
233

A problem solving environment based on

CORBA

David Lancaster
School of Computer Science, University of

Westminster, Harrow HA1 3TP, UK

E-mail: lancasd@wmin.ac.uk

We have investigated aspects of the design of Problem Solv-

ing Environments (PSE) by constructing a prototype using

CORBA as middleware. The two issues we are mainly con-

cerned with are the use of non-trivial (containing more than

just a start() method) CORBA interfaces for the compu-

tational components, and the provision of interactivity using

the same mechanisms used for flow control. After describ-

ing the design decisions that allow us to investigate these is-

sues, and contrasting them with alternatives, we describe the

architecture of the prototype and its use in the context of a

study of photonic materials. We argue that having several

methods on a component interface can be used to mitigate

performance problems that may arise when trying to solve

problems in PSE’s based on small components. We describe

how our mechanism allows a high degree of computational

steering over all components.

Keywords: Problem Solving Environment, computational

steering, distributed systems, CORBA, resource manage-

ment, computational components

1. Introduction

Problem Solving Environments (PSE) are intended

to support all stages in the development and execu-

tion of problem solving code [1]. Support for develop-

ment is usually interpreted in terms of composition of

high-level reusable computational components which

form the building blocks of the problem solution code.

The PSE aids solution of a problem by enabling these

powerful primitive components to be wired together in

an appropriate way. The creation or wrapping and in-

corporation of new components also form part of the

development environment. Existing systems that em-

phasize the development aspect by providing sophisti-

cated graphical tools include Matlab, Iris explorer and

AVS [2–4]. Support for execution in PSE’s is normally

understood in the context of distributed systems and is

concerned with resource management and the way that

the computational components are scheduled. Systems

that emphasize this aspect include well known sched-

ulers such as PBS, and resource management systems

such as INTREPID [5,6].

In the context of a project [7] with the aims of inves-

tigating the design, implementation, and use of PSE’s,

we have constructed a prototype PSE. Two design deci-

sions incorporated into the prototype had deep impact

on the overall architecture. One was the choice to use

CORBA and the other was insistence that interactive

control such as computational steering [8] should be

at the heart of the architecture. The consequences of

these design decisions are discussed at length below,

but the main issues may be summarized as follows.

– The distributed object approach of CORBA cer-

tainly provides infrastructure for a more maintain-

able system than older RPC based approaches.

Our work devotes more attention to another inter-

esting feature: the ease with which several distinct

methods can be called on a single component. We

explore how this feature might be useful in a PSE.

– Interactive features tie together the development

and execution aspects of the PSE. Our prototype

tests an approach in which all components are

controllable using only the ordinary flow control

mechanisms and the original development envi-

ronment.

This paper describes our prototype PSE and uses it

as context to report on some of the general issues con-

cerning both the development and execution aspects of

PSE’s. We note from the outset that this prototype was

intended for use, and tested, in a local setup consisting

of a variety of workstations, PC’s and cluster machines,

and this has naturally restricted the range of our inves-

tigation. Firstly we describe the two design decisions

and review alternative choices. We then present the

architecture of the prototype PSE. The consequences

of the design decisions in the prototype architecture

are explored. Detailed discussion of the execution side

Scientific Programming 9 (2001) 233–242

ISSN 1058-9244 / $8.00 2001, IOS Press. All rights reserved

234 D. Lancaster / A problem solving environment based on CORBA

of the PSE includes a description of the mechanism

of data transfer, the use of the Event service and an

overview of system start up. The main aspect of the

development side of the PSE is the front-end and we

devote a section to discussing various ways in which

this may be implemented.

2. CORBA

At an early stage in the project a decision was made

to use CORBA [10]. This is a significant departure

from traditional execution environments that tended to

rely on a RPC-like paradigm such as rsh. There are

many consequences to this choice, so let us review the

traditional approach.

2.1. Alternative execution environments

Traditional execution environments run large pro-

duction applications on distributed machines in a trans-

parent manner that avoids the need to be concerned

with issues of licenses, platforms etc. These produc-

tion applications typically consist of one or a series of

large components, each of which is a wrapped legacy

stand-alone program. For example, in an engineering

context, the components might be a mesh generator and

a solver. Each individual component performs sub-

stantial computation that may involve several stages of

an algorithm. These large components require power-

ful computing resources so the execution environment

often has a wide geographic range.

This kind of large-scale execution environment also

addresses the requirements for coupling large existing

applications such as Ocean and Atmospheric simula-

tion codes. The aim is to ease the management of all the

arcane details that must be considered when coupling

codes, for example translation between file formats.

INTREPID [6] is an example of an execution envi-

ronment based on rsh (though a separate version for

Windows NT machines was later developed). It allows

a set of components, a so-called “task graph”, to be

executed on distributed machines either directly or via

interfaces to various queuing systems. This system has

been used on a large-scale [6], but has been more fre-

quently employed on the smaller scale that is the focus

of this paper.

More recent and sophisticated environments operate

on the scale of Grids. For example, Globus [9] is a Grid

infrastructure that provides organization to manage a

set of large-scale shared resources.

2.2. Distributed objects

CORBA [10] is a mature distributed object system

that allows objects to communicate irrespective of im-

plementation language, platform or Object Request

Broker (ORB) vendor. Its use as infrastructure for a

PSE may appear a little odd in that CORBA empha-

sizes transparency of location, whereas the execution

layer of the PSE is intended to explicitly schedule lo-

cation. Although there is nothing in principle to pre-

vent CORBA from being used on a large-scale, there

are often practical difficulties related to passing IIOP

through firewalls.

What does CORBA bring to a PSE, that is not possi-

ble with the traditional approach, such as INTREPID,

sketched above? There are two benefits – one is con-

venience and the other is related to new possibilities

arising from a more sophisticated component interface.

The convenience comes from having the same ap-

proach irrespective of platform – it is straightforward to

employ both UNIX and Windows machines. Language

independence allows objects that require a GUI to be

written simply in Java, and other objects that may inter-

face to high performance computational components to

be written in C++ (or C). Furthermore there are many

CORBA services and provisions that support function-

ality desirable in a PSE. For example, the prototype

described below makes use of the Event service as well

as creation on demand and persistence. These are very

real advantages in developing and maintaining a PSE,

but do not necessarily move forward its capabilities.

2.3. Component interfaces

The possibility of new PSE capabilities lies in the

distributed object nature of CORBA. The IDL that spec-

ifies the interface to each component can contain multi-

ple methods, each of which is more sophisticated than a

simple rsh command. To illustrate how this flexibility

could be used in a PSE consider first the simple IDL:

void start();

This interface will reproduce the behavior of a com-

ponent that is initiated using the rsh method. One

immediate benefit of using CORBA lies in the ease of

introducing error condition feedback. The start()

method can be made to throw an exception that indi-

cates the reason for the error. Such capability is valu-

able in a distributed system where the possibility of

partial failure must be accounted for.

D. Lancaster / A problem solving environment based on CORBA 235

A more significant advantage of CORBA lies in the

possibility of more sophisticated components that can

make use of more than a single method. The essential

reason for considering such components is improved

performance based on better computational efficiency.

Small components tend to suffer from not being able to

use numerical strategies that would be possible if they

were larger and performed more steps of a computation.

Rapid prototyping PSE’s rely on having a wide choice

of flexible small components in order to compose the

solutions of problems with the minimum necessity of

writing code for special purpose components relevant

to the application area. Performance is still important

for such PSE’s, and by using more sophisticated inter-

faces, it is possible to mitigate the performance losses

incumbent in the use of small components. Although

similar behavior could be imagined in a conventional

RPC approach (by passing flags), it is not hard to see

that this would soon become unwieldy.

The argument that small components suffer from not

being able to take advantage of numerical strategies

available to larger components depends strongly on the

particular application. We give one such example for

the prototype PSE in Section 4.2.

2.4. Other CORBA issues

The use of CORBA imposes a strongly modular

structure on the overall system as it is a distributed

object system. Interfaces to each object are precisely

defined and objects can be located at will. This has

been used to make the scheduler and system manage-

ment portions of the prototype system separate objects

as described in Section 4.1.

One potential problem with using CORBA for PSE

concerns the way CORBA can be used to initiate and

control components that are themselves parallel. We do

not investigate this topic in detail, but draw the readers

attention to the fact that besides various unsatisfactory

workarounds, there is a proposal to extend the CORBA

specification that would simplify the way CORBA and

MPI work together [11].

Neither do we consider the interaction between the

PSE and queuing systems that might exist on any of

the target platforms. The problems that this causes are

discussed in Section 4.5.

2.5. Summary

To summarize this section: CORBA provides so-

phisticated component interfaces that can be used to

make small components that do not necessarily loose

performance when combined. Such small components

are flexible in that they can be combined in more ways,

and are necessary for the kind of PSE that supports

rapid development.

3. Computational steering

Another design decision incorporated from the start

was to insist on interactive control over the execution.

In particular, the prototype PSE allows computational

steering in the general sense of being able to alter the

choice of all components and their connections at run

time.

3.1. Special steerable components

The conventional way of building interactivity into

PSE’s works even when the development and execu-

tion phases are separate: imagine that the development

phase leads to a file describing the component connec-

tivity, and that this file is passed to a separate resource

manager for execution. Computational steering is pos-

sible as an attribute of special purpose, so called “steer-

able” components. At run time, these special compo-

nents communicate with external tools that allow them

to be manipulated [13,14]. The approach envisioned

here is more general and attempts to use the develop-

ment tools and standard mechanism of control flow to

provide interactivity for all components.

3.2. Interactivity and flow control

The kind of general interactivity we have in mind is

to exchange one solver component for another, or to

add a visualisation component at run time. To control

parameters of components at run time, as in the more

conventional sense of steering, we merely need appro-

priate CORBA methods on the component and a suit-

able front end. The mechanism of steering is the same

as that used for the ordinary control flow.

The prototype PSE is designed to enable computa-

tional steering using the same interface that the user

employs for composing the problem. This brings to-

gether the development and execution phases of the

PSE and forces several further design decisions: the

flow of execution control resides in the development

tool; scheduling is dynamic and only occurs when a

component is ready for execution. The level of in-

236 D. Lancaster / A problem solving environment based on CORBA

teractivity contemplated places the control flow in the

front-end.

For a more detailed discussion of computational

steering in this model and comparison with the alterna-

tive see [8].

3.3. Summary

We contemplate a form of computational steering

that is inherent in the design and allows changes in the

components and their connection while the system is

running. This binds the development and execution

stages of the PSE closely together and has its most

apparent consequence in a dynamic scheduler. The

final scheduling choice is made at run time, just as the

component is due to be executed.

4. Prototype PSE

In order to explore the potential of using CORBA

in a PSE we wanted to use more sophisticated compo-

nent interfaces than would be encountered by simply

wrapping legacy applications. We therefore searched

for an application area that would need to wire small

components in a variety of ways.

The application area for the prototype is that of finite

element calculations for a study of photonic materials.

This is a relatively new subject, and a variety of sim-

ilar calculations are being used to study the influence

of various geometries and materials on the bandgap.

A code happened in the process of being written [15],

and it was possible to collaborate with the developers

to create a component based system. As we discuss

in Section 4.2, access to the details of the solver al-

lowed us to implement more than the simple CORBA

interface that a wrapped component would normally

expose. Despite close contact with the developers, we

found that turning a working program into components

at the level of detail desired was quite time-consuming.

A notable aspect of the code was that it is written

in C++, thereby allowing a direct connection with an

Object Request Broker (ORB) without any intermedi-

ate wrapping stage. Much of the rest of the PSE in-

frastructure was written in Java as this allowed portable

graphical interfaces to be quickly created via another

CORBA language binding.

We employed Orbacus 4.01 [16] as this supported

a POA, had the necessary language bindings and pro-

vided an Event service.

4.1. Architecture

A diagram exposing the overall structure of the pro-

totype is shown in Fig. 1. The labeled blocks repre-

sent separate CORBA interfaces and the lines indicate

the most important traffic between them. The resource

management portion of the PSE is contained in the

three blocks at the centre of the figure. The compo-

sition environment and driver of the system is shown

on the left; we postpone discussion of how this is real-

ized because several possibilities were considered. As

usual in distributed object systems, the code represent-

ing each object or block could be run on a separate

machine, but for reasons of efficiency it is sensible to

co-locate certain parts. The administrator who sets up

the PSE is responsible for this choice, and will nor-

mally co-locate all the resource management objects.

In the event that the system becomes larger, and the

scheduler more complicated, this choice would have to

be reconsidered. On the right of the figure are shown

a series of machines used to execute the computational

components. Each of these machines has a so-called

monitor module running on them. This CORBA object

is used to feed the live load information and also serves

as a factory-like interface that can create component

objects on demand (standard POA methods are used to

allow this).

The three parts of the resource management subsys-

tem function as follows. The central database module

(labeled datastore) stores information about the com-

ponents and execution machines in the system. Infor-

mation about components includes lists of which com-

ponents are available on which machines. Informa-

tion about the execution machines includes their im-

mediate load as gathered by the monitor module. This

also provides some rather basic level of fault tolerance

by checking the machines are alive. The live load in-

formation is used by the scheduler module along with

the datastore. Not shown are various graphical system

management tools that can be used to change scheduler

policies, query the central database and shutdown the

system cleanly.

The CORBA interfaces used for data transfer are not

shown in Fig. 1, because they only exist temporarily.

The mechanism of data transfer is discussed below.

4.2. Components

In the photonics application area chosen for the pro-

totype, there are two particularly important compo-

nents. One assembles finite element matrices on the

D. Lancaster / A problem solving environment based on CORBA 237

Environment Monitor

DataStore

Scheduler

Composition

Execution 1

Execution 2

Execution 3

Execution 4

Fig. 1. Architecture of prototype PSE.

Mesh

Update k

calc(k)

Fig. 2. Simple components connected in a loop to generate a series

of eigenvalues.

basis of a mesh provided either by a stored file or an-

other component and the other is a solver that searches

for the lowest eigenvalue of the matrix. Components

such as these would form the basis of any finite element

calculation. It was because of our interest in provid-

ing non-trivial CORBA interfaces that we constructed

the components ourselves rather than wrapping some

standard publicly available code. Nonetheless, the re-

sulting components, at least the solver, could be used

in fairly general finite element problems.

One photonics problem required a whole series of

such eigenvalues to be determined as parameters (a

vector k) determining the matrix smoothly changed.

This could be achieved using simple components and

connecting them in a loop as shown in the following

figure.

This loop includes a special component just to update

the k parameter and provides a highly interactive way

of solving the problem because the k parameter can be

controlled either automatically or by the user. As it

stands, the eigenvalue solver component is standard: it

accepts a matrix and generates the eigenvalues.

However, this approach would be numerically inef-
ficient because the solution strategy in the eigenvalue

solver is iterative and is considerably faster when given

the eigenvector solution of the previous matrix as start-

ing iteration. In a stand-alone application, this per-

formance improvement is achieved by combining the

loop, k update and solver components shown in Fig. 2

into what is effectively one large component. Large

special purpose components of this kind have been im-

ported into PSE’s [12], however this is an example of

the use of PSE’s to couple applications (ie. multi-

physics) rather than using them to support rapid solu-
tion of new problems. The emphasis of this paper is

placed on smaller, general purpose PSE’s for which the

components should be fairly standard. In order to have

a standard solver component, yet not abandon the per-

formance advantages mentioned above, the component

can be modified so as to include in the component inter-

face an additional method that allows the eigenvector

to be stored between consecutive calls.

This example suggests that, for performance reasons,

a variety of different ways of calling the solver should

be provided. Although one could imagine non-CORBA

components that would allow this, the provision of a set
of related methods on the CORBA component interface

is natural. For example, in the case above, the IDL

includes the following methods:

void calc();

void calc(double initial lambda);

By selecting the appropriate method, a way of solv-

ing the problem that retains the performance advantages

238 D. Lancaster / A problem solving environment based on CORBA

of larger special purpose components, yet allows flex-

ible interaction can be devised. In general one might

expect a much larger number of distinct but related

methods.

We have not addressed the performance problem

from having small components in a loop. There is

certainly a CORBA overhead, but much more serious

is the possibility that on subsequent traversals of the

loop, the component may be scheduled on a different

machine. To avoid this, we have allowed the sched-

uler to be overridden so that the user can specify that

a certain component always runs on a particular ma-

chine. A better solution would involve a more sophis-

ticated scheduling algorithm that takes account both of

the overhead of moving a component as well as the load

on the machine.

4.3. Data transfer

Data must be transferred between components that

are running on different machines of the distributed

system. The traditional mechanism has been to use

input and output files, and many schedulers include

mechanisms to stage the files between machines.

The prototype PSE has been built with a flexible data

transfer mechanism. File staging is included but since

the prototype has only been used for small problems

it was also possible to transfer data directly from main

memory. The mechanism relies on the creation of addi-

tional CORBA interfaces that allow data access. These

interfaces are incarnated dynamically as the computa-

tional component runs and remain present after it has

completed its work. For the matrices of the photonic

problem, the interface is called:

DataTypes::Matrices::Basic

Matrices;

This interface provides simple methods that allow

the matrix data to be transferred directly. In gen-

eral, the data interfaces extend a base data interface,

DataTypes, adding additional methods dependent on

the type of data that is to be transferred. The data

types depend on the application area, but we anticipate

a library of such types in a full PSE.

For efficiency, and to aid scaling, transfer must

be directly between components rather than through

some central facility. The difficulty is that the ma-

chine where the target component is to run, is un-

known until the previous component has completed

and the scheduler invoked. Lightweight location in-

formation (an IOR for our CORBA based system) is

passed through the central system and on to the target

component as soon as its location has been decided.

Data transfer itself relies on a request from the newly

active computational component to the data interface

DataTypes::Matrices::Basic Matrices

that remains after the old computational component has

completed.

To transfer the lightweight information describing

the IOR of the data interface the component interface

itself includes get and set methods such as:

DataTypes::Matrices::Basic Matrices

getmatrixref();

A means of clearing up old data interfaces is clearly

necessary and a mechanism to automatically do this

was developed.

4.4. Control flow

When control passes from one component to the next,

a signal indicating completion of the first component is

necessary. The method by which the monitor module

regularly polls the component is clearly inefficient, so

methods in which the component contacts the central

module are preferred.

A straightforward solution is to use callbacks, in

which an IOR on the monitor module is passed to the

component. In practice this method is awkward be-

cause it requires explicit thread programming on the

component. This is a familiar situation in CORBA sys-

tems [17] and the solution is to use the so-called Event

service.

The Event service decouples the callback and sim-

plifies the design. The so-called “push” model is used

in which the components make a push call to the event

service on completion of the calculation. The front-end

registers a listener to the event service that is notified

when the event service receives the push call. This

mechanism can be used even for the script-like driver

front-ends introduced below. The CORBA notification

service would be even more appropriate in this role, but

was not mature at the time of writing the code.

4.5. Start up

In a working CORBA based system it is usual to

have CORBA objects running permanently on all the

machines of the distributed system. This appears to

present a much higher overhead than is the case forrsh

based systems. The benefits are however overwhelm-

ing, in particular to resource management, allowing

D. Lancaster / A problem solving environment based on CORBA 239

monitoring of the health of the system and providing

load information to the central monitor.

CORBA does not require that the components them-

selves be memory resident while not in use. Early

versions of the PSE prototype were explicitly coded

in such a way as to avoid this, and now the CORBA

2.3 specification includes the Portable Object Adaptor

(POA) that provides support for activation on demand.

It is anticipated that the PSE should be permanently

available on the system, and that the component servers

on each of the distributed machines should be con-

tinuously running. The responsibility of admistrator

who first installs and sets the system running is first

to choose machines for the resource management and

execution parts of the system. He/she then installs and

initialises the nameservice and eventservice, followed

by the resource management modules. Execution ma-

chines are set up with the help of a short configura-

tion file listing the computational components that they

should support, as these may be different on different

machines. The Component Server that is started on

each execution machine starts to monitor the load on

the machine and registers itself with the resource man-

ager. The administrator is provided with some startup

utilities that make use of the CORBA naming service.

We have used persistent object references so that an

execution machine may be restarted and still have the

same IOR for the interfaces it presents. This simplifies

some aspects of fault tolerance.

As was explained in the introduction, we are con-

cerned with small-scale PSE’s that are to be run on clus-

ters of workstations. We have therefore not addressed

issues relating to machines that can only be accessed

via a queueing system, and upon which it is difficult

to imagine a permanently running CORBA server. A

different model would be needed to accomodate such

systems, and given that such machines tend to have

elaborate security, a CORBA based approach would

suffer practical difficulties in any case.

4.6. Composition environment

The development tool in a PSE is employed by users

to compose components and thereby construct the com-

plete program to solve the problem. There are various

ways in which this can be done and we experimented

with several front-ends in the prototype PSE. We ex-

pect that in any product PSE, design of the front-end

would rely on experts in Human Computer Interface

design, and indeed on the prospective users themselves.

In the meantime, the prototype was able to interface

with several front-ends, some quite simply intended to

drive and test the execution side, and others with some

GUI support for visual composition.

The simplest composition tool is an ordinary text

editor used to create scripts that call a sequence of

components. The script could be written using Cor-

bascript [18] or some other scripting language [19] that

is able to communicate with CORBA. This is a very

low-level approach that may be convenient for basic

testing. We preferred a slightly higher-level approach

based on the Java language, that uses the editor to write

a simple driver class to call the components in the de-

sired sequence. Utilities were written that allowed this

to be done in such a way as to use all the PSE facilities,

but minimizing the amount of code required for the

driver itself. An example is shown below, correspond-

ing to a simple sequence of two components.

public class driver

{

private static PSE_CORBA.

Central.DataStore ds_central;

private static PSE_CORBA.

Scheduler.Algorithm

al_scheduler;

public static void main

(String args[])

{

PSE_CORBA.Parameters.PHEM

Params =

new PSE_CORBA.

Parameters.PHEM(.....);

NameResolver NR =

new NameResolver(args);

ds_central =

NR.getDataStore();

al_scheduler =

NR.getAlgorithm();

ESlistener ESL =

new ESlistener(args);

ESL.start();

assembler_rep r1 = new

assembler_rep

(ds_central,

al_scheduler,

ESL, Params);

solver_rep r2 = new

solver_rep

(ds_central,

240 D. Lancaster / A problem solving environment based on CORBA

al_scheduler,

ESL, Params);

r1.addcontrolflow(r2);

r1.calc();
}

}

After some boilerplate initialisation to set up the
scheduler and event service (via utilities), there are

two lines creating proxies or “representations” of

the components named r1 and r2. The line
r1.addcontrolflow(r2); connects these compo-

nents. Finally the computations are initiated by start-

ing the calculation on the first component. This system
was simple to use and drive the execution side, but did

not offer much by way of interactivity.

A simple GUI interface was constructed using Java
Beans and in effect hijacking the beanbox (or in prin-

ciple any bean composition tool) as the visual editor.
This allowed a GUI to be constructed quickly with the

minimum of explicit graphics programming [20]. This

GUI allowed components to be wired up graphically
and the execution to be run directly. It also allowed

computational steering in the conventional sense, by

varying component parameters at run time using bean
properties. The more general level of interactivity was

supported in so far as additional components could be
added at run time. Limitations of the bean box pre-

vented us from removing components at run time. This

approach was flexible and loops of control flow could
be set up, but it suffered from some inadequacy due to

its origin not being specific to the problem.

A more sophisticated GUI was constructed in
Cardiff [21] as part of the same project. This was a

custom built piece of software that has a visual inter-
face better adapted to showing the connections between

components than the Java Bean based version. It also

has a method of execution that can be adjusted for the
particular task in hand.

Applet based front-end systems were also explored,

but due to security issues and the lack of appropriate
CORBA support in common browsers, this approach

was abandoned.

5. Other PSE’s

Numerous PSE’s have been built over the last few

years and it is not possible to review them all here. We

restrict ourselves to the less common PSE’s based on

CORBA. These PSE’s tend to be focused on particular

application areas and an early example is Webflow [22].

A more recent and advanced example is Applab in the

biological sciences application area [23]. This PSE has

the advantage of a clear component interface model that

has been adopted by OMG [24] and a set of existing

applications that can be accessed. It uses XML meta-

data to describe the functionality of the applications

and to record information about each individual analy-

sis performed. The Distributed Resource Management

(DRM) portion of the ASCI computational grid is built

using the Globus toolkit, and a CORBA service layer

has been implemented above this [25]. The motivation

for this work was to provide a layer that would allow

existing PSE’s that used CORBA wrapped components

to easily integrate with the DRM services. Another

project that uses CORBA, allbeit only for security rea-

sons is the Mississippi Computational Web Portal [26].

This project uses Enterprise Java Beans as middleware,

but the actual access to back end resources is via a grid

interface. The use of CORBA is for secure transport of

web requests between the front end and middle layer.

This project emphasises the collaborative and recording

aspects that are important in a PSE designed to be used

within an organisation that wishes to preserve expertise

in a convenient form.

Our prototype PSE was built to investigate the two

issues of using non-trivial CORBA interfaces to com-

ponents and of implementing computational steering

via the ordinary control flow mechanisms. These ex-

ploratory directions are not addressed by the PSE’s

mentioned above.

PSE’s are now being designed to operate on the larger

scale provided by grids, and issues of performance are

more critical than in the smaller CORBA based sys-

tems. For example, the work on component based

scientific computing [27] concentrates on maintaining

the performance of assembled scientific components

through a variety of optimization techniques. The same

authors have also considered the problem of mapping

components to grid resources using a marketplace ap-

proach.

6. Conclusion

We have considered some of the design issues that

arose in our construction of a prototype PSE. The prin-

cipal points concern the the incorporation of computa-

tional steering and the use of CORBA.

D. Lancaster / A problem solving environment based on CORBA 241

Our prototype demonstrates the feasability of pro-

viding a high degree of interactive control over all com-

ponents. This avoids the need for any special commu-

nication channel for steerable components, but places

the ordinary flow of control in the front end. This level

of interactive control is probably only necessary in a

small-scale PSE used for flexible rapid prototyping.

The immediate benefits of using CORBA as PSE

infrastructure are the well known advantages of dis-

tributed object systems related to maintainability. We

have identified another feature: that CORBA makes it

easy to have several distinct methods acting on a PSE

component. We have argued that this feature could be

used to compensate for the numerical inefficiencies that

are sometimes inherent in using standard small compo-

nents. A selection of such components are necessary

to allow flexible compositions of problem solutions in

a small-scale rapid prototyping PSE.

The difficulty with the sophisticated (though natu-

ral in CORBA) component interfaces that are proposed

here, is their standardization. None of the components

of the PSE’s mentioned in Section 5 are interoperable.

The time for such a move is ripe and several bodies have

already started work towards a standard. We expect

more from CORBA through the component model, and

indeed see that OMG has supported some standardiza-

tion in the context of biological sciences [24]. An-

other body supporting standardization is the Common

Component Architecture Forum (CCA). They hope to

define a minimal set of standard features that a High-

Performance Component Framework has to provide, or

can expect, in order to be able to use components de-

veloped within different frameworks. This framework

emphasizes performance [28].

Acknowledgments

This work was supported by an EPSRC grant en-

titled Problem Solving Environments for Large Scale

Simulations. I would like to thank J.M. Generowicz for

making available and explaining his photonics code.

References

[1] E. Gallopoulos, E. Houstis and J.R. Rice, Problem Solving

Environments for Computational Science, IEEE Comput. Sci.

Eng. 1 (1994), 11–23.

E.Gallopoulos, E.Houstis and J.R.Rice. Workshop on Prob-

lem Solving Environments: Findings and Recommendations,

ACM Comp. Surv. 27 (1995), 277–279.

[2] Matlab is produced by MathWorks Inc., http://www. Math-

Works.com/.

[3] Iris Explorer is a product of NAG, http://www.nag.com/.

[4] AVS is produced by Advanced Visual Systems Inc., http://

www.avs.com/.

[5] PBS the Portable Batch System is available at: http://pbs.mrj.

com/.
[6] K.E. Meacham, N. Floros and M. Surridge, Industrial Stochas-

tic Simulations on a European Meta-Computer, Springer Ver-

lag, Proc. EuroPar’98 LNCS 1470 (1998), 1131–1139.

[7] The project was entitled Problem Solving Environments for

Large Scale Simulations and was funded by the UK EPSRC.

It started in November 1998 and involved Southampton Uni-

versity, Southampton IT innovation Centre and Cardiff Uni-

versity.
[8] D. Lancaster and J.S. Reeve, Computational Steering in Prob-

lem Solving Environments, Springer Verlag, Proc. EuroPar’00

LNCS 1900 (2000), 1340–1344.

[9] I. Foster and C. Kesselman, Globus: A Metacomputing Infras-

tructure Toolkit, Int. J. Supercomp. Appl. 11 (1997), 115–128,

http://www.globus.org.

[10] The CORBA specification is controlled by the Object Man-

agement Group: http://www.omg.org/.
[11] T. Priol and C. Rene, COBRA: A CORBA compliant program-

ming environment for high performance computing, Springer

Verlag, Proc. of EuroPar ’98. LNCS 1470 (1998), 1114–1122.

OMG, Data Parallel Application Support RFP, orbos/00-03-

17 available at http://www.omg.org/.

[12] M. Li, O.R. Rana, M. Shields and D.W. Walker, A Wrapper

Generator for Wrapping High Performance Legacy Codes as

Java/CORBA Components. Proc. of SuperComputing 2000,
IEEE Computer Society Press, Dallas, Texas, USA, November

2000.

[13] G.A. Geist, J.A. Kohl and P.M. Papadopoulos, CUMULVS:

Providing Fault-Tolerance, Visualization and Steering of Par-

allel Applications, International Journal of High Performance

Computing Applications 11 (1997), 224–236.

[14] S.G. Parker and C.R. Johnson, SCIRun: A Scientific Program-

ming Environment for Computational Steering, Proceedings

Supercomputing ’95. ACM/IEEE Computer Society 1995, on-

line publication on http: //www.supercomp.org/sc95/proceed-

ings/.

[15] B.P. Hiett, J.M. Generowicz, S.J. Cox, M. Molinari, D. Beck-

ett, G.J. Parker and K.S. Thomas, Finite Element Modeling of

Photonic Crystals, Proc PREP 2001, 2001, pp. 87–88.

[16] Orbacus is produced by Object Oriented Concepts Inc: http://
www.ooc.com/ob.html.

[17] M. Henning and S. Vinoski, Advanced CORBA Programming

with C++, Addison Wesley, 1999.

[18] http://corbaweb/lifl.fr/CorbaScript.

[19] Several scripting languages have CORBA extensions:

Perl: http://www.lunatech.com/research/corba/cope/, Python:

http://www.fnorb.com/, ILU: ftp://ftp.parc.xerox.com/pub/ilu/

ilu.html.
[20] D. Lancaster and J.S. Reeve, Problem Solving Environ-

ments based on Commodity Software, Springer Verlag, Proc.

HPCN’00, LNCS 1823 (2000), 3–11.

[21] M.S. Shields, O. Rana, D.W. Walker, M. Li and D. Golby, A

Java/CORBA-based visual program composition environment

for PSE’s, Concurrency – Practice and Experience 12 (2000),

687–704.

[22] T. Haupt, E. Akarsu and G. Fox, WebFlow: A Framework for

Web Based Metacomputing, Proc. of NPCN 1999, Springer,

1999, pp. 291–299.

242 D. Lancaster / A problem solving environment based on CORBA

[23] Applab is part of a project, OpenBSA, to provide a freely avail-

able implementation of the Biomolecular Sequence Analysis

specification. It is being developed at the European Bioinfor-

matics Institute, http://bach.ebi.ac.uk/openBSA/.

[24] OMG, Draft Adopted Specification for Biomolecular Sequence

Analysis, lifesci/99-12-01 available at: http://www.omg.org/.

[25] ASCI, Constructing the ASCI Computational Grid, available
at: http://www.sandia.gov/supercomp/sc99/drm-sc99.pdf.

[26] T. Haupt, P. Bangalore and G. Henley, A Computational

Web Portal for the Distributed Marine Environment Forecast

System, Available at: http://www.computingportals.org/.

[27] S. Newhouse, A. Mayer and J. Darlington, A Software Ar-

chitecture for HPC Grid Applications, Springer Verlag, Proc.

EuroPar’00 LNCS 1900 (2000), 686–689.

[28] R. Armstron, D. Gannon, A. Geist, K. Keahey, S. Kohn,

L. McInnes, S. Parker and B. Smolinski, Toward a Com-

mon Component Architecture for High-Performance Scien-

tific Computing, The CCA Forum web site is at: http://www.

acl.lanl.gov/cca-forum/.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

