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Abstract 

Much of our commonsense knowledge about the real world 
is concerned wi th the way things are done. This knowledge 
is often in the form of procedures or sequences of actions 
for achieving particular goals. In this paper, a formalism 
is presented for representing such knowledge based on the 
notion of process. A declarative semantics for the represen­
tation is given, which allows a user to state facts about the 
effects of doing things in the problem domain of interest. 
An operational semantics is also provided, which shows 
how this knowledge can be used to achieve given goals or 
to form intentions regarding their achievement. The for­
malism also serves as an executable program specification 
language suitable for constructing complex systems. 

1 Introduct ion 

Active intelligent systems need to be able to represent and 
reason about actions and how those actions can be com­
bined to achieve given goals. Much of this knowledge is 
in the form of sequences of actions or "procedures" for ac­
complishing these goals. For example, knowledge about 
kicking a football, performing a certain dance movement, 
cooking a roast dinner, solving Rubik's cube, or diagnosing 
an engine malfunction, is primari ly procedural in nature. 

Within A I , there have been two approaches to the prob-
lem of action and practical reasoning, wi th a somewhat 
poor connection between them. In the first category, there 
is work on theories of action - i.e., on what constitutes an 
action per se [1, 10, 15]. This research has focused mainly 
on problems in natural-language understanding concerned 
wi th the meaning of action sentences. Second, there is 
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work on planning - i.e., the problem of constructing a plan 
by searching for a sequence of actions that wi l l yield a given 
goal [2, 5, 18 - 23]. Surprisingly, almost no work has been 
done in AI concerning the execution of preformed plans or 
procedures - yet this is the almost universal way in which 
humans go about their day-to-day tasks, and probably the 
only way other creatures do so. To actually search the 
space of possible future courses of action, which is the ba­
sis of planning, is relatively rare. 

In attacking this problem, we first have to identify what 
it is that humans or other active systems do when per­
forming a complex action. We postulate that such sys­
tems have some representation of a procedure for achieving 
given goals, or reacting to particular events, and that they 
can reason about and execute this procedure to achieve 
their aims. Just as we might view intelligent systems as 
having "beliefs** about the world, we consider these sys­
tems to have "procedures" for acting in the world. And, 
just as for theories of belief, the problem here is to provide 
abstract models for these "mental entities." We call these 
abstract models processes. 

There are two aims to our work. One is to develop a the­
ory suitable for building active intelligent agents. In that 
regard, the theory presented in this paper models only the 
simplest kind of agent - one wi th no preserved beliefs and 
wi th l imited reasoning abilities. We define a declarative 
semantics for our formalism, as well as an operational se­
mantics. Together these provide a suitable semantics for 
simple action sentences in natural language and a method 
of practical reasoning about how to accomplish given goals. 

The other aim is to provide a basis for the design of im­
proved programming languages - in particular, languages 
that allow users to represent their knowledge about the 
behavior of systems declaratively, are amenable to veri­
fication, and operationally are flexible and responsive to 
environmental changes. In this sense, our work can be 
viewed as the basis for executable specification languages. 

It is important to point out that the theory presented 
here is not just another variant of the standard logics for 
describing dynamic behaviors. In particular, there is no 
existing logic (temporal, dynamic or interval-based) known 
to us that can both (1) express the same complexity of 
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action as the formalism proposed here (which can handle 
sequencing, conditional selection, nondeterministic choice, 
iteration, and hierarchical abstraction), and (2) be used to 
automatically generate behaviors for achieving goals and 
to form plans. In this sense, the approach here offers the 
same kind of advantages as Prolog, but in a dynamic rather 
than static domain: it can be viewed as a logic describing 
properties of behaviors, or it can be used as a programming 
language for generating behaviors to achieve given goals. 

Furthermore, the model we use is based on nondeter­
ministic procedures. This nondeterminism is essential for 
providing the kind of flexibility exhibited by intelligent sys­
tems. The model also allows for action failures and tests 
with side effects, both of which are necessary for handling 
most real-world domains. Such a model would be very 
cumbersome to describe in any of the standard temporal 
or dynamic logics - indeed, we know of none that have 
attempted to do so. 

A system based on the proposed representation has been 
implemented and is currently being used for an intelligent 
robot and for fault isolation and diagnosis on the space 
shuttle. An early version of an implemented system is de­
scribed in Georgeff and Bonollo [6] and the latest work in 
Georgeff and Lansky [8], The more recent work includes 
many capabilities not decribed in this paper, including a 
database of preserved "beliefs" and more powerful reason­
ing abilities represented as metalevel processes. 

2 Processes and Actions 

Most previous work in representing actions has been based 
on state change models [5, 13, 18]. However, existing mod­
els can describe only a limited class of actions and are too 
weak to be used in dealing with multiagent or dynamic 
worlds. 

Some attempts have recently been made to provide a 
better underlying theory for actions. McDermott [15] con­
siders an action or event to be a set of sequences of states, 
and describes a temporal logic for reasoning about such 
actions and events. Allen [ l j also considers an action to be 
a set of sequences of states, and specifies an action by de­
scribing the relationships among the intervals over which 
the action's conditions and effects are assumed to hold. 
However, while it is possible to state arbitrary properties 
of actions and events, it is not obvious how one could use 
these logics to achieve, or form intentions to achieve, one's 
goals.1 

Our notion of action is essentially the same as that of 
McDermott and Allen; namely, we consider actions to be 

1 Allen |2] proposes a method of forming plans that is based on his 
representation of actions. However, he does not use the temporal 
logic directly, and actions are restricted to a particularly simple 
form (e.g., they do not include conditionals). 

sets of sequences of world states. However, in modeling in­
telligent agents, it is convenient to consider not only states 
of the external world, but also various "mental entities," 
such as beliefs, goals and intentions. In the same way, it is 
important to be able to model not only the actions that oc­
cur in the real world, but the internal mental "procedures" 
that agents use to generate their external behaviors. We 
wil l call these entities processes (see [7] and, for some early 
work based on similar ideas, [10]). 

We assume that, at any given instant, the world is in a 
particular world state. A process is some abstract mecha­
nism that can be executed to generate a sequence of world 
states, called a behavior of the process. The set of all be­
haviors of a process constitutes the action (or action type) 
generated by the process. In this paper we restrict our 
attention to sequential (nonconcurrent) processes. 

Each process is modeled by a labeled transition network, 
with distinguished start and finish nodes. The nodes of 
the network are called control points, and are labeled with 
state conditions. These conditions can be viewed as rep­
resenting constraints on possible world states. Each arc of 
the network is labeled by a goal, which can be considered 
to represent a particular type of behavior to be achieved.2 

Associated with each network is a purpose, which is the 
goal that wil l be achieved if the process is successfully ex­
ecuted. 

A process is executed in the following manner. At any 
moment during execution, the process is at a given control 
point c. An outgoing arc a may be traversed if (1) the cur­
rent state of the world satisfies the state condition labeling 
c and (2) the goal labeling a is successfully achieved. If no 
outgoing arc from c can be traversed, process execution 
fails. Execution begins with control at the init ial control 
point and succeeds if control reaches the final control point. 

In some ways, a process may be viewed as just a con­
venient way of specifying actions. However, processes also 
allow us to make a distinction that is critical for practi­
cal reasoning - we can distinguish between behaviors that 
are successful executions of the process and those that are 
unsuccessful (or have Jailed). Since actions often fail to 
achieve their intended goals, it is important to be able to 
reason explicitly about the consequences of action failure. 
We thus need to be able to represent the behaviors that 
correspond to failed actions as well as successful ones. This 
is particulary important if the model is to be extended 
to handle multiagent and dynamic environments (e.g., see 
[11]). Similarly, in natural-language understanding, it is 
important to have a denotation for action sentences (such 
as "he was painting a picture**) that allows for action fail­
ure, even in mid-performance ("he was painting a picture 
when killed by lightning"). 

The notion of action failure also allows us to represent 
2 ln Section 6 we show how a goal to achieve a given $tate can be 
represented as a type of behavior. 
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Figure 1: David and Goliath 

tests on world states as actions, without the introduction 
of knowledge or belief structures (cf. [16]). To test whether 
a particular condition is true, one need simply perform 
an action that can only succeed when the condition is in­
deed true. (Of course, action failure cannot, in general, be 
equated with the falsity of the condition being tested.) 

3 Process Descriptions 

In this section we develop a formalism for describing pro-
cesses and for reasoning about the behaviors they generate. 
Each process description consists of a purpose description 
and a body. The body is a network isomorphic to the net-
work of the described process. The state conditions label­
ing the control points of the underlying process are mod­
eled by expressions which have as their denotation world 
states; the goals labeling the arcs of the underlying process 
are modeled by expressions whose denotations are behav­
iors (sequences of world states). The purpose description 
also denotes a set of behaviors. 

A typical process description using the formalism is 
shown in Figure 1. It describes a procedure for killing 
someone with a slingshot. 

The process involves gathering stones, placing them in 
a pile, getting a slingshot, and then repeatedly taking up 

a stone and shooting it until the foe ((person) is hit on 
the head. In this particular domain, hitting someone on 
the head with a stone hurled by a slingshot always results 
in that person's death. The procedure is nondeterminis-
tic and allows agents to gather as many stones as they 
wish, limited only by their ability to continue gathering 
them. The procedure is not guaranteed to be successful 
- it may fail if any one of the actions labeling the arcs of 
the network fails. However, if there are only a finite num­
ber of gatherable stones, the procedure is guaranteed to 
terminate. 

It is important to note how the process description cap­
tures implicit knowledge of the problem domain. This 
knowledge is of two kinds: one concerning the validity 
of the killing procedure, the other heuristic. For exam­
ple, hitting a person on the head with an object propelled 
from a slingshot will not always kill them (e.g., if it's a 
cotton ball), but will if it's a stone (in this particular do­
main). Thus, the validity of the conclusion depends criti­
cally on the first part of the procedure, which ensures that 
only stones are placed in the pile. (Strictly, the proce­
dure should also ensure that the pile is initially empty or 
contains nothing but stones.) 

The procedure also captures heuristic knowledge in that 
earlier actions may make subsequent actions more likely to 
succeed. For example, the slingshot may require a certain 
size and weight of stone; however, instead of this being 
represented as an explicit precondition of the shooting ac­
tion, it is represented implicitly by the context established 
by the procedure. In this case, the assumption is that any 
stone that can possibly be gathered will most likely pos­
sess the appropriate characteristics. Note that this does 
not affect the validity of the procedure; if a stone does not 
have the necessary properties, the action of shooting the 
slingshot will fail. 

We now give a definition of the formalism. A process 
description is a tuple 
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• A : E —► F associates an action description with each 
arc 

• G is an action description called the purpose of the 
process. 

The state descriptions labeling the nodes are called [par-
tial] correctness assertions; the one labeling the initial 
node is called the precondition of the process. The action 
descriptions labeling the arcs are called goal assertions. 

We choose predicate calculus as the state description 
language. A state description can be viewed as denoting a 
set of states; namely, those in which it is true. We distin­
guish between local and global variables. Informally, the 
interpretation of a local variable is fixed in the interval 
during which a given arc is transitted, but can otherwise 
vary. A global variable, on the other hand, has a fixed 
interpretation during the execution of the entire process. 
(Local variables are needed especially in loops where it is 
necessary to identify different elements from one iteration 
to the next). A state description is any formula in this 
calculus in which all global variables are free and all local 
variables are bound. In the example of Figure 1, global 
variables are prefixed by $ and local variables, assumed to 
be existentially quantified, by %. Al l correctness assertions 
are assumed to be true. 

An action description consists of an action predicate ap­
plied to an n-tuple of terms. Action descriptions denote 
action types or sets of state sequences. That is, an expres­
sion like "walk (a , b ) " is considered to denote the set of 
walking actions from point a to b. Any sequence of states 
satisfies the action description if it is in the set so denoted. 
In Section 6 we augment the action description language 
to include various temporal operators. 

4 Declarative Semantics 

The declarative semantics of process descriptions is in­
tended to describe what is true about the underlying sys­
tem of processes and the world in which they operate. Such 
a semantics says nothing about how such knowledge could 
be used to achieve particular goals — rather, it simply 
allows one to state facts about certain behaviors. 

On an intuit ive level, the declarative semantics is 
straightforward. The intended meaning of a process de­
scription P is that every behavior that satisfies the goal 
and correctness assertions for some path through the net 
also satisfies the purpose of P. Alternatively, one may view 
the body of P as denoting a set of behaviors - namely, 
those that satisfy the goal and correctness assertions for 
some path through the net. Then the intended meaning 
of P is that each behavior in the set satisfies the purpose 
of P. 

Unfortunately, allowing only simple paths through the 
net wi l l not do. For example, if a node has multiple out­
going arcs, we need to allow several of these arcs to be 
tried unti l one is found successful. This is exactly the sort 
of behavior required of any useful conditional plan or pro­
gram; if a test on one branch of a conditional fails (returns 
false), it is necessary to try other branches of the condi­
tional. The problem in this case is that an attempted test 
may change the state of the world. Thus, paths through 
the network must allow behaviors that explicitly include 
failed attempts at realizing tests and actions as well as 
successful ones. 

A formal definition of the semantics of process descrip­
tions is given in [9]; here we wil l simply give an informal 
outline. The approach is similar to that used for most 
temporal logics. We first consider single states. A state 
s consists of a set of elements from a domain D together 
with relations and functions defined over these elements. 
Assuming a fixed interpretation for each constant symbol 
in the language, a state interpretation I assigns to each 
variable in the language an element of D, to each n-ary 
predicate symbol an n-ary relation in D} and to each n-
adic function symbol an n-adic function in D. The t ru th-
value of a state assertion w in a state s wi th respect to a 
state interpretation / is defined in the standard way (vari­
ables ranging over elements of D). We can also view w as 
denoting the set of states in which w is true. 

While state interpretations may vary from state to state 
in the course of a behavior, the interpretation of global 
variables must remain the same. For a process description 
P, a global variable assignment a is defined to be an as­
signment of an element in D to each global variable in P. 
Similarly, for each arc in P, we have a local variable as­
signment that associates a value with each local variable 
used by the goal assertion of that arc. In the course of 
a behavior satisfying the goal assertion, its local variables 
may take on at most one value. A state interpretation / 
is said to be consistent wi th a given a (or β) if the assign­
ment to global (local) variables in / is the same as their 
assignment in ). Note that we do not require a fixed 
interpretation for predicate symbols or function symbols 
over the sequence of states in a behavior. We define a 
process instance to be a process description together wi th 
consistent global and local variable assignments. 

Following the discussion above, we consider the set of 
behaviors denoted by the body of a process instance as 
falling into either of two classes, one of which we wi l l call 
the success set of the process instance and the other the 
failure set The success set represents all those behaviors 
that constitute successful executions of the underlying pro­
cess; the failure set represents all those executions that fail 
somewhere along the way. 
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Let P be a set of process instances and let n be a node 
in a process instance P. An element Q of P is said to 
be applicable to an arc a emanating from n if its purpose 
is included in the set of behaviours described by the goal 
assertion of a. 

The allowed behaviors starting at node n are those in 
which each applicable process instance at n is tried at most 
once unti l one succeeds or they all fail. * Let succ(n, a) be 
the set of behaviors consisting of some arbitrary number 
of unsuccessful attempts by applicable process instances 
(at most one per process instance) on the arcs emanating 
from n, followed by a behavior of an applicable process 
instance that succeeds for some arc a. Each of these at­
tempts, both successful and unsuccessful, must begin in 
a state that satisfies the correctness assertion at node n. 
Similarly, let fail(n) be the set of all behaviors that fail 
to reach a successor node of n, i.e., behaviors consisting 
of failed attempts of all applicable processes. In this case, 
an attempt may fail because it cannot satisfy the correct­
ness assertion at node n, or because the applicable process 
instance itself fails. 

The success and failure sets for a node n, denoted S(n) 
and F(n) respectively, are then defined recursively as fol­
lows: 4 

1. If n is a final node, then S(n) is the set of states 
satisfying the correctness assertion at n and F(n) is 
the set of states that fail to satisfy the correctness 
assertion at n. 

The success and failure sets of a process description P 
are then taken to be the success and failure sets, respec­
tively, of the init ial node of P. The semantics of P is that 
any behavior in the success set of P satisfies the purpose 
of P. 

As an example, consider the process networks shown in 
Figure 2 where the arcs are labeled with applicable process 
instances. For a process instance P1 let (P) denote the set 
of its successful behaviors, and (P)F the set of its failed 
behaviors. Then the success and failure sett for each of 
the process networks in Figure 2 are as follows: 

3The deciiion to try each process instance at most once allows us to 
realiEe the control constructs of standard programming languages; 
various alternatives are possible without substantially affecting the 
results presented here. 

Figure 2: Sample Process Networks 

Notice that backtracking upon failure occurs only up to 
the current node being exited, and no farther. 

Because process descriptions can be recursive, and be­
cause loops in process networks introduce self-reference 
into the definitions of S and F given above, a formal spec­
ification of the semantics of process descriptions requires a 
fixed-point construction. That is, for a given set of process 
instances P = P1... Pn, we need to define a transforma­
tion T that maps n-tuples of pairs of success and failure 
sets into additional such n-tuples. The definition of T is 
based on the definition of success and failure sets given 
above. If one assumes a set of primit ive tests and actions, 
the least fixed point of T applied to these primitives can 
be taken as the denotation of P1... Pn. 

5 Operational Semantics 

Process descriptions provide a way of describing the effects 
of actions in some dynamic problem domain. But how 
can a system or "agent" use this knowledge to achieve its 
goals? That is, we currently have a knowledge representa-
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tion that allows us to state certain properties about actions 
and what behaviors constitute what actions. We have not 
explained, however, how an agent's wanting something can 
provide a rationale for or cause an agent to act in a certain 
way. This is the basis of so-called practical reasoning [3]. 

One way to view the causal connection between reason­
ing and action is as an interpreter that takes knowledge 
about actions and goals as input and as a result performs 
certain acts in the world. An abstract representation of 
such an interpreter may be considered to be the operational 
semantics of the knowledge representation language. 

If a system is to be able to achieve its goals, it must be 
able to bring about certain actions, and thus be able to 
affect the course of behavior. Thus, we assume a system 
with certain effector capabilities. The actions that the sys­
tem can effect simply by choosing to do so wil l be called 
primitive actions. The system must also be able to sense 
the world to the extent of determining the success or fail­
ure of the primitive actions. In addition, we assume the 
system has sensor capabilities for detecting satisfaction of 
all correctness assertions. 

The system tries to achieve its goals by applying the 
following interpreter to applicable process instances. The 
interpreter works by exploring paths from a given node 
n in a process description P in a depth-first manner. To 
transit an arc, it unifies the corresponding arc assertion 
with the purposes of the set of all process descriptions, 
and executes those that unify, one at a time, unti l one ter­
minates satisfactorily. If none of the matching processes 
terminate successfully, and all leaving arcs fail, the execu­
tion of P fails. At each node, we verify that the correctness 
assertion (c-assertion) is satisfied. 

function successful (P n) 
if (is-end-node n) then 

if (satisfied (c-assertion n)) then 
return true 

else return false 
else 

arc-set := (outgoing-arcs n) 
pr-a-set := (processes-that-unify arc-set) 
do until (empty pr-a-set) 

if (not (satisfied (c-assertion n))) then 
return false 

pr-a := (randomly-delete pr-a-set) 
pr := (process pr-a) 
a := (arc pr-a) 
if (successful pr (start-node pr)) then 

return (successful P (terminating-node a)) 
end-do 
return false 

end-function 

The function processes-that-unify takes a set of arcs and 
returns the set of processes that unify with some arc in 

the set, along with the specific arc with which each uni­
fies. The functions process and arc select out the process 
instance and corresponding arc from each element of this 
set. The function randomly-delete selects an element from 
a set, destructively modifying the set as it does so. The 
order in which selections are made is called the selection 
rule. The function return returns from the enclosing func­
tion, not just the enclosing do. The init ial system goal 
is represented by a process description with a single arc 
labeled with the goal. 

Note that, if this theory were to form the basis of the 
reasoning capabilities of some real-world agent, we would 
probably want process descriptions to be invoked on the 
basis of particular facts becoming known as well as be­
cause particular goals have been established. A suitable 
organization for such a system would be to have a list of 
all applicable process descriptions - some goal-invoked and 
others fact-invoked - and at each stage of processing select 
one of these for execution [8]. The above recursive imple­
mentation would have to be modified, but the semantics 
would remain essentially the same. 

Of course, it is important that the operational and 
declarative semantics be consistent with each other. The 
declarative semantics defines a set of behaviors for each 
process instance. The operational semantics also defines 
a set of behaviors for each process instance, but this set 
depends on the selection rule utilized in the above algo­
r i thm. Let (P)D be the set of successful behaviors for a 
process instance P as given by the declarative semantics, 
and let (P)o,R be the set of successful behaviors for P as 
given by the operational semantics for selection rule R. It 
is not difficult to show that 

This means that any behavior generated by the interpreter 
given above wil l satisfy the declarative semantics. How­
ever, the inclusion, in general, is strict. That is, the in­
terpreter may not achieve some given goal even when, ac­
cording to the declarative semantics, there exists a way to 
achieve it. But, assuming that all correctness assertions 
are directly testable, we do have the following: 

If a behavior a is in ( P ) D , there exists a selection 
rule R such that s is in (P)O,R-

This is the best one can really hope for when any par­
ticular selection may cause some possibly irreversible ac­
tion. It means that, provided you are smart enough to 
choose the right selection rule, the above interpreter wi l l 
achieve a goal if it is at all achievable. This highlights the 
importance of reasoning about the selection of applicable 
processes in any practical implementation (see also |8]). It 
also means that one can reliably plan to achieve goals and 
be guaranteed of finding a finite plan if one exists. 
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6 A c t i o n Descr ip t ions 

So far, action descriptions have been restricted to simple 
action predicates. However, it is desirable to also allow 
a class of action descriptions that relate to conditions on 
world states. 

We thus extend the action description language to in­
clude actions that achieve a given world state p (repre­
sented as !p), actions to test for p (?p), and actions that 
preserve p (#p). We define these action descriptions more 
formally as follows. 

We assume a fixed domain D and a fixed interpretation 
for constant symbols. Let w be a state assertion, a an 
action description of the above form, and S = s1 . . . sn a 
behavior. Assume fixed global and local variable assign­
ments and let all local interpretations / be consistent with 
them. We then have the following truth rules: 

1. !w is true in S if, for some local interpretation I, w is 
true in sn 

2. ?w is true in S if, for some local interpretation /, w 
is true in s1. 

3. #w is true in S if, for all i, 1 < i < n, there exist local 
interpretations Ii,- such that w is true of all states in 
S or -iw is true in all states in 5. 

To make effective use of such action descriptions we can 
use proof rules of the kind given below. We will use the 
notation (P) (a) to mean that every successful behaviour 
associated with the process description P satisfies the tem­
poral assertion a. (P)F denotes failed behaviors. The 
symbols ";" and T represent sequential composition and 
[nondeterministic] branching, respectively. 

Some typical proof rules are as follows: 

Conjunctive Testing 

Conjunctive Achievement 

Disjunctive Testing 

Disjunctive Achievement 

Note that these proof rules are not the only ones, nor 
are they the strongest, that could be used. For example, in 
the rule for conjunctive achievement, we need not require 
that p be unaffected by (P2); all we need do is regress 
the goal !p through (P2) and set this as the goal of (P1). 
However, since in most real-world cases it is difficult to 
regress conditions through processes, the rules given above 
prove to be most practical. 

The declarative semantics with this extension to the lan­
guage is standard. The operational semantics simply re­
quires that the interpreter be modified to allow application 
of the proof rules when necessary. 

7 Conclusions 

This paper has presented a simple model for action and a 
means for representing knowledge about procedures. We 
have indicated the importance of reasoning about processes 
rather than simply histories or state sequences. A declara­
tive semantics for the representation was provided that al­
lows a user to specify facts about behaviors independently 
of context. We have also given an operational semantics 
that shows how these facts can be used by an agent to 
achieve (or form intentions to achieve) its goals. 

This knowledge representation can also be used for plan­
ning. Indeed, the operators of many standard planning 
systems (such as NOAH [19], DEVISER [22] and SIPE 
[23]) can be viewed as restricted forms of process descrip­
tions. The fact that any behavior allowed by the declar­
ative semantics can also be found using the operational 
semantics means that a planning algorithm that tried all 
possible selection rules would be "complete" - that is, it 
would find a solution if one existed. 

By modifying the formalism so that failure sets allow 
ful l backtracking, single-state theorem proving of Horn 
clauses becomes a special case. This modification would 
also include as a special case the realization of "backtrack­
ing through triangle tables," as proposed by Nilsson [17]. 
However, such modifications present practical problems of 
verification and efficiency, and would appear useful only in 
some special cases. 

In some ways, the declarative semantics is surprisingly 
complex and would seem to indicate some undesirable 
properties of the representation. Most of these difficulties 
arise from the need to model failed as well as successful be­
haviors. Of course, if we could fully specify necessary cor­
rectness conditions independently of context, and test for 
them, failed behaviors would become irrelevant for practi­
cal reasoning; we could always test to make sure conditions 
were true when needed. But experience with programming 
languages, and indeed the real world, shows that this can 
often be impractical if not impossible. 

The formalism presented here can also be viewed as an 
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executable specification language — that is, as a program­
ming language that allows a user to directly describe the 
behaviors desired of the system being constructed. The 
fact that the language has a denotational semantics allows 
facts about the behavior of the system to be independently 
stated and verified. The operational semantics provides a 
means for directly executing these specifications to obtain 
the desired behavior. In this sense the language has much 
in common with Prolog, except that it applies to dynamic 
domains instead of static domains. 

The system modeled in this paper has no database, 
and thus no storage for knowledge or beliefs. We have 
a practical implementation of a system that includes such 
a database, but have yet to formalize it. This introduces 
all the standard planning issues, such as the frame prob­
lem [14] and consistency maintenance [4]. We also need to 
investigate concurrency, and extend the model to deal with 
it. The notion of process failure and correctness assertions 
play a particularly important part when multiple agents 
or dynamic environments are allowed, and bear some rela­
tionship to formalisms for concurrent program verification. 
Some work in this direction is described by Georgeff [7]. 
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