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Abstract

We consider a stochastic control problem that has emerged in the economics liter-

ature as an investment model under uncertainty. This problem combines features of

both stochastic impulse control and optimal stopping. The aim is to discover the form

of the optimal strategy. It turns out that this has a priori rather unexpected features.

The results that we establish are of an explicit nature. We also construct an example

whose value function does not possess C1 regularity.
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1 Introduction

Problems that combine features of both stochastic optimal control and optimal stopping
have attracted the interest of several researchers. Models of absolutely continuous control of
the drift and discretionary stopping have been studied by Krylov [K], Beneš [B], Karatzas
and Sudderth [KS], Karatzas and Wang [KW], and Karatzas and Ocone [KO]. Models
of combined singular stochastic control where the control effort takes the form of a finite
variation process and discretionary stopping have been studied by Davis and Zervos [DZ],
and Karatzas, Ocone, Wang and Zervos [KOWZ]. These two families of problems have been
motivated by applications in target tracking where the controller has to steer a system close
to a target and then decide on an engagement time, as well as by applications in finance.
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The latter ones include the classical consumption/investment problem for a small investor
who can decide on the time of their “exit” from the market (see Karatzas and Wang [KW]),
as well as the pricing of American contingent claims under constraints or with transaction
costs.

In this paper, we consider a problem of stochastic impulse control combined with optimal
stopping with a view to discovering the form of the optimal strategy. Note that the impulse
control component of the control strategy is not of the standard form because the sizes of the
jumps associated with each intervention strategy are not discretionary, but are constrained
to follow the pattern . . . , 1,−1, 1,−1, . . .. This simplification makes the problem easier to
analyse. However, it is offset by the extra complexity that is introduced by the additional
control variable which is the discretionary stopping.

Problems of this type arise in the context of various applications in which the system
dynamics involve discrete actions. For instance, in manufacturing, one needs to choose a
machine setup mode over time so as to switch optimally among a finite number of different
product types (see Sethi and Zhang [SZ]). The actual motivation of this paper arises from
the area of “real options” that has emerged in the economics literature over the past two
decades. This area is concerned with the development of new stochastic models that can
lead to more accurate pricing of investments in real assets by taking into account the value of
managerial flexibility; the interested reader can consult the books by Dixit and Pindyck [DP],
and Trigeorgis [T].

To fix ideas, consider an economic activity that is centred on a project that can operate
in two modes, an “open” one and a “closed” one. Whenever the project is in its “open”
operating mode, it yields a stream of profits or losses which is a functional of the uncertain
prices of input and output commodities. Whenever the project is in its “closed” operating
mode, it yields neither profits nor losses. The transition of the project from one of its oper-
ating modes to the other one forms a sequence of managerial decisions and is associated with
certain fixed costs. The problem is to determine the switching strategy that maximises the
expected present value of all profits and losses resulting from the project. Variants of this
problem have been developed in the economics literature as models for the valuation of invest-
ments in real assets by Brennan and Schwartz [BS], Dixit [D], and Dixit and Pindyck [DP].
Such a problem has the features of stochastic impulse control, and explicit solutions have
been obtained in the mathematics literature by Brekke and Øksendal [BØ1, BØ2], Lumley
and Zervos [LZ], and Duckworth and Zervos [DuZ1].

Suppose now that the option of totally abandoning the project at a discretionary time
and at a certain fixed cost is added in the set of available managerial decisions. The resulting
problem then combines stochastic impulse control with discretionary stopping. In fact, such
a model is extensively discussed in Dixit and Pindyck [DP, Section 7.2], and is a special
case of the one developed by Brennan and Schwartz [BS]. However, these authors make
very little progress in actually solving the problem. The purpose of this paper is to solve
completely the resulting optimisation problem under the assumption that the rate at which
the project yields profits or losses is a standard Brownian motion. Such an assumption is
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probably crude as long as real life applications are concerned. However, it leads to explicit,
non-trivial results that unveil the qualitative nature of the optimal strategy.

The results of our analysis take qualitatively different forms, depending on parameter
values, and can be summarised informally as follows. Suppose that the switching costs are
fixed. If the abandonment cost is very large (see case I in Theorem 6 and Figure 1), then it is
optimal to perpetuate the project by switching it to its “closed” mode as soon as its output
cash flow falls below a certain level, and by switching it to its “open” mode as soon as its
potential output cash flow rises above a certain higher level. If the abandonment cost is very
small (see case III of Theorem 6 and Figure 4), then abandonment is optimal, sooner or later.
If the project is in its “closed” mode at time 0, then it is switched to its “open” mode as soon
as its potential output cash flow exceeds a certain level. Once in it, the project should be kept
in its “open” operating mode for as long as its output cash flow is above a given level, and
should be abandoned as soon as its output cash flow falls below this level. For intermediate
values of the abandonment cost, we have an a priori rather unexpected combination of the
two cases above (see case II of Theorem 6 and Figure 3). If the project starts from its
“closed” mode, then it is never abandoned, and the situation resembles the case where the
abandonment cost is very large. A similar scenario pertains to the case when the project
is originally “open” and its output cash flow assumes sufficiently high levels. However, if
the project is originally “open” and its output cash flow assumes very low values, then it is
optimal to abandon the project immediately. The most interesting possibility arises when
the project is originally “open” and its output cash flow assumes moderately low values.
In this case, it is optimal to keep the project live and keep on accumulating losses until
its output cash flow either falls below a certain level, on which event the project is totally
abandoned, or rises above another certain level, on which event its operation enters the
perpetual life-cycle pertaining to the case of a large abandonment cost. As a result, the
abandonment time of the project is either finite or infinite, and each of the two possibilities
has positive probability.

The paper is organised as follows. Section 2 is concerned with the formulation of the
stochastic optimisation problem that we address. In Section 3, we prove a verification
theorem that will play a crucial role in our subsequent analysis. The assumptions of the
theorem allow for the possibility that the value function is not C1, and the proof is developed
using Itô-Tanaka’s formula, and relies on the properties of local times. The explicit solution
of the non-trivial case discussed above is developed in Section 4. Finally, an example whose
value function is not C1 is presented in Section 5.

2 Problem formulation

Let (Ω,F , P ) be a complete probability space equipped with a filtration (Ft) satisfying the
usual conditions of right continuity and augmentation by P -negligible sets, and carrying
a standard one-dimensional (Ft)-Brownian motion W . We denote by Z the family of all
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adapted, finite variation, càglàd processes Z with values in {0, 1}, and by S the set of all
(Ft)-stopping times.

We consider a stochastic system that can operate in two modes, an “open” one and
a “closed” one. The system’s mode of operation can be changed at a sequence of (Ft)-
stopping times. These transition times constitute a decision strategy that we model by a
process Z ∈ Z. Specifically, given any time t, Zt = 1 if the system is “open” at time t,
whereas Zt = 0 if the system is “closed” at time t. The stopping times at which the jumps
of Z occur are the intervention times at which the system’s operating mode is changed. We
denote by z ∈ {0, 1} the system’s mode at time 0. We also assume that the operation of this
system can be permanently abandoned at an (Ft)-stopping time T , which is an additional
decision variable. We define the set of all admissible strategies to be

Πz = {(Z, T ) | Z ∈ Z, Z0 = z, T ∈ S}.

We assume that the rate at which the system yields payoff, the switching costs associated
with the transition of the system from its “closed” mode to its “open” one, and vice versa,
as well as the permanent abandonment cost are all functions of a state process X which
satisfies the one-dimensional SDE

dXt = b(Xt) dt + σ(Xt) dWt, X0 = x ∈ I, (1)

where I is a given interval. We assume that the functions b, σ : I → R satisfy assumptions
such that this SDE has a unique strong solution with values in I, for all t ≥ 0, P -a.s..
In the problem that we solve in Section 4, I = R. However, if, following several of the
references mentioned in the introduction, we use X to model commodity prices, we must
have I = ]0,∞[.

With each admissible strategy (Z, T ) ∈ Πz we associate the expected payoff

Jz,x(Z, T ) =E

[
∫ T

0

Rs

[

H1(Xs)Zs + H0(Xs)(1 − Zs)
]

ds

−
∑

0≤s≤T

1{s<∞}Rs

[

G1(Xs) (∆Zs)
+ + G0(Xs) (∆Zs)

−]− 1{T<∞}RT F (XT )

]

,

(2)

where ∆Zt = Zt+ −Zt, (∆Zt)
± = max{±∆Zt, 0}, and the discounting process R is given by

Rt = exp

(

−
∫ t

0

r(Xs) ds

)

, (3)

for some positive function r : I → R. Here, H1(Xt) (resp. H0(Xt)) is the rate at which the
system yields payoff assuming that, at time t, it is in its “open” (resp. “closed”) operating
mode. Also, G1(Xt), G0(Xt) are the costs associated with switching the investment from its
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“closed” to its “open” mode, and vice versa, respectively, at time t, whereas F (Xt) is the
cost faced if the system is completely abandoned at time t.

The objective is to maximise Jz,x(Z, T ) over Πz. Accordingly we define the value function

v(z, x) = sup
(Z,T )∈Πz

Jz,x(Z, T ).

We assume that the problem is well posed in the sense that all of the integrals in (2) are
well defined, for every admissible strategy, and non-trivial in the sense that v(z, x) < ∞ for
for every initial condition (z, x). For the problem to be well posed, we also need to assume
that no strategy associated with a finite payoff involves an infinite number of switchings
prior to abandonment on a set of positive probability, so that every switching strategy
can be modelled by a process in Z. A sufficient condition for this assumption to hold is
G1(x) + G0(x) > ǫ > 0, for all x ∈ I. From an economics perspective, this assumption is a
natural one because it rules out the unrealistic situation where arbitrarily high profits can
be made by rapidly changing the system’s operating mode.

All of the assumptions discussed above are of an implicit nature. Further assumptions
will appear in the statement of Theorem 1, again in an implicit way. On the other hand, the
results of Sections 4 and 5 will assume that the problem’s data have specific forms.

At this point, it would be of interest to make a comment on a possible generalisation of
the model considered here. The dynamics of the state process X can be modified to include
an additional, regime switching process, so that (1) becomes

dXt = b(θt, Xt) dt + σ(θt, Xt) dWt, X0 = x ∈ I.

The process θ can be taken to be a finite-state Markov chain representing a number of
different economic outlooks (e.g., a state of economic growth and a state of recession). Models
involving regime switchings have been considered in the literature, and include Guo [G] who
solves the problem of pricing a Russian option in such a context. A generalisation of the
model studied here in this direction would multiply the complexity of the problem by the
number of states that the process θ can assume, and we leave it as an interesting open
problem.

3 A verification theorem

The problem considered in the previous section combines features of both stochastic impulse
control and optimal stopping. Therefore, we expect that the value function v should satisfy
the Hamilton-Jacobi-Bellman (HJB) equation

max
{

Lv(z, x) + zH1(x) + (1 − z)H0(x), v(1 − z, x) − v(z, x) − zG0(x) − (1 − z)G1(x),

− v(z, x) − F (x)
}

= 0, z = 1, 0 x ∈ I, (4)
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where the second order elliptic operator L is defined by

Lv(z, x) = 1
2
σ2(x)vxx(z, x) + b(x)vx(z, x) − r(x)v(z, x).

The ideas behind the origins of this equation are the following. Suppose that, at time
0, the system is in its “open” operating mode, i.e. z = 1. The controller’s immediate
decision consists of choosing between three actions. The first action is to totally terminate
the system’s operation at the cost of −F (x). Such a possibility gives rise to the inequality

v(1, x) ≥ −F (x). (5)

The second option is to pay the cost of G0(x) to switch the system to its “closed” operating
mode, and then continue optimally. This possibility yields the inequality

v(1, x) ≥ −G0(x) + v(0, x). (6)

The third action is to leave the system in its “open” operating mode for a short time ∆t,
and then continue optimally. This action is associated with the inequality

v(1, x) ≥ E

[
∫ ∆t

0

RsH1(Xs) ds + R∆tv(1, X∆t)

]

.

Under the assumption that v(1, ·) is sufficiently smooth, we may apply Itô’s formula to the
last term, and then divide by ∆t before letting ∆t ↓ 0, to obtain

Lv(1, x) + H1(x) ≡ 1
2
σ2(x)vxx(1, x) + b(x)vx(1, x) − r(x)v(1, x) + H1(x) ≤ 0. (7)

Now, each of (5)–(7) can hold with strict inequality because the corresponding action may not
be optimal. However, we expect that the three actions considered above form a complete
repertoire of optimal tactics. Therefore, given any x ∈ I, we expect that one of (5)–(7)
should hold with equality. Combining all of these relationships, we can conclude that the
value function v(1, ·) should satisfy

max
{

Lv(1, x) + H1(x), v(0, x) − v(1, x) − G0(x), −v(1, x) − F (x)
}

= 0. (8)

Using a similar reasoning, we can also conclude that the value function v(0, ·) associated
with the system in its “closed” operating mode (i.e. when z = 0) should satisfy

max
{

Lv(0, x) + H0(x), v(1, x) − v(0, x) − G1(x), −v(0, x) − F (x)
}

= 0. (9)

Now, combining (8) and (9), we conclude that the value function v should satisfy (4).
Without any further conditions, this equation has, in general, uncountably many solutions.
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Example 1 Suppose that I = R, and, for all x ∈ R, b(x) = 0, σ(x) =
√

2, r(x) = 4,
H1(x) = 3ex + 4, H0(x) = 0, G1(x) = G0(x) = 1 and F (x) = c, for some constant c > 0. It
is straightforward to verify that each of the functions defined by

w(z, x) = Ae2x + Be−2x + ex + z, A, B ≥ 0,

satisfies (4).

It turns out that the functions v(1, ·) and v(0, ·) composing the value function of the
special case of the control problem that we explicitly solve in Section 4 are both C1 but
not C2. However, it is clear that, as long as the general problem is concerned, we cannot
expect such regularity of the value function unless we impose appropriate assumptions on
the problem’s data. For instance, we cannot in general expect C1 regularity unless the
abandonment cost function F is C1. An explicitly solvable example illustrating this issue is
presented in Section 5.

In the next theorem, we consider candidates for the value functions v(1, ·) and v(0, ·)
which are differences of convex functions; for a survey of the results needed here, see Revuz
and Yor [RY, Appendix 3]. In particular, we consider solutions of (4) in the following sense.

Definition 1 A function w : {0, 1} × I → R satisfies (4) if each of w(1, ·), w(0, ·) is a
difference of two convex functions and (4) is true Lebesgue-a.e., with L̂ in place of L, where
the operator L̂ is defined by

L̂w(z, x) = 1
2
σ2(x)wac

xx(z, x) + b(x)w−
x (z, x) − r(x)w(z, x).

Here, w−
x (z, ·) is the left hand derivative of w(z, ·). Also,

wxx(z, dx) = wac
xx(z, x) dx + ws

xx(z, dx) (10)

is the Lebesgue decomposition of the second distributional derivative wxx(z, dx) of w(z, ·)
to the measure wac

xx(z, x) dx which is absolutely continuous with respect to the Lebesgue
measure and the measure ws

xx(z, dx) which is mutually singular with the Lebesgue measure.

We can now prove conditions which are sufficient for optimality in our problem.

Theorem 1 Consider the control problem described in Section 2. Suppose that G1, G0,
F are continuous functions, σ2(x) > 0, for all x ∈ I, and, for every admissible strategy
(Z, T ) ∈ Πz, there exists a sequence of times tm → ∞ such that

lim
m→∞

Jz,x(Z, T ∧ tm) = Jz,x(Z, T ). (11)

Suppose that there exist functions w(1, ·), w(0, ·) : I → R which are differences of convex
functions such that

−ws
xx(1, dx) and − ws

xx(0, dx) are positive measures, (12)
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and which satisfy the HJB equation (4) in the sense of Definition 1. Also, suppose that the
process M defined by

Mt =

∫ t

0

Rsσ(Xs)w
−
x (Zs, Xs) dWs (13)

is a martingale for every switching strategy Z ∈ Z. Then, given any initial condition (z, x) ∈
{0, 1} × I,
(a) v(z, x) ≤ w(z, x), and
(b) if

supp ws
xx(z, dx) ⊆ I \ int

{

x ∈ I | L̂w(z, x) + zH1(x) + (1 − z)H0(x) = 0
}

=: Oz, (14)

and there exists Z∗ ∈ Z such that

L̂w(Z∗
t , Xt) + Z∗

t H1(Xt) + (1 − Z∗
t )H0(Xt) = 0, (15)

for Lebesgue almost all t ≤ T ∗, P -a.s., and

[w(1, Xt) − w(0, Xt) − G1(Xt)] (∆Z∗
t )+ = 0, (16)

[w(0, Xt) − w(1, Xt) − G0(Xt)] (∆Z∗
t )− = 0, (17)

for all t ≤ T ∗, P -a.s., where

T ∗ = inf {t ≥ 0 | w(Z∗
t , Xt) = −F (Xt)} , (18)

as well as a sequence of times tm → ∞ satisfying (11) as well as

lim
m→∞

E
[

Rtm

∣

∣w(Z∗
tm

, Xtm)
∣

∣

]

= 0 and lim
m→∞

E
[

Rtm |F (Xtm)|
]

= 0, (19)

then v(z, x) = w(z, x), and the optimal strategy is (Z∗, T ∗).

Proof. Fix any z = 0, 1. Using Itô-Tanaka’s formula (see Revuz and Yor [RY, Theorem
VI.1.5]), we obtain

w(z, Xt) = w(z, x) +

∫ t

0

b(Xs)w
−
x (z, Xs) ds +

∫ t

0

σ(Xs)w
−
x (z, Xs) dWs

+ 1
2

∫

I
La

t wxx(z, da), (20)

where La is the local time of the process X at level a. We assume that

the mapping (t, a) → La
t is continuous in t and càdlàg in a, (21)
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P -a.s. (see Revuz and Yor [RY, Theorem VI.1.7]). With reference to (10) and the occupation
times formula (see Revuz and Yor [RY, Corollary VI.1.6])

∫

I
La

t w
ac
xx(z, a) da =

∫ t

0

σ2(Xs)w
ac
xx(z, Xs) ds,

so (20) implies

w(z, Xt) = w(z, x) +

∫ t

0

[

1
2
σ2(Xs)w

ac
xx(z, Xs) + b(Xs)w

−
x (z, Xs)

]

ds

+

∫ t

0

σ(Xs)w
−
x (z, Xs) dWs + Az

t

where

Az
t = 1

2

∫

I
La

t ws
xx(z, da). (22)

For future reference, observe that (12) implies

−Az is a continuous, increasing process, (23)

because such a statement is true for local times. Now, using the integration by parts formula
for semimartingales, we obtain

Rtw(z, Xt) = w(z, x) +

∫ t

0

RsL̂w(z, Xs) ds +

∫ t

0

Rsσ(Xs)w
−
x (z, Xs) dWs +

∫ t

0

Rs dAz
s.

(24)

We can now prove the two statements of the theorem.
(a) Fix any admissible strategy (Z, T ) ∈ Πz, and suppose that the abandonment time T

is bounded by a constant. Define the increasing sequence of (Ft)-stopping times (Tn) by

T1 = inf{t ≥ 0 | Zt 6= z} and Tn+1 = inf{t > Tn | Zt 6= ZTn+}, (25)

with the usual convention that inf ∅ = ∞. Note that the assumption that Z is a finite
variation process implies that its discontinuities cannot accumulate within any compact
subset of R+, so Tn → ∞, P -a.s.. Therefore,

RT w(ZT , XT ) = RT w(ZT , XT )1{T≤T1} +

∞
∑

n=1

[

RT w(ZT , XT ) − RTnw(ZTn+, XTn)

+

n−1
∑

j=1

[

RTj+1
w(ZTj+1

, XTj+1
) − RTj

w(ZTj+, XTj
)
]

+ RT1
w(ZT1

, XT1
) (26)

+

n
∑

j=1

RTj

[

w(ZTj+, XTj
) − w(ZTj

, XTj
)
]

]

1{Tn<T≤Tn+1}.
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Now, since Z is constant on the stochastic interval ]Tj , Tj+1] and T is bounded, (24) implies

[

RTj+1
w(ZTj+1

, XTj+1
) − RTj

w(ZTj+, XTj
)
]

1{Tj+1<T} =

[

∫ Tj+1

Tj

RsL̂w(Zs, Xs) ds

+MTj+1
− MTj

+

∫ Tj+1

Tj

RsZs dA1
s +

∫ Tj+1

Tj

Rs(1 − Zs) dA0
s

]

1{Tj+1<T},

where M is defined as in (13). Since the terms
[

RT w(ZT , XT ) − w(z, x)
]

1{T≤T1},
[

RT1
w(ZT1

, XT1
) − w(z, x)

]

1{T1≤T},
[

RT w(ZT , XT ) − RTnw(ZTn+, XTn)
]

1{Tn<T≤Tn+1}

admit similar expressions, (26) implies

RT w(ZT , XT ) = w(z, x) +

∫ T

0

RsL̂w(Zs, Xs) ds + MT

+
∑

0≤s<T

Rs

[

w(Zs+, Xs) − w(Zs, Xs)
]

+

∫ T

0

RsZs dA1
s +

∫ T

0

Rs(1 − Zs) dA0
s.

It follows that
∫ T

0

Rs

[

H1(Xs)Zs + H0(Xs)(1 − Zs)
]

ds

−
∑

0≤s≤T

Rs

[

G1(Xs) (∆Zs)
+ + G0(Xs) (∆Zs)

−]− RT F (XT )

= w(z, x) − RT

[

w(ZT+, XT ) + F (XT )
]

+ MT

+

∫ T

0

Rs

[

L̂w(Zs, Xs) + H1(Xs)Zs + H0(Xs)(1 − Zs)
]

ds (27)

+
∑

0≤s≤T

Rs

[

w(1, Xs) − w(0, Xs) − G1(Xs)
]

(∆Zs)
+ +

∫ T

0

RsZs dA1
s

+
∑

0≤s≤T

Rs

[

w(0, Xs) − w(1, Xs) − G0(Xs)
]

(∆Zs)
− +

∫ T

0

Rs(1 − Zs) dA0
s.

In view of (23) and the fact that w satisfies (4) in the sense of Definition 1, this implies
∫ T

0

Rs

[

H1(Xs)Zs + H0(Xs)(1 − Zs)
]

ds

−
∑

0≤s≤T

Rs

[

G1(Xs) (∆Zs)
+ + G0(Xs) (∆Zs)

−]− RT F (XT )

≤ w(z, x) + MT .
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Taking expectations and noting that the stochastic integral has expectation 0, we obtain
Jz,x(Z, T ) ≤ w(z, x).

Now, consider the general case where the abandonment time T is not necessarily bounded
by a constant, and let (tm) be a sequence satisfying (11). From our analysis above, it follows
that Jz,x(Z, T ∧ tm) ≤ w(z, x), for all m. However, this and (11) imply Jz,x(Z, T ) ≤ w(z, x),
which establishes this part of the theorem.

(b) Suppose that there exists a strategy (Z∗, T ∗) satisfying (15)–(18), let (T ∗
n) be the

associated sequence of stopping times defined as in (25), and let (tm) be a sequence satisfying
(11) as well as (19). Fix any of the stochastic intervals ]T ∗

n ∧ T ∗ ∧ tm, T ∗
n+1 ∧ T ∗ ∧ tm],

and observe that Z∗ is constant on this interval, i.e. Z∗
t = z, for some z ∈ {0, 1}, for all

t ∈ ]T ∗
n ∧ T ∗ ∧ tm, T ∗

n+1 ∧ T ∗ ∧ tm], P -a.s.. Since the measure dLa
t is carried by the set

{t ≥ 0 | Xt = a}, P -a.s., (14) and (15) imply

La
T ∗

n∧T ∗∧tm
= La

T ∗

n+1
∧T ∗∧tm

, P -a.s., ∀a ∈ Oz.

Therefore,

La
T ∗

n∧T ∗∧tm
= La

T ∗

n+1
∧T ∗∧tm

, ∀a ∈ Od
z , (28)

P -a.s., where Od
z is any countable subset of Oz which is dense in Oz. Now, let A ∈ F be

such that P (A) = 1 and (21), (28) are true for all ω ∈ A. Given any a ∈ Oz \ Od
z and any

sequence (am) in Od
z such that am ↓ a (21) implies

La
t (ω) = lim

k→∞
Lak

t (ω), ∀t ≥ 0, ∀ω ∈ A.

However, this and (28) imply

La
T ∗

n∧T ∗∧tm
(ω) = La

T ∗

n+1
∧T ∗∧tm

(ω), ∀a ∈ Oz, ∀ω ∈ A.

Combining this with (22), we can see that

Az
T ∗

n∧T ∗∧tm
= Az

T ∗

n+1
∧T ∗∧tm

, if Z∗
t = z, for t ∈ ]T ∗

n ∧ T ∗ ∧ tm, T ∗
n+1 ∧ T ∗ ∧ tm].

It follows that
∫ T ∗∧tm

0

RsZ
∗
s dA1

s =

∫ T ∗∧tm

0

Rs(1 − Z∗
s ) dA0

s = 0.

Therefore, in view of (15)–(18), (27) implies
∫ T ∗∧tm

0

Rs

[

H1(Xs)Z
∗
s + H0(Xs)(1 − Z∗

s )
]

ds

−
∑

0≤s≤T ∗∧tm

Rs

[

G1(Xs) (∆Z∗
s )+ + G0(Xs) (∆Z∗

s )−
]

− RT ∗∧tmF (XT ∗∧tm)

= w(z, x) − 1{T ∗>tm}Rtm

[

w(Z∗
tm+, Xtm) + F (Xtm)

]

+ MT ∗∧tm .

Taking expectations and letting m → ∞, we obtain Jz,x(Z
∗, T ∗) = w(z, x), by virtue of (11)

and (19), and the proof is complete. �
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Remark 1 To obtain some further insight into the assumptions of the theorem above, sup-
pose that, given a finite number of points a1

1 < a1
2 < · · · < a1

N1 (resp. a0
1 < a0

2 < · · · < a0
N0),

w(1, ·) (resp. w(0, ·)) is twice continuously differentiable at every point x ∈ I \ {a1
1, . . . , a

1
N1}

(resp. x ∈ I \ {a0
1, . . . , a

0
N0}). Also, suppose that each of the functions w−

x (z, ·) is locally
bounded. In this case, assumptions (12), (14) are equivalent to

w−
x (z, az

iz) ≥ w−
x (z, az

iz+) ≡ lim
x↓az

iz

w−
x (z, x), ∀iz = 1, 2, . . . , N z, (29)

az
1, . . . , a

z
Nz ⊆ I \ int

{

x ∈ I | L̂w(z, x) + zH1(x) + (1 − z)H0(x) = 0
}

, z = 0, 1, (30)

respectively. For future reference, we should stress that we cannot dispense with either of
these two assumptions. Also, it is worth observing the asymmetry presented by (12) or (29):
had the optimisation problem been a minimisation one, we would have to replace (12) by
the assumption that ws

xx(1, dx) and ws
xx(0, dx) are positive measures, and we would have to

consider the reverse inequalities in (29). With regard to (30), we can conclude that the points
where C1 regularity fails should not belong to the interior of the “continuation” region, but
can be allowed in the closure of the “switching” or “stopping” regions.

Remark 2 The result proved above can be trivially extended to the case where the system’s
operating modes are not just two, namely “open” and “closed”, but are any finite positive
integer. On the other hand, the proof cannot be trivially modified to account for the case
where the process X assumes values in a higher dimensional state space because it relies
heavily on the use of local times and Itô-Tanaka’s formula.

To analyse the problem arising if the state process X is a n-dimensional diffusion under
similarly general assumptions, one would have to resort to the use of viscosity solutions of the
associated HJB equation (see Fleming and Soner [FS] and Yong and Zhou [YZ]). This project
would aim at proving that the value function identifies with the unique viscosity solution
of the HJB equation. Furthermore, characterising the optimal strategy would require a
viscosity solution version of the verification Theorem 1 in the spirit of Theorem 5.5.3 in
Yong and Zhou [YZ]. Such an analysis lies beyond the scope of this article, and we leave it
as an interesting open problem.

4 The explicit solution of a special case

We now solve completely the special case of the general control problem formulated in
Section 2 that arises if we impose the following assumption.

Assumption 1 I = R, and b(x) = 1, σ(x) = 1, r(x) = r, H1(x) = x, H0(x) = 0,
G1(x) = K1, G0(x) = K0 and F (x) = K, for some constants r, K1, K0, K > 0, for all x ∈ R.

12



In this case, the HJB equation (4) reduces to the following pair of coupled quasi-variational
inequalities:

max
{

1
2
v′′
1(x) − rv1(x) + x, v0(x) − v1(x) − K0, −v1(x) − K

}

= 0, (31)

max
{

1
2
v′′
0(x) − rv0(x), v1(x) − v0(x) − K1, −v0(x) − K

}

= 0. (32)

Here, we write v1 and v0 in place of v(1, ·) and v(0, ·), respectively, to simplify the notation.
To make some headway, we first make some qualitative observations. Since the system

yields 0 payoff whenever it operates in its “closed” mode and the abandonment cost K is
positive, it follows that abandonment cannot be optimal when the system is in its “closed”
mode. As a consequence, abandonment can be part of the optimal strategy only if the system
is in its “open” operating mode. Moreover, the system should be in its “open” operating
mode if the state process X assumes sufficiently large values and should be in its “closed”
operating mode or should be abandoned if the state process X takes sufficiently low values.

Now, a first possibility arises if abandonment is not part of the optimal scenario. In such
a case, we should switch the system from its “closed” to its “open” mode whenever the state
process X exceeds a level specified by a constant α, and we should switch the system from
its “open” to its “closed” mode whenever the state process X falls below a level given by
a constant β. Clearly, such a strategy is well defined only if β < α. It can be depicted by
Figure 1.

I
xr KrxAe −+− 2

rxAe xr +− 2O
xr KBe −2

xrBe 2

β

α

Figure 1: The “no-abandonment case”.

If such a strategy is indeed optimal, the value function should be given by a solution
w1, w0 of the HJB equations (31)–(32) described as follows. For x > β, w1 should satisfy
1
2
w′′

1(x) − rw1(x) + x = 0, namely w1(x) = Ae−
√

2rx + C1e
√

2rx + x/r, for some constants
A, C1 ∈ R, whereas, for x ≤ β, w1 should be given by w1(x) = w0(x) − K0. On the other

hand, if x < α, w0 should satisfy 1
2
w′′

0(x) − rw0(x) = 0, namely w0(x) = C2e
−
√

2rx + Be
√

2rx,
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for some constants C2, B ∈ R, whereas, for x ≥ α, w0 should be given by w0(x) = w1(x)−K1.
Now, we must have C1 = C2 = 0, because, otherwise, the assumptions of Theorem 1 cannot
be satisfied. In view of these conditions, w1, w0 should be given by

w1(x) =

{

Be
√

2rx − K0 if x ≤ β,

Ae−
√

2rx + x/r if x > β,
w0(x) =

{

Be
√

2rx if x < α,

Ae−
√

2rx + x/r − K1 if x ≥ α,
(33)

respectively. To specify the parameters A, B, α, β, we postulate that w1, w0 are C1 at
the free boundary points β, α, respectively. This requirement gives rise to the system of
equations

Be
√

2rα − Ae−
√

2rα =
α − rK1

r
, (34)

Be
√

2rα + Ae−
√

2rα =
1

r
√

2r
, (35)

Be
√

2rβ − Ae−
√

2rβ =
β + rK0

r
, (36)

Be
√

2rβ + Ae−
√

2rβ =
1

r
√

2r.
(37)

It is straightforward to verify that these are equivalent to

A = −β + rK0 − 1/
√

2r

2r
e
√

2rβ, (38)

B =
β + rK0 + 1/

√
2r

2r
e−

√
2rβ, (39)

(

α − rK1 − 1/
√

2r
)

e
√

2rα =
(

β + rK0 − 1/
√

2r
)

e
√

2rβ, (40)
(

α − rK1 + 1/
√

2r
)

e−
√

2rα =
(

β + rK0 + 1/
√

2r
)

e−
√

2rβ . (41)

The next lemma is concerned with the solvability of (40)–(41) and with necessary and
sufficient conditions under which the functions w1, w0 given above satisfy the HJB equations
(31)–(32). To derive the results of Lemma 4 below, we assume here that the constants K1,
K0 can take negative as well as positive values, subject to the condition that K1 + K0 > 0.

Lemma 2 Suppose that r > 0 and K1, K0 ∈ R satisfy K1 + K0 > 0. There exists a unique
pair of points α = α(r, K1, K0) and β = β(r, K1, K0) which satisfies (40)–(41). Point β is
the unique solution of

H(β) :=
β + rK0 + 1/

√
2r

β + rK0 − 1/
√

2r
exp

(

−
√

2r(2β + rK0 − rK1)
)

= −1, (42)
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and satisfies

−rK0 −
1√
2r

< β < −rK0, (43)

−2e−2 >
√

2r
(

β + rK0 − 1/
√

2r
)

exp
(√

2r(β + rK0 − 1/
√

2r)
)

> −e−1, (44)

whereas

α = −β − rK0 + rK1 > β. (45)

The functions w1, w0 defined by (33), where α and β are as above and A, B > 0 are given
by (38), (39), respectively, are convex, non-decreasing, C1 for all x ∈ R and C2 for all
x ∈ R \ {β}, x ∈ R \ {α}, respectively, and satisfy

max
{

1
2
w′′

1(x) − rw1(x) + x, w0(x) − K0 − w1(x)
}

= 0, ∀x ∈ R \ {β}, (46)

max
{

1
2
w′′

0(x) − rw0(x), w1(x) − K1 − w0(x), −K − w0(x)
}

= 0, ∀x ∈ R \ {α}. (47)

Moreover, w1(x) ≥ −K if and only if K ≥ K0.

We collect in the Appendix the proofs of those results that are not developed in the text.
If the condition K ≥ K0 is not satisfied, we expect that abandonment becomes part of

the optimal scenario. Now, assuming that the optimal strategy has a continuous qualitative
character, we should expect that, as K0 rises above K, abandonment should become optimal
if the system is “open” and the state process X assumes sufficiently small values. The obvious
modification of the strategy studied above, can be depicted by Figure 2. Such a possibility
involves 5 parameters and 3 free boundary points, so we cannot impose a C1 fit at all of the
free boundary points.

By an obvious symmetry argument, we can conclude that the value function is C1 at the
points α, β and C0 at the point γ. However, by elementary considerations, we can see that
the value function is non-decreasing in x. Therefore, if the optimal strategy identifies with
the one depicted by Figure 2, we must have w1(γ−) = 0 < w1(γ+), which is unacceptable
in the light of Remark 1. Alternatively, we can postulate that the value function is C1

at γ and β (resp. α), and C0 at α (resp. β). However, such a possibility would impose a
discontinuity of the first derivative of the candidate value functions inside the interior of the
“continuation” region, which is again contradicting the conclusions of Remark 1. It turns
out that a strategy having the form depicted by Figure 2 cannot be optimal. However, the
idea that the optimal strategy should possess a character which depends continuously on
the problem’s data leads us to the conclusion that we should look for a further modification
of this strategy. Such a modification can be obtained by inserting a “do-not-abandon-or-
switch-off” region around γ, so that the interface of the “abandonment” and the “switch
off” regions is not just a point but an interval. This strategy can be depicted by Figure 3.
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I
xr KrxAe −+− 2

rxAe xr +− 2

xrBe 2

β

α

O
xr KBe −2

γ

K−

Figure 2: An obvious modification of the “no-abandonment case”.

I
xr KrxAe −+− 2

rxAe xr +− 2rxee xrxr +Γ+Γ − 2
2

2
1

xrBe 2

β

α

O
xr KBe −2

γδ

K−

Figure 3: The case where abandonment becomes part of the optimal tactics.

If this case is indeed optimal, the value function of the control problem should identify
with a solution w1, w0 of the HJB equations (31)–(32) described by

w1(x) =



















−K if x ≤ δ,

Γ1e
−
√

2rx + Γ2e
√

2rx + x/r if δ < x < γ,

Be
√

2rx − K0 if γ ≤ x ≤ β,

Ae−
√

2rx + x/r if x > β,

(48)

w0(x) =

{

Be
√

2rx if x < α,

Ae−
√

2rx + x/r − K1 if x ≥ α.
(49)
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The parameters A, B, Γ1, Γ2, α, β, γ, δ can then be specified by the requirement that w1,
w0 are C1 at the free boundary points α, β, γ, δ. Now, it is a straightforward calculation to
verify that this requirement implies that α, β, A, B, should satisfy (38)–(41),

Γ1 = −γ + rK0 − 1/
√

2r

2r
e
√

2rγ, (50)

Γ2 = B − γ + rK0 + 1/
√

2r

2r
e−

√
2rγ, (51)

and γ, δ should satisfy the system of equations

F1(γ, δ) :=
(

δ + rK − 1/
√

2r
)

e
√

2rδ −
(

γ + rK0 − 1/
√

2r
)

e
√

2rγ = 0, (52)

F2(γ, δ) :=
(

δ + rK + 1/
√

2r
)

e−
√

2rδ −
(

γ + rK0 + 1/
√

2r
)

e−
√

2rγ + 2rB = 0. (53)

The next lemma is concerned with the solvability of (52)–(53) as well as with necessary
and sufficient conditions under which the functions w1, w0 considered above satisfy the HJB
equations (31)–(32).

Lemma 3 Let α = α(r, K1, K0), β = β(r, K1, K0), A, B be as in Lemma 2. The system
of equations (52)–(53) has a unique solution γ = γ(r, K1, K0, K), δ = δ(r, K1, K0, K) such
that δ < γ < β if and only if

K∗ ∨ 0 < K < K0, (54)

where K∗ = K∗(r, K1, K0) < K0 is defined by

K∗ = − 1

r
√

2r
ln

(

−
√

2r

2

(

β + rK0 − 1/
√

2r
)

exp
(√

2r(β + 1/
√

2r)
)

)

. (55)

If K∗ > 0 and K = K∗, then γ = β, δ = −rK − 1/
√

2r, Γ1 = A, and Γ2 = 0. If (54) is
true, then the functions w1, w0 defined by (48), (49), respectively, where Γ1, Γ2 > 0 are given
by (50)–(51), are convex, non-decreasing, C1 for all x ∈ R and C2 for all x ∈ R \ {δ, γ, β},
x ∈ R \ {α}, respectively, and satisfy the HJB equations (31)–(32).

The optimality of the case considered in the previous lemma depends crucially on the
parameter K∗. If K∗ ≤ 0 for every admissible choice of the problem’s data, then our solution
is complete. However, it turns out that this is not in general the case.

Lemma 4 Given any values of the parameters r, K1 > 0, the function K∗(r, K1, ·) is well
defined on ] − K1,∞[, is strictly increasing and at least C1 on this interval, and satisfies
limK0→∞ K∗(r, K, K0) = ∞ and K∗(r, K, 0) < 0.
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I
xr KrxAe −+− 2

rxAe xr +− 2

xrBe 2

α

δ

K−

Figure 4: The case where switching the system to its “closed” mode is never optimal.

In Lemma 3, we proved that if K∗ > 0 and K = K∗, then γ = β, so the “switch-from-
open-to-closed” region disappears, and the optimal strategy can be depicted by Figure 4.
For K < K∗, we can expect that it is not optimal to switch the system from its “open” to
its “closed” operating mode at any time, so that the optimal strategy can again be depicted
by Figure 4.

If this strategy is indeed optimal, the value function should be given in terms of the
functions

w1(x) =

{

−K if x ≤ δ,

Ae−
√

2rx + x/r if x > δ,
w0(x) =

{

Be
√

2rx if x < α,

Ae−
√

2rx + x/r − K1 if x ≥ α.
(56)

Again, we require that w1, w0 are C1 at the free boundary points δ, α, respectively. Straight-
forward calculations show that C1 fit at δ yields

A =
1

r
√

2r
exp

(

−
√

2r(rK + 1/
√

2r)
)

, (57)

δ = −rK − 1√
2r

, (58)

whereas C1 fit at α yields the system of equations

Be
√

2rα − Ae−
√

2rα =
α − rK1

r
, (59)

Be
√

2rα + Ae−
√

2rα =
1

r
√

2r
, (60)
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which is equivalent to

B =
α − rK1 + 1/

√
2r

2r
e−

√
2rα, (61)

G(α) :=

√
2r

2

(

α − rK1 − 1/
√

2r
)

exp
(√

2r(α + rK + 1/
√

2r)
)

= −1. (62)

The next lemma is concerned with the solvability of (62) and with necessary and sufficient
conditions under which this case is optimal.

Lemma 5 Equation (62) has a unique solution α = α(r, K1, K) such that α > −rK −
1/
√

2r. For this value of α, and for A, B > 0 and δ = δ(r, K) given by (57), (61) and
(58), respectively, the functions w1, w0 defined by (56) are convex, non-decreasing, C1 for
all x ∈ R and C2 for all x ∈ R\{δ}, R\{α}, respectively. Moreover, assuming that K∗ > 0,
they satisfy the HJB equations (31)–(32) if and only if 0 < K ≤ K∗.

We can now prove the main result of the section.

Theorem 6 Consider the stochastic optimisation problem defined in Section 2, and suppose
that its data are as in Assumption 1. The value function v is C1, convex and non-decreasing
in x, and is given by v(1, ·) = w1 and v(0, ·) = w0, where:
(I) If K0 ≤ K, w1, w0 are given by Lemma 2 (see Figure 1).
(II) If K∗ < K < K0, where K∗ < K0 is given by (55), w1, w0 are given by Lemma 3 (see
Figure 3).
(III) If K∗ > 0 and K ≤ K∗, w1, w0 are given by Lemma 5 (see Figure 4).
In each of the three cases, the optimal strategy can be constructed as in the proof below.

Proof. First, observe that, given any sequence tm → ∞, (11) and the second limit in (19)
are true for all (Z, T ) ∈ Πz. Also, in each of the three cases, the functions w1 and w0 are
convex and non-decreasing.

Now, consider any of the three cases. Since w1 ≡ w(1, ·) and w0 ≡ w(0, ·) are C1 for all
x, and C2 for all x outside a finite set, their second distributional derivatives are measures
that are absolutely continuous with respect to the Lebesgue measure. With regard to the
notation of Definition 1, this implies that ws

xx(1, dx) ≡ 0 and ws
xx(0, dx) ≡ 0, and therefore,

(12) as well as (14) are true. Moreover, w1 ≡ w(1, ·) and w0 ≡ w(0, ·) satisfy the HJB
equations (31)–(32) in the classical sense, by construction, and therefore, in the sense of
Definition 1.

Since w(1, ·) and w(0, ·) have bounded first derivatives the process M defined as in (13)
is a square integrable martingale, for all Z ∈ Z. Furthermore, there exist constants C1 and
C2 such that

w(z, x) ≤ C1 + C2|x|, for all z = 1, 0 and x ∈ R.
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It follows that, given any Z ∈ Z,

lim
t→∞

E
[

e−rt |w(Zt, Xt)|
]

≤ lim
t→∞

E
[

e−rt (C1 + C2 |x + Wt|)
]

= 0.

However, this shows that (18) is satisfied for all Z ∈ Z, and therefore, for the optimal
switching process.

The above arguments prove that, in any of the three cases, w1 ≡ w(1, ·) and w0 ≡ w(0, ·)
satisfy all of the assumptions related to part (a) of Theorem 1, as well as (14) and (19). As
a consequence, to complete the proof, we have to construct a strategy (Z∗, T ∗) satisfying
(15)–(18).

Now, in Case I, if z = 1, then we can see that the strategy (Z∗, T ∗), where T ∗ = ∞ and
the process Z∗ ∈ Z is defined by

Z∗
t = 1{t=0} +

∞
∑

j=0

1{T ∗

2j<t≤T2j+1}∗ , (63)

where T ∗
0 = 0 and the stopping times T ∗

n , n ∈ N
∗, are defined recursively by

T ∗
2n+1 = inf{t ≥ T ∗

2n | Xt ≤ β}, n = 0, 1, 2, . . . , (64)

T ∗
2n = inf{t ≥ T ∗

2n−1 | Xt ≥ α}, n = 1, 2, . . . , (65)

satisfies (15)–(18). If z = 0, we again have T ∗ = ∞ and the optimal switching process Z∗

can be constructed in a similar fashion.
In Case II, if z = 1 and x ≥ γ, or if z = 0, the optimal strategy is the same as in Case

I. If z = 1 and x ≤ δ, then the optimal strategy is characterised by T ∗ = 0. If z = 1 and
δ < x < γ, then define

Tδ = inf{t ≥ 0 | Xt ≤ δ} and Tγ = inf{t ≥ 0 | Xt ≥ γ} (66)

and let

T ∗ = Tδ1{Tδ<Tγ} + ∞1{Tδ>Tγ} ∈ S.

Also let T ∗
0 = 0, T ∗

1 = Tγ and define T ∗
n , n ≥ 2, as in (65). Then we can see that the strategy

(Z∗, T ∗) where Z∗ is defined as in (63), satisfies (15)–(18).
In Case III, if z = 1, then T ∗ = T δ, where Tδ is defined as in (66), and Z∗ defined by

Z∗
t = 1, for all t ≥ 0, provide the optimal strategy. Finally, if z = 0, then T ∗ = inf{t ≥ Tα |

Xt ≤ δ}, where Tα = inf{t ≥ 0 | Xt ≥ α}, and Z∗ defined by Z∗
t = 1{Tα<t}, t ≥ 0, are the

optimal strategy, and the proof is complete. �

Remark 3 The rather unexpected qualitative nature of Case II is intimately related to
optimal stopping. To understand this claim, consider the case as a perturbation of Case I,
where stopping is not part of the optimal strategy. With regard to the heuristic discussion
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at the beginning of the section, abandonment can be optimal only if the system is “open”
and the state process X assumes sufficiently low values. As a result, the optimal strategy
should possess the same qualitative nature as in Case I if the system is “closed” or if the
system is “open” and the state process X assumes sufficiently large values. Now, as the
abandonment cost K falls marginally below the critical value K0 and abandonment comes
into the picture, a continuity argument dictates that the switching boundary points α and β
as given by Lemma 2 should be “close” to the optimal ones. However, these points determine
completely the function w0. As a consequence, for sufficiently low values of X, the function
w1 should be “close” to the value function of the purely optimal stopping problem which
seeks to maximise

E

[
∫ τ

0

e−rsXs ds − e−rτ
[

K ∨ (K0 − w0(Xτ ))
]

]

,

over all stopping times τ ∈ S. In fact, we have proved that w1 identifies with the value
function of this purely optimal stopping problem for appropriate parameter values. Note
that the terminal payoff function −K ∨ (K0 − w0(·)) of this problem is not C1. From
these observations, we can conclude that the existence of a “continuation” region such as
the interval ]δ, γ[ in Case II should characterise the optimal strategy in purely optimal
stopping problems where the first derivative of the terminal payoff function has appropriate
discontinuities.

5 An example where C1 regularity of the value function

fails

Based on the results established in the previous sections, we can easily construct an example
whose value function is not composed by C1 functions. To this end, consider the problem
formulated in Section 2, and assume that I = R, and

b(x) = 0, σ(x) = 1, r(x) = 1
2
, H1(x) = x, H0(x) = 0,

G1(x) = 2, G0(x) = 10, F (x) =

{

5 − ex+10 if x < −10,

4 if x ≥ −10,

for all x ∈ R.
With regard to (42) and (55), we calculate

β
(

1
2
, 2, 10

)

= −5.999328399 and K∗
(

1
2
, 2, 10

)

= 9.999328511.

Since K∗ > F (x), for all x ∈ R, this example is akin to Case III of Theorem 6. The values
of the associated parameters are

δ
(

1
2
, 4
)

= −3, α
(

1
2
, 2, 4

)

= 1.986338745,

A = 0.099574137 and B = 0.272519358.
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The value function of the example under consideration is given by

v(1, x) =











ex+10 − 5 if x < −10,

−4 if − 10 ≤ x < −3,

0.099574137e−x + 2x if − 3 ≤ x,

v(0, x) =

{

0.272519358ex if x < 1.9886338745,

0.099574137e−x + 2x − 2 if x ≥ 1.9886338745.

To see this, observe first that the only point where C1 regularity fails is given by z = 1 and
x = −10. Clearly, (12) and (14) are satisfied (see also Remark 1). Now, with reference to
the proofs of Lemma 5 and Theorem 6, all of the assumptions of Theorem 1 will follow if we
verify that

1
2
w′′

1(x) − 1
2
w1(x) + x ≤ 0, for x < −3,

w0(x) − 10 − w1(x) ≤ 0, for x < −3,

w1(x) − 2 − w0(x) ≤ 0, for x < −3.

However, this is a trivial exercise.
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Appendix: proofs of results in Section 4

Proof of Lemma 2. Multiplying (40) and (41) side by side, and solving for α, we obtain

α = β + r(K1 + K0) or α = −β − rK0 + rK1.

Substituting β + r(K1 + K0) for α in (40) and (41), we obtain

(

β + rK0 − 1/
√

2r
)

er
√

2r(K1+K0) = β + rK0 − 1/
√

2r,
(

β + rK0 + 1/
√

2r
)

e−r
√

2r(K1+K0) = β + rK0 + 1/
√

2r,

respectively. Since K1 + K0 > 0, there is no β satisfying both of these equations. Therefore,
α must be as in (45). Now, (45) and either (40) or (41) yield (42).
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Since H(β) > 0, for all β < −rK0 − 1/
√

2r and all β > −rK0 + 1/
√

2r, if (42) has a
solution, then this has to satisfy −rK0 − 1/

√
2r ≤ β ≤ −rK0 + 1/

√
2r. Now,

H ′(β) = −2
√

2r
(β + rK0)

2

(β + rK0 − 1/
√

2r)2
exp

(

−
√

2r(2β + rK0 − rK1)
)

,

which implies that H is strictly decreasing in R \ {−rK0,−rK0 + 1/
√

2r}. Combining this
with the facts that H(−rK0 − 1/

√
2r) = 0 and H(−rK0) = − exp(r

√
2r(K1 + K0)) < −1,

we conclude that (42) has a unique solution which satisfies (43). Observe that the inequality
β < −rK0 and the expression α = −β − rK0 + rK1 imply trivially that β < α. Also, (43)
implies (44) because the function x → xex is strictly decreasing in ]−∞,−1[. Furthermore,
(43) along with (38) and (39) imply that A, B > 0.

Since A, B > 0, the functions w1, w0 are convex and non-decreasing. As a consequence,
−K ≤ w1 if and only if K ≥ K0, and −K ≤ w0. Now, to verify that w1, w0 satisfy (46) and
(47), we have to prove that

1
2
w′′

1(x) − rw1(x) + x ≤ 0, for x < β, (67)

w1(x) − K1 − w0(x) ≤ 0, for x ≤ β, (68)

w0(x) − K0 − w1(x) ≤ 0, for β ≤ x ≤ α, (69)

w1(x) − K1 − w0(x) ≤ 0, for β ≤ x ≤ α, (70)

w0(x) − K0 − w1(x) ≤ 0, for x ≥ α, (71)
1
2
w′′

0(x) − rw0(x) ≤ 0, for x > α. (72)

Each of (68) and (71) is equivalent to −K1 − K0 ≤ 0, which is true. Inequality (67) is
trivially implied by rK0 + β < 0 (see (43)), whereas (72) is trivially implied by −α + rK1 =
β + rK0 < 0.

Now, consider the function g defined by

g(x) := Be
√

2rx − Ae−
√

2rx − x

r
− K0.

Since g(x) = w0(x) − K0 − w1(x), for x ∈ [β, α], (69) and (70) will follow if we prove that

−K1 − K0 ≤ g(x) ≤ 0, for all x ∈ [β, α]. (73)

The function g′ is strictly convex because

g′′′(x) = 2r
√

2r
(

Be
√

2rx + Ae−
√

2rx
)

> 0,

the inequality being true because A, B > 0. As a consequence, g′(x) < 0, for all x ∈ ]β, α[,
because g′(β) = g′(α) = 0, by construction. However, combining this observation with the
fact that g(β) = 0 and g(α) = −K0 − K1, we conclude that (73) is true. �
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Proof of Lemma 3. Fix any γ < −rK0, and consider the equation

f(δ) := F1(γ, δ) = 0. (74)

From the calculations

lim
δ→−∞

f(δ) = −
(

γ + rK0 − 1/
√

2r
)

e
√

2rγ > 0, (75)

f ′(δ) =
√

2r(δ + rK)e
√

2rδ, (76)

f(γ) = r(K − K0)e
√

2rγ, (77)

we can see that (74) has a unique solution δ < γ if K < K0. These calculations also imply
that (74) does not have a solution δ < γ if K > K0 and γ < −rK. If K > K0 and
−rK < γ, (74) will have a solution only if f is negative at δ = −rK where its minimum
over δ ∈ ] −∞, γ] occurs. However,

f(−rK) = −(γ + rK0)e
√

2rγ +
1√
2r

[

e
√

2rγ − e
√

2r(−rK)
]

> 0,

the inequality following because −rK < γ < −rK0. From these considerations, we conclude
that, given any γ < −rK0, (74) has a unique solution δ < γ if and only if K < K0. For the
rest of this proof, we assume that this condition is satisfied.

From the above, we can see that, as γ varies, (74) defines uniquely a function δ = δ(γ)
on ] −∞,−rK0[ such that δ(γ) < γ, for all γ < −rK0. Also, by implicit differentiation of
(74), we obtain

δ′(γ) =
γ + rK0

δ(γ) + rK
e
√

2r(γ−δ(γ)). (78)

Now consider the equation

g(γ) := F2(γ, δ(γ)) = 0, for γ < β. (79)

Since

g(γ) =
√

2r

∫ γ

δ(γ)

e−
√

2rs(s + rK) ds + r(K − K0)e
−
√

2rγ + 2rB,

and K < K0, it follows that

lim
γ→−∞

g(γ) = −∞.

Also, using (78), we can calculate

g′(γ) = −2
√

2r(γ + rK0)e
−
√

2rδ(γ) sinh
[√

2r(γ − δ(γ))
]

> 0,
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whereas, in view of (39),

g(β) =
(

δ(β) + rK + 1/
√

2r
)

e−
√

2rδ(β).

From (80)–(80), we can see that (79) has a unique solution γ < β if and only if δ(β) >
−rK − 1√

2r
. With regard to the analysis relating to (74), this will be true if and only if

F1(β,−rK − 1/
√

2r) > 0, i.e. if and only if

−2e−2 >
√

2r
(

β + rK0 − 1/
√

2r
)

exp
(√

2r(β + rK − 1/
√

2r)
)

. (80)

With reference to (44), this is true for K = K0. Furthermore, the right hand side of this
inequality is increasing as K decreases. As a consequence, (80) is true for all K ∈ ]K∗∨0, K0[,
where K∗ < K0 is given by (55).

With regard to the arguments above, if K∗ > 0 and K = K∗, then (80) holds with
equality, γ = β and δ = −rK − 1/

√
2r. From (38), (50) and (39), (51), it then follows that

Γ1 = A and Γ2 = 0, respectively.
Since γ < β < −rK0, (50) implies that Γ1 > 0. Furthermore, since

d

dy

[

y + rK0 + 1/
√

2r

2r
e−

√
2ry

]

= − 1√
2r

(y + rK0)e
−
√

2ry > 0, ∀y < −rK0,

it follows that

β + rK0 + 1/
√

2r

2r
e−

√
2rβ >

γ + rK0 + 1/
√

2r

2r
e−

√
2rγ.

Therefore, (39) and (51) imply Γ2 > 0.
Since A, B, Γ1, Γ2 > 0, the functions w1, w0 are convex and non-decreasing, so w1, w0 ≥

−K. Also, all of the inequalities associated with the HJB equations (31)–(32) for x ≥ γ
follow from Lemma 2. Therefore, to verify that w1, w0 satisfy the HJB equations (31)–(32),
it remains to show that

1
2
w′′

1(x) − rw1(x) + x ≤ 0, for x < δ, (81)

w0(x) − K0 − w1(x) ≤ 0, for x ≤ δ, (82)

w1(x) − K1 − w0(x) ≤ 0, for x ≤ δ, (83)

w0(x) − K0 − w1(x) ≤ 0, for δ ≤ x ≤ γ, (84)

w1(x) − K1 − w0(x) ≤ 0, for δ ≤ x ≤ γ. (85)

The inequalities δ + rK < β + rK0 < 0 imply trivially (81). Also, since B > 0, (83) is
straightforward, whereas (82) is implied by (84) and the continuity of w1, w0.

Now, consider the function g defined by

g(x) := −Γ1e
−
√

2rx + (B − Γ2)e
√

2rx − x + rK0

r
.

25



Since g(x) = w0(x) − K0 − w1(x), if x ∈ [δ, γ], (84) and (85) will follow if we show that

−K1 − K0 ≤ g(x) ≤ 0, for all x ∈ [δ, γ]. (86)

By construction,

g(γ) = g′(γ) = 0 and g′′(γ) = 2(γ + rK0) < 0. (87)

If B − Γ2 < 0, then

g′′(x) = 2r
[

−Γ1e
−
√

2rx + (B − Γ2)e
√

2rx
]

< 0,

so g′ is strictly decreasing, which, combined with g′(γ) = 0, implies g′(x) > 0, for all x < γ[.
On the other hand, if B − Γ2 > 0, then

g′′′(x) = 2r
√

2r
[

Γ1e
−
√

2rx + (B − Γ2)e
√

2rx
]

> 0,

which proves that g′ is strictly convex. However, this observation and (87) imply that
g′(x) > 0, for all x < γ. Finally, since g is increasing in [δ, γ] and g(γ) = 0, (86) follows from
the observation that

g(δ) = Be
√

2rδ − K0 + K > −K1 − K0.

�

Proof of Lemma 4. Suppose that the values of r, K1 > 0 are fixed, and consider the
unique solution β = β(r, K1, K0) of (42) as a function of K0 on ] − K1,∞[. By implicit
differentiation of (42), we obtain

∂β

∂K0
+ r =

r(β + rK0 + 1/
√

2r)(β + rK0 − 1/
√

2r)

2(β + rK0)2
. (88)

Now, differentiating (55) with respect to K0, we obtain

∂K∗
∂K0

= − 1

r(β + rK0 − 1/
√

2r)

[

(β + rK0)

(

∂β

∂K0
+ r

)

− r(β + rK0 − 1/
√

2r)

]

.

Substituting for ∂β/∂K0 + r from (88), we obtain

∂K∗
∂K0

=
β + rK0 − 1/

√
2r

2(β + rK0)
> 0,

the inequality following because β < −rK0. As a consequence, K∗(r, K1, ·) is strictly in-
creasing in ] − K1,∞[
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Now, (44) and (55) imply

K0 > K∗ > −1 − ln 2

r
√

2r
+ K0,

However, these inequalities imply limK0→∞ K∗(r, K1, K0) = ∞ and K∗(r, K1, 0) < 0, and the
proof is complete. �

Proof of Lemma 5. The fact that (62) has a unique solution α > −rK − 1/
√

2r follows
from the calculations

G(−rK − 1/
√

2r) = −
√

2r

2
r(K + K1) − 1 < −1,

G′(α) = r(α − rK1) exp
(√

2r(α + rK + 1/
√

2r)
)

,

lim
α→∞

G(α) = ∞.

Also, this solution satisfies

rK1 < α < rK1 + 1/
√

2r, (89)

the second inequality holding because G(rK1 + 1/
√

2r) = 0 > −1.
Now, (61) and (89) imply B > 0, whereas A > 0 is obvious from (57). Since A, B > 0,

w1, w0 are convex and non-decreasing, so w1, w0 ≥ −K. To verify that they satisfy the HJB
equations (31)–(32), we have to establish conditions under which

1
2
w′′

1(x) − rw1(x) + x ≤ 0, for x ≤ δ, (90)

w0(x) − K0 − w1(x) ≤ 0, for x ≤ δ, (91)

w1(x) − K1 − w0(x) ≤ 0, for x ≤ δ, (92)

w0(x) − K0 − w1(x) ≤ 0, for δ ≤ x ≤ α, (93)

w1(x) − K1 − w0(x) ≤ 0, for δ ≤ x ≤ α, (94)

w0(x) − K0 − w1(x) ≤ 0, for x ≥ α, (95)
1
2
w′′

0(x) − rw0(x) ≤ 0, for x ≥ α. (96)

Inequalities, (90) and (96) are implied trivially by the fact that δ = −rK − 1/
√

2r and the
first inequality in (89), respectively. Also, (95) is equivalent to −K1 − K0 which is true,
whereas (92) follows immediately because B > 0. In view of the continuity of w1, w0 and
the fact that B > 0, we can also see that (91) is implied by (93).

To study (93), (94), define the function g by

g(x) := Be
√

2rx − Ae−
√

2rx − x + rK0

r
,
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so that g(x) = w0(x) − K0 − w1(x), if x ∈ [δ, α]. By construction,

g(α) = −K1 − K0, g′(α) = 0, g′′(α) = 2(α − rK1) > 0, (97)

the inequality following by virtue of (89). Now, since A, B > 0,

g′′′(x) = 2r

[

g′(x) +
1

r

]

= 2r
√

2r
[

Be
√

2rx + Ae−
√

2rx
]

> 0 (98)

imply that g′ is strictly convex and limx→−∞ g′(x) = ∞. However, these observations and
(97) imply that there exists a unique x̂ < α such that g′(x̂) = 0. Furthermore, δ > x̂ because

g′(δ) =
√

2rBe
√

2rδ > 0. From these considerations, we conclude that

g′(x) > 0, ∀x ∈ [δ, x̂[ and g′(x) < 0, ∀x ∈ ]x̂, α[. (99)

Now, (94) follows from the fact that

−K1 − K0 ≤ g(x), ∀x ∈ [δ, α],

which is true in view of (92) and the continuity of w1, w0, (97) and (99). On the other hand,
(93) will follow if we show that g(x) ≤ 0, for all x ∈ [δ, α]. In view of (99), this will be true
if and only if g(x̂) ≤ 0, i.e. if and only if

Be
√

2rx̂ − Ae−
√

2rx̂ ≤ x̂ + rK0

r
. (100)

All of the results proved above are true for any positive values of the problem’s data r,
K1, K0, K. Therefore, given any positive value of these parameters, there exists a unique
∆ ∈ R such that

Be
√

2rx̂ − Ae−
√

2rx̂ =
x̂ + r(K0 + ∆)

r
, (101)

Clearly, (100) will be true if and only if ∆ ≤ 0. Now, recall that x̂ ∈ ]δ, α[ satisfies g′(x̂) = 0,
i.e.

Be
√

2rx̂ + Ae−
√

2rx̂ =
1

r
√

2r
. (102)

With regard to these two equations, we can eliminate B, substitute for A from (57), and
solve for K to obtain

K = − 1

r
√

2r
ln

(

−
√

2r

2

(

x̂ + r(K0 + ∆) − 1/
√

2r
)

exp
(√

2r(x̂ + 1/
√

2r)
)

)

. (103)

Furthermore, by comparing (59), (60), (101), (102) with (34), (35), (36), (37), respectively,
we can see that x̂ = β(r, K1, K0 + ∆), where β is given by Lemma 2. Therefore, (55) and
(103) imply K = K∗(r, K1, K0 + ∆). Since K∗(r, K1, ·) is strictly increasing (see Lemma 4),
∆ ≤ 0 if and only if K ≤ K∗(r, K1, K0). However, these arguments establish that (100) is
true if and only if K ≤ K∗(r, K1, K0), and the proof is complete.
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