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Problem solving theory and practice suggest that thinking is more important to solving problems than 
knowledge and that it is possible to teach thinking in situations where little or no knowledge of the 
problem is needed. Such an assumption has led problem solving advocates to champion content-less 
heuristics as the primary element of problem solving while relegating the knowledge base and the 
application of concepts or transfer to secondary status. In the following theoretical analysis, it will be 
argued that the knowledge base and transfer of knowledge—not the content-less heuristic—are the 
most essential elements of problem solving.  

 

Problem solving theory and practice suggest that 

thinking is more important in solving problems than 

knowledge and that it is possible to teach thinking in 

situations where little or no knowledge of the problem 

is needed. Such an assumption has led problem solving 

advocates to champion content-less heuristics as the 

primary element of problem solving while relegating 

the knowledge base and the transfer or application of 

conceptual knowledge to secondary status. Yet if one 

analyzes the meaning of problem solving, the 

knowledge base and the transfer of that knowledge are 

the most essential elements in solving problems.  

Theoretical Framework 

Problem solving is only one type of a larger 

category of thinking skills that teachers use to teach 

students how to think. Other means of developing 

thinking skills are problem-based learning, critical 

thinking skills, creative thinking skills, decision 

making, conceptualizing, and information processing 

(Ellis, 2005). Although scholars and practitioners often 

imply different meanings by each of these terms, most 

thinking skills programs share the same basic elements: 

(1) the definition of a problem, (2) the definition of 

problem solving, (3) algorithms, (4) heuristics, (5) the 

relationship between theory and practice, (6) teaching 

creativity, (7) a knowledge base, and (8) the transfer or 

the application of conceptual knowledge.     

The Definition of a Problem 

The first element of the theory of problem solving 

is to know the meaning of the term problem. This 

theoretical framework uses the definition of problem 

presented by Stephen Krulik and Jesse Rudnick (1980) 

in Problem Solving: A Handbook for Teachers. A 

problem is “a situation, quantitative or otherwise, that 

confronts an individual or group of individuals, that 

requires resolution, and for which the individual sees 

no apparent or obvious means or path to obtaining a 

solution” (p. 3). 

The Definition of Problem Solving 

Krulik and Rudnick (1980) also define problem 

solving as  

the means by which an individual uses previously 

acquired knowledge, skills, and understanding to 

satisfy the demands of an unfamiliar situation. The 

student must synthesize what he or she has learned, 

and apply it to a new and different situation. (p. 4) 

This definition is similar to the definition of the 

eighth element of problem solving, transfer: “[w]hen 

learning in one situation facilitates learning or 

performance in another situation” (Ormrod, 1999, p. 

348).  

 Problem Solving is Not an Algorithm  

One of the primary elements of this framework is 

that problem solving is not an algorithm. For example, 

Krulik and Rudnick (1980) say,  

The existence of a problem implies that the 

individual is confronted by something he or she 

does not recognize, and to which he or she cannot 

merely apply a model. A problem will no longer be 

considered a problem once it can easily be solved 

by algorithms that have been previously learned. 

(p. 3)  
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Table 1 

Types of Problem Solving 

John Dewey (1933) George Polya (1988) 
Stephen Krulik and  
Jesse Rudnick (1980) 

Confront Problem Understanding the Problem Read 

Diagnose or Define Problem Devising a Plan Explore 

Inventory Several Solutions Carrying Out the Plan Select a Strategy 

Conjecture Consequences of 

Solutions 
Looking Back Solve 

Steps in 

Problem 

Solving 

Test Consequences  Review and Extend 

 

 

 

 

Additionally, advocates of problem solving imply 

that algorithms are inferior models of thinking because 

they do not require thought on a high level, nor do they 

require deep understanding of the concept or problem. 

Algorithms only require memory and routine 

application. Further, they are not useful for solving 

new problems (Krulik & Rudnick, 1980).  

Problem Solving is a Heuristic  

Advocates of problem solving argue that educators 

need to teach a method of thought that does not pertain 

to specific or pre-solved problems or to any specific 

content or knowledge. A heuristic is this kind of 

method. It is a process or a set of guidelines that a 

person applies to various situations. Heuristics do not 

guarantee success as an algorithm does (Krulik & 

Rudnick, 1980; Ormrod, 1999), but what is lost in 

effectiveness is gained in utility.  

Three examples of a problem solving heuristic are 

presented in Table 1. The first belongs to John Dewey, 

who explicated a method of problem solving in How 

We Think (1933). The second is George Polya’s, whose 

method is mostly associated with problem solving in 

mathematics. The last is a more contemporary version 

developed by Krulik and Rudnick, in which they 

explicate what should occur in each stage of problem 

solving. I will explain the last one because it is the 

more recently developed. However, the three are 

fundamentally the same. 

The following is an example of how the heuristic is 

applied to a problem. 

Problem: Twelve couples have been invited to a 

party. The couples will be seated at a series of 

small square tables, placed end to end so as to form  

 

one large long table. How many of these small 

tables are needed to seat all 24 people? (Krulik & 

Rudnick, 1987, pp. 29–31) 

The first step, Read, is when one identifies the 

problem. The problem solver does this by noting key 

words, asking oneself what is being asked in the 

problem, or restating the problem in language that he 

or she can understand more easily. The key words of 

the problem are small square tables, twelve couples, 

one large table, and 24 people.  

The second step, Explore, is when one looks for 

patterns or attempts to determine the concept or 

principle at play within the problem. This is essentially 

a higher form of step one in which the student 

identifies what the problem is and represents it in a 

way that is easier to understand. In this step, however, 

the student is really asking, “What is this problem 

like?” He or she is connecting the new problem to prior 

knowledge. The student might draw a picture of what 

the situation would look like for one table, two tables, 

three tables, and so on. After drawing the tables, the 

student would note patterns in a chart. (See below.)  

The third step, Select a Strategy, is where one 

draws a conclusion or makes a hypothesis about how to 

solve the problem based on the what he or she found in 

steps one and two. One experiments, looks for a 

simpler problem, and then conjectures, guesses, forms 

a tentative hypothesis, and assumes a solution. 

The fourth step is Solve the Problem. Once the 

method has been selected the student applies it to the 

problem. In this instance, one could simply continue 

the chart in step three until one reached 24 guests. 
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Step 2: Explore. 

Draw a diagram to represent the problem. 

 
Make a chart, record the data, and look for patterns. 

 

Number of 

tables 
1 2 3 4 . . . 

Number of 

guests 
4 6 8 10 . . . 

 

Pattern: As we add a table, the number of guests that 

can be seated increases by 2. 

 

 

Step 3: Select a Strategy. 

 

Number of 

tables 
1 2 3 4 5 6 7 

Number of 

guests 
4 6 8 10 12 14 16 

 

Form a tentative hypothesis. Since the pattern seems to 

be holding true for 16 guests, we can continue to add 1 

table for every additional guest until we reach 24. 

Therefore, we add 4 additional tables for the additional 

guests (16 + 8 = 24). Hypothesis: It will take 11 tables 

to accommodate 24 guests.  

 

Step 4: Solve the Problem 

 

Number 

of 

tables 

1 2 3 4 5 6 7 8 9 10 11 

Number 

of 

guests 

4 6 8 10 12 14 16 18 20 22 24 

The final step, Review and Extend, is where the 

student verifies his or her answer and looks for 

variations in the method of solving the problem; e.g., 

t =
n "2

2
, where represents the number of tables. Or we 

could ask for a formula to determine how many guests 

we can seat given the number of tables. For example, n 

= 2t + 2 or n = 2(t + 1). 

Problem Solving Connects Theory and Practice  

A perennial charge brought against education is 

that it fails to prepare students for the real world. It 

teaches theory but not practice. Problem solving 

connects theory and practice. In a sense this element is 

the same as the definitions of problem solving and 

transfer, only it specifically relates to applying abstract 

school knowledge to concrete real world experiences 

(Krulik & Rudnick, 1980).  

Problem Solving Teaches Creativity 

Real world situations require creativity. However, 

it has often been claimed that traditional classrooms or 

teaching approaches do not focus on developing the 

creative faculty of students. Advocates of problem 

solving, by contrast, claim that problem solving 

develops the students’ creative capacities (Frederiksen, 

1984; Slavin, 1997). 

Successful Problem Solvers Have a Complete and 

Organized Knowledge Base 

A knowledge base consists of all of the specific 

knowledge a student has that he or she can use to solve 

a given problem. For example, in order to solve 

algebraic problems, one not only needs to know 

information about numbers and how to add, subtract, 

multiply, and divide, but one must also possess the 

knowledge that goes beyond basic arithmetic. A 

knowledge base is what must accompany the teaching 

of a heuristic for successful problem solving to occur.  

Problem Solving Teaches Transfer or How to Apply 

Conceptual Knowledge 

Transfer, or the application of conceptual 

knowledge, is the connecting of two or more real-life 

problems or situations together because they share the 

same concept or principle. Transfer or the application 

of conceptual knowledge helps students see similarities 

and patterns among seemingly different problems that 

are in fact the same, or similar, on the conceptual level.  

Some research about problem solving claim that it 

is more effective than traditional instruction (Lunyk-

Child, et al., 2001; Stepien, Gallagher, & Workman, 

1993), that it results in better long-term retention than 
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traditional instruction (Norman & Schmidt, 1992), and 

that it promotes the development of effective thinking 

skills (Gallagher, Stepien, & Rosenthal, 1994; Hmelo 

& Ferrari, 1997).  

On the other hand, in Research on Educational 

Innovations, Arthur Ellis (2005) notes that the research 

base on problem solving lacks definition, possesses 

measurement validity problems and questionable 

causality, and it fails to answer the claim that 

successful problem solvers must have a wealth of 

content-specific knowledge. Ellis further notes that 

there is “no generally agreed-on set of definitions of 

terms” (p. 109), that thinking skills are notoriously 

difficult to measure, and that given these first two 

problems, it is impossible to trace cause back to any 

specific set of curricular instances. Ellis states,  

[t]he idea that thinking skills are content specific 

and cannot be taught generically must be seriously 

entertained until it is discredited. We don’t think 

that will happen. And if this is so, how does one 

construct content-free tests to measure thinking 

skills? (pp. 109–110) 

The conclusions of Ellis and other research studies 

I will cite later state that it would be impossible to 

reinvent solutions to every problem that develops 

without recourse to past knowledge. This recourse to 

past knowledge is evidence, in itself, that one must not 

completely construct reality. One must apply 

knowledge that has already been formed by others and 

understand that knowledge, or else not solve the 

problem. It is this critique that I will invoke in the 

following treatment of problem solving. What I hope to 

show is that the heuristic for problem solving cannot be 

successful if one holds strongly to the theoretical 

framework in which it is often situated. Rather, one 

must accept that already formed knowledge is essential 

to problem solving. In fact, the meanings of problem 

solving found in articles and textbooks often convey 

this contradiction. On the one hand, it is argued that 

problem solving is the antithesis of a content-centered 

curriculum. On the other hand, a successful problem 

solver must possess a strong knowledge base of 

specific information, not merely a generalizeable 

heuristic that can be applied across several different 

situations.  

The Problem With Problem Solving 

The main problem with problem solving lies in the 

fourth element listed above: problem solving is a 

heuristic. Recall that a heuristic is a guideline that may 

or may not yield success but, unlike an algorithm, it 

does not depend on knowledge of the problem to be 

successful. Heuristic is a method of thought that does 

not pertain to any specific problems or content. The 

element is problematic because it contradicts three 

other elements within the theory: the definition of 

problem solving, successful problem solving requires a 

knowledge base, and problem solving enables learners 

to transfer knowledge. Each of these three elements 

implies that previously learned knowledge of the 

problem is necessary to solving the problem, whereas 

use of a heuristic assumes no knowledge is necessary.  

I argue, like Peikoff (1985), that there is no way to 

separate thinking or problem solving from knowledge. 

Just like instruction and curriculum, these concepts 

imply one another and cannot be discussed separately 

for long. Likewise, to acquire knowledge, one must 

think. This is not to say that students cannot construct 

knowledge as they solve a given problem, only to say 

that often the problems they are presented only require 

them to apply existing knowledge. From this 

perspective, it must be assumed that students do not 

construct all of the knowledge in a given curriculum.  

Yet problem solving as a heuristic is the most 

cherished aspect of problem solving because it is 

content-less. For example, in the preface to 

Mathematical Discovery, George Polya (1962), one of 

the foremost thinkers on problem solving says, 

I wish to call heuristic the study that the present 

work attempts, the study of means and methods of 

problem solving. The term heuristic, which was 

used by some philosophers in the past, is half-

forgotten and half-discredited nowadays, but I am 

not afraid to use it. 

In fact, most of the time the present work 

offers a down-to-earth practical aspect of heuristic. 

(p. vi)  

Instructional textbooks sometimes play off this 

process versus content dichotomy: a teacher can either 

teach students to be critical thinkers and problem 

solvers or she can teach students more content 

knowledge. The authors of one textbook say, 

Too often children are taught in school as though 

the answers to all the important questions were in 

textbooks. In reality, most of the problems faced by 

individuals have no easy answers. There are no 

reference books in which one can find the solution 

to life’s perplexing problems. (Gunter, Estes, & 

Schwab, 2003, pp. 128–129)  

The dichotomy implies that thinking and knowledge 

are mutually exclusive, when in fact critical thinking 

and problem solving require a great deal of specific 

content knowledge.  
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Problem solving and heuristics cannot be content-

less and still be effective. Critical thinking, problem 

solving, and heuristics must include a knowledge base 

(Fredricksen, 1984; Ormrod, 1999). Including the 

knowledge base enables the principle cognitive 

function of problem solving—the application of 

conceptual knowledge, or transfer—to occur (Peikoff, 

1985). However, the degree to which Dewey and Polya 

actually believed that a heuristic could be completely 

content-less and still be effective is not clear. Further, 

many instructional textbooks actually stress the 

importance of content knowledge in solving problems 

(Henson, 2004; Kauchak & Eggen, 2007; Lang & 

Evans, 2006). 

The Elements of Problem Solving Revised 

Each of the above elements of problem solving 

will be reviewed again in light of the relationship 

between thinking and knowledge and the research base 

on problem solving. Element one, the definition of a 

problem, implies that one must have some knowledge 

of the problem to solve it. How can one solve a 

problem without first knowing what the problem is? In 

fact, identification of the problem is what is called for 

in the first two steps, Read and Explore, of the 

heuristic. In this step, the student first becomes aware 

of the problem and then seeks to define what it is or 

what the problem requires for its solution. Awareness 

and definition comprise the knowledge that is essential 

to solving the problem. Consider the effectiveness of 

students relative to their respective experiences with a 

given problem. The student more familiar with the 

problem will probably be better able to solve it. In 

contrast, the student new to the problem, who has only 

studied the heuristic, would have to re-invent the 

solution to the problem. 

So the first two steps of the heuristic imply that 

one needs a great deal of knowledge about the problem 

to be an effective problem solver. In fact, if one wants 

to solve the problem for the long term, one would want 

to thoroughly study the problem until some kind of 

principles were developed with regard to it. The final 

outcome of such an inquiry, ironically, would yield the 

construction of an algorithm.  

The second element, the definition of problem 

solving, also implies a connection between thinking 

and knowledge. It says that problem solving is 

essentially applying old knowledge to a new situation 

(Krulik & Rudnick, 1987). However, if knowledge or a 

problem is genuinely new, then the old knowledge 

would not apply to it in any way. Ormrod (1999) 

suggests that the so-called new situation is really the 

same as the old in principle. For example, the principle 

of addition a student would use to solve the problem 1 

+ 2 = 3 is essentially the same principle one would 

apply to 1 + x = 3. The form may be different but 

ultimately the same principle is used to solve both 

problems. If this is the case, then a more proper 

element of problem solving would be number eight, the 

transfer of knowledge or application of conceptual 

knowledge.  

The third and fourth elements algorithms and 

heuristics are problematic. Krulik and Rudnick (1980) 

distinguish between algorithms and heuristics. Unlike 

employing an algorithm, using a heuristic requires the 

problem solver to think on the highest level and fully 

understand the problem. Krulik and Rudnick also 

prefer heuristics to algorithms because the latter only 

applies to specific situations, whereas a heuristic 

applies to many as yet undiscovered problems.  

However, an algorithm requires more than mere 

memorization; it requires deep thinking too. First, in 

order to apply an algorithm, the student must have 

sufficient information about the problem to know 

which algorithm to apply. This would only be possible 

if the student possessed a conceptual understanding of 

the subject matter. Further, even if a student could 

somehow memorize when to apply certain algorithms, 

it does not follow that he or she would also be able to 

memorize how to apply it (Hu, 2006; Hundhausen & 

Brown, 2008; Johanning, 2006; Rusch, 2005).  

Second, algorithms and problem solving are 

related to one another. Algorithms are the product of 

successful problem solving and to be a successful 

problem solver one often must have knowledge of 

algorithms (Hu, 2006; Hundhausen & Brown, 2008; 

Johanning, 2006; Rusch, 2005). Algorithms exist to 

eliminate needless thought, and in this sense, they 

actually are the end product of heuristics. The necessity 

to teach heuristics exists, but heuristics and algorithms 

should not be divided and set against one another. 

Rather, teachers should explain their relationship and 

how both are used in solving problems.    

A secondary problem that results from this flawed 

dichotomy between algorithms and heuristics is that 

advocates of problem solving prefer heuristics because 

algorithms only apply to specific situations, whereas 

heuristics do not pertain to any specific knowledge. If 

one reflects upon the steps of problem solving listed 

above one will see that they require one to know the 

problem to be successful at solving it..  

Consider the sample problem above to which the 

heuristic was applied. If one knows the heuristic 

process and possesses no background knowledge of 
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similar problems, one would not be able to solve the 

problem. For example, in the first step of the heuristic 

one is supposed to Read the problem, identify the 

problem, and list key facts of the problem. Without a 

great deal of specific content knowledge how will the 

student know what the teacher means by “problem,” 

“key facts,” and so on? The teacher will probably have 

to engage the student in several problems. Without 

extensive knowledge of facts, how does the student 

know what mathematical facts are, and how they apply 

to word problems, for example?  

In the second step, Explore, the problem solver 

looks for a pattern or identifies the principle or 

concept. Again, how can one identify the pattern, 

principle, or concept without already possessing 

several stored patterns, principles, and concepts? 

Indeed, to a student with very little mathematical 

knowledge, this problem would be extremely difficult 

to solve. The heuristic would be of little help.  

The heuristic says to draw a diagram, presumably 

to make the problem more concrete and therefore more 

accessible to the student, but without already knowing 

what the concept the problem exhibits this would very 

difficult, if not impossible. Using the chart with the 

data as an example, it would require previous 

knowledge in mathematics to be able to construct it. It 

seems that the heuristic in this problem is in reality just 

another algorithm that the teacher will have to teach as 

directly and as repetitively until the students learn how 

and when to apply it, which is the very opposite of 

what advocates of problem solving want. The same is 

also true of step five, Review and Extend. Presumably 

if a student could represent this problem in algebraic 

form, he or she should also be able to solve the same 

problem without recourse to drawing diagrams, 

recording data, etc. One could simply solve the 

problem right after step one.  

The sample problem illustrates what scientists have 

discovered about novices and experts. In studies that 

examined expert and novice chess players, researchers 

found that their respective memories were no different 

in relation to random arrangements of chess pieces. 

When the pieces were arranged in ways that would 

make sense in a chess game, the experts’ memories 

were much better. The theory is that an expert chess 

player is not a better problem solver, he or she just has 

a more extensive knowledge base than a novice player. 

He or she is past the rudimentary hypothesis testing 

stage of learning, past the problem solving heuristic 

stage and is now simply applying algorithms to 

already-solved problems (Ross, 2006). The same could 

be said for students applying a heuristic to the above 

problem. The only ones who could solve it would be 

those who use an algorithm. Even if a teacher taught 

the heuristic to students, he or she would essentially be 

teaching an algorithm.  

Advocates of problem solving are not solely to 

blame for the misconception between thinking and 

knowledge and between heuristics and algorithms. The 

misconception is likely due to teachers that have over-

used algorithms and never shown students how they 

are formed, that they come from heuristics, and that 

one should have a conceptual understanding of when 

they should be used, not merely a memorized 

understanding of them.  

The fundamentally flawed dichotomy within 

problem solving probably stems from thinking in terms 

of “either-ors.” One side defines appropriate education 

as teaching algorithms by having students memorize 

when to use them but not why. The other side, by 

contrast, emphasizes that thinking for understanding is 

preferable to simply memorized knowledge. Perhaps 

what has happened in the shift from the former to the 

latter practices is the instructional emphasis has shifted 

from content to thinking so much that the knowledge 

base has been wiped out in the process. Ironically, 

eliminating knowledge from the equation also 

eliminates the effectiveness of problem solving.  

The dichotomy between knowledge and thinking 

has also affected elements five and six. Number five 

states that problem solving connects theory and 

practice. At the core of this element is yet another 

flawed dichotomy. Many educators hold that education 

should prepare students for the real world by focusing 

less on theory and more on practice. However, dividing 

the two into separate cognitive domains that are 

mutually exclusive is not possible. Thinking is actually 

the integration of theory and practice, the abstract and 

the concrete, the conceptual and the particular. 

Theories are actually only general principles based on 

several practical instances. Likewise, abstract concepts 

are only general ideas based on several concrete 

particulars. Dividing the two is not possible because 

each implies the other (Lang & Evans, 2006).  

Effective instruction combines both theory and 

practice in specific ways. When effective teachers 

introduce a new concept, they first present a 

perceptual, concrete example of it to the student. By 

presenting several concrete examples to the student, 

the concept is better understood because this is in fact 

the sequence of how humans form concepts (Bruner, 

Goodnow, & Austin, 1956; Cone 1969; Ormrod, 1999; 

Peikoff, 1993). They begin with two or more concrete 

particulars and abstract from them the essential 
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defining characteristics into a concept. For example, 

after experiencing several actual tables a human 

eventually abstracts the concept a piece of furniture 

with legs and a top (Lang & Evans, 2006).  

On the other hand, learning is not complete if one 

can only match the concept with the particular example 

of it that the teacher has supplied. A successful student 

is one who can match the concept to the as yet unseen 

examples or present an example that the teacher has 

not presented. Using the table as an example, the 

student would be able to generate an example of a new 

table that the teacher has not exhibited or discussed. 

This is an example of principle eight, the transfer of 

knowledge or applying conceptual knowledge.  

The dichotomy between theory and practice also 

seems to stem from the dichotomous relationship 

between the teaching for content-knowledge and 

teaching for thinking. The former is typically 

characterized as teaching concepts out of context, 

without a particular concrete example to experience 

through the five senses. The latter, however, is often 

characterized as being too concrete. Effective 

instruction integrates both the concrete and abstract but 

in a specific sequence. First, new learning requires 

specific real problems. Second, from these concrete 

problems, the learner forms an abstract principle or 

concept. Finally, the student then attempts to apply that 

conceptual knowledge to a new, never before 

experienced problem (Bruner, Goodnow, & Austin, 

1956; Cone, 1969; Ormrod, 1999; Peikoff, 1993).  

The theory vs. practice debate is related to problem 

solving because problem solving is often marketed as 

the integration of theory and practice. I argue, 

however, it leaves out too much theory in its effort to 

be practical. That is, it leaves out the application of 

conceptual knowledge and its requisite knowledge 

base.   

Element six, problem solving teaches creativity, is 

also problematic. To create is to generate the new, so 

one must ask how someone can teach another to 

generate something new. Are there specific processes 

within a human mind that lead to creative output that 

can also be taught? The answer would depend at least 

in part on the definition of create. When an artist 

creates, he or she is actually re-creating reality 

according to his or her philosophical viewpoint, but 

much, if not all, of what is included in the creation is 

not a creation at all but an integration or an arranging 

of already existing things or ideas. So in one sense, no 

one creates; one only integrates or applies previously 

learned knowledge. No idea is entirely new; it relates 

to other ideas or things. The theory of relativity, for 

example, changed the foundational assumptions of 

physics, but it was developed in concert with ideas that 

already existed. There may be no such thing as pure 

creativity, making something from nothing. What 

seems like creativity is more properly transfer or the 

application of concepts, recognizing that what appears 

like two different things are really the same thing in 

principle.  

On the other hand, it is possible to provide an 

environment that is conducive to creativity. Many 

problem-solving theorists have argued correctly for the 

inclusion of such an atmosphere in classrooms (Christy 

& Lima, 2007; Krulik & Rudnick, 1980; Slavin, 1997; 

Sriraman, 2001). I only object to the claim that 

problem solving teaches creativity defined as creating 

the new. It can, however, teach creativity defined as 

the application of previously learned principles to new 

situations.  

Element seven, problem solving requires a 

knowledge base, although not problematic is only 

neglected within the theory of problem solving. This is 

ironic given how important it is. Jeanne Ormrod (1999) 

says, “Successful (expert) problem solvers have a more 

complete and better organized knowledge base for the 

problems they solve” (p. 370). She also relates how 

one research inquiry that studied the practice of 

problem solving in a high school physics class 

observed that the high achievers had “better organized 

information about concepts related to electricity” (p. 

370). Not only was it better organized, the students 

were also aware of “the particular relationships that 

different concepts had with one another” (Cochran, 

1988, p. 101). Norman (1980) also says,  

I do not believe we yet know enough to make 

strong statements about what ought to be or ought 

not to be included in a course on general problem 

solving methods. Although there are some general 

methods that could be of use…I suspect that in 

most real situations it is…specific knowledge that 

is most important. (p. 101) 

Finally, element eight, problem solving is the 

application of concepts or transfer, is also not 

problematic; it too is only neglected within the theory 

of problem solving. Norman Frederiksen (1984) says, 

for example, “the ability to formulate abstract concepts 

is an ability that underlies the acquisition of 

knowledge. [Teaching how to conceptualize] accounts 

for generality or transfer to new situations” (p. 379). 

According to this passage, it is the application of 

conceptual knowledge and not the heuristic alone that 

as Frederiksen says, “accounts for generality or 
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transfer,” (p. 379) which the advocates of problem 

solving so desire.  

Conclusion 

Problem solving would be more effective if the 

knowledge base and the application of that knowledge 

were the primary principles of the theory and practice. 

Currently, it seems that a content-less heuristic is the 

primary principle, which, as I have argued, is 

problematic because it dichotomizes thinking and 

knowledge into two mutually exclusive domains. In 

fact, in the course of solving any problem one will find 

themselves learning of all things not a heuristic, but an 

algorithm. In other words, teachers must not only teach 

students the heuristic and set their students free upon 

the problems of everyday life. Rather, teachers must, in 

addition to teaching students sound thinking skills, 

teach them what knowledge in the past has been 

successful at solving the problems and why.  
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