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A formalism for describing an all-sky map of the polarization of the cosmic microwave background
is presented. The polarization pattern on the sky can be decomposed into two geometrically distin
components. One of these components is not coupled to density inhomogeneities. A nonzero amplitu
for this component of polarization can only be caused by tensor or vector metric perturbations. Th
allows unambiguous identification of long-wavelength gravity waves or large-scale vortical flows at th
time of last scattering. [S0031-9007(97)02705-1]

PACS numbers: 98.70.Vc, 04.30.Nk, 98.80.Cq
i
m

t

m
it
n

to
o
a
r
s

b

o

tu

i
e
B

n
-

al
-

e,

er
t
e
ly
t
-

he

d
e
l
l
o

With the COBE detection of large-angle anisotropy
the cosmic microwave background (CMB), results fro
numerous balloon-borne and ground-based experime
and the advent of a new generation of satellite missio
the CMB is becoming an increasingly precise probe of
early Universe. CMB anisotropies will help determin
whether density perturbations (scalar modes) are
result of inflation, topological defects, or perhaps so
other mechanism. Detection of a stochastic grav
wave background (tensor modes) [1] or vortical motio
in the primeval fluid (vector modes) would help
discriminate between these models. Inflation damps
vector modes but will produce some tensor modes
also predicts a specific relationship between the spect
of the scalar and tensor fluctuations [2]. In contra
topological defects will produce a mixture of scala
vector, and tensor modes. Scalar modes give rise to
the observed large-scale structure and CMB fluctuatio
while in the foreseeable future we can only expect
observe the consequences of tensor or vector mo
through their effects on the CMB. Without a model
primordial fluctuations, the contribution of scalar, vecto
and tensor modes to the CMB temperature anisotropy
indistinguishable.

However, any mechanism which produces tempera
anisotropies will invariably lead to nonzero polarizatio
as well [3–6]. As we demonstrate in this Letter, th
polarization signal can be used to discriminate betw
scalar and vector or tensor metric perturbations. CO
has already mapped the polarization pattern with
angular resolution of 7± (although the data have not bee
analyzed), and MAP [7] will measure the polarizatio
with a resolution of around 0.3±.

In prior work, the autocorrelation and cross correlatio
between the Stokes parametersQ andU and the tempera
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ture T have been considered. HereQ andU are defined
with respect to particular orthogonal axes on the celesti
sphere. While this formalism does provide a complete de
scription of the polarization, there is no rotationally invari-
ant way to lay down orthogonal basis vectors on a spher
so the meaning ofQQ, QU, UU, QT , or UT will depend
on absolute positions of the points being correlated rath
than just the relative position. Calculations of this sor
have been done with a small-angle approximation, sinc
rotational noninvariance disappears when considering on
a small patch of the sky. However, this formalism is no
optimal for describing the complete temperature and po
larization correlations present in full-sky maps.

Here we present a rotationally covariant formalism
for describing the polarization pattern on a full sky.
The Stokes parameters, defined by the2 3 2 correlation
matrix of the electric field of incoming photons, can be
described as a tensor field on the celestial sphere. T
Q and U parameters, describing linear polarization, are
just given by the symmetric trace-free (STF) part of this
tensor. For example, in spherical polar coordinatessu, fd,
where the spherical metric isgab ­ diags1, sin2ud, the
polarization tensor is

Pabsn̂d ­
1
2

√
Qsn̂d 2Usn̂dsinu

2Usn̂dsinu 2Qsn̂dsin2u

!
. (1)

The “ab” are the tensor indices, and we use standar
tensor notation throughout. It is natural to decompos
the linear-polarization pattern into STF tensor spherica
harmonics [8,9], which constitute a complete orthonorma
set of rank-2 STF tensors on the sphere. There are tw
types of harmonic STF tensors,YG

slmdab andY C
slmdab, one of

each for every one of the usual spherical harmonicsYslmd
with l $ 2. Two sets of tensor harmonics are required
as there are two modes of linear polarization,Q and U.
© 1997 The American Physical Society
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Since Compton scattering can produce no net circu
polarization, the CMB is expected to haveV ­ 0, and
theV Stokes parameter will not be considered further.

The harmonic expansion of an all-sky map of the CM
temperature and polarization can be written

Tsn̂d
T0

­ 1 1
X
lm

aT
slmdYslmdsn̂d,

Pabsn̂d
T0

­
X
lm

faG
slmdY

G
slmdabsn̂d 1 aC

slmdY
C
slmdabsn̂dg.

(2)

The mode amplitudes are given by

aT
slmd ­

1
T0

Z
dn̂ T sn̂d Yp

slmdsn̂d,

aG
slmd ­

1
T0

Z
dn̂ Pabsn̂d Y G ab p

slmd sn̂d, (3)

aC
slmd ­

1
T0

Z
dn̂ Pabsn̂d Y C ab p

slmd sn̂d,

which can be derived from the orthonormality propertieZ
dn̂ Y p

slmdsn̂dYsl0m0dsn̂d ­ dll0dmm0 ,Z
dn̂ Y G p

slmdabsn̂dY G ab
sl0m0dsn̂d ­ dll0dmm0 ,Z

dn̂ Y C p
slmdabsn̂dY C ab

sl0m0dsn̂d ­ dll0dmm0 ,
(4)

Z
dn̂ Y G p

slmdabsn̂dY C ab
sl0m0dsn̂d ­ 0 .

HereT0 is the cosmological mean CMB temperature, a
we are assumingQ and U are measured in brightnes
temperature units rather than flux units.

The two geometrically distinct tensor harmonics are

YG
slmdab ­ NlsYslmd:ab 2

1
2 gabYslmd:c

cd,

Y C
slmdab ­

Nl

2
sYslmd:acec

b 1 Yslmd:bcec
ad.

(5)

HereNl ­
p

2sl 2 2d!ysl 1 2d! is a normalization factor,
eab is the completely antisymmetric tensor, and “
indicates a covariant derivative on the sphere. In t
dimensions, any STF tensor can be uniquely decompo
into a part of the formA:ab 2 s1y2dgabA:c

c and another
part of the formB:acec

b 1 B:bcec
a where A and B are

two scalar functions. This decomposition is quite simi
to the decomposition of a vector field into a part which
the gradient of a scalar field and a part which is the cur
a vector field; hence we use the notation G for “gradie
and C for “curl.” Since theYslmd’s provide a complete
basis for scalar functions on the sphere, theY G

slmdab ’s and
Y C

slmdab ’s provide a complete basis for G-type and C-ty
STF tensors, respectively. This GyC decomposition is
also known as the scalarypseudoscalar decomposition [9

In su, fd coordinates, where Eq. (1) holds, the harmo
ics are given explicitly by
lar
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YG
slmdabsn̂d ­

Nl

2

√
Wslmd Xslmdsinu

Xslmdsinu 2Wslmdsin2u

!
,

YC
slmdabsn̂d ­

Nl

2

√
2Xslmd Wslmdsinu

Wslmdsinu Xslmdsin2u

!
,

(6)

with the definitions

Wslmd ;

√
≠2

≠u2
2 cotu

≠

≠u
1

m2

sin2u

!
Yslmd ,

Xslmd ;
2im
sinu

√
≠

≠u
2 cotu

!
Yslmd .

(7)

The exchange symmetryhQ, Uj $ hU, 2Qj as G$ C
indicates thatYG

slmdab and Y C
slmdab represent polarizations

rotated by 45±.
A most useful property of the GyC decomposition is

that, in linear theory, scalar perturbations can produce on
G-type polarization and not C-type polarization. This is
in contrast to tensor or vector metric perturbations which
will produce a mixture of both types. To understand
why scalar metric perturbations do not produce a C-typ
polarization pattern, consider a scalar perturbation wit
single Fourier modek in the ẑ direction. The polarization
in a given direction can be represented by a magnitud
P ­ sQ2 1 U2d1y2 and an orientation anglea from the
axis defining the Stokes parameters (here, chooseû), where
tan2a ­ UyQ. For scalar perturbations, the orientation
of the polarization can be determined only by the directio
of k: thus a ­ 0 if the polarization orientation is along
the direction of k, or a ­ py2 if the orientation is
perpendicular to the direction ofk. In either case, in a
given region of the sky all of the orientations are paralle
and thus the polarization pattern has no curl. Since th
curl is a linear operator, summing over Fourier mode
does not alter this conclusion. For tensor and vecto
perturbations, the azimuthal symmetry in the scalar cas
is explicitly broken, and thus the Fourier vector does
not completely define the direction of the polarization
orientation. Another way to state this argument is tha
scalar perturbations have no handedness so they can
produce any curl, whereas vector and tensor perturbatio
do have a handedness and therefore can.

Finding a nonzero component of C-type polarization in
the CMB would provide compelling evidence for signifi-
cant contribution of either vector or tensor perturbation
at the time of last scattering. Given a polarization map
of even a small part of the sky one could in principle
test for vector or tensor contribution by computing the
combination of derivatives of the polarization given by
P

ab
:bc ec

a which will be nonzero only for C-type polariza-
tion, i.e., when vector or tensor perturbations are presen
Similarly only G-type polarization contributes toP ab

:ab.
Of course, taking derivatives of noisy data is problematic
more robust measures are given below.

We now turn to statistics of CMB polarization. If the
cosmological inhomogeneities are Gaussian random nois
then to the extent linear theory is valid, the CMB fluctua-
tions will also be Gaussian random noise. Regardless
2059
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whether the distribution is Gaussian, rotational invarian
requires that the two-point correlations be of the form

kaT p
slmd aT

sl0m0dl ­ CT
l dll0dmm0 ,

kaG p
slmd aG

sl0m0dl ­ CG
l dll0dmm0 ,

kaC p
slmd aC

sl0m0dl ­ CC
l dll0dmm0 ,

kaT p
slmd aG

sl0m0dl ­ CTG
l dll0dmm0 ,

(8)

kaT p
slmd aC

sl0m0dl ­ CTC
l dll0dmm0 ,

kaG p
slmd aC

sl0m0dl ­ CGC
l dll0dmm0 .

If we also require that the distribution of inhomogeneiti
be invariant under parity, thenCTC

l ­ CGC
l ­ 0 since the

Yslmd and theY G
slmdab have paritys21dl while the YC

slmdab

have paritys21dl11. Measuring a nonzeroCTC
l and/or

CGC
l would be quite interesting, indicating a handedne

to the inhomogeneities in our universe. However, w
do not expect this and will henceforth only consider t
four angular power spectrahCT

l , CG
l , CC

l , CTG
l j. The first

is the well-known angular power spectrum of temperatu
anisotropies while the last three, new to this paper, are
lated to various quantities in previous work (see Ref. [10
Note that the scalar, vector, and tensor contribution to e
of theCl ’s adds in quadrature, i.e., forX ­ T, G, C, TG

CX
l ­ CXscalar

l 1 CXvector
l 1 CXtensor

l , (9)

and this is true whether or not the fluctuations are Gauss
We have argued thatCC scalar

l ­ 0.
Given an all-sky temperature-polarization map, one c

determine theaslmd’s using Eq. (3), and then construc
estimators for theCl ’s in the usual way, i.e.,cCT

l ­
lX

m­2l

jaT
slmdj

2

2l 1 1
, cCG

l ­
lX

m­2l

jaG
slmdj

2

2l 1 1
,

cCC
l ­

lX
m­2l

jaC
slmdj

2

2l 1 1
, dCTG

l ­
lX

m­2l

aT p
slmd aG

slmd

2l 1 1
.
(10)

If only part of the sky is mapped, the same techniqu
developed to analyze anisotropy with incomplete s
coverage [11] may be applied to polarization to constr
other estimators of the variousCl ’s. The mean square
polarization is

Q2 1 U2 ­ 2P abPab ­ P 2
G 1 P 2

C , (11)

where

P
2

G

T2
0

­
X̀
l­2

2l 1 1
8p

cCG
l ,

P
2

C

T 2
0

­
X̀
l­2

2l 1 1
8p

cCC
l .

(12)
Since scalar modes do not contribute toP

2
C , this statistic

provides a powerful and unambiguous model-independ
probe of tensor and vector perturbations.

To test a given spectrum of tensor modes against a
larization map, comparing the complete set of predic

CC
l with the estimatorscCC

l is more powerful than con-
sidering only P

2
C , if the detection has sufficient signa

to noise. Usually, however, the theory being tested
2060
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scalar as well as nonscalar modes, along with undete
mined cosmological parameters. If so, the most infor
mation can be extracted from the map by comparing th
entire set of predicted moments,hCT

l , CG
l , CC

l , CTG
l j, with

the measured estimators [12,13].
Note that only theCC

l ’s potentially allow detection of a
small vector or tensor signal. If scalar perturbations dom
nate, then the vector or tensor signal inhCT

l , CG
l , CTG

l j
may be swamped by the cosmic variance in the scalar si
nal, but theCC

l ’s are not contaminated in this way. The
cross-correlation momentsCTG

l , which differ for scalar,
vector, and tensor perturbations [14], will be larger than
the polarization autocorrelation moments. Therefore, th
temperature-polarization cross correlation may be mea
sured with some precision.

Much of the small-angle formalism of Refs. [3–5,14–
17] can be reproduced by replacing theYslmdsn̂d’s in our
formalism with Fourier modes,eil?n̂, and using regular
derivatives rather than covariant ones. This small-ang
formalism is completely analogous to that developed
above and will provide an accurate description of a regio
of sky small enough to be approximated by a flat surface
The GyC decomposition in the small-angle formalism can
be used to detect nonscalar perturbations on small scal
though the tensor and vector signal are liable to drop o
rapidly at angular scales smaller than a few degrees.

To make contact with previous work, we can write the
two-point temperature and polarization correlation func
tions [3–5,14–17] in terms of multipole moments [10].
Although correlation functions of Stokes parameters whic
appear in the previous literature depend on the position
of the points being correlated, rotationally invariant cor-
relation functions exist which are closely related to those
discussed above. To construct them, define Stokes para
etersQr andUr with respect to axes which are parallel and
perpendicular to the great arc (or geodesic) which connec
the two points being correlated. The two-point correlation
functions are

CT sud ­ T22
0 kT sn̂1dT sn̂2dln̂1?n̂2­cosu

­
X

l

2l 1 1
4p

CT
l Plscosud,

CQsud ­ T22
0 kQr sn̂1dQrsn̂2dln̂1?n̂2­cosu

­
X

l

s
2l 1 1

2p
NlfCG

l Wsl2dsu, 0d

2 iCC
l Xsl2dsu, 0dg,

CU sud ­ T22
0 kUr sn̂1dUrsn̂2dln̂1?n̂2­cosu

­
X

l

s
2l 1 1

2p
NlfCC

l Wsl2dsu, 0d

2 iCG
l Xsl2dsu, 0dg,

CTQsud ­ T22
0 kT sn̂1dQr sn̂2dln̂1?n̂2­cosu

­
X

l

2l 1 1
4p

Nl CTG
l P2

l scosud, (13)
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whereu is the angle separating the two points andP2
l is the

m ­ 2 associated Legendre function. SinceQr andT are
invariant under reflection along the great arc connecting
two points whileUr changes sign,kQrUrl ­ kUrT l ­ 0
if statistical invariance under parity holds. Equations (1
reduce to the correct small-angle formulas [17] whenu ø

1. The functionshCT sud, CQsud, CU sud, CTQsudj are a
different way of representinghCG

l , CT
l , CC

l , CTG
l j and vice

versa. In Gaussian models either set provides a comp
statistical description of the temperature and polarizati
patterns.

The largest hurdles to detecting and characterizi
CMB polarization are sensitivity and foregrounds. I
adiabatic models with standard recombination the p
larization is only a few percent of the anisotropy, a
though it may be larger in reionized [16], isocurvatur
or topological-defect models. Thus the polarization si
nal is at least an order of magnitude below curre
experimental sensitivities. Experiments planned or e
visioned over the coming decade, however, will like
attain the raw sensitivity necessary for detailed polariz
tion investigations. Polarized emission from foregroun
sources is a relatively unknown factor at this time. For
ground emission and any Faraday rotation will certain
contribute to the C-type polarization, but these contam
nants can be subtracted using multifrequency obser
tions. On subdegree scales, where the signal from vec
and tensor modes are liable to be negligible, any me
surable C-type polarization is a likely indicator of con
tamination. Polarization measurements will be difficu
but the promise of using them to detect gravity waves
vorticity, and hence to discriminate between cosmolog
cal models, makes these measurements potentially v
valuable.
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