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Abstract

We investigate problems and applications associated wIth computing

the empirical cumulative distrtbution function of N points In k-

dimensional space and employ a multidimensional divide-end-conquer

technique that gives rise to a compact data structure for geometric

end statistical search problems. We are able to show how to

compute a large number of Important statistical quantities much

faster than was previously possible.
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• 1. INTRODUCTION _ _ _ _ _ _ _ _ _ _ _ _

The computational complexity of statistical procedures has jUSt begun to be

Investigated (Gonzalez 77] (Shamos 77] but proves to be a rich source of new

theoretical problems and algorithm design questions. In this paper we conduct

an exhaustive analysis of an Important computational problem in statistics

• . . 
. involving a novel date structure that is a direct outgrowth of the divide-and-

conquer algorithm used to solve the problem. We establish lower bounds on

• . computation time, relate the problem to some searching • and combinatorial

• questions, and present a variety of applications.

• 
•

. A multlvariate statistical sample of N observations on each of k variables can

be regarded conveniently as a set of N points in Eucildean k-space. We say

that a point X ‘ (x l,...,xk) dominates point Y, written X ~ 
Y, itt x

~ ~ 
y
~ 

for all I.

• That Is, X dominates V If f It is greater than or equal to V In all coordinates. The

dominance relation is easily seen to define a partial order on vectors. We

assume for simplicity that all N points are d1
~

tlnct, but this will not effect the

asymptotic running times of our algorithms. The rank r(Z) of a point Z (not

necessarily a sample point) is the number of sample points dominated by Z. The

normalized rank, r(Z)/N, which Is the fraction of points dominated by Z, is better

• known as th• empirical cumulative distribution function (ECOF) and arises in a

host of statistical applications. (The u~
e of the word “rank” In this context Is

auggastive but is a slight misnomer because the points are not linearly ordered.

A different defInition of tank is given In (Yao 74] but Is unrelated to the ECOF).

We now distinguish two computational problems:

• 1. (All points ECDF) Given N points In k-dimensional space, find the number of

• ‘points dominated by each.
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2. (ECOF search) Given N points In k-dimensional space, with preprocessing

allowed, find r(Z) for a new arbitrary point Z (without adding Z to the data
structure).

The all-points ECDF problem is the crucial step In computIng the statistics

associated with the HoetfdIng, Ko$mogorov-Smirnov (K-S), and Cramer-Von Mlses

tests (Hoiiender 73] (Hajek 67]. (These applicatIons are discussed below.) It

Includes the vector maxima problem of (Kung, et al 75] as a special case, since

a maximum (In their parlance) Is defined as a vector that Is not dominated by

any other. The reflection Z 
~ -z transforms a maximum into a vector whose

rank is zero, so the ECOF problem can be used to find maxima.

In econometrics, it is common to represent the yield of a combination of

investments as a point in multidimensional space, end one Is interested in

• strategies that are not dominated by any others. By this view, one step In the

selection of an Investment portfolio is en EDCF problem.

The ECDF generalizes the notion of inversions of a permutation. Consider a
-

• 
. 

two-dimensional set (x1,y1), such that the x
~ 

are in increasing order. Projecting

• the points on the y-axis and reading them In Increasing y-order Induces a

permutation 7r 1,... ,lrN of (1,..., N). Point i t s  dominated by point j if f i<j (that is,

xi<x j) ir
~<irj . (See Figure 1).

Points are numbered in
order of incr.uirug x-v.Iue.

4 Point 5 dominates point 2 -. I

• because 2 pr.c.d.s 5 in 5 
th. induced y-permutation. 3 I

2 4 6 3 5 1  Di 
~ 
:::

~
:::_‘

~
..

Projecting lb. numb.r.d points -. 
4

onto the y—ax is induces a 2 — — -~ 
—

permutation of 1,...,N. u i i i i

1
• . - 

1 2 3  4 5 6

Figure 1: The connection between domination end inversions.

The number of points dominated by (x1,y1) is the number of inversions of w In

which i participates. This shows that the ECDF Is fundamentally a discrete

problem and is based only on the ranks of the coordinates, not on their actual

values. The generalization to hlgh.r dimensions is now clear. Let P1 ,... P3 be a

collection of permutations of I ,...,N. Two Integers tj with 1’� 1,1, � N will be said

• to form a s-inversion Itt I < j but I follows J In each permutation. For example ,

the paIr (2,5) is a 4-inversion in the following set:
• 4 5 3 1 2 6  5 6 1 2 4 3  6 3 1 4 5 2  5 3 1 4 6 2

(Because 2 follows 5 in each permutation).
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Determining the number of k-inversions In which each integer Is involved is

equivalent to a (k+ 1)-dimensional ECDF problem.

Finding the number of elements dominated by each member of a general partial

order must take 0(N2) time In the worst cnsn but the dominance relation we
have defined Is a partial order of a special type -- It is Induced by the
lexicographic product of k linearly ordered sets. This structure will Iced to a

fast algorithm. This algebraic view leads to interestIng combinatorial questions,

such as characterizing those posets that are Isomorphic to a set of points In k-

space under the dominance ordering. 
•

The ECOF Is, In a very powerful sense, an excellent estimator of the

underlying population COP, which we often wish to determIne. In order to be able

to use this function we must be able to compute its value r(Z) at an arbitrary

point Z. A typical application is the multivartate Kolmogorov-Smirnov procedure

for testing the hypothesis that two samples have come from the same underlying

distribution. The test statistic K is equal to the maximum absolute difference

betweOn the ECDFs of the two samples. To compute K it suffices to evalua te

the ECDF of sample A at each of the points In sample B, and vice-versa. This

entails a search for each point of B to determine how many points in A It

dominates. Below we discuss a number of search algorithms that illustrate

various time-space tradeoffs and concentrate on one that runs in O(log2N) time

(In two dimensions) and requires only O(N log N) space and preprocessing time.

2. ECDF Algorithm .

It is easy to solve the all-points ECOF problam In 0(kN2) time by comparing

each of the N points against every other point to determine how many It

dominates. While In a general partial order of N-vectors this would also be a

trivial lower bound on the time needed to com pute the number of vectors

dominated by each, we have seen that the dominance oracring Is of special

form. In the present case we will use this structure to Improve on the naive

algorithm.

We employ a multidimensional divide-and-conquer scheme similar to the one

described in (Bentle y ?8a) and (Bentley 76b] . which at each level of recursion

reduces the dimension of the problem by one and the number of poInts by a

factor of two.

Theorem 1: The all-poi nts ECOP problem can be solved in 0(N Iog
~~ 

1N) time In

the worst case.
Algorithm:

1. Let P be a hyperplane, normal to one of the coordi nate axes, that divides

the collection of points into two subsets A and B, each containing N12
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points. Such a plane can be found in 0(N) time by choosing P to pass
through a point that has median first coordinate.

2. RecursIvely solve the all-points problem on subsets A and B. That is, for

each point in A we find the number of points in A that it dominates, and

similarly for B. if T(N,k) is the time required to solve the cntlre problem,
then the solution of these two subproblems can be accomplIshed in time

2T(N/ 2,k).

3. WIthout loss of generality, let A be the sat of points whose first coordinate

does not exceed that of any point of B. Note that the ECDP values

obtained for set A in the recursive subproblem solution are the correct final

values, since P was constructed so that no point of A can dominate any

point of B. It remains only to update the B values to reflect the number of
points in A that are dominated.

4. We now observe that each point of B already dominates each point of A in

at least one coordinate, namely, the coordinate whose axis Is normal to the
dividing plane P. ThIs coordInate can thus be removed from further

consideration In forming the corrected solution for B. The coordinate can be

eliminated without changing any dominance relations by merely projecting all

of the points onto P, which Is a subspace of one lower dimension. This

projection can be accomplished In 0(N) time if pointers are used instead of
copying lists of coordinates. (Otherwise, 0(kN) time would be required.)

The projected subproblem can be solved In time T(N.k-1). Note that the

“subprobiem” is of a somewhat special form, as we are only interested in

learning for each point of B the number of points in A that it dominates.

5. Combining the subproblem solutions obtained In steps 2 and 4 can be
accomplished In 0(N) time, so the recurrence relation for T Is

T(N ,k) • 2T(N/2,k) + T(N,k-1) + 0(N)

‘By sorting the poInts In advance on each coordinate we may make use of

the fact that T(N,2) 
~ 

0(N log N) (Shamos 77) to- obtain
T(N,k)

~~
0(N log

~
’1 N) + 0(kN log N) .

In unusual circumstances, the number of dimensions may greatly exceed the

number of sample points, N, In which case the above recursion Is inefficient

because its effort is concentrated on reducing the number of points in the

subproblems. if k ) N4, the method of (Yea 74], which explicitly constructs the

matrix of the partial order, can be used to compute the ECOF in O(kN2/ Iog N)

time. If only the vector maxima are desired, a slight modification of the above

algorithm achieves the O(N log
~~

2N) performance attained (f or k)2) in (Kung

75]. It has been shown (Bentley TTa) (Bentley TTb] that this modified maxima

algorithm runs in 0(N) expected time for a very wide class of input distributions.
•
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3. ECDF Search ing

Once the all-points problem has been solved, we are in a position to arrange
the solution Into a data structure that will make It easy to determine the number
of points dominated by a new point X. The most simple algorithm requires no
preprocessing at all and operates by comparing X to each of the N k-dimensional
sample points. This obvious approach requIres 0(kN) Initiaiization time, O(kN)

query time, and 0(kN) storage. It Is somewhat surprising that the query time can
be significantly reduced with no asymptotic Increase In the storage used. The
method of k-d trees (Bentley 75] achieves O(kN~~~

/k) search time after
O(kN tog N) preprocessing, but still needs only O(kN) storage (Lee 77].

It is possible to perform ECDF searching extremely rapidly If suffIcient storage
and preprocessing time are available. The method Is based on the fact that
there exist k-dimensional rectangular parallelepipeds within which the number of
dominated points remains constant. We may easily see why this Is true.
Consider some point Z (not in the original set) for which r(Z) 5 and imagine
moving Z parallel to some coordinate axis. (Refer to Figure 2.)

• - 

0 1 2  3 4 5 6

~ 
T 2 ~~ 4 ~ 

Horizontal and vertical lines
— — — — — are drawn throu

~
h .ach

o 0 I 2 3 3 4 sample point. Within each of
o— o 

~~~~

— 

~ 
-r —i-- 

~ 
the resultin; rectan* 1.s the

— — — ______ 
— — number of dom inat.d points

o 0 1 2 2 2 (and hence lb. ECDF) is
• i ‘ T —j constant.

0 0 0  0 0 0 0

• 
.

Figure 2: The ECOF is constant within rectangular regions.

The value of r(Z) cannot change until Z passes the projection of some point of
the original set on that axis. This Is true of each coordInate. If we were to

construct hyperplanes normal to the coordinate axes at each sample point (a
total of P1k hyperplanes), these would divide space into (N+ i)k rectangular
regions within each of which the function r is constant. Such a structure can
readily be queried In O(k log N) time by a binary search along each coordinate,

• so we have

Theorem 2: ECDF searching can be performed in O(k log N) time, with

0(Nk + kN log N) storage and preprocessing tIme.

The storage used by this procedure is prohibitive. We propose a data
structure and search algorithm that nearly achieves 0(log N) search time, but

•
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which uses less than quadratic storage. The data structure is “IsomorphIc” to
- the all-points ECDF algorithm In the sense that It is a tree structure having a

branch corresponding to each recursive call In the algorIthm. The storage
required by the search procedure and the time used by the all-points algorithm
are described by exactly the same recurrenco relation. Furthermore, the data
structure for searching can be built conveniently during the solution of the all-
points problem at no asymptotic increase in running time.

Let us first treat the two-dimensional case (refer to Figure 3). The

dividing line L is the two-dimensional instance of the hyperplane P described in

the all-points algorithm, and Is used to define the first test. Let A be the set of
N/2 points to the left of line L and let B be the set of points to the right. Given

a new point Z we want to determine the number of points (In both A and B) that
It dominates. In a single comparison against I we can determine whether Z ties
In A or In B. If 

~ lies in A (the diagram on the left in ‘Figure 3) it
cannot possibly dominate any point 0f B, so we may confine our attention to a

subproblem of half the size of the original. The recurrence describing this

situation Is just

T(N) T(N/2) + I

A L B A L 9

S . C

I oZ
C I

I Ie
il l ,  a .

. i i . .i2
• S • C _ _ a l  

I
• 

- . ‘ :  •p 
I

If Z lies to the sIt of I,. we need If 2 lies to th. right we ne.d its rank
only find its rink in A. in B and its y—rank in A.

Figure 3: The two cases of ECOF searching in the plane. 
—

If we learn from the first comparison that Z lies in B then the problem is only
slightly more complicated (the right diagram In FIgure 3). We must find the
number of points In B that are dominated by Z, which can be done in time 1(14/2).

We then add to that the number of points in A dominated by Z. Since, however,

the x-coordInate of Z is known to be greater than that of point of A, this number
is merely the number of points of A that lie below Z. If we project the points of
A onto L and sort them in advance (as part of the preprocessing) we will be able
to locate Z in this ordering In O(log N) time by binary search. Thus the

recurrence that results when Z is In B Is

1(N) • 1(14/2) • 0(log N) .

~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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It is immediate that 1(14) 
~ 

O(log2N), even If the second case arises after each
comparison.

The generalization to k dimensions is completely straightforward. The line I Is
• replaced by a hyperplane and the sorted list by a (k-1)-dimensionai ECDF

search structure. The search tIme is given by the recurrence

T(N,k) a T(N/2,k) + T(N,k-1), T(N,1) O(Iog N),

of which the solution is T(N,k) ~ O(logkN). The storage requirement of this
• algorithm Is easy to analyze in view of its recursive structure. In two dimensions

we need to store two data structures on N/2 points and one linear list of length
N/2. Thus , S(N,2) = 2S(N/2,2) + 0(N) O(N log N). In k dimensions, we have

S(N,k) • 2S(N/2,k) + S(N/2,k-1) = 0(N Iogk
~~N) .

The preprocessing time is described by precisely the same relation, givin g

Theorem 3: ECOF searching can be accomplished in 0(IogkN) time, using

O(N log1
~~~

N) storage and 0(N logk 1 N) time for preprocessing.

4. App lications

We now will present some new applications of the ECOF algorithms and

elaborate on some of those presented in the introduction.

4.1 Rang. Queries

An inconvenient but common type of geometric search problem is the range
query (Knuth 73]. Given a set of N points in the plane, with preprocessing
allowed , how many lie In the rectangie defined by a � x 

~ 
b and c � y � d 7

Within the framework of the ECOF problem, range searching becomes
elementary. In two dimensions , (see Figure 4) we may find the

number of points lying in rectangle ABCD by computing

ECDF(A) - ( ECDF(B) + ECDP(C) ] + ECOF(D)

This is a simple application of the combinatorIal principle of Inclusion-exclusion.

We are thus able to respond to a range query by evaluating the distribution

function at four points.

In k dimensions we need to evaluate the ECOF at 2k points, but this still only

requires O(IogkN) ti me and O(N log
~~~

N) storage (or, O(2k109 P’4) time and 0(Nk)

storage. ) The range query example provides a link between the empirical

distribution function and the empirical density functio n. The fraction of a set

contained in a plane region F Is a consistent estimator of the probability content
of that region (the probability density Integrated over F) (Lofts gaarden 85].

___________________ ________ ____________ ________
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Figure 4: Range searching as an ECDF problem.

4.2 Kolmogorov-Smirnov Statistic

Because of its intimate relation to the ECDF, we point out an anomaly between

the K-S one- and two-sample tests. The K-S one-sample statistic is the

maximum deviation between the ECDF of a finite point set and a given

hypothetical CDF (which we assume can be evaluated at’ a sIngle point In

constant time), A linear-time one-sample K-S algorithm In one dimension has
been given by (Gonzalez 77]; it makes use of the tact that any CDF must be a
monotonic functIon. WhIle the situation in higher dimensions is unclear , the ECDF H

algorithm of this paper can be used to compute the K-S statistic in O(N Iog
~~

’
~ 

N)

time. The K-S two-sampie statistic is the maximum deviation between the
• ECDFs of two given finite point sets.

Theo rem 4: The Kolmogorov two-sample statistic must take O(N log N) time to

compute, in the worst case.

• Proof: The K-S two—sample statistIc is zero ill the point sets are identical.

Set equality is shown to require O(N log N) comparIsons in (Reingold 72).
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Summary

We see that the empirical cumulative distribution function, a ubiquitous
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quantity In statistical analysis, can be computed quickly at the given sample

points and can be evaluated quickly at other points. The data structure for

ECOF searching was arrived at directly from the ECOF algorithm itself. The 
•

problems we have considered Impinge on many others In different applications

areas , all of which may be solved by the techniques developed here.
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