τψ(C) it follows that supn

∫
ψ dμn < ∞. Since ρ is increasing and nonnegative,

sup
n

ρ2
(∫

ψ dμn

)
= ρ2

(
sup
n

∫
ψ dμn

)
< ∞.(7.7)

Assumption (S.2) yields E[ψ2(X)] < ∞. Hence, we will be able to conclude via a
convergence result for BSDEs proven by Hu and Peng in [25], as soon as we show
that

In := E
[∣∣g(X,μn)− g(X,μ)

∣∣2]→ 0,

and

IIn := E

[(∫ T

t

(
H
(
s,X,μ, νs,Z

μ,ν
s

)− H
(
s,X,μn, νn

s ,Zμ,ν
s

))
ds

)2]
→ 0,

for all t ∈ [0, T ].
We first check that the integrands of In and IIn are uniformly integrable. As-

sumption (S.4) gives∣∣g(X,μn)− g(X,μ)
∣∣≤ c

(
2ψ(X) + ρ

(∫
ψ dμ

)
+ ρ

(∫
ψ dμn

))
,
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which is indeed square integrable in light of (S.2) and (7.7). Note that∣∣H (t,X,μ, νt ,Z
μ,ν
t

)− H
(
t,X,μn, νn

t ,Z
μ,ν
t

)∣∣
≤ sup

a∈A

∣∣f (t,X,μ, νt , a) + Z
μ,ν
t · σ−1b(t,X,μ,a)

(7.8)
− f

(
t,X,μn, νn

t , a
)− Z

μ,ν
t · σ−1b

(
t,X,μn, a

)∣∣
≤ ∣∣�f,n

t

∣∣+ ∣∣Zμ,ν
t

∣∣∣∣�b,n
t

∣∣
where

�
f,n
t := sup

a∈A

∣∣f (t,X,μ, νt , a) − f
(
t,X,μn, νn

t , a
)∣∣

and

�
b,n
t := sup

a∈A

∣∣σ−1b(t,X,μ,a) − σ−1b
(
t,X,μn, a

)∣∣.
Again, (S.4) lets us bound |�f,n| by the same term with which we bounded
|g(X,μn) − g(X,μ)|. Since Zμ,ν ∈ H

2,1 and |�b,n| is bounded, the integrands
are indeed uniformly integrable.

It is clear now that In → 0, because of Assumption (E) and the dominated con-
vergence theorem. Rewrite IIn as

IIn = E

[∣∣∣∣∫ T

t
ds

(∫
P(A)

νs(dq)H
(
s,X,μ,q,Zμ,ν

s

)
−
∫
P(A)

νn
s (dq)H

(
s,X,μn, q,Zμ,ν

s

))∣∣∣∣2].
For fixed s and ω, the function Q × P(A)  (μ′, q) �→ H(s,X,μ′, q,Z

μ,ν
s ) is

continuous, by Lemma 7.9. Compactness of P(A) implies that the function Q 
μ′ �→ H(s,X,μ′, q,Z

μ,ν
s ) is continuous, uniformly in q; see Lemma 5.6. Thus∫

P(A)
νn
s (dq)H

(
s,X,μn, q,Zμ,ν

s

)− ∫
P(A)

νn
s (dq)H

(
s,X,μ,q,Zμ,ν

s

)→ 0.

By definition of the stable topology of M, we also have∫ T

t
ds

∫
P(A)

(
νn
s − νs

)
(dq)H

(
s,X,μ,q,Zμ,ν

s

)→ 0.

It is now clear that IIn → 0, and the proof is complete. �

The last ingredient of the proof is to establish the applicability of Proposi-
tion 7.4. Note that A is a compact subset of a normed space, say (A′,‖ · ‖A), and
thus A may also be viewed as a subset of the normed space of (equivalence classes
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of dt × dP -a.e. equal) progressively measurable A′-valued processes, with the
norm

‖α‖A := E

∫ T

0
‖αt‖A dt.

LEMMA 7.11. Under Assumptions (E) and (C), the function A :Q×M→ 2A

defined by (7.4) is upper hemicontinuous and has closed and convex values.

PROOF. Convexity follows immediately from Assumption (C). We first show
A(·) has closed values. Let L denote Lebesgue measure on [0, T ]. Note that ‖ · ‖A

is bounded on A, and thus ‖ · ‖A metrizes convergence in L × P -measure. To
prove closedness, fix a sequence αn ∈ A(μ, ν) such that ‖αn − α‖A → 0 for
some α ∈ A. By passing to a subsequence, we may assume αn

t (ω) → αt(ω) for
all (t,ω) ∈ N , for some N ⊂ [0, T ] × 	 with L × P(N) = 1. We may assume
also that αn

t (ω) ∈ A(t,X(ω),μ,Z
μ,ν
t (ω)) for all n and (t,ω) ∈ N . By Theo-

rem 7.5, for each (t,ω) the set A(t,X(ω),μ,Z
μ,ν
t (ω)) ⊂ A is compact, and thus

αt(ω) ∈ A(t,X(ω),μ,Z
μ,ν
t (ω)) for all (t,ω) ∈ N .

To prove upper hemicontinuity, let (μn, νn) → (μ, ν) in Q×M. We must show
that

d
(
A(μ, ν),A

(
μn, νn))= sup

αn∈A(μn,νn)

inf
α∈A(μ,ν)

E

∫ T

0

∥∥αn
t − αt

∥∥
A dt → 0.

Define

At(ω) := A
(
t,X(ω),μ,Z

μ,ν
t (ω)

)
,

An
t (ω) := A

(
t,X(ω),μn,Z

μn,νn

t (ω)
)

and

cn
t (ω) := d

(
At(ω),An

t (ω)
)

= sup
{
inf
{‖a − b‖A :b ∈ At(ω)

}
:a ∈ An

t (ω)
}
.

Lemma 7.10 implies that Zμn,νn → Zμ,ν in L× P -measure; it follows then from
upper hemicontinuity of A(t, x, ·, ·) (Lemma 7.9) that cn → 0 in L×P -measure as
well. Since of course cn is bounded, the proof will be complete once we establish

sup
αn∈A(μn,νn)

inf
α∈A(μ,ν)

E

∫ T

0

∥∥αn
t − αt

∥∥
A dt = E

∫ T

0
cn
t dt.

To prove that we can pass the infimum and supremum inside of the integrals,
we first use Theorem 18.19 of [2] to draw a number of conclusions. First, the map
(t,ω) �→ At(ω) is measurable, in the sense of Definition 18.1 of [2], and thus also
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weakly measurable since it is compact-valued; see Lemma 18.2 of [2]. Second,
there exists a measurable function β̂ : [0, T ] × 	 × A → A such that∥∥a − β̂(t,ω, a)

∥∥
A = inf

{‖a − b‖A :b ∈ At(ω)
}
,

β̂(t,ω, a) ∈ At(ω).

Note that for any αn ∈ A, the process β̂(t,ω,αn
t (ω)) is in A(μ, ν). Hence, we may

exchange the infimum and the expectation to get

inf
α∈A(μ,ν)

E

∫ T

0

∥∥αn
t − αt

∥∥
A dt = E

∫ T

0
inf
{∥∥αn

t − b
∥∥
A :b ∈ At(ω)

}
dt.

It follows from Theorem 7.5 that a �→ inf{‖a − b‖A :b ∈ At(ω)} is continuous for
each (t,ω). Hence, Theorem 18.19 of [2] also tells us that there exists a measurable
selection β̂n : [0, T ] × 	 → A such that

cn
t (ω) = inf

{∥∥β̂n(t,ω) − b
∥∥
A :b ∈ At(ω)

}
,

β̂n(t,ω) ∈ An
t (ω).

The process β̂n(t,ω) is in A(μn, νn), and so we exchange the supremum and the
expectation to get

sup
αn∈A(μn,νn)

E

∫ T

0
inf
{∥∥αn

t − b
∥∥
A :b ∈ At(ω)

}
dt = E

∫ T

0
cn
t dt.

�

PROOF OF THEOREM 3.5. The proof of Theorem 3.5 is an application of
Proposition 7.4, with K = Q × M and E = A. Let S denote the vector space of
bounded measurable functions φ : [0, T ] ×P(A) →R such that φ(t, ·) is continu-
ous for each t . Endow S with the supremum norm, and let S∗ denote its continuous
dual space. Note that M ⊂ S∗. Let Y := Bψ(C) ⊕ S , endowed with the norm∥∥(φ, η)

∥∥
Y := sup

x∈C
|φ(x)|
ψ(x)

+ sup
(t,q)∈[0,T ]×P(A)

∣∣η(t, q)
∣∣.

The dual of Y is Y∗ = B∗
ψ(C) ⊕ S∗, which contains Q × M as a subset. Us-

ing τψ(C) on Q, the product topology of Q × M coincides with the topology
induced by the weak*-topology of Y∗. By Lemma 7.7, the function � takes val-
ues in Q × M, noting that Q × M is convex and compact by Lemma 7.8. Let
τM denote the topology of M. To prove that � : (Q, τψ(C)) × (A,‖ · ‖A) →
(Q, τψ(C)) × (M, τM) is continuous, Lemma 7.8 tells us that it suffices to
show that � : (Q, τψ(C)) × (A,‖ · ‖A) → (Q, τ1(C)) × (M, τM) is sequentially
continuous. We will instead prove the stronger statement that � : (Q, τψ(C)) ×
(A,‖ · ‖A) → (Q,V1) × (M, τM) is sequentially continuous, where V1 denotes
the total variation metric,

V1(μ, ν) := sup
∫

φ d(μ − ν),
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where the supremum is over measurable real-valued functions φ with |φ| ≤ 1.
Denote by H(ν|μ) the relative entropy

H(ν|μ) =
⎧⎨⎩
∫

log
dν

dμ
dν, if ν � μ,

+∞, otherwise.

Now let (μn,αn) → (μ,α) in (Q, τψ(C)) × (A,‖ · ‖A). We first show that
P μn,αn → P μ,α . By Pinsker’s inequality, it suffices to show

H
(
P μ,α|P μn,αn)→ 0.

Since

dP μn,αn

dP μ,α
= E

(∫ ·
0

(
σ−1b

(
t,X,μn,αn

t

)− σ−1b(t,X,μ,αt)
)
dW

μ,α
t

)
T

,

and since σ−1b is bounded, we compute

H
(
P μ,α|P μn,αn)= −E

μ,α

[
log

dP μn,αn

dP μ,α

]

= 1

2
E

μ,α

[∫ T

0

∣∣σ−1b
(
t,X,μn,αn

t

)− σ−1b(t,X,μ,αt)
∣∣2 dt

]
.

Since P μ,α ∼ P and αn → α in L × P -measure, it follows from Lemma 7.10
that Zμn,νn → Zμ,ν in L×P μ,α-measure, where L denotes Lebesgue measure on
[0, T ]. By Assumption (E), the map σ−1b(t, x, ·, ·) is continuous for each (t, x).
Conclude from the bounded convergence theorem that P μn,αn → P μ,α in total
variation. It follows immediately that P μn,αn ◦ X−1 → P μ,α ◦ X−1 in total varia-
tion, and that

V1
(
P μn,αn ◦ (αn

t

)−1
,P μ,α ◦ (αn

t

)−1)≤ V1
(
P μn,αn

,P μ,α)→ 0.

Moreover, P μ,α ◦ (αn
t )−1 → P μ,α ◦ α−1

t in L-measure, since αn → α in L × P -
measure. Thus P μn,αn ◦ (αn

t )−1 → P μ,α ◦α−1
t in L-measure, which finally implies

δP μn,αn◦(αn
t )−1(dq) dt → δ

P μ,α◦α−1
t

(dq) dt in M.

With continuity of � established, � and A(·) verify the assumptions of
Proposition 7.4, and thus there exists a fixed point (μ, ν) ∈ �(μ,A(μ, ν)) =
{�(μ,α) :α ∈ A(μ, ν)}. It remains to notice that the function � takes values in
Q×M0, where

M0 := {
ν ∈ M :ν(dt, dq) = δq̂(t)(dq) dt

for some measurable q̂ : [0, T ] → P(A)
}
.

For an element in M0, the corresponding map q̂ is uniquely determined, up to
almost everywhere equality. Hence, for our fixed point (μ, ν), we know that there
exist α ∈ A(μ, ν) and a measurable function q̂ : [0, T ] → P(A) such that νt = δq̂(t)

and q̂(t) = P μ,α ◦ α−1
t for almost every t . �
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REMARK 7.12. Assume for the moment that there is no mean field interaction
in the control. Following the notation of Remark 7.3, we may ask if the SDE

dXt = b
(
t,X,μ, α̂

(
t,X,μ, ζμ(t,X)

))
dt + σ(t,X)dWt,

admits a strong solution, with μ equal to the law of X. This would allow us to
solve the mean field game in a strong sense, on a given probability space, as is
required in [11] and [6]. Since ζμ(t,X) = Z

μ
t , this forward SDE is coupled with

the backward SDE⎧⎪⎨⎪⎩
dXt = b

(
t,X,μ, α̂(t,X,μ,Zt)

)
dt + σ(t,X)dWt,

dYt = −H(t,X,μ,Zt) dt + Zt dWt,

μ0 = λ0, X ∼ μ, YT = g(X,μ).

To solve the mean field game in a strong sense, one must therefore resolve this
“mean field FBSDE,” studied in some generality in [9]. The solution must consist
of (X,Y,Z,μ), such that (X,Y,Z) are processes adapted to the filtration generated
by (Wt ,X0)t∈[0,T ] and satisfying the above SDEs, and such that the law of X is μ.
Our formulation is a relaxation of the more common formulation (e.g., [11] and
[6]) in that the forward SDEs no longer need to be solved in a strong sense. Note,
however, that the FBSDE written here is of a different nature from those of [6, 11],
which were obtained from the maximum principle. Our FBSDE is more like a
stochastic form of the PDE systems of Lasry and Lions; indeed, in the Markovian
case, the Feynman–Kac formula for the backward part is nothing but the HJB
equation.

7.3. Proof of Theorem 3.8 (uniqueness). Recall that A(μ, ν) is always
nonempty, as in Remark 7.2. By condition (U.1), we know A(μ, ν) is a single-
ton for each (μ, ν) ∈ Pψ(C) ×M. Its unique element αμ,ν is defined given by

α
μ,ν
t = α̂

(
t,X,Z

μ,ν
t

)
,

where the function α̂ is defined as in (7.2); note that assumptions (U.2) and (U.3)
imply that α̂ = α̂(t, x, z) does not depend on μ or ν. Suppose now that
(μ1, ν1), (μ2, ν2) ∈ Pψ(C) × M are two solutions of the MFG; that is, they are

fixed points of the (single-valued) function �(·,A(·)). Abbreviate Y i = Yμi,νi
,

Zi = Zμi,νi
, αi = αμi,νi

, f i
t := f (t,X,μi, νi

t , α
i
t ) and bi

t := σ−1b(t,X,αi
t ). We

begin by rewriting the BSDEs (7.1) in two ways:

d
(
Y 1

t − Y 2
t

)= −[f 1
t − f 2

t + Z1
t · b1

t − Z2
t · b2

t

]
dt + (

Z1
t − Z2

t

)
dWt

= −[f 1
t − f 2

t + Z2
t · (b1

t − b2
t

)]
dt + (

Z1
t − Z2

t

)
dW

μ1,α1

t

= −[f 1
t − f 2

t + Z1
t · (b1

t − b2
t

)]
dt + (

Z1
t − Z2

t

)
dW

μ2,α2

t ,
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with Y 1
T − Y 2

T = g(X,μ1) − g(X,μ2). Recall that P μ,α agrees with P on F0 for
each μ ∈ Pψ(C) and α ∈ A. In particular,

E
μ1,α1[

Y 1
0 − Y 2

0
]= E

[
Y 1

0 − Y 2
0
]= E

μ2,α2[
Y 1

0 − Y 2
0
]
.

Thus, if �g(X) := g(X,μ1) − g(X,μ2), then

E
[
Y 1

0 − Y 2
0
]= E

μ1,α1
[
�g(X) +

∫ T

0

(
f 1

t − f 2
t + Z2

t · (b1
t − b2

t

))
dt

]
(7.9)

= E
μ2,α2

[
�g(X) +

∫ T

0

(
f 1

t − f 2
t + Z1

t · (b1
t − b2

t

))
dt

]
.(7.10)

Since the optimal control maximizes the Hamiltonian,

f 1
t + Z2

t · b1
t = h

(
t,X,μ1, ν1

t ,Z2
t , α

1
t

)≤ H
(
t,X,μ1, ν1

t ,Z2
t

)
= f1

(
t,X,μ1)+ f2

(
t,μ1, ν1

t

)+ f3
(
t,X,α2

t

)+ Z2
t · b2

t .

Thus, since

f 2
t = f1

(
t,X,μ2)+ f2

(
t,μ2, ν2

t

)+ f3
(
t,X,α2

t

)
,

defining �f1(t,X) := f1(t,X,μ1) − f1(t,X,μ2) yields

f 1
t − f 2

t + Z2
t · (b1

t − b2
t

)
(7.11)

≤ �f1(t,X) + f2
(
t,μ1, ν1

t

)− f2
(
t,μ2, ν2

t

)
.

By switching the place of the indices, the same argument yields

f 1
t − f 2

t + Z1
t · (b1

t − b2
t

)
(7.12)

≥ �f1(t,X) + f2
(
t,μ1, ν1

t

)− f2
(
t,μ2, ν2

t

)
.

Since f2(t,μ
i, νi

t ) are deterministic, applying inequality (7.11) to (7.9) and (7.12)
to (7.10) yields

0 ≤ [
E

μ1,α1 −E
μ2,α2][

�g(X) +
∫ T

0
�f1(t,X)dt

]
.

Hypothesis (U.4) implies that the right-hand side is at most zero, so in fact

0 = [
E

μ1,α1 −E
μ2,α2][

�g(X) +
∫ T

0
�f1(t,X)dt

]
.(7.13)

Suppose α1 �= α2 holds on a (t,ω)-set of strictly positive L×P -measure, where
L is again Lebesgue measure. Then assumption (U.1) implies that the inequalities
(7.11) and (7.12) are strict on a set of positive L×P -measure. Since P ∼ P μ1,α1 ∼
P μ2,α2

, this implies

0 <
[
E

μ1,α1 −E
μ2,α2][

�g(X) +
∫ T

0
�f1(t,X)dt

]
,



WEAK FORMULATION OF MEAN FIELD GAMES 1225

which contradicts (7.13). Thus α1 �= α2 must hold L× P -a.e., which yields

dP μ1,α1

dP
= E

(∫ ·
0

σ−1b
(
t,X,α1

t

)
dWt

)
T

= E
(∫ ·

0
σ−1b

(
t,X,α2

t

)
dWt

)
T

= dP μ2,α2

dP
a.s.

Thus μ1 = P μ1,α1 ◦ X−1 = P μ2,α2 ◦ X−1 = μ2, and ν1
t = δ

P μ1,α1◦(α1
t )−1 =

δ
P μ2,α2◦(α2

t )−1 = ν2
t a.e.

8. Proof of finite-player approximation theorems. This section justifies the
mean field approximation by proving Theorem 4.2, the general approximation re-
sult, as well as Proposition 6.1, the rate of convergence for the price impact model.

8.1. Proof of Theorem 4.2. We work on the probability space of Section 4.
Recall that under P , X1,X2, . . . are i.i.d. with common law μ̂ and α1

t , α
2
t , . . . are

i.i.d. with common law q̂t , for almost every t . By symmetry, we may prove the
result for player 1 only. For β ∈ An, define βα := (β,α2, . . . , αn) ∈ A

n
n. We abuse

notation somewhat by writing α in place of (α1, . . . , αn) ∈A
n
n. Note that (α1)α = α

and Pn(α) = P , in our notation. For β ∈ An, let

J ′
n(β) := E

Pn(βα)

[∫ T

0
f
(
t,X1, μ̂, q̂t , βt

)
dt + g

(
X1, μ̂

)]
.

Note that J ′
n(α

1) does not depend on n. We divide the proof into three lemmas.

LEMMA 8.1. Let F :C×Pψ(C) →R be empirically measurable, and suppose
F(x, ·) is τψ(C) continuous at μ̂ for each x ∈ C. Assume also that there exists c > 0
such that∣∣F(x,μ)

∣∣≤ c

(
ψ(x) +

∫
ψ dμ

)
for all (x,μ) ∈ C ×Pψ(C).

Then limn→∞E[|F(Xi,μn) − F(Xi, μ̂)|p] = 0 for each i and p ∈ [1,2).

PROOF. By symmetry, it suffices to prove this for i = 1. By replacing F(x,μ)

with |F(x,μ) − F(x, μ̂)|, assume without loss of generality that F ≥ 0 and
F(x, μ̂) = 0 for all x. Define

νn := 1

n − 1

n∑
i=2

δXi .

By independence of X1 and νn, we have

E
[
F
(
X1,μn)]= E

[
E

[
F

(
x,

1

n
δx + n − 1

n
νn

)]
x=X1

]
.
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Now let ε > 0. By continuity of F(x, ·), there exist δ > 0 and φ1, . . . , φk ∈ Bψ(C)

such that F(x, ν) < ε whenever | ∫ φid(ν − μ̂)| < δ for all i = 1, . . . , k. By the law
of large numbers,

lim
n→∞

∣∣∣∣∫ φid

(
1

n
δx + n − 1

n
νn − μ̂

)∣∣∣∣= 0 a.s.

Thus

lim sup
n→∞

F

(
x,

1

n
δx + n − 1

n
νn

)
≤ ε a.s.,

for each ε > 0, and so F(x, 1
n
δx + n−1

n
νn) → 0 a.s. for each x. The growth as-

sumption along with (S.2) yield

E
[
F 2(X1,μn)]≤ 2c2

E

[
ψ2(X1)+ (∫

ψ dμn

)2]
≤ 4c2

E
[
ψ2(X1)]< ∞,

and we conclude by the dominated convergence theorem. �

LEMMA 8.2. We have limn→∞ supβ∈An
|Jn,1(β

α) − J ′
n(β)| = 0.

PROOF. Note that, for any β ∈ An,

∣∣Jn,1
(
βα)− J ′

n(β)
∣∣≤ ∫ T

0
E

Pn(βα)[Ft

(
X1,μn)+ Gt

(
X1, qn(βα

t

))]
dt

(8.1)
+E

Pn(βα)[∣∣g(X1,μn)− g
(
X1, μ̂

)∣∣],
where F : [0, T ]×C×Pψ(C) →R and G : [0, T ]×C×P(A) →R are defined by

Ft(x,μ) := sup
(a,q)∈A×P(A)

∣∣f (t, x,μ, q, a) − f (t, x, μ̂, q, a)
∣∣,

Gt(x, q) := sup
a∈A

∣∣f (t, x, μ̂, q, a) − f (t, x, μ̂, q̂t , a)
∣∣.

Theorem 18.19 of [2] ensures that both functions are (empirically) measur-
able. Since A and P(A) are compact, Lemma 5.6 assures us that Ft(x, ·) is
τψ(C)-continuous at μ̂ and that Gt(x, ·) is weakly continuous, for each (t, x). Sim-
ilarly to the proof of Lemma 7.7, {dPn(β

α)/dP :β ∈ An, n ≥ 1} are bounded in
Lp(P ), for any p ≥ 1. Since assumption (F.5) is uniform in t for f , we deduce
from Lemma 8.1 and the dominated convergence theorem that

lim
n→∞ sup

β∈An

[∫ T

0
E

Pn(βα)[Ft

(
X1,μn)]dt +E

Pn(βα)[∣∣g(X1,μn)− g
(
X1, μ̂

)∣∣]]= 0.

It remains to check that the Gt term converges. Note that Gt(x, ·) is uniformly
continuous, as P(A) is compact. Also V1(q

n(βα
t ), qn(αt )) ≤ 2/n, since these are
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empirical measures of n points which differ in only one point (recall that V1 de-
notes total variation). Hence

lim
n→∞ sup

β∈An

∣∣Gt

(
X1, qn(αt )

)− Gt

(
X1, qn(βα

t

))∣∣= 0 a.s.

Since α1
t , α

2
t , . . . are i.i.d. with common law q̂t , we have qn(αt ) → q̂t weakly a.s.

(see [39]), and thus Gt(X
1, qn(αt )) → 0 a.s. Note that dPn(β

α)/dP are bounded
in Lp(P ) for any p ≥ 1 and that the integrands above are bounded in Lp(P ) for
any p ∈ [1,2), by (F.5) and the same argument as in the proof of Lemma 8.2. The
dominated convergence theorem completes the proof. �

LEMMA 8.3. For any β ∈An, J ′
n(α

1) ≥ J ′
n(β).

PROOF. We use the comparison principle for BSDEs. Fix n and β ∈ An. De-
fine φ, φ̃ : [0, T ] × 	 ×R

d →R by

φ(t, z) := sup
a∈A

[
f
(
t,X1, μ̂, q̂t , a

)+ z · (σ−1b
(
t,X1, a

)− σ−1b
(
t,X1, α1

t

))]
,

φ̃(t, z) := f
(
t,X1, μ̂, q̂t , βt

)+ z · (σ−1b
(
t,X1, βt

)− σ−1b
(
t,X1, α1

t

))
.

By Pardoux and Peng [36], there exist unique solutions (Y,Z1, . . . ,Zn) and
(Ỹ , Z̃1, . . . , Z̃n) of the BSDEs⎧⎪⎪⎨⎪⎪⎩

dYt = −φn

(
t,Z1

t

)
dt +

n∑
j=1

Z
j
t dW

j
t ,

YT = g
(
X1, μ̂

)
,⎧⎪⎪⎨⎪⎪⎩

dỸt = −φ̃n

(
t, Z̃1

t

)
dt +

n∑
j=1

Z̃
j
t dW

j
t ,

ỸT = g
(
X1, μ̂

)
.

The unique solution of the first BSDE is in fact given by Z2 ≡ · · · ≡ Zn ≡ 0, where
(Y,Z1) are X

1-progressively measurable and solve the BSDE{
dYt = −[H (t,X1, μ̂, q̂t ,Z

1
t

)− Z1
t · σ−1b

(
t,X1, α1

t

)]
dt + Z1

t dW 1
t ,

YT = g
(
X1, μ̂

)
.

This is due to the X
1-measurability of the driver and terminal condition of this

BSDE. Recall that α1 is optimal for the mean field problem, and thus it must
maximize the Hamiltonian; that is,

H
(
t,X1, μ̂, q̂t ,Z

1
t

)= h
(
t,X1, μ̂, q̂t ,Z

1
t , α

1
t

)
= f

(
t,X1, μ̂, q̂t , α

1
t

)+ Z1
t · σ−1b

(
t,X1, α1

t

)
.
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Thus dYt = −f (t,X1, μ̂, q̂t , α
1
t ) dt + Z1

t dW 1
t . Since W 1 is a Wiener process un-

der P , taking expectations yields E[Y0] = J ′
n(α

1), which we note does not depend
on n.

Similarly, note that Wj , j ≥ 2 are Wiener processes under Pn(β
α), as is Wβ,1.

Hence, we rewrite Ỹ as follows:⎧⎪⎪⎨⎪⎪⎩
dỸt = −f

(
t,X1, μ̂, q̂t , βt

)
dt + Z̃1

t dW
β,1
t +

n∑
j=2

Z̃
j
t dW

j
t ,

ỸT = g
(
X1, μ̂

)
.

Take expectations, noting that P = Pn(β
α) on Fn

0 , to see E[Ỹ0] = E
Pn(βα)[Ỹ0] =

J ′
n(β). Finally, since φ ≥ φ̃, the comparison principle for BSDEs yields Y0 ≥ Ỹ0,

and thus J ′
n(β) ≤ J ′

n(α
1). �

PROOF OF THEOREM 4.2. Simply let εn = 2 supβ∈An
|Jn,1(β

α) − J ′
n(β)|.

Then εn → 0 by Lemma 8.2, and Lemma 8.3 yields, for all β ∈ An,

Jn,1
(
βα)≤ 1

2εn + J ′
n(β) ≤ 1

2εn + J ′
n

(
α1)≤ εn + Jn,1(α). �

8.2. Proof of Proposition 6.1. We simply modify the proof of Theorem 4.2, in
light of the special structure of the price impact model. Namely, inequality (8.1)
becomes

εn = 2 sup
β∈An

∣∣Jn,1
(
βα)− J ′

n(β)
∣∣

≤ 2 sup
β∈An

E
Pn(β)

∫ T

0

∣∣∣∣γX1
t

∫
A

c′ d
(
qn
t

(
βα)− q̂t

)∣∣∣∣dt.

Use Hölder’s inequality to get

εn ≤ 2γE
[∥∥X1∥∥4]1/4 sup

β∈An

E

[(
dPn(β)

dP

)4]1/4 ∫ T

0
Ft(β)1/2 dt,

where

Ft(β) := E

[(∫
A

c′ d
(
qn
t

(
βα)− q̂t

))2]
.

Assumption (S.2) with ψ(x) = ec1‖x‖ implies that ‖X1‖ has finite moments of
all orders. Again, {dPn(β

α)/dP :β ∈ An, n ≥ 1} are bounded in Lp(P ) for any
p ≥ 1. So it suffices to show

sup
β∈An

Ft (β) ≤ C/n,

for some C > 0. This will follow from two inequalities: an easy calculation gives∣∣∣∣∫
A

c′d
(
qn
t

(
βα)− q̂t

)∣∣∣∣≤ 2C1/n +
∣∣∣∣∫

A
c′ d

(
qn
t (α) − q̂t

)∣∣∣∣,
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where C1 = supa∈A |c′(a)|. Since α1
t , α

2
t , . . . are i.i.d. with common law q̂t ,

E

[(∫
A

c′d
(
qn
t (α) − q̂t

))2]
= Var

(
c′(α1

t

))
/n ≤ 4C2

1/n.

9. Conclusions. This paper provides a theoretical framework for fairly gen-
eral mean field games with uncontrolled volatility, allowing us to prove new ex-
istence and uniqueness results for several types of mean field interactions, which
arise naturally in applications and which were not studied before. Such results in-
clude models with rank effects, nearest-neighbor (e.g., quantile) interactions and
mean field interactions through the controls. The strength of our approach is its
generality; the existence, uniqueness and approximation results apply easily to
many concrete models. More refined analysis, for example, of regularity of so-
lutions or numerics, could in theory be based on the McKean–Vlasov FBSDE dis-
cussed in Remark 7.12, which essentially provides a probabilistic representation
of the PDE approach of Lasry and Lions [32]. This is left for further investigation.
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