
A Problem-Oriented Approach to Ontology Development

Boicu M., Tecuci G., Bowman M., Marcu D., Lee S.W. and Wright K.

Learning Agents Laboratory, Department of Computer Science, MSN 4A5, George Mason University, Fairfax, VA 22030
{mboicu, tecuci, mbowman3, dmarcu, swlee, kwright} @gmu.edu

Abstract

This paper presents the approach to ontology development

that is part of the Disciple-LAS shell and methodology for
the building of knowledge-based agents. A characteristic
feature of this approach is that a detailed specification of the
ontology to be developed results from a conceptual
modeling of the application domain of the knowledge-based
agent to be built. This specification guides the process of

building the ontology which consists in importing
knowledge from external knowledge servers, and in using
the ontology building tools of Disciple. Knowledge import
and reuse are facilitated by the fact that the representation of
the ontology is based on the OKBC knowledge model. This
approach is used to develop an ontology for an agent that
critiques military courses of actions.

Introduction

We are developing an approach to rapid building of
practical end-to-end knowledge-based agents, by subject

matter experts, with limited assistance from knowledge
engineers. This approach is implemented into a learning
agent shell, called Disciple-LAS, which consists of a
knowledge acquisition and learning engine and an
inference engine. Disciple-LAS is used by a subject matter

expert and a knowledge engineer to develop a specific
knowledge-based agent. Central to this approach is an
architectural separation of the agent’s knowledge base into

two main components, an ontology that defines the
concepts from the application domain, and a set of problem
solving rules expressed in terms of these concepts.

The process of building the knowledge base of a
Disciple agent consists of three main steps:

1. A modeling step, where the expert and the knowledge
engineer define at a conceptual level how the agent will
perform its tasks. This step results in an informal
specification of the concepts needed to be represented in

the agent’s ontology.

2. An ontology creation step, where the knowledge
engineer and the expert import some of the concepts
identified in the previous step from existing repositories

of knowledge, and define the rest of the concepts. This
step results in an initial knowledge base that contains an
incomplete ontology and no rules.

3. A teaching step where the subject matter expert teaches
the agent how to perform its tasks in a way that

Copyright © 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

resembles how the expert would teach a human

apprentice when solving problems in cooperation.
During this step the agent will learn problem solving
rules from the expert, and will also extend and update
the ontology.

The developed knowledge-based agent can be used by the
subject matter expert as an assistant, or it can be used by a

non-expert user.
In this paper we address the ontology creation and

maintenance issues that occur within the Disciple
framework, and how they are dealt with in Disciple-LAS.

Disciple-LAS is currently applied to develop an agent
that critiques military courses of actions (COA). We will

therefore start by briefly describing this defense application
of Disciple which will be used to illustrate our approach to
ontology management.

Then we will describe the knowledge representation of a

Disciple agent, and we will clarify the structuring of the
knowledge base into an ontology and a set of problem
solving rules. The main point is that Disciple uses a
learning-oriented representation, where the ontology serves
as the generalization hierarchy that is used to learn general
rules from specific examples. Another important aspect is

that the representation of the ontology is based on the
OKBC knowledge model, to facilitate knowledge import
from OKBC compliant knowledge servers.

Then we will describe the process of modeling an
application domain. The important aspect here is that this
process identifies the concepts that are needed in the
ontology in order for the COA agent to perform its tasks.

This is in contrast to other approaches to ontology
construction, such as the one used with CYC (Lenat 1995),
where the goal is to develop a general ontology that tries to

abstract away from the specifics of a particular application
domain. In the Disciple approach, the goal is to create a
domain specific ontology that is very well suited to solving
problems in the considered application domain.

Once we have identified, at an informal, conceptual
level, which are the needed concepts, we can start building
the ontology. We will first present our approach to

importing concepts from external repositories of
knowledge. This process is guided by the concepts
identified during the modeling process.

Next we will briefly present the Disciple ontology
creation and maintenance tools that allow one to further
extend and update the ontology to include all the concepts

identified as necessary during the modeling process. An
important aspect is the development of tools that are
dedicated to the type of user. In Disciple we distinguish
between a knowledge engineer, a subject matter expert, and

From: AAAI Technical Report WS-99-13. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

an end-user. Each tool will have different characteristicS,
depending on the user type. For instance, a tool for the

knowledge engineer will have many options and will allow
its user to have total control over the operation of the tool.

On the contrary, a tool for an end-user will have only a few
options and will provide close guidance.

Once the ontology has been created, the subject matter
expert can start teaching the Disciple agent how to perform
its tasks. From its interaction with the subject matter expert
the agent will learn general problem solving rules and will
also update and extend the ontology. Although we consider
this to be the most innovative aspect of the Disciple

approach, we will only provide here a very general

overview, stressing only the aspects related to the evolution
of the ontology. The teaching and learning methods of
Disciple are described in (Tecuci, 1998; Tecuci et al.,

1999).
Finally, we will address some important design and

implementation issues that help in developing evolving and
scalable ontology management tools in a research
environment. We will first present the design of the

Knowledge Base Manager of Disciple that facilitates the
extension of Disciple’s knowledge representation. We will
also briefly discuss the high-speed graph search algorithms
used by the KB management functions, and some solutions
to extend the physical size of the KB.

We will conclude the paper with some directions for

future research.

1V~litaryAltack

I~litat3,-Suprise-Task

1V~litary-Complex-Task

l~fitaryEvent

Singlel~erAction

Blocking Traffic.

Resis ’tance-Iv~lit ary

IVfifitaxyInterferenceAction

Offense-Iv’fission

COA Critiquing

Disciple-LAS and methodology are used to build a
critiquing agent that critiques military courses of actions. A

military COA is a preliminary outline of a plan for how a
military unit might attempt to accomplish a mission.

A COA is not a complete plan in that it leaves out many
details of the operation such as exact initial locations of

friendly and enemy forces. After receiving orders to plan
for a mission, a commander and staff complete a detailed
and practiced process of analyzing the mission, conceiving

and evaluating potential COAs, selection of a COA, and
the preparation of detailed plans to accomplish the mission
based on the selected COA.

The general practice is for the staff to generate several
COAs for a mission, and to then make a comparison of
those COAs based on many factors including the situation,

the commander’s guidance, the principles of war, and the
tenets of army operations. The commander makes the final
decision on which COA will be used to generate his or her
plan based on the recommendations of the staff and his or

her own experience with the same factors considered by the
staff (Alphatech, 1998).

The Disciple critiquer will identify strengths and
weaknesses of a course of action with respect to the

principles of war and the tenets of army operations (FM-
105, 1993). There are nine principles of war: objective,
offensive, mass, economy of force, maneuver, unity of
command, security, surprise, and simplicity. They provide

~==~lm----- Oear-/~litatyl’ask

AltackByDirectFn~

AttackByFire-l~litatyrask ~ l~lit’~3rr~k
Anlmsh-lCfilitatyrask "" AltackBylndireet

Flre-~lital3ffask

iVfilita~-Sec urity-Task

IVfifitaty-Intelligence-Colloction-Task

CounterRcconnaissanm-I~lilapJrask

Breach-Nfilitar~ask

Bypass-IVl~liua3/l’ask ~ BypassWi~tByF~

Contol-IVfili~ask ~ BypassNoQmtmUoinod

, Counterattack-l~litauffask ¯ CotmterAtt~kByFtre-
MllitalyTask

’ Fix-lV~litaryrask ¯
l::ixByFtre-lffflitaryTask

t Fonvard-Passage-of-Unes-MilitaryTask

/~litaryO~ration

Counterattack-l~lita~y-OIxa~ m ̄

Defense-iVfission ~ De feat-lVllitar3/rask

Destroy-IVfi litaryras k

¯ ~ Block-ldilitaryTask
MilitaryDefensiveTask ~ Camlize-l~i~,]rask

Contain-lCfilitar~ask

iVd litary-De fensive-Opemfion~...............~

IVnlita~-De fensive-Maneuver

Figure 1: A fragment of the military tasks ontology.

general guidance for the conduct of war at the strategic,
operational and tactical levels. The tenets of army

operations describe the characteristics of successful
operations. They are: initiative, agility, depth,
synchronization and versatility.

The Disciple agent is developed to act as an assistant to
a military commander and his or her staff, helping them to
choose the best course of action for a particular mission.

To develop the agent’s knowledge base, we are performing
a task based modeling of the principles of war and tenets of
army operations. By task based, we mean the consideration

of military units and the tasks they are assigned. We
specifically look at:

What tasks are assigned to units of interest?

Can units accomplish assigned tasks in terms of the tasks

being appropriate for the unit type, size and or
condition?

Is completion of the assigned tasks likely to contribute to

the success of the overall mission?

In the next section we will present the knowledge

representation used by the critiquing agent, giving
examples from this domain.

Disciple Knowledge Base = Ontology + Rules

The problem solving approach of Disciple is based on the
task reduction paradigm. In this paradigm, a task to be

accomplished by the agent is successively reduced to
simpler tasks until the initial task is reduced to a set of
elementary tasks that can be immediately performed.

Within this paradigm, an application domain is modeled
based on six types of knowledge elements: objects,
features, tasks, examples, explanations, and rules. The

objects, features and tasks form the agent’s ontology, and
are the basic knowledge elements used to represent the
problem solving rules. The examples and the explanations
are temporary knowledge elements used to learn the rules.

In the following we will briefly present each of these
elements.

Objects

The objects represent either specific individuals or sets of
individuals in the application domain. The objects are

hierarchically organized according to the generalization
relation (subclass-of/superclass-of and instance-of/type-of).
Figure 1, for instance, presents a fragment of the military
task ontology used to model the COA analysis domain. As
one can see, an object may have more than one parent. The

hierarchy of objects is used by the Disciple agent as a
generalization hierarchy, one way to generalize an
expression being that of replacing an object with a more

general one from such a hierarchy. Obviously, there are
several ways in which an object could be generalized,

selecting the right one being an objective of the learning
process.

Features

The features and the sets of features are used to further
describe objects, other features and tasks. Two important
features of any feature are its domain (the set of objects
that could have this feature) and its range (the set

possible values of the feature). The features may also
specify functions for computing their values, and are also
hierarchically organized. Expressions are generalized or

specialized by adding or deleting features of the objects
appearing in their descriptions. In the current version of
Disciple, the values of the features may be generalized or

specialized, but the features themselves are not generalized.
However, the feature generalization hierarchies are
extensively used in analogical reasoning.

Tasks

A task is a representation of anything that the agent may be
asked to accomplish. The tasks and the sets of tasks are

also hierarchically organized, according to the more
general than relation. Figure 2, for instance, represents a
fragment from the task hierarchy of the COA domain. The
hierarchies of tasks are used in analogical reasoning. One

should not confuse the military tasks presented in Figure 1
(which are represented as Disciple objects) with the agent’s
reasoning tasks which are represented as Disciple tasks.

~-o/i-o f-e ffon-wrt-o ffensiv~

(A~I ~:s!t~O f’e ff° r t "iii° ffe nsive" ask
~

(~oOi~si!ioanfi:° f’e ff° r t’ioOrti° ffe nsive" tasks~

Figure 2: A fragment of the Disciple task hierarchy.

The objects, features and tasks are represented as frames,
according to the OKBC knowledge model (Chaudhri et al.

1998), with some extensions.

Examples

An example is a reduction of a specific task into subtasks:

TR: If the task to accomplish is T1
then accomplish the tasks TIt Tin

A task may be reduced to one simpler task, or to a

(partially ordered) set of tasks. The following is

example of task reduction:

IF the task to accomplish is

Assess-initiative-of-effort-wrt-offensive-tasks
for-mission-type "military-offensive-operation"
for-effort armor-brigade 1

THEN accomplish the task

Assess-initiative-of-effort-with-two-tasks-wrt-offensive-tasks
for-mission-type "military-offensive-operation"
for-effort armor-brigade 1
for-task 1 forward-passage 1
for-task2 seizel

Figure 3. An example of task reduction

Correct task reductions are called positive examples and

incorrect ones are called negative examples.

Explanations

An explanation is an expression of objects and features that
indicates why a task reduction is correct or why it is
incorrect. It corresponds to the justification given by a
subject matter expert to a specific task reduction:

the task reduction TR is correct because E

For instance, the explanation of the task in Figure 3 is
presented in Figure 4. It basically states that in order to

assess the initiative of armor-brigadel with respect to
offensive tasks one has to assess the initiative of the two
tasks forward-passagel and seizel because armor-brigadel
has two tasks and these tasks are forward-passagel and

seizel.

armor-brigadel number-tasks 2

armor-brigadel unit-mission actionl-of-armor-brigadel
has-task forward-passagel

armor-brigade1unit-mission action2-of-armor-brigadel
has-task seize1

Figure 4: The explanation of the example in Figure 3.

One could more formally represent the relationship
between TR and E as follows:

E "-~ TR, or E "-~ (accomplish (T0 "~ accomplish (Tll Tin))

This interpretation is useful in a knowledge acquisition and

learning context where the agent tries to learn from a
subject matter expert how to accomplish a task and why the
solution is correct.

However, this example can also be represented in the
equivalent form:

((accomplish(T0 & E) "-~ accomplish(Tll Tin))

which,’in a problem solving context, is interpreted as:

If the task to accomplish is T1 (1)
and E holds

then accomplish the tasks Tll Tl

Task-reduction rules

The task reduction rules are generalizations of specific

reductions, such as (1), and are learned by the agent
through an interaction with the subject matter expert, as

described in (Tecuci, 1998):

If the task to accomplish is Tlg and (2)
Eh holds

then accomplish the tasks Tllg Tlng

In addition to the rule’s condition that needs to hold in
order for the rule to be applicable, the rule may also have

several "except-when" conditions that should not hold, in
order for the rule to be applicable. An except-when
condition is a generalization of the explanation of why a

negative example of a rule does not represent a correct task

reduction. Finally, the rule may also have "except-for"
conditions (that specify negative exceptions of the rule) and
"for" conditions (that specify positive exceptions).

An important aspect of Disciple is that the ontology is
itself evolving during knowledge acquisition and learning.
This distinguishes Disciple from most of the other learning

agents that make the less realistic assumption that the
representation language for learning is completely defined
before any learning could take place.

Because the Disciple agent is an incremental learner,
most often its rules are only partially learned. A partially
learned rule has two conditions, a plausible upper bound

(PUB) condition Eg which, as an approximation, is more
general than the exact condition Eh, and a plausible lower
bound (PLB) condition Es which, as an approximation,
less general than Eh:

If the task to accomplish is Tlg and (3)
PUB: Eg holds
PLB: Es holds

then accomplish the tasks Tt18 Tlng

IF the task to accomplish is
Assess-initiative-of-effort-wrt-offensive-tasks

for-mission-type ?ol
for-effort ?02

plausible upper bound
?ol is {"military-offensive-operation",

"military-defensive-operation"}
?02 is modern-military-unit

number-tasks [2 10]
unit-mission ?05, ?06

?03 is military-task
?04 is military-task
?05 is military-action

has-task ?03
?06 is military-action

has-task ?04

plausible upper bound
?o 1 is { "military-offensive-operation"}
?02 is armor-brigadel

number-tasks [2 2]
unit-mission ?05, ?06

?03 is forward-passagel
?04 is seizel
?05 is action 1-of-armor-brigade 1

has-task ?03
?06 is action2-of-armor-brigade 1

has-task ?o4

FHEN accomplish the task
Assess-initiative-of-effort-with-two-tasks-wrt-offensive-tasks

for-mission-type ?o 1
for-effort ?02
for-taskl ?03
for-task2 ?04

Figure 5: A learned PVS rule.

10

We will refer to such a rule as a plausible version space
rule, or PVS rule. Plausible version space rules are used in

problem solving to generate task reductions with different
degrees of plausibility, depending on which of its

conditions are satisfied.
If the PLB condition is satisfied, then the reduction is

very likely to be correct. If PLB is not satisfied, but PUB is
satisfied, then the solution is considered only plausible.

The same rule could also be applied for tasks that are
considered similar to Tlg. In such a case the reductions are
considered even less plausible.

Any application of a PVS rule however, either successful

or not, provides an additional (positive or negative)
example, and possibly an additional explanation, that are

used by the agent to further improve the rule.
For instance, the rule learned by Disciple-LAS from the

example in Figure 3 and its explanation in Figure 4 is
presented in Figure 5.

Domain modeling

The process of building the knowledge base consists of
three main steps: domain modeling, ontology creation and

rule learning.
First the expert and the knowledge engineer have to

model the problem solving process as task reduction,

because this is the problem solving approach currently
supported by the Disciple shell.

Figure 6 illustrates how one can model the process of
answering a question about a military course of action as a
task reduction process. First the question

"To what extent does this course of action embody the

principle of objective?"

is expressed as a task to perform:

"Assess the course of action from the point of view of
objective."

Then this assessment task is successively reduced to

simpler assessment tasks and ultimately reduced to
assertions on how the course of action conforms to the
principle of objective. From an ontology development

point of view, this process is important because it
informally identifies the concepts that are needed to be
present in the ontology, as will be explained in the

following. As one can see from Figure 6, to "Assess the
course of action from the point of view of objective", one
has to consider the features that characterize the objective,

and these are specified by the subject matter expert as
being "identification", "attainability", and "decisiveness".
Therefore, the current task is reduced to the following
simpler assessment tasks:

"Assess identification of objective"

"Assess attainability of objective"
"Assess decisiveness of objective"

Assessing the attainability of the objective is most
applicable for the main effort and an offensive mission.

Therefore, the ontology has to contain a classification of
COA missions into offensive missions and defensive
missions, and each specific course of action would need to

Question: To what extent does this course of action confirm to the principle of objective?

~’Assess COA from the point of view of objective~

,am consideringt~eren, featLres t~tc~ rizean obiective ,"- o;jective--features ",
"_ - - ~.’

CAssess identification of objectiv~,~ (Assess attainability of objectiveTM) (.Assess decisiveness of objective~
/

applicable for the +in effort and an offensive missionAttainabilityis
i

¯ - -. , t 7ni’s s’3 "
" -- ~ offensivelmission t ~ ~ ’t coa assignment

, . ---I~ offenswe-mlsslon defensive-mission,
suppoting-effort main-effort." / -- . .

.................... l
It COAl ~-type

~ssess attainability of objective of offensive missionTM)

~tween fhe ma,~ve ?

There is a path that i~or the main effort ~ ¢~.,ho main effort
There is a narrower ~ath for the main effort

s~ L _

unit ontology path path-capaeity~ ",

O~
1

~ , I

path width requirement for each unit avenue on lane~

(both good match narrower but still usable)

Figure 6: Conceptual task reductions

11

have a feature that will specify its
mission type. To effectively assess

the attainability of the objective one
would have to determine whether
there is a suitable path between the

main effort and the objective. This
reveals other necessary concepts,
such as different types of paths

(avenues of approach, mobility
corridors, and infiltration lanes), and
different types of units. Moreover,
each path would need to be

characterized by its capacity, and
each unit would need to be
described in terms of its path

requirements. This process
continues in this manner, the subject
matter expert and the knowledge

engineer defining the conceptual
way of answering the various
questions posed to the system.

There are several important

results of this modeling process.
First, an informal description of the
agent’s reasoning tasks is produced.
These tasks will be latter defined

KIF File

I
CYC

Figure 7:

more formally in terms of their features. Secondly,

necessary concepts and features are identified, forming a
basis for the ontology creation. Thirdly, the conceptual task
reductions themselves are maintained to guide the training
of the agent by the subject matter expert. As a result of this

training the agent will learn general task reduction rules.
As one can see, the elements that need to be represented

in the ontology result from an analysis of the agent’s task
reduction process in a particular application domain. This
is the reason we call the process of building the ontology a

domain-oriented one.

Knowledge Import and Export
As a result of the modeling process, a significant number of
necessary concepts and features have been identified.

Interacting with the Knowledge Import/Export Module, the
subject matter expert and the knowledge engineer will
attempt to import formal descriptions of these concepts and
features from existing repositories of knowledge.

Figure 7 presents the proposed architecture of the
Import/Export module of Disciple. Although only a
simplified version of this architecture is currently

implemented, we will use it to present our approach to the
knowledge reuse problem.

We reduce the problem of importing knowledge from an
outside knowledge server into two simpler problems: a

translation problem and an integration problem. Let
External-KB be an external knowledge base from which we

want to import knowledge. External-KB might be, for
instance, an Ontolingua KB (Farquhar et al. 1996), a Loom

Interface Tools

The architecture of the Import/Export module.

KB (MacGregor 1991), a CYC KB (Lenat 1995), or even

text file containing a KIF representation of any KB. Let
Disciple-KB be the knowledge base that is under
development with Disciple. We first translate External-KB

into a Disciple KB, called Witness-KB, that can be
browsed and edited using the Disciple ontology tools.
Using these tools, the subject matter expert and the
knowledge engineer can easily transfer knowledge

elements from the Witness-KB into the Disciple-KB. In the
same time, the knowledge elements imported in Disciple-
KB are correspondingly marked both in the Witness-KB
and in the Disciple-KB. If the External-KB has evolved to

incorporate new knowledge elements, then one can re-
import knowledge from it. In this case, the additional
knowledge content of the External-KB is added to the
Witness-KB and is marked accordingly. Therefore, one can
easily see in the Witness-KB which are the new knowledge

elements that may need to be incorporated into Disciple-
KB.

Knowledge export involves the same processes in the
reverse direction. In this case we look for the differences

between the Disciple-KB and the Witness-KB and generate
a new KB with these differences. This KB can then be used
by the managers of the External-KB to update their KB.

Figure 7 shows the various Disciple interfaces and
modules that will support the knowledge import/export

process.
There are several strengths and weaknesses of this

approach. One strength is that the translation process can

be automatic and once we have translated an external KB
into a Disciple KB we are within the Disciple environment.

12

In this environment, the
knowledge engineer and the

subject matter expert can use the
specialized Disciple tool to extract
the relevant knowledge from the
Witness-KB. This means that they

do not need to be familiar with
tools other than those of Disciple,
to be able to import knowledge
from practically any external KB.

Another strength is that we can
develop advanced knowledge
import tools that are independent

of the change of the external
knowledge repositories. For

instance, such an advanced tool
would take as input the

descriptions of the concepts
identified during the domain
modeling process and will

automatically browse the Witness-
KB (which is the translation of the

External-KB) in search for
matching knowledge pieces, by
using natural language based
flexible matching strategies. The

Interface ::Control Laye,.r (LISP)~

identified knowledge pieces can then be analyzed by the
subject matter expert and the knowledge engineer and the
relevant ones can be integrated into the knowledge base of

the Disciple agent. This would relieve the Disciple
knowledge base developers from manually searching a
large and unfamiliar witness-KB, in search of the
knowledge elements to be imported.

One weakness of the proposed approach is that, through
automatic translation into the Disciple representation,
relevant information might be lost, or represented in a form
that can not be easily understood. This is a valid concern,

especially when the external KB uses a knowledge
representation that is more powerful than that of Disciple.
On the other hand, we are really concerned here with the
import of the ontological knowledge into a knowledge
representation compatible with the OKBC knowledge

model. Therefore, if we are importing from a frame-based
system, the translation should not be a difficult problem.

We are not concerned with the translation of the axioms
(which would be a more difficult process) because

consider the axioms to be less reusable, and because
Disciple is a tool specially developed to easily learn such
axioms or rules from the subject matter expert.

Figure 7 shows that the external KB can also be a
previously developed Disciple KB. In such a case, the

translation process should also be trivial or unnecessary.
A simplified version of the above procedure for

knowledge import is currently used to import ontological

knowledge from CYC. First CYC ontological knowledge
was translated into a KIF text file. Then the KIF file was

automatically translated into a Disciple KB which was used

Knowledge Base
Manager

OUU4,~I INI. ~t

Figure 8: Ontology management tools

as the initial KB for our COA critiquer. This KB was

further extended manually with new knowledge pieces.
We have also imported knowledge from the LOOM

server (MacGregor, 1991) using the OKBC protocol, when
we have developed the knowledge base of the Disciple

workaround generator (Cohen et al., 1998). In particular,
we have imported elements of the military unit ontology, as
well as various characteristics of military equipment (such
as their tracked and wheeled military load classes). The
extent of knowledge import was more limited than it could

have been because the LOOM’s ontology was developed at
the same time as that of Disciple, and we had to define
concepts that have later been also defined in LOOM and
could have been imported.

Ontology building tools

Figure 8 presents the ontology management tools of
Disciple. These tools are in various stages of
developments. We have defined a specialized editor for

each type of knowledge element to facilitate the interaction
with the users. For instance, there is an object editor, a

feature editor, a task editor, an example editor, and a rule
editor. We are developing these tools to be user-friendly
and uniform in both their appearance and operation. An
important aspect of Disciple is the development of tools
that are dedicated to the type of the user. In Disciple we
distinguish between a knowledge engineer, a subject matter
expert, and an end-user. Each tool will have different
characteristics, depending of the user type. For instance, a

tool for the knowledge engineer has many options and
allows total control to its user. On the contrary, a tool for

13

an end-user will have only a few options and will provide
close guidance.

Because the basic functions of these tools are indicated

by their names, we will only discuss of few of them. The
KB save and load tools allow the KB developer to split a
knowledge base into various components (such as rules,
objects, instances, features, or tasks) and save these

components into separate knowledge bases. Then new
knowledge bases can be assembled from these components.

The association browser manages the relations between

the various knowledge pieces in the KB. It allows, for
instance, to view all the objects that have a certain feature

in their definition, or all the rules that have a certain
concept in their definition.

We attempt to provide each tool with a certain degree of
"intelligence", based on "wizard" control mechanisms that
try to anticipate the most desirable parameter settings in a

tool and to pre-select them when the tool is invoked.
An important ontology management tool is the delete

wizard. This wizard is automatically invoked when the user

attempts to delete an element from the KB. It guides the
user through a sequence of modifications of the KB that are
necessary in order to maintain the consistency of the KB.

Let us consider, for instance, that the user wishes to delete
an object O from the KB. Many other elements from the

KB may be affected by this operation. Among them are the
objects that are subconcepts (subclasses) or instances
(individuals) of O, the objects that have a feature which
value is O, the features that have a domain or a range that

includes O, the rules that refer to O, and others. Therefore,
before deleting O, one has to make sure that the definitions

of all these elements are updated to no longer refer to O.
But this is not a trivial task. Therefore the delete wizard
analyzes the element to be deleted and generates a plan of

actions to be performed by the user. Then it guides and
helps the user to perform each step of the plan. For
instance, when the wizard treats the objects that are

subconcepts (subclasses) of O the user has to decide which
will be their new parents, or whether they should also be
deleted (and, of course, this would cause the whole process

to be recursively applied). The user should also decide how
to update the features that were inherited from O, and so
on. The deletion of O affects also not only the rules that

contain O in their conditions, but also the rules where O is
between the plausible upper bound and the plausible lower

bound. Therefore, the delete wizard is critical to the
management of the KB.

Teaching the Disciple Agent

Once the ontology has been created, the expert can start to
teach Disciple to solve problems in a cooperative, step by
step, problem-solving scenario. In this process the expert
will be guided by the conceptual task reductions that have

been previously defined (see Figure 2). This teaching
methods are described in detail in (Tecuci, 1998). Figure
presents the main processes of knowledge acquisition and
learning that take place during the teaching of the agent.

During Rule Learning, the expert teaches the agent how

elicitation

Domain Independent Graphical User Interface

Exception
from through handling

examples and analogy and via knowledge
discovery

Knowledge Base Manager

Figure 9: The main processes of knowledge acquisition and learning in Disciple.

14

to solve domain specific problems. He/she shows the agent
how to solve typical problems and helps it to understand

their solutions. The agent uses learning from explanations
and by analogy to learn general plausible version space rule
that will allow it to solve similar problems.

During Rule Refinement, the agent employs learning by
experimentation and analogy, inductive learning from
examples and learning from explanations, to refine the
rules in the knowledge base. Rule refinement will also

cause a refinement of the concepts from the agent’s
ontology.

A refined rule may have exceptions. A negative

exception is a negative example that is covered by the rule
and a positive exception is a positive example that is not
covered by the rule. One common cause of the exceptions

is the incompleteness of the knowledge base; that is, it does
not contain the terms to distinguish between the rule’s
examples and exceptions. During Exception Handling, the
agent hypothesizes additional knowledge and/or guides the

expert to define this knowledge in agent’s ontology. This
will extend the representation space for learning such that,
in the new space, the rules could be modified to remove the
exceptions.

Therefore, an important aspect of the teaching process is
that it may also trigger an extension of the ontology.

The Knowledge Base Manager

Disciple-LAS is developed in a university research
environment that imposes several important constraints on
the design of its tools, including the ontology management
ones.

Disciple

RepoSitOry
I

Figure 10: The architecture of the KB Manager.

One constraint is that the system should allow an
extension of its knowledge representation, to cope with the
challenges of new research projects. For instance, over the
last two years, we had to extend several times the
knowledge representation of Disciple. First we have
adapted the representation of the Disciple ontology to be
compatible with a subset of the OKBC knowledge model,
in order to facilitate knowledge sharing based on the
OKBC protocol. Then we have added the capability to
compute arbitrary functions to the Disciple rules, in order

to develop the workaroud agent and its knowledge base
that required many numerical computations. Then we have
extended the knowledge model of Disciple to include
hierarchies of features and tasks, in order to enhance its
analogical reasoning capabilities.

We also wanted to develop a prototype system that can
be enhanced to deal with more complex application
domains and increased requirements for speed and
memory.

We have addressed these issues through a special design
of the knowledge base manager, that combines a flexible
multi-layer structure with an efficient KB access and
management. The architecture of the KB manager is
presented in Figure 10.

The KB manager has a hierarchical structure consisting
of three layers: an upper knowledge management layer, a

lower storage layer, and a link layer in between.

The KM Layer

The KM Layer implements specific macros and
functions for each type of knowledge base element (object,

Layer

Li~

Layer

Storage

Layer

feature, task, rule, etc.). All the
upper modules of Disciple-LAS

access the KB through these
functions. Therefore, an extension
in the knowledge representation will
only require a modification of the
macros and the functions of the KM

layer, without affecting the upper
modules of Disciple-LAS.

An important feature of the KM

Layer is the management of special
system-level properties for the
elements of the Disciple hierarchies

(such as "level’ that indicates the
height of an element in a hierarchy,
and ’mark’ that traces the elements
of the KB that have already been

scanned in a given search
operation). They provide an
infrastructure for fast learning and
problem solving algorithms, and

allow complex operations, such as
the generalization or the

specialization of concepts, to be
performed in polynomial time.

15

The Link Layer

The KM Layer is implemented by using a subset of the
OKBC functions for frame/slot representations. The Link
Layer acts as a buffer between the KM Layer and the

Storage Layer so that changes in the storage layer will only
affect the implementation of the basic OKBC functions

used.

The Storage Layer

The Storage Layer assures the low-level management of the
KB elements in the storage environment. Currently, the

storage layer of Disciple is represented by the LISP symbol
layer, where the KB elements are represented as LISP
symbols and their properties. This means that the size of

the KB is limited by the LISP memory. However, as
mentioned in the previous section, one can replace the
LISP symbol layer with an efficient memory management
system, such as PARKA (Stoffel et al. 1997), by re-

implementing the OKBC access functions used in the link
layer in the PARKA query language.

A feature that contributes significantly to the efficiency
of the knowledge management operations is the extensive

use of the macro operations, both in the KM Layer and in
the Link Layer so that, even if the KB manager consists of
three layers, invoking a KM operation is pre-proceed into a
storage layer function.

The continuous evolution of the knowledge

representation of Disciple-LAS, as well as its efficiency in
problem solving and learning, support the claim that the
Disciple KB Manager succeeds in achieving two
apparently contradictory goals: flexibility and efficiency.

Conclusion

We have presented the domain-oriented approach to
ontology creation and management that is part of the
Disciple methodology for rapid development of
knowledge-based agents. A characteristic feature of this
approach is that a detailed specification of the ontology to
be developed results from a conceptual modeling of the

application domain of the knowledge-based agent to be
built. Moreover, the employment of the OKBC knowledge
model in Disciple facilitates the import of the identified

concepts from OKBC knowledge servers. This ontology
creation and maintenance approach is applied to the
development of a knowledge base for COA analysis.

Future research will consist in extending this approach
and the supporting tools to allow several experts and
knowledge engineers to collaborate in building different

parts of a knowledge base. We will further develop the
knowledge import/export methods and module, and will
investigate the creation of a reusable repository of Disciple

knowledge bases. We will continue our work on the
development of special interface tools to be used directly
by the subject matter experts, as well as of wizards that will

assist the experts. We will also investigate the creation of
tools for supporting the domain modeling process.

Acknowledgments. This research is supported by the

AFOSR grant F49620-97-1-0188, as part of the DARPA’s
High Performance Knowledge Bases Program.

References

Alphatech, Inc. 1998. ttPKB Course of Action Challenge
Problem Specification, Burlington, MA, December 2nd.

Chaudhri, V. K., Farquhar, A., Fikes, R., Park, P. D., and
Rice, J. P. 1998. OKBC: A Programmatic Foundation for
Knowledge Base Interoperability. In Prec. AAAI-98, pp.

600 - 607, Menlo Park, CA: AAAI Press.

Cohen P., Schrag R., Jones E., Pease A., Lin A., Starr B.,
Gunning D., and Burke M. 1998. The DARPA High-Per-
formance Knowledge Bases Project, AI Magazine,

19(4),25-49.

Farquhar, A., Fikes, R., and Rice, J. 1996. The Ontolingua
Server: a Tool for Collaborative Ontology Construction. In
Proceedings of the Knowledge Acquisition for Knowledge-

Based Systems Workshop, Banff, Alberta, Canada.

Lenat, D. B. 1995. CYC: A Large-scale investment in
knowledge infrastructure Carom of the ACM 38(11):33-38.

MacGregor R. 1991. The Evolving Technology of

Classification-Based Knowledge Representation Systems.
In Sowa, J. ed. Principles of Semantic Networks:
Explorations in the Representations of Knowledge, pp.
385-400. San Francisco, CA: Morgan Kaufmann.

Stoffel, K., Taylor, M., and Hendler, J. 1997. Efficient
Management of Very Large Ontologies. In Prec. AAAI-9Z

Menlo Park, Calif.: AAAI Press.

Tecuci, G. 1998. Building Intelligent Agents: An Appren-
ticeship Multistrategy Learning Theory, Methodology,
Tool and Case Studies. London, England: Academic Press.

Tecuci, G., Boicu, M., Wright, K., Lee, S.W., Marcu, D.

and Bowman, M. 1999. An Integrated Shell and

Methodology for Rapid Development of Knowledge-Based
Agents. To appear in Prec. AAAI-99, July 18-22, Orlando,

Florida, Menlo Park, CA:AAAI Press.

FM-105. 1993. US Army Field Manual 100-5, Operations,
Headquarters, Department of the Army, June 1993.

16

