
A PROCEDURAL LOGIC
Michael P. Georgeff *

Amy L. Lansky
Pierre Bessiere

Artificial Intelligence Center
SRI International

Menlo Park, California

Abstract

Much of our commonsense knowledge about the real world
is concerned wi th the way things are done. This knowledge
is often in the form of procedures or sequences of actions
for achieving particular goals. In this paper, a formalism
is presented for representing such knowledge based on the
notion of process. A declarative semantics for the represen­
tation is given, which allows a user to state facts about the
effects of doing things in the problem domain of interest.
An operational semantics is also provided, which shows
how this knowledge can be used to achieve given goals or
to form intentions regarding their achievement. The for­
malism also serves as an executable program specification
language suitable for constructing complex systems.

1 Introduct ion

Active intelligent systems need to be able to represent and
reason about actions and how those actions can be com­
bined to achieve given goals. Much of this knowledge is
in the form of sequences of actions or "procedures" for ac­
complishing these goals. For example, knowledge about
kicking a football, performing a certain dance movement,
cooking a roast dinner, solving Rubik's cube, or diagnosing
an engine malfunction, is primari ly procedural in nature.

Within A I , there have been two approaches to the prob-
lem of action and practical reasoning, wi th a somewhat
poor connection between them. In the first category, there
is work on theories of action - i.e., on what constitutes an
action per se [1, 10, 15]. This research has focused mainly
on problems in natural-language understanding concerned
wi th the meaning of action sentences. Second, there is

'Also affiliated with the Center for the Study of Language and In­
formation at Stanford University.
This research has been made possible In part by a gift from the
System Development Foundation, by the Office of Naval Research
under Contracts N00014-80-C-0296 and N00014-86-C-0251, and by
the National Aeronautics and Space Administration under Contract
NAS2-11864. The views and conclusions contained In this paper are
those of the authors and should not be interpreted as representative
of the official policies, either expressed or implied, of the Office of
Naval Research, NASA, or the United States government.

work on planning - i.e., the problem of constructing a plan
by searching for a sequence of actions that wi l l yield a given
goal [2, 5, 18 - 23]. Surprisingly, almost no work has been
done in AI concerning the execution of preformed plans or
procedures - yet this is the almost universal way in which
humans go about their day-to-day tasks, and probably the
only way other creatures do so. To actually search the
space of possible future courses of action, which is the ba­
sis of planning, is relatively rare.

In attacking this problem, we first have to identify what
it is that humans or other active systems do when per­
forming a complex action. We postulate that such sys­
tems have some representation of a procedure for achieving
given goals, or reacting to particular events, and that they
can reason about and execute this procedure to achieve
their aims. Just as we might view intelligent systems as
having "beliefs** about the world, we consider these sys­
tems to have "procedures" for acting in the world. And,
just as for theories of belief, the problem here is to provide
abstract models for these "mental entities." We call these
abstract models processes.

There are two aims to our work. One is to develop a the­
ory suitable for building active intelligent agents. In that
regard, the theory presented in this paper models only the
simplest kind of agent - one wi th no preserved beliefs and
wi th l imited reasoning abilities. We define a declarative
semantics for our formalism, as well as an operational se­
mantics. Together these provide a suitable semantics for
simple action sentences in natural language and a method
of practical reasoning about how to accomplish given goals.

The other aim is to provide a basis for the design of im­
proved programming languages - in particular, languages
that allow users to represent their knowledge about the
behavior of systems declaratively, are amenable to veri­
fication, and operationally are flexible and responsive to
environmental changes. In this sense, our work can be
viewed as the basis for executable specification languages.

It is important to point out that the theory presented
here is not just another variant of the standard logics for
describing dynamic behaviors. In particular, there is no
existing logic (temporal, dynamic or interval-based) known
to us that can both (1) express the same complexity of

M.Georgeff et al. 517

action as the formalism proposed here (which can handle
sequencing, conditional selection, nondeterministic choice,
iteration, and hierarchical abstraction), and (2) be used to
automatically generate behaviors for achieving goals and
to form plans. In this sense, the approach here offers the
same kind of advantages as Prolog, but in a dynamic rather
than static domain: it can be viewed as a logic describing
properties of behaviors, or it can be used as a programming
language for generating behaviors to achieve given goals.

Furthermore, the model we use is based on nondeter­
ministic procedures. This nondeterminism is essential for
providing the kind of flexibility exhibited by intelligent sys­
tems. The model also allows for action failures and tests
with side effects, both of which are necessary for handling
most real-world domains. Such a model would be very
cumbersome to describe in any of the standard temporal
or dynamic logics - indeed, we know of none that have
attempted to do so.

A system based on the proposed representation has been
implemented and is currently being used for an intelligent
robot and for fault isolation and diagnosis on the space
shuttle. An early version of an implemented system is de­
scribed in Georgeff and Bonollo [6] and the latest work in
Georgeff and Lansky [8], The more recent work includes
many capabilities not decribed in this paper, including a
database of preserved "beliefs" and more powerful reason­
ing abilities represented as metalevel processes.

2 Processes and Actions

Most previous work in representing actions has been based
on state change models [5, 13, 18]. However, existing mod­
els can describe only a limited class of actions and are too
weak to be used in dealing with multiagent or dynamic
worlds.

Some attempts have recently been made to provide a
better underlying theory for actions. McDermott [15] con­
siders an action or event to be a set of sequences of states,
and describes a temporal logic for reasoning about such
actions and events. Allen [l j also considers an action to be
a set of sequences of states, and specifies an action by de­
scribing the relationships among the intervals over which
the action's conditions and effects are assumed to hold.
However, while it is possible to state arbitrary properties
of actions and events, it is not obvious how one could use
these logics to achieve, or form intentions to achieve, one's
goals.1

Our notion of action is essentially the same as that of
McDermott and Allen; namely, we consider actions to be

1 Allen |2] proposes a method of forming plans that is based on his
representation of actions. However, he does not use the temporal
logic directly, and actions are restricted to a particularly simple
form (e.g., they do not include conditionals).

sets of sequences of world states. However, in modeling in­
telligent agents, it is convenient to consider not only states
of the external world, but also various "mental entities,"
such as beliefs, goals and intentions. In the same way, it is
important to be able to model not only the actions that oc­
cur in the real world, but the internal mental "procedures"
that agents use to generate their external behaviors. We
wil l call these entities processes (see [7] and, for some early
work based on similar ideas, [10]).

We assume that, at any given instant, the world is in a
particular world state. A process is some abstract mecha­
nism that can be executed to generate a sequence of world
states, called a behavior of the process. The set of all be­
haviors of a process constitutes the action (or action type)
generated by the process. In this paper we restrict our
attention to sequential (nonconcurrent) processes.

Each process is modeled by a labeled transition network,
with distinguished start and finish nodes. The nodes of
the network are called control points, and are labeled with
state conditions. These conditions can be viewed as rep­
resenting constraints on possible world states. Each arc of
the network is labeled by a goal, which can be considered
to represent a particular type of behavior to be achieved.2

Associated with each network is a purpose, which is the
goal that wil l be achieved if the process is successfully ex­
ecuted.

A process is executed in the following manner. At any
moment during execution, the process is at a given control
point c. An outgoing arc a may be traversed if (1) the cur­
rent state of the world satisfies the state condition labeling
c and (2) the goal labeling a is successfully achieved. If no
outgoing arc from c can be traversed, process execution
fails. Execution begins with control at the init ial control
point and succeeds if control reaches the final control point.

In some ways, a process may be viewed as just a con­
venient way of specifying actions. However, processes also
allow us to make a distinction that is critical for practi­
cal reasoning - we can distinguish between behaviors that
are successful executions of the process and those that are
unsuccessful (or have Jailed). Since actions often fail to
achieve their intended goals, it is important to be able to
reason explicitly about the consequences of action failure.
We thus need to be able to represent the behaviors that
correspond to failed actions as well as successful ones. This
is particulary important if the model is to be extended
to handle multiagent and dynamic environments (e.g., see
[11]). Similarly, in natural-language understanding, it is
important to have a denotation for action sentences (such
as "he was painting a picture**) that allows for action fail­
ure, even in mid-performance ("he was painting a picture
when killed by lightning").

The notion of action failure also allows us to represent
2 ln Section 6 we show how a goal to achieve a given $tate can be
represented as a type of behavior.

518 M.Georgeff et al.

Figure 1: David and Goliath

tests on world states as actions, without the introduction
of knowledge or belief structures (cf. [16]). To test whether
a particular condition is true, one need simply perform
an action that can only succeed when the condition is in­
deed true. (Of course, action failure cannot, in general, be
equated with the falsity of the condition being tested.)

3 Process Descriptions

In this section we develop a formalism for describing pro-
cesses and for reasoning about the behaviors they generate.
Each process description consists of a purpose description
and a body. The body is a network isomorphic to the net-
work of the described process. The state conditions label­
ing the control points of the underlying process are mod­
eled by expressions which have as their denotation world
states; the goals labeling the arcs of the underlying process
are modeled by expressions whose denotations are behav­
iors (sequences of world states). The purpose description
also denotes a set of behaviors.

A typical process description using the formalism is
shown in Figure 1. It describes a procedure for killing
someone with a slingshot.

The process involves gathering stones, placing them in
a pile, getting a slingshot, and then repeatedly taking up

a stone and shooting it until the foe ((person) is hit on
the head. In this particular domain, hitting someone on
the head with a stone hurled by a slingshot always results
in that person's death. The procedure is nondeterminis-
tic and allows agents to gather as many stones as they
wish, limited only by their ability to continue gathering
them. The procedure is not guaranteed to be successful
- it may fail if any one of the actions labeling the arcs of
the network fails. However, if there are only a finite num­
ber of gatherable stones, the procedure is guaranteed to
terminate.

It is important to note how the process description cap­
tures implicit knowledge of the problem domain. This
knowledge is of two kinds: one concerning the validity
of the killing procedure, the other heuristic. For exam­
ple, hitting a person on the head with an object propelled
from a slingshot will not always kill them (e.g., if it's a
cotton ball), but will if it's a stone (in this particular do­
main). Thus, the validity of the conclusion depends criti­
cally on the first part of the procedure, which ensures that
only stones are placed in the pile. (Strictly, the proce­
dure should also ensure that the pile is initially empty or
contains nothing but stones.)

The procedure also captures heuristic knowledge in that
earlier actions may make subsequent actions more likely to
succeed. For example, the slingshot may require a certain
size and weight of stone; however, instead of this being
represented as an explicit precondition of the shooting ac­
tion, it is represented implicitly by the context established
by the procedure. In this case, the assumption is that any
stone that can possibly be gathered will most likely pos­
sess the appropriate characteristics. Note that this does
not affect the validity of the procedure; if a stone does not
have the necessary properties, the action of shooting the
slingshot will fail.

We now give a definition of the formalism. A process
description is a tuple

M.Georgeffetal. 519

• A : E —► F associates an action description with each
arc

• G is an action description called the purpose of the
process.

The state descriptions labeling the nodes are called [par-
tial] correctness assertions; the one labeling the initial
node is called the precondition of the process. The action
descriptions labeling the arcs are called goal assertions.

We choose predicate calculus as the state description
language. A state description can be viewed as denoting a
set of states; namely, those in which it is true. We distin­
guish between local and global variables. Informally, the
interpretation of a local variable is fixed in the interval
during which a given arc is transitted, but can otherwise
vary. A global variable, on the other hand, has a fixed
interpretation during the execution of the entire process.
(Local variables are needed especially in loops where it is
necessary to identify different elements from one iteration
to the next). A state description is any formula in this
calculus in which all global variables are free and all local
variables are bound. In the example of Figure 1, global
variables are prefixed by $ and local variables, assumed to
be existentially quantified, by %. Al l correctness assertions
are assumed to be true.

An action description consists of an action predicate ap­
plied to an n-tuple of terms. Action descriptions denote
action types or sets of state sequences. That is, an expres­
sion like "walk (a , b) " is considered to denote the set of
walking actions from point a to b. Any sequence of states
satisfies the action description if it is in the set so denoted.
In Section 6 we augment the action description language
to include various temporal operators.

4 Declarative Semantics

The declarative semantics of process descriptions is in­
tended to describe what is true about the underlying sys­
tem of processes and the world in which they operate. Such
a semantics says nothing about how such knowledge could
be used to achieve particular goals — rather, it simply
allows one to state facts about certain behaviors.

On an intuit ive level, the declarative semantics is
straightforward. The intended meaning of a process de­
scription P is that every behavior that satisfies the goal
and correctness assertions for some path through the net
also satisfies the purpose of P. Alternatively, one may view
the body of P as denoting a set of behaviors - namely,
those that satisfy the goal and correctness assertions for
some path through the net. Then the intended meaning
of P is that each behavior in the set satisfies the purpose
of P.

Unfortunately, allowing only simple paths through the
net wi l l not do. For example, if a node has multiple out­
going arcs, we need to allow several of these arcs to be
tried unti l one is found successful. This is exactly the sort
of behavior required of any useful conditional plan or pro­
gram; if a test on one branch of a conditional fails (returns
false), it is necessary to try other branches of the condi­
tional. The problem in this case is that an attempted test
may change the state of the world. Thus, paths through
the network must allow behaviors that explicitly include
failed attempts at realizing tests and actions as well as
successful ones.

A formal definition of the semantics of process descrip­
tions is given in [9]; here we wil l simply give an informal
outline. The approach is similar to that used for most
temporal logics. We first consider single states. A state
s consists of a set of elements from a domain D together
with relations and functions defined over these elements.
Assuming a fixed interpretation for each constant symbol
in the language, a state interpretation I assigns to each
variable in the language an element of D, to each n-ary
predicate symbol an n-ary relation in D} and to each n-
adic function symbol an n-adic function in D. The t ru th-
value of a state assertion w in a state s wi th respect to a
state interpretation / is defined in the standard way (vari­
ables ranging over elements of D). We can also view w as
denoting the set of states in which w is true.

While state interpretations may vary from state to state
in the course of a behavior, the interpretation of global
variables must remain the same. For a process description
P, a global variable assignment a is defined to be an as­
signment of an element in D to each global variable in P.
Similarly, for each arc in P, we have a local variable as­
signment that associates a value with each local variable
used by the goal assertion of that arc. In the course of
a behavior satisfying the goal assertion, its local variables
may take on at most one value. A state interpretation /
is said to be consistent wi th a given a (or β) if the assign­
ment to global (local) variables in / is the same as their
assignment in). Note that we do not require a fixed
interpretation for predicate symbols or function symbols
over the sequence of states in a behavior. We define a
process instance to be a process description together wi th
consistent global and local variable assignments.

Following the discussion above, we consider the set of
behaviors denoted by the body of a process instance as
falling into either of two classes, one of which we wi l l call
the success set of the process instance and the other the
failure set The success set represents all those behaviors
that constitute successful executions of the underlying pro­
cess; the failure set represents all those executions that fail
somewhere along the way.

520 M. Georgeff et al.

Let P be a set of process instances and let n be a node
in a process instance P. An element Q of P is said to
be applicable to an arc a emanating from n if its purpose
is included in the set of behaviours described by the goal
assertion of a.

The allowed behaviors starting at node n are those in
which each applicable process instance at n is tried at most
once unti l one succeeds or they all fail. * Let succ(n, a) be
the set of behaviors consisting of some arbitrary number
of unsuccessful attempts by applicable process instances
(at most one per process instance) on the arcs emanating
from n, followed by a behavior of an applicable process
instance that succeeds for some arc a. Each of these at­
tempts, both successful and unsuccessful, must begin in
a state that satisfies the correctness assertion at node n.
Similarly, let fail(n) be the set of all behaviors that fail
to reach a successor node of n, i.e., behaviors consisting
of failed attempts of all applicable processes. In this case,
an attempt may fail because it cannot satisfy the correct­
ness assertion at node n, or because the applicable process
instance itself fails.

The success and failure sets for a node n, denoted S(n)
and F(n) respectively, are then defined recursively as fol­
lows: 4

1. If n is a final node, then S(n) is the set of states
satisfying the correctness assertion at n and F(n) is
the set of states that fail to satisfy the correctness
assertion at n.

The success and failure sets of a process description P
are then taken to be the success and failure sets, respec­
tively, of the init ial node of P. The semantics of P is that
any behavior in the success set of P satisfies the purpose
of P.

As an example, consider the process networks shown in
Figure 2 where the arcs are labeled with applicable process
instances. For a process instance P1 let (P) denote the set
of its successful behaviors, and (P)F the set of its failed
behaviors. Then the success and failure sett for each of
the process networks in Figure 2 are as follows:

3The deciiion to try each process instance at most once allows us to
realiEe the control constructs of standard programming languages;
various alternatives are possible without substantially affecting the
results presented here.

Figure 2: Sample Process Networks

Notice that backtracking upon failure occurs only up to
the current node being exited, and no farther.

Because process descriptions can be recursive, and be­
cause loops in process networks introduce self-reference
into the definitions of S and F given above, a formal spec­
ification of the semantics of process descriptions requires a
fixed-point construction. That is, for a given set of process
instances P = P1... Pn, we need to define a transforma­
tion T that maps n-tuples of pairs of success and failure
sets into additional such n-tuples. The definition of T is
based on the definition of success and failure sets given
above. If one assumes a set of primit ive tests and actions,
the least fixed point of T applied to these primitives can
be taken as the denotation of P1... Pn.

5 Operational Semantics

Process descriptions provide a way of describing the effects
of actions in some dynamic problem domain. But how
can a system or "agent" use this knowledge to achieve its
goals? That is, we currently have a knowledge representa-

M. Georgeff et al. 521

tion that allows us to state certain properties about actions
and what behaviors constitute what actions. We have not
explained, however, how an agent's wanting something can
provide a rationale for or cause an agent to act in a certain
way. This is the basis of so-called practical reasoning [3].

One way to view the causal connection between reason­
ing and action is as an interpreter that takes knowledge
about actions and goals as input and as a result performs
certain acts in the world. An abstract representation of
such an interpreter may be considered to be the operational
semantics of the knowledge representation language.

If a system is to be able to achieve its goals, it must be
able to bring about certain actions, and thus be able to
affect the course of behavior. Thus, we assume a system
with certain effector capabilities. The actions that the sys­
tem can effect simply by choosing to do so wil l be called
primitive actions. The system must also be able to sense
the world to the extent of determining the success or fail­
ure of the primitive actions. In addition, we assume the
system has sensor capabilities for detecting satisfaction of
all correctness assertions.

The system tries to achieve its goals by applying the
following interpreter to applicable process instances. The
interpreter works by exploring paths from a given node
n in a process description P in a depth-first manner. To
transit an arc, it unifies the corresponding arc assertion
with the purposes of the set of all process descriptions,
and executes those that unify, one at a time, unti l one ter­
minates satisfactorily. If none of the matching processes
terminate successfully, and all leaving arcs fail, the execu­
tion of P fails. At each node, we verify that the correctness
assertion (c-assertion) is satisfied.

function successful (P n)
if (is-end-node n) then

if (satisfied (c-assertion n)) then
return true

else return false
else

arc-set := (outgoing-arcs n)
pr-a-set := (processes-that-unify arc-set)
do until (empty pr-a-set)

if (not (satisfied (c-assertion n))) then
return false

pr-a := (randomly-delete pr-a-set)
pr := (process pr-a)
a := (arc pr-a)
if (successful pr (start-node pr)) then

return (successful P (terminating-node a))
end-do
return false

end-function

The function processes-that-unify takes a set of arcs and
returns the set of processes that unify with some arc in

the set, along with the specific arc with which each uni­
fies. The functions process and arc select out the process
instance and corresponding arc from each element of this
set. The function randomly-delete selects an element from
a set, destructively modifying the set as it does so. The
order in which selections are made is called the selection
rule. The function return returns from the enclosing func­
tion, not just the enclosing do. The init ial system goal
is represented by a process description with a single arc
labeled with the goal.

Note that, if this theory were to form the basis of the
reasoning capabilities of some real-world agent, we would
probably want process descriptions to be invoked on the
basis of particular facts becoming known as well as be­
cause particular goals have been established. A suitable
organization for such a system would be to have a list of
all applicable process descriptions - some goal-invoked and
others fact-invoked - and at each stage of processing select
one of these for execution [8]. The above recursive imple­
mentation would have to be modified, but the semantics
would remain essentially the same.

Of course, it is important that the operational and
declarative semantics be consistent with each other. The
declarative semantics defines a set of behaviors for each
process instance. The operational semantics also defines
a set of behaviors for each process instance, but this set
depends on the selection rule utilized in the above algo­
r i thm. Let (P)D be the set of successful behaviors for a
process instance P as given by the declarative semantics,
and let (P)o,R be the set of successful behaviors for P as
given by the operational semantics for selection rule R. It
is not difficult to show that

This means that any behavior generated by the interpreter
given above wil l satisfy the declarative semantics. How­
ever, the inclusion, in general, is strict. That is, the in­
terpreter may not achieve some given goal even when, ac­
cording to the declarative semantics, there exists a way to
achieve it. But, assuming that all correctness assertions
are directly testable, we do have the following:

If a behavior a is in (P) D , there exists a selection
rule R such that s is in (P)O,R-

This is the best one can really hope for when any par­
ticular selection may cause some possibly irreversible ac­
tion. It means that, provided you are smart enough to
choose the right selection rule, the above interpreter wi l l
achieve a goal if it is at all achievable. This highlights the
importance of reasoning about the selection of applicable
processes in any practical implementation (see also |8]). It
also means that one can reliably plan to achieve goals and
be guaranteed of finding a finite plan if one exists.

522 M. Georgeff et al.

6 A c t i o n Descr ip t ions

So far, action descriptions have been restricted to simple
action predicates. However, it is desirable to also allow
a class of action descriptions that relate to conditions on
world states.

We thus extend the action description language to in­
clude actions that achieve a given world state p (repre­
sented as !p), actions to test for p (?p), and actions that
preserve p (#p). We define these action descriptions more
formally as follows.

We assume a fixed domain D and a fixed interpretation
for constant symbols. Let w be a state assertion, a an
action description of the above form, and S = s1 . . . sn a
behavior. Assume fixed global and local variable assign­
ments and let all local interpretations / be consistent with
them. We then have the following truth rules:

1. !w is true in S if, for some local interpretation I, w is
true in sn

2. ?w is true in S if, for some local interpretation /, w
is true in s1.

3. #w is true in S if, for all i, 1 < i < n, there exist local
interpretations Ii,- such that w is true of all states in
S or -iw is true in all states in 5.

To make effective use of such action descriptions we can
use proof rules of the kind given below. We will use the
notation (P) (a) to mean that every successful behaviour
associated with the process description P satisfies the tem­
poral assertion a. (P)F denotes failed behaviors. The
symbols ";" and T represent sequential composition and
[nondeterministic] branching, respectively.

Some typical proof rules are as follows:

Conjunctive Testing

Conjunctive Achievement

Disjunctive Testing

Disjunctive Achievement

Note that these proof rules are not the only ones, nor
are they the strongest, that could be used. For example, in
the rule for conjunctive achievement, we need not require
that p be unaffected by (P2); all we need do is regress
the goal !p through (P2) and set this as the goal of (P1).
However, since in most real-world cases it is difficult to
regress conditions through processes, the rules given above
prove to be most practical.

The declarative semantics with this extension to the lan­
guage is standard. The operational semantics simply re­
quires that the interpreter be modified to allow application
of the proof rules when necessary.

7 Conclusions

This paper has presented a simple model for action and a
means for representing knowledge about procedures. We
have indicated the importance of reasoning about processes
rather than simply histories or state sequences. A declara­
tive semantics for the representation was provided that al­
lows a user to specify facts about behaviors independently
of context. We have also given an operational semantics
that shows how these facts can be used by an agent to
achieve (or form intentions to achieve) its goals.

This knowledge representation can also be used for plan­
ning. Indeed, the operators of many standard planning
systems (such as NOAH [19], DEVISER [22] and SIPE
[23]) can be viewed as restricted forms of process descrip­
tions. The fact that any behavior allowed by the declar­
ative semantics can also be found using the operational
semantics means that a planning algorithm that tried all
possible selection rules would be "complete" - that is, it
would find a solution if one existed.

By modifying the formalism so that failure sets allow
ful l backtracking, single-state theorem proving of Horn
clauses becomes a special case. This modification would
also include as a special case the realization of "backtrack­
ing through triangle tables," as proposed by Nilsson [17].
However, such modifications present practical problems of
verification and efficiency, and would appear useful only in
some special cases.

In some ways, the declarative semantics is surprisingly
complex and would seem to indicate some undesirable
properties of the representation. Most of these difficulties
arise from the need to model failed as well as successful be­
haviors. Of course, if we could fully specify necessary cor­
rectness conditions independently of context, and test for
them, failed behaviors would become irrelevant for practi­
cal reasoning; we could always test to make sure conditions
were true when needed. But experience with programming
languages, and indeed the real world, shows that this can
often be impractical if not impossible.

The formalism presented here can also be viewed as an

M. Georgeff et al. 523

executable specification language — that is, as a program­
ming language that allows a user to directly describe the
behaviors desired of the system being constructed. The
fact that the language has a denotational semantics allows
facts about the behavior of the system to be independently
stated and verified. The operational semantics provides a
means for directly executing these specifications to obtain
the desired behavior. In this sense the language has much
in common with Prolog, except that it applies to dynamic
domains instead of static domains.

The system modeled in this paper has no database,
and thus no storage for knowledge or beliefs. We have
a practical implementation of a system that includes such
a database, but have yet to formalize it. This introduces
all the standard planning issues, such as the frame prob­
lem [14] and consistency maintenance [4]. We also need to
investigate concurrency, and extend the model to deal with
it. The notion of process failure and correctness assertions
play a particularly important part when multiple agents
or dynamic environments are allowed, and bear some rela­
tionship to formalisms for concurrent program verification.
Some work in this direction is described by Georgeff [7].

References
[1] Allen, J. F., "A General Model of Action and

Time," Computer Science Report TR 97, University
of Rochester, Rochester, New York (1981).

[2] Allen, J.F., "Maintaining Knowledge about Tempo­
ral Intervals," Comm. ACM, Vol. 26, pp. 832-843
(1983).

[3] Davidson, D., Actions and Events, Clarendon Press,
Oxford (1980).

[4] Doyle, J., "A Truth Maintenance System," Artificial
Intelligence Vol. 12, No.3 (1979).

[5) Fikes, R. E., and Nilsson, N. J., "STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving," Artificial Intelligence Vol. 2, pp.
189-208 (1971).

[6] Georgeff, M. P. and Bonollo, U., "Procedural Ex­
pert Systems," Proceedings of the Eighth Interna-
tional Joint Conference on Artificial Intelligence,
Karlsruhe, West Germany (1983).

[7] Georgeff, M. P., "A Theory of Action for Multia-
gent Planning," Proceedings of the Fourth National
Conference on Artificial Intelligence, Austin, Texas
(1984).

[8] Georgeff, M.P. and Lansky, A.L., "Practical Rea-
soning Using Procedural Knowledge," forthcoming
Technical Note, Artificial Intelligence Center, SRI
International, Menlo Park, California (1985).

[9] Georgeff, M.P., and Lansky, A.L., "A Procedu­
ral Logic: Declarative and Procedural Semantics,"
forthcoming Technical Note, Artificial Intelligence
Center, SRI International, Menlo Park, California
(1985).

[10] Hendrix, G.G., "Modeling Simultaneous Actions and
Continuous Processes," Artificial Intelligence, Vol.
4, pp. 145-180 (1973).

[11] Hoare, C.A.R., Brookes, S.D., and Roscoe, A.W.
"A Theory of Communicating Sequential Processes,"
Technical Monograph PRG-16, Oxford University
Computing Laboratory, Oxford, England.

[12] Kowalski, R., Logic for Problem Solving, North Hol­
land Publishing Company, Now York, Now York
(1979).

[13] McCarthy, J., "Programs with Common Sense," in
Semantic Information Processing, M. Minsky (ed.),
MIT Press, Cambridge, Massachusetts (1968).

[14] McCarthy, J., and Hayes, P.J., "Some Philosophi­
cal Problems from the Standpoint of Artificial In­
telligence, in Machine Intelligence 4, pp. 463-502
(1969).

[15] McDermott, D., "A Tomporal Logic for Reason­
ing about Plans and Processes," Computer Science
Research Report 196, Yale University, New Haven,
Connecticut (1981).

[16] Moore, R.C., "Reasoning about Knowledge and Ac­
tion," Technical Note 191, Artificial Intelligence
Center, SRI International, Menlo Park, California
(1980).

[17] Nilsson, N.J., "Triangle Tables: A Proposal for
a Robot Programming Language", Technical Note
347, Artificial Intelligence Center, SRI International,
Menlo Park, California (1985).

[18] Rosenschein, S.J., "Plan Synthesis: A Logical Per­
spective," Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, pp. 331-
337 (1981).

[19] Sacerdoti, ED. A Structure for Plans and Be-
haviour, Elsevier North Holland Publishing Com­
pany, New York, New York (1977).

[20] Stefik, M. "Planning with Constraints," Artificial
Intelligence, Vol. 16, pp. 111-140 (1981).

[21] Tate, A. "Goal Structure - Capturing the Intent of
Plans," Proceedings of the Sixth European Confer-
encs on Artificial Intelligence, pp. 273-276 (1984).

[22] Vere, S., "Planning in Time: Windows and Dura­
tions for Activities and Goals," Jet Propulsion Lab­
oratory, Pasadena, California (1981).

[23] Wilkins, D.E., "Domain Independent Planning:
Representation and Plan Generation," Artificial In-
telligence, Vol. 22, pp. 269-301 (1984).

