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Missing effect-size estimates pose a difficult problem in meta-analysis. Con- 
ventional procedures for dealing with this problem include discarding studies 
with missing estimates and imputing single values for missing estimates (e.g., 
0, mean). An alternative procedure, which combines effect-size estimates 
and vote counts, is proposed for handling missing estimates. The combined 
estimator has several desirable features: (a) It uses all the information avail- 
able from studies in a research synthesis, (b) it is consistent, (c) it is more 
efficient than other estimators, (d) it has known variance, and (e) it gives 
weight to all studies proportional to the Fisher information they provide. The 
combined procedure is the method of choice in a research synthesis when 
some studies do not provide enough information to compute effect-size esti- 
mates but do provide information about the direction or statistical significance 
of results. 

Missing data is perhaps the largest problem fac- 

ing the practicing meta-analyst.  Frequently, meta-  

analytic procedures cannot be applied because 

researchers fail to report  relevant statistics or ade- 

quate descriptions of methods. Missing effect-size 

estimates pose a particularly difficult problem (Pi- 

gott, 1994). Without a statistical measure for the 

results of a study, meta-analytic methods cannot 

be used at all. Unfortunately,  the proport ion of 

studies with missing effect-size estimates in a re- 

search synthesis is often quite large. For example,  

we located 59 articles published in Psychological 

Bulletin between January 1990 and November  

1995 that used meta-analytic procedures to com- 

bine effect-size estimates. The proport ion of stud- 

ies with missing estimates in these articles ranged 

from .03 to .86 (M = .23, SD = .19). 
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When a pr imary research report  does not con- 

tain enough information to compute  an effect- 

size estimate, it may still provide information 

about the magnitude of the t reatment  effect. 

Often this information is in the form of a report  

of the decision yielded by the significance test 

(e.g., a significant positive mean difference) or 

in the form of a direction of the effect without 

regard to its statistical significance (e.g., a positive 

mean difference). 1 Thus, the meta-analyst  has 

access to at least one of four types of data from 

a pr imary research report: (a) information that 

can be used to compute an effect-size estimate, 

(b) information about  whether  the hypothesis 

test found a statistically significant t reatment  

effect and the direction of the effect, (c) informa- 

tion about  only the direction of the t reatment  

effect, and (d) no information about the treat- 

ment  effect. These data are rank ordered, from 

most to least, in terms of the amount  of informa- 

tion they contain (Hedges,  1986). Effect-size esti- 

mates  are considered missing if the data are of 

the second, third, or fourth type. 

i We use the term positive to refer to results in the 
predicted direction. 
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Currently, the most common solutions to the 

problem of missing effect-size estimates are (a) 

to omit from the review those studies with missing 

effect-size estimates and analyze only complete 

cases, (b) to set the missing effect-size estimates 

equal to zero, (c) to set the missing effect-size 

estimates equal to the mean obtained from studies 

with effect-size estimates, and (d) to set studies 

equal to the conditional mean obtained from stud- 

ies with effect-size estimates (i.e., Buck's [1960] 

method). None of these current procedures for 

handling missing effect-size estimates distin- 

guishes among the different types of missing ef- 

fect-size data, and all of these procedures have 

serious problems that limit their usefulness. 

In this article, we propose an alternative proce- 

dure for handling missing effect-size estimates. 

Our procedure, called the combined procedure, 
combines effect-size estimates and vote counts to 

estimate the population effect size. The combined 

procedure distinguishes among the different types 

of missing data, but it does not use the fourth type 

of data (i.e., no information about the treatment 

effect). 2 The particular effect-size index we con- 

sider in this article is the standardized mean differ- 

ence, although the combined procedure can be 

applied to other effect-size indexes (see Bush- 

man & Wang, 1995, for a similar procedure for 

the correlation coefficient). First, we describe the 

problems associated with existing procedures for 

handling missing effect-size estimates. Second, we 

describe effect-size and vote-counting procedures 

for standardized mean differences. Although these 

procedures are described in detail elsewhere (e.g., 

Cooper & Hedges, 1994; Hedges & Olkin, 1985), 

a discussion of the combined procedure we are 

proposing requires a discussion of effect-size and 

vote-counting procedures. Third, we describe how 

to implement our combined procedure. Finally, 

we describe why our combined procedure is the 

method of choice for handling missing effect- 
size estimates. 

Existing Methods for Handling Missing 

Effect-Size Estimates 

Omit Studies With Missing Effect-Size 
Estimates (or Analyzing Only 
Complete Cases) 

One common method for dealing with missing 

effect-size estimates is to omit studies from the 

meta-analysis that do not contain enough informa- 

tion to compute an effect-size estimate. In our 

sample of meta-analyses from Psychological Bulle- 
tin, studies with missing effect-size estimates were 

excluded in 26 of the 59 (44%) meta-analyses. This 

method assumes that the studies with effect-size 

estimates are a representative subset of the origi- 

nal sample of studies (Pigott, 1994). 

There are two major problems with analyzing 

only complete cases. First, effect-size estimates are 

likely to be missing for reasons related to the data. 

Authors are more likely to report details of statisti- 

cal analyses when the results are significant than 

when they are nonsignificant. This conditional re- 

porting of statistical results is part of what has 

been labeled "prejudice against the null hypothe- 

sis" (Greenwald, 1975). Studies with effect-size 

estimates might represent a biased subset of the 

original sample of studies. Omitting studies with 

missing effect-size estimates therefore limits the 

generalizability of the results of a research synthe- 

sis. A second problem with this method is that 

the variance of the effect-size estimates will be 

unnecessarily large when studies with missing ef- 

fect-size estimates are omitted. The variance of 

the effect-size estimates is used in several meta- 

analytic procedures (e.g., weighted mean esti- 

mates, homogeneity tests). 

Set Missing Effect-Size Estimates Equal 
to Zero 

A second method for handling missing effect- 

size estimates is to set the missing estimates equal 

to zero. In our sample of meta-analyses from Psy- 
chological Bulletin, missing effect-size estimates 

were set equal to zero in 9 of the 59 (15%) meta- 

analyses. This method assumes that all the missing 

effect-size estimates are zero or trivial in size. 

There are two major problems with setting miss- 

ing effect-size estimates equal to zero. First, it is 

unlikely that all the missing effect-size estimates 

are zero (or trivial in size). If the null hypothesis 

2 Little and Rubin (1987) use the method of maximum 
likelihood to impute missing values. Their procedure 
does not, however, use information about the direction 
and statistical significance of results. If no studies in 
the research synthesis provide information about the 
direction or statistical significance of results, then their 
procedure should be used. 
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in a research study is not rejected, two conclusions 

are possible: (a) the treatment effect is zero, or 

(b) the treatment effect is not zero but the power 

of the statistical test was too low to reject the false 

null hypothesis. In the social sciences, research 

designs typically have low statistical power due 

to small sample sizes (e.g., Cohen, 1988). Setting 

missing effect-size estimates equal to zero is there- 

fore an overly conservative practice that underesti- 

mates the magnitude of the population effect size. 

A second problem with imputing the value zero for 

all missing effect-size estimates is that it artificially 

deflates the variance of the effect-size estimates 

(Little & Rubin, 1987; Pigott, 1994). 

Set Missing Effect-Size Estimates to the 
Mean Obtained From the Studies With 
Effect-Size Estimates 

Zero is not the only value that can be imputed 

for missing effect-size estimates. One can also im- 

pute the mean effect-size estimate obtained from 

the studies with effect-size estimates. In our sam- 

ple of meta-analyses from Psychological Bulletin, 
missing effect size estimates were set equal to the 

mean effect-size estimate in only 1 of the 59 (2%) 

meta-analyses. This method assumes that the stud- 

ies with missing effect-size estimates are missing 

completely at random. 

There are two major problems with imputing 

the mean effect-size estimate for missing effect- 

size estimates. First, it is unlikely that the studies 

with missing effect-size estimates are missing com- 

pletely at random. If treatment effects are larger 

in studies with effect-size estimates than in studies 

without effect-size estimates, then this method will 

overestimate the magnitude of the population ef- 

fect size. Second, imputing the mean effect-size 

estimate for all missing estimates artificially de- 

flates the variance of the effect-size estimates (Lit- 

tle & Rubin, 1987; Pigott, 1994). 

Buck's Method 

Buck (1960) proposed that regression tech- 

niques should be used to estimate missing values 

and that the missing observations should be re- 

placed with the conditional mean. For example, 

effect size can be regressed on type of treatment 

or on degrees of freedom. In our sample of meta- 

analyses from Psychological Bulletin, none used 

Buck's method. 3 Buck's method assumes that the 

studies with missing effect-size estimates are miss- 

ing completely at random and that effect-size esti- 

mates are linearly related to the other variables 

in the data set. 

The major problem with Buck's (1960) method 

is that the studies with missing effect sizes are 

not likely to be missing completely at random. 

Another problem with this method is that it under- 

estimates the variance of the effect-size estimates, 

but Little and Rubin (1987) offered an adjustment 

for this problem. 

In summary, all of the current methods for deal- 

ing with missing effect-size estimates have serious 

problems that limit their usefulness. The combined 

procedure we are proposing overcomes these 

problems. Before describing the combined proce- 

dure, however, it is first necessary to describe ef- 

fect-size and vote-counting procedures. 

Effect-Size Procedures for Standardized 

Mean Differences 

Model and Notation for Standardized 
Mean Differences 

Meta-analysis is concerned with combining the 

statistical results from primary studies. When the 

primary studies in question compare two groups, 

either through treatment versus control compari- 

sons or through orthogonal contrasts, the effect 

size is expressed as some form of standardized 

difference between the group means, often called 

the d index (Cohen, 1988). Suppose that the data 

arise from a series of k independent studies, each 

of which compares a treatment or experimental 

group (E) with a control group (C). Let Yff and 

yc denote the respective j th  observations in the 

experimental and control groups of the ith study, 

and let nF and n c denote the respective sample 

sizes for the experimental and control groups. Sup- 

pose also that the assumptions for the validity of 

the two-sample t test are met in each study. That is, 

the observations in the experimental and control 

groups of the ith study are independently normally 

distributed with means p.f and /.C, respectively, 

and common variance ~ .  Define the population 

effect size in the ith study as the standardized 

mean difference 

3 Procedures for handling missing estimates were not 
discussed in the remaining 23 (39%) meta-analyses. 
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& = - - ,  (1) 

and define the sample estimator of 8~ as 

d, - S ~ '  (2) 

where Y( and y/c are the respective sample means 

in the experimental and control groups and S~ is the 

pooled within-group sample standard deviation. 

The sample standardized mean difference is a 

biased estimator of the population standardized 

mean difference. Hedges (1981) has provided the 

following small sample correction factor for this 

bias: 

3 
C ( v ~ ) ~ l  4 v i - l '  (3) 

where v~ = n f  + n c - 2 .  Thus, an unbiased estima- 

tor of 8i is given by 

d v = C(v,)d, .  (4) 

When nF = n/c, dy is not only an unbiased estima- 

tor of 8 ,  it is also the unique minimum variance 

unbiased estimator of 8~ (see Hedges, 1981). 

The two-sample t statistic for testing the signifi- 

cance of the mean difference in the ith study can 

be written as 

/ nFnCi "d, /, = ~ / ~ (  • - a,), (5) 

where ti has a t distribution with degrees of free- 

dom uj = nF + n c - 2. The null hypothesis H0: 

/zF = / z  c is rejected at significance level a if t~ is 

greater than t~,,,, the one-sided critical value from 

the t distribution with degrees of freedom u~ at 

significance level a. 

E f f e c t - S i z e  P r o c e d u r e s  f o r  E s t i m a t i n g  

S t a n d a r d i z e d  M e a n  D i f f e r e n c e s  

The weighted average standardized mean differ- 

ence (d+) is calculated by averaging the individual 

standardized mean differences after each has been 

weighted by the inverse of its variance. That  is, 

k 

wid~ 
d+  i=1 

k , (6) 

i~l 

where the weight wi, given by 

2(nf + nC)nien c 

wi - 2(nF + nf)  2 + niEniCdi2' 

is the reciprocal of the estimated sampling vari- 

ance of di (Cooper,  1989, p. 107). The variance of 

d+ is given by 

/ ~  wi. (7) Var(d+) = 1/ i=l 

The weighted average standardized mean differ- 

ence (d+) is a biased estimator of 8. An unbiased 

weighted average standardized mean difference is 

given by 

k 

Y~ wyd~ 
dU+ = ~=l 

k 

Z wy 
i=1 

(8) 

where 

wy-- 
2(n~ + nC)n(n c 

2(n/e + nC) 2 + n~nC(diU) 2" 

Another  positive feature of d~ is that it is a con- 

sistent estimator of 8. The variance of d+ u is 

given by 

Var(d v) = 1 w v. (9) 

Under  the fixed-effects model, the standardized 

mean differences are assumed to be homogeneous 

(i.e., ~ = ... = 8k = 8). Formal statistics for testing 

the homogeneity assumption have been described 

in detail elsewhere (e.g., Hedges & Olkin, 1985). 

If the homogeneity assumption is not met, the 

meta-analyst can test whether study characteristics 

moderate the effects of the treatment on the de- 

pendent  variable. Meta-analytic procedures can 

then be applied to homogeneous subsets of effects. 

The upper and lower bounds of a 100(1 - a)% 

confidence interval for the population standard- 

ized mean difference 8 are given by 

d+ - z~,,2 VV'-Q~ar(d+) <- 8 <- d+ + z~/2X/Var(d+), (10) 

where z,j2 is the two-sided critical value of the 

standard normal distribution at significance level 

o~. The null hypothesis H0:81 = ... = 8k = 8 = 0 

is rejected at significance level o~ if the confidence 
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interval in Equation 10 does not contain the value 

0. If the correction factor (see Equation 3) was 

applied to the sample standardized mean differ- 

ences, then the upper and lower bounds of a 

100(1 - 00% confidence interval for 8 are given 

by 

d+ v - z~2 V%/-Q~ar(d+ v) _< 6_< d~ + z~nV'x/-Q~ar(dU+). (11) 

It is worth noting that the confidence interval for 

3 is shorter when it is based on d [  than when it is 

based on d+, because wY is greater than wi. 

E x a m p l e  1: E f f ec t -S i z e  P r o c e d u r e  

Example 1 illustrates how to obtain an estimate 

and a 95% confidence interval for 3 using the ef- 

fect-size procedure. The data set was taken from 

previous meta-analytic reviews on intoxicated ag- 

gression by Bushman and his colleagues (Bush- 

man, 1993, in press; Bushman & Cooper,  1990). 

One explanation of intoxicated aggression is that 

alcohol increases aggression because people ex- 

pect it to. Those who behave aggressively while 

intoxicated can therefore blame the bottle for their 

actions. According to MacAndrew and Edgerton 

(1969), violent and other antisocial behaviors oc- 

cur when alcohol is consumed because, in many 

societies, drinking occasions are culturally agreed- 

on time-out periods when people are not held ac- 

countable for their actions. 

In laboratory experiments, this expectancy ex- 

planation of intoxicated aggression can be tested 

by comparing the level of aggression for partici- 

pants who expect an alcoholic beverage but re- 

ceive a nonalcoholic beverage (i.e., placebo) with 

the level of aggression for participants who expect 

and receive a nonalcoholic beverage (i.e., control). 

The placebo versus control comparison gives the 

pure effects of alcohol-related expectancies on ag- 

gression uncontaminated by the pharmacological 

effects of alcohol. To enhance the credibility of 

the placebo drink, researchers have poured the 

beverage from "legit imate" bottles and have 

placed a small amount of alcohol on the surface 

of the drink and on the rim of the glass. In the 

laboratory, aggression was measured by having 

participants give noxious physical (e.g., electric 

shocks, noise blasts) or verbal (e.g., negative writ- 

ten evaluations) stimuli to a confederate or by 

having participants take away positive stimuli from 

a confederate (e.g., money loss). 

Table 1 lists the results from 13 laboratory ex- 

periments that included placebo and control 

groups; all participants were male social drinkers. 4 

Standardized mean differences could be estimated 

for 9 of the 13 studies. Although the standardized 

mean differences in Table 1 are not homogeneous, 

they suffice for purposes of illustration. Suppose 

that one wants to obtain an estimate and a confi- 

dence interval for 8 using the 9 sample standard- 

ized mean differences in Table 1. Because the sam- 

ple sizes are small, Hedges's (1981) correction 

factor will be used. Using the sample sizes, sample 

standardized mean differences, weights, and cor- 

rection factors in Table 2, one obtains the weighted 

average (see Equation 8) 

dr+ = w~d~ w~ = 17.675/85.549 = 0.207, 
i=1 = 

and the variance (see Equation 9) 
/ 

Var(d+~) = 1 / ~  w~= 1/85.549=0.012. 
/ i=l  

The 95% confidence interval for 8 (see Equation 

11) is given by 

d~ - z os,2W/-V~ar(d~) _< 6_< d~ + Z o~,2VV-Jar(d~) 

= 0.207 - 1.96 0 . x / ~  _< 6 _  < 0.207 + 1.96~/0.012. 

Simplifying, one has [-0.005, 0.419]. Because the 

confidence interval includes the value zero, the 

null hypothesis that 81 = ... = & = ~ = 0 is not re- 

jected. 

V o t e - C o u n t i n g  P r o c e d u r e s  fo r  S t a n d a r d i z e d  

M e a n  Di f f e r ences  

The  C o n v e n t i o n a l  V o t e - C o u n t i n g  P r o c e d u r e  

Light and Smith (1971) were the first to propose 

a formal procedure for "taking a vote"  of study re- 

suits. 

All studies which have data on a dependent variable 
and a specific independent variable of interest are 
examined. Three possible outcomes are defined. 
The relationship between the independent variable 
and the dependent variable is either significantly 
positive, significantly negative, or there is no spe- 
cific relationship in either direction. The number 

4 A list of the studies given in Table 1 can be obtained 
from Brad J. Bushman. 
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Table 1 

Studies Testing Effects o f  Alcohol-Related Expectancies on Aggression 

Study Dependent measure n E n c d p Direction 

1 Electric shocks 19 19 1.028 <.05 + 

2 Electric shocks 24 24 0.903 <.05 + 

3 Electric shocks 24 24 0.552 <.05 + 

4 Electric shocks 24 24 0.328 ns + 

5 Electric shocks 15 15 -0.540 ns - 

6 Electric shocks 16 16 ns + 

7 Electric shocks 12 12 ns + 

8 Electric shocks 10 10 ns + 

9 Electric shocks 10 10 ns - 

10 Noise blasts 12 12 0.193 ns + 

11 Negative evaluation 12 12 -0.660 ns - 

12 Money loss 24 24 -0.332 ns - 

13 Money loss 24 24 -0.036 ns - 

Note. Nonsignificant results were assumed for studies that did not report p values, n E = 
placebo group sample size; n c = control group sample size; d = standardized mean differences; 
ns = statistically nonsignificant at the .05 level; plus sign = positive result (i.e., in predicted 
direction); minus sign = negative result (i.e., in opposite direction). 

of studies falling into each of these three categories 
is then simply tallied. If a plurality of studies falls 
into any one of these three categories, with fewer 
falling into the other two, the modal category is 
declared the winner. This modal category is then 
assumed to give the best estimate of the direction 
of the true relationship between the independent 
and dependent variable. (p. 433) 

The conventional vote-counting procedure pro- 

posed by Light and Smith (1971) has been criti- 

cized on several grounds. First, as Light and Smith 

noted, it does not incorporate sample size into the 

vote. It is well known that as sample size increases, 

the probability of finding a statistically significant 

relation between the independent and dependent 

variables also increases. Second, although it allows 

one to determine which modal category is the 

"winner," it does not allow one to determine what 

the margin of victory is. In other words, the con- 

ventional vote-counting procedure does not pro- 

vide an effect-size estimate. Third, Hedges and 

Olkin (1980) have shown that it has very low power 

for the range of sample sizes and effect sizes most 

common in the social sciences. Hedges and Olkin 

proposed vote-counting procedures that overcome 

the problems associated with the conventional 

vote-counting procedure. In this article, we only 

describe vote-counting procedures based on un- 

equal sample sizes because our combined proce- 

dure does not use vote-counting procedures based 

on equal sample sizes (see Bushman, 1994, for a 

description of vote-counting procedures based on 

equal sample sizes). 

U n e q u a l  S a m p l e  S i z e  V o t e - C o u n t i n g  

P r o c e d u r e s  f o r  E s t i m a t i n g  S t a n d a r d i z e d  

M e a n  D i f f e r e n c e s  

If one makes the underlying assumption that 

the standardized mean differences are positive and 

homogeneous, the null and alternative hypotheses 

for the ith study are 

H0:~/= t~= 0 

HA: ~ > ~ = O. (12) 

The test statistic for Equation 12 is 

/ nF nc 
ti = q ~ ( d i -  a) ,  (13) 

which has a t distribution with degrees of freedom 

vi = n(  + n c - 2. If the correction factor (Equation 

3) was used, then replace di with d• in Equation 13. 

The essential feature of vote-counting proce- 

dures is that some dis are not observed. Even if 

one does not observe di, one can still estimate 

if the research report contains information about 

the direction or statistical significance of results. 

For each study, there are two possible outcomes: 

a "success" if ti > t~,~ or a "failure" if ti <- t~.~. If ot = 

.5, a success is defined as a positive mean difference 

and a failure is defined as a negative or null mean 
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Table 2 

Computations 

Estimates Are 

for  Effect-Size Analysis When Studies With Missing 

Omitted 

Study n E n c d C(v)  d v w v dUw v 

1 19 19 1.028 0.979 1.006 8.432 8.483 

2 24 24 0.903 0.984 0.889 10.923 9.711 

3 24 24 0.552 0.984 0.543 11.574 6.285 

4 24 24 0.328 0.984 0.323 11.846 3.826 

5 15 15 -0.540 0.973 -0.525 7.250 -3.806 

10 12 12 0.193 0.966 0.186 5.974 1.111 

11 12 12 -0.660 0.966 -0.638 5.710 -3.643 

12 24 24 -0.332 0.984 -0.327 11.842 -3.872 

13 24 24 -0.036 0.984 -0.035 11.998 -0.420 

Total 85.549 17.675 

Note. n E = placebo group sample size; n c = control group sample size; d = standardized mean 
differences. See Equations 3, 4, and 8 for definitions of C(u), d U, and w ~, respectively. 

difference. If a = .05, a success is defined as a sig- 

nificant posit ive m e a n  difference and a failure is de- 

fined as a negative,  null ,  or  nonsignif icant  posit ive 

m e a n  difference. Of  course, o ther  values of a can be 

used to define a significant posit ive m e a n  difference 

(e.g., a = .01). 

Def ine  V~ as an indicator  variable  that  takes on 

the value 1 if the ou tcome is a success or the value 

0 if the ou tcome  is a failure. Tha t  is, 

1 ift~ > t~  
V, = "'. (14) 

0 ift~<-t~,~ 

The  probabi l i ty  of a success is given by 

Pr(V, = 1) = Pr(t, > t,.~) = p,, (15) 

and  the probabi l i ty  of a failure is given by 

Pr(V, = 0) = Pr(t, - t~.~) = 1 - p,. (16) 

If we assume that the sample sizes are equal  

across the k studies, then  Pl = ... = Pk = P, 

and  each Vi has a Bernoul l i  d is t r ibut ion  with 

pa rame te r  p. The  m a x i m u m  l ikel ihood es t imator  

of p is 

k 
,6 = ~],=1 v,/k, (17) 

where  v~ is the observed value of Vi (i.e., 1 or 0). 

Because E ( p )  = p and Var (p )  = p(1  - p ) / k ,  p 

is the p ropor t ion  of posit ive or significant posit ive 

m e a n  differences ob ta ined  f rom the k studies. The  

m a x i m u m  l ikel ihood es t imator  for the popu la t ion  

s tandardized m e a n  difference 8 can be ob ta ined  

by solving 

p = Pr(t > t~.~), 

where  t has a noncen t r a l  t d is t r ibut ion with non-  

central i ty  pa rame te r  6' = X/nenC/n e + n c 8 and  

degrees of f reedom ~,, where  u = 1'1 = ... -- vk. 

The  equal  sample  size assumpt ion  under ly ing  

vo te -count ing  procedures ,  however ,  is ext remely  

restrictive because  studies f requent ly  have differ- 

ent  sample  sizes. If the equal  sample  size assump- 

t ion is no t  met,  each Vi has a Bernoul l i  d is t r ibut ion 

with pa rame te r  Pi. Because  the studies unde r  re- 

view are assumed to be i ndependen t ,  the log-likeli- 

hood  func t ion  is given by 

k 

L(8) = ~ [viln(pi) + (1 - re)In(1 -p i ) ] ,  (18) 
i=1 

where  01 = ... = ok are the respective observed 

values of V1 = ... = Vk and  Pi = Pr(ti > t~.v). 5 

The  probabi l i ty  of a posit ive result  is 

5 The vote-counting procedure presented can be used 

even if the homogeneity assumption is violated, but the 

log-likelihood function is 

k 

L(t~ ..... 8g) = ~ [vi ln(pi) + (1 - oi)ln(1 -pi ) ] ,  
i=1 

where Pi = Pr~,v,(ti > t,,~,) and tg is a noncentral t variate 

with degrees of freedom ui = nf + n c - 2 and non- 

centrality parameter 8[ = X/n~enC/(n~ + nC)8~. 
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p, = qb(a'), (19) 

where 8[ = X/nFnC/ni e + n c al and ~(.)  is the stan- 

dard normal cumulative distribution function. The 

probability of a significant positive result is 

where 

1 (a'2/2)J e-(~,12) aj = 
j!  ' 

1 e_(d, t2) (8"2/2) ~ 
bj = ~a" 

V~ F(j + 3/2)' 

F(.) is the complete gamma function, I( . . . . .  ) is 

the incomplete beta function, and 

12~ 

xi - t2 ~ ~ + ui .t 

(see Appendix A). 

Because vl . . . . .  Vk are known and the data 

vl . . . . .  ok are observed, the log-likelihood function 

(Equation 18) is a function of 8 alone. Thus, L(8) 

can be maximized over 8 to obtain the maximum 

likelihood estimator t~. Although there is no closed 

form solution for the maximum likelihood estima- 

tor a, it can be obtained numerically using a com- 

puter subroutine. 6 When the number k of studies 

is large, t~ will be approximately normally dis- 

tributed. 

The theory of maximum likelihood also can be 

used to obtain an expression for the large sample 

variance of a: 

Var(•) = [ +  [D}I)]= ]-1 (21) 
L~--~ p,(1 - p , ) J  ' 

where DI 1) is the first-order derivative of Pi evalu- 

ated at 8 = t~ (see Hedges & Olkin, 1985, p. 70). 

The upper and lower bounds of a 100(1 - 00% 

confidence interval for the population standard- 

ized mean difference 8 are given by 

a - Z,a'V'~ar(a) <-- ,~ <- a + z,,,2V'~ar(a). (22) 

One limitation of vote-counting procedures is 

that they cannot be used if all the results are 

in the same direction. The method of maximum 

likelihood cannot be used if p is unity or zero 

because there is not a unique corresponding 

value of d~. The estimator p could be unity when 

sample sizes and standardized mean differences 

are large. If all of the results are in the same 

direction, one can use a Bayes estimate of p 

(see Hedges & Olkin, 1985). 

E x a m p l e  2: V o t e - C o u n t i n g  P r o c e d u r e  

Example 2 illustrates how to obtain an estimate 

and a confidence interval for 8 using the unequal 

sample size vote-counting procedure. Using the 

data in Table 3 and a computer  subroutine (see 

Footnote  6), one finds that the maximum value of 

L(8) occurs at -14.692, which corresponds with 

the maximum likelihood estimator ~ = 0.298. The 

variance of ~ (Equation 21) is 0.022, and the 95% 

confidence interval is [0.007, 0.589] (i.e., Equa- 

tion 22:0 .298 - 1 . 9 6 ~  - 8 -< 0.298 + 

1.96V~.022). Because the confidence interval does 

not include the value zero, the null hypothesis that 

81 = ... = 813 = 8 = 0 is rejected. 

A P r o c e d u r e  for  C o m b i n i n g  Ef fec t -S ize  

Es t ima te s  and  V o t e  Co u n t s  to  O b t a i n  an 

E s t i m a t e  and  a Conf idence  In t e rva l  fo r  the  

P o p u l a t i o n  S t a n d a r d i z e d  M e a n  D i f f e r e n c e  

The combined procedure uses the effect-size 

and vote-counting procedures described pre- 

viously. Out of k independent studies, suppose 

that the first m studies (m < k) report  enough 

information to compute effect-size estimates and 

that the remaining k - rn studies only report  the 

direction or statistical significance of results. One 

can use the first rn studies to obtain an unbiased 

estimator d~ of the population standardized mean 

difference & and one can use the remaining 

k - m studies to obtain the maximum likelihood 

estimator t~ of 8. Let  Var(d+ v) and Var(d~) be the 

respective variances for d+ v and ~. Because d+ v and 

6 A FORTRAN computer subroutine for unequal 
sample size vote-counting procedures can be obtained 
by writing to Morgan C. Wang, Department of Statistics, 
University of Central Florida, Orlando, Florida 32828, 
or by electronic mail via Internet at cwang@pegasus. 
cc.ucLedu. 
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Table 3 

C o m p u t a t i o n s  f o r  V o t e - C o u n t i n g  A n a l y s i s  

Study n E n c p Direction v t~., 

1 19 19 <.05 + 1 1.688 

2 24 24 <.05 + 1 1.679 

3 24 24 <.05 + 1 1.679 

4 24 24 ns  + 1 1.679 

5 15 15 ns - 0 0 

6 16 16 ns + 1 0 

7 12 12 ns  + 1 0 

8 10 10 ns  + 1 0 

9 10 10 ns  - 0 0 

10 12 12 ns  + 1 0 

11 12 12 ns - 0 0 

12 24 24 ns  - 0 0 

13 24 24 ns  - 0 0 

Note. n E = placebo group sample size; n c = control group sample size; ns = statistically nonsig- 
nificant at the .05 level; t~.~ = the one-side critical value from the t distribution with degrees of 
u, = n, e + n, c - 2. See Equation 14 for explanation of v. 

are bo th  consistent est imators of  6, the combined  

est imator  of  & 

~c = dV+/Var(dV+ ) + ~/Var(~) (23) 

l/Var(d+ v) + 1/Var(~) ' 

is consistent as well. The  variance of  the combined  

es t imator  is given by 

Var(~c) = Var(dV)Var(d}) 
Var(d+ v) + Var(~)" (24) 

Because  Var(~c) < Var(d+ v) and Var(~c) < 

Var(~),  the combined  est imator  is more  efficient 

than ei ther  d+ v or  ~ (see Append ix  B for a proof) .  

The  upper  and lower bounds  of  a 100(1 - 00% 

confidence interval for the popula t ion  s tandard-  

ized mean  difference 6 are given by 

~c - z~ /2~/~ar(~c)  <- ¢3<- ~c + z~,2~v/-~rar(~c) • (25) 

Because Var(~c) < Var(d+ v) and Var(~c) < 

Var(~),  the confidence interval based on the com- 

bined procedure  is shor ter  than the confidence 

intervals based on the effect-size and vote-count-  

ing procedures .  

E x a m p l e  3 :  C o m b i n e d  P r o c e d u r e  

Example  3 illustrates how to obtain  an est imate 

and a 95% confidence interval for  6us ing  the com-  

bined procedure .  Recall  f rom Example  1 that  the 

unbiased est imator  of  6 based on effect-size proce-  

dures was d v = 0.207 with variance Var (d  v) = 

0.012. Four  of  the studies in Table  1 do not  contain 

enough  informat ion to compu te  s tandardized 

mean  differences, but  these four  studies do repor t  

the direction and statistical significance of  results. 

Using the data in Table  4 and a compute r  subrou-  

tine (see Foo tno te  6), one finds that  the max imum 

value of  L(6)  occurs at -0 .215,  which corresponds  

to the max imum likelihood es t imator  ~ = 0.306. 

The  variance of  6 is Var(~)  = 0.112. Thus,  the 

combined  est imator  of  6 (Equa t ion  23) is 

~c = dV /Var(dV+ ) + ~/Var(~) 

1/Var(d v) + 1/Var(~) 

0.207/0.012 + 0.306/0.112 
= - 0.217, 

1/0,012 + 1/0.112 

and the variance of  the combined  est imator  (Equa-  

tion 24) is 

Var(~c) = Var(d+V)Var(~) - (0.012)(0.112)_ 0.011. 
Var(d v) + Var(J) 0.012 + 0.112 

A 95% confidence interval for 6 (Equa t ion  25) 

is given by 

~c - Z os,2VX/V~ar(&) <- ~ <- ~c + Z os,2VX/V2iar(~c) 

= 0.217 - 1 . 9 6 ~  -< ~ <-- 0.217 + 1.96 0.X/-0~H 

Simplifying, one  has [0.011, 0.423]. Because the 
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Table 4 

Computations for Vote-Counting Analysis Used in Combined Procedure 

Study n E n c p Direction u ~,~ 

6 16 16 ns + 1 0 

7 12 12 ns + 1 0 

8 10 10 ns + 1 0 

9 10 10 ns - 0 0 

Note. n E = placebo group sample size; n c = control group sample size; ns = statistically 
nonsignificant at the .05 level; t~., = the one-sided critical value from the t distribution with 
degrees of freedom vl = n, E + n c - 2. See Equation 14 for explanation of u. 

conf idence  in te rva l  does  no t  inc lude  the  va lue  

zero ,  the  null  hypo thes i s  tha t  81 = ... = 8k = 

8 = 0 is re jec ted .  

E x a m p l e  4: O t h e r  M e t h o d s  f o r  H a n d l i n g  

M i s s i n g  E f f e c t - S i z e  E s t i m a t e s  

E x a m p l e  4 i l lus t ra tes  how to ob t a in  an e s t ima te  

and  a 95% conf idence  in te rva l  for  8 using the  o t h e r  

m e t h o d s  for  hand l ing  miss ing effect-s ize es t imates .  

O m i t  studies with miss ing ef fect-size est imates 

(or analyz ing  only  comple te  cases). This  m e t h o d  

was i l lus t ra ted  in E x a m p l e  1. 

Set  miss ing ef fect-s ize estimates equal  to zero. 

In T a b l e  5, the  va lue  ze ro  was i m p u t e d  for  s tudies  

wi th  miss ing es t imates .  Us ing  the  da t a  in T a b l e  

5, one  ob ta ins  the  w e i g h t e d  ave rage  0.161 (i.e., 

E q u a t i o n  8: 17.675/109.549), the  va r i ance  0.009 

(i.e., E q u a t i o n  9: 1/109.549), and  the  95% confi- 

dence  in te rva l  [ -0 .026 ,  0.348] (i.e., E q u a t i o n  11: 

0.161 - 1.96 0.V"0~9 -< 8 --  0.161 + 1 . 9 6 ~ ) .  

Because  the  conf idence  in te rva l  inc ludes  the  va lue  

zero,  the  null  hypo thes i s  tha t  81 = ... = 6i3 = 8 = 

0 is not  re jec ted .  

Set  miss ing effect-size estimates to the mean  ob- 

tained f r o m  the studies with ef fect-s ize esti- 

mates. In T a b l e  6, the  m e a n  e s t ima te  ( o b t a i n e d  

in E x a m p l e  1) was i m p u t e d  for  s tudies  wi th  miss ing 

es t imates .  Us ing  the  da t a  in Tab le  6, one  ob ta ins  

the  we igh ted  ave rage  0.205 (i.e., E q u a t i o n  8: 

22.447/109.431), the  var iance  0.009 (i.e., E q u a t i o n  

9: 1/109,431), and  the  95% conf idence  in te rva l  

[0.018, 0.392] (i.e., E q u a t i o n  11: 0.205 - 

Table 5 

Computations for  Effect-Size Analysis 

Effect-Size Estimates 

When the Value Zero Is Imputed for  Missing 

Study n E n c d C(v)  d v w u dUw v 

1 19 19 1.028 0.979 1.006 8.432 8.483 

2 24 24 0.903 0.984 0.889 10.923 9.711 

3 24 24 0.552 0.984 0.543 11.574 6.285 

4 24 24 0.328 0.984 0.323 11.846 3.826 

5 15 15 -0.540 0.973 -0.525 7.250 -3.806 

6 16 16 0 0.975 0 8.000 0 

7 12 12 0 0.966 0 6.000 0 

8 10 10 0 0.958 0 5.000 0 

9 10 10 0 0.958 0 5.000 0 

10 12 12 0.193 0.966 0.186 5.974 1.111 

11 12 12 -0.660 0.966 -0.638 5.710 -3.643 

12 24 24 -0.332 0.984 -0.327 11.842 -3.872 

13 24 24 -0.036 0.984 -0.035 11.998 -0.420 

Total 109.549 17.675 

Note. n e = placebo group sample size; n c = control group sample size; d = standardized mean 
differences. See Equations 3, 4, and 8 for definitions of C(v), d u, and w u, respectively. 
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Table 6 

Computations for  Effect-Size Analysis When the Mean Effect-Size Estimate Is 

Imputed for  Missing Effect-Size Estimates 

Study n E n c d C(v)  d u w u dUw u 

1 19 19 1.028 0.979 1.006 8.432 8.483 

2 24 24 0.903 0.984 0.889 10.923 9.711 

3 24 24 0.552 0.984 0.543 11.574 6.285 

4 24 24 0.328 0.984 0.323 11.846 3.826 

5 15 15 -0.540 0.973 -0.525 7.250 -3.806 

6 16 16 0.207 0.975 0.202 7.960 1.608 

7 12 12 0.207 0.966 0.200 5.970 1.194 

8 10 10 0.207 0.958 0.198 4.976 0.985 

9 10 10 0.207 0.958 0.198 4.976 0.985 

10 12 12 0.193 0.966 0.186 5.974 1.111 

11 12 12 -0.660 0.966 -0.638 5.710 -3.643 

12 24 24 -0.332 0.984 -0.327 11.842 -3.872 

13 24 24 - 0.036 0.984 - 0.035 11.998 - 0.420 

Total 109.431 22.447 

Note. n e = placebo group sample size; n c = control group sample size; d = standardized mean 
differences. See Equations 3, 4, and 8 for definitions of C(v), d u, and w u, respectively. 

1 . 9 6 ~  <- ~ -< 0.205 + 1 . 9 6 ~ ) .  Because 

the confidence interval  does no t  include the value 

zero, the null  hypothesis  that ~1 = ... = 613 = ~ = 

0 is rejected. 

B u c k ' s  me thod .  For  Buck 's  (1960) method,  the 

unb iased  effect-size es t imate  d/U was regressed on  

the degrees of f reedom vi. In Tab le  7, the regres- 

s ion equa t ion  d~ = - 0 . 7 5 6  + 0.024 ui was used to 

ob ta in  the condi t ional  m e a n  for studies with miss- 

ing estimates.  Us ing  the data  in Tab le  7, one ob- 

tains the weighted average 0.119 (i.e., E q u a t i o n  8: 

13.019/109.394), the var iance 0.009 (i.e., Equa t i on  

9: 1/109.394), and  the 95% confidence interval 

[ -0 .068 ,  0.306] (i.e., E q u a t i o n  1 1 : 0 . 1 1 9  - 

Table 7 

Computations for  Effect-Size Analysis When the Conditional Mean Effect-Size 

Estimate Is Imputed for  Missing Effect-Size Estimates 

Study v d C(u)  d u w U dUw u 

1 36 1.028 0.979 1.006 8.432 8.483 

2 46 0.903 0.984 0.889 10.923 9.711 

3 46 0.552 0.984 0.543 11.574 6.285 

4 46 0.328 0.984 0.323 11.846 3.826 

5 28 -0.540 0.973 -0.525 7.250 -3.806 

6 30 -0.036 0.975 -0.035 7.999 -0.280 

7 22 -0.228 0.966 -0.220 5.964 -1.312 

8 18 -0.324 0.958 -0.310 4.941 - 1.532 

9 18 - 0.324 0.958 - 0.310 4.941 - 1.532 

10 22 0.193 0.966 0.186 5.974 1.111 

11 22 - 0.660 0.966 - 0.638 5.710 - 3.643 

12 46 -0.332 0.984 -0.327 11.842 -3.872 

13 46 -0.036 0.984 -0.035 11.998 -0.420 

Total 109.394 13.019 

Note. The regression equation d~ = -0.756 + 0.024 vl was used to obtain the conditional means 
for Studies 6-9. See Equations 3, 4, and 8 for definitions of C(v), d u, and w U, respectively. 
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Table 8 
Comparison of  Various Procedures for Obtaining an Estimate and Confidence Interval for the Population 

Standardized Mean Difference (6) 

Procedure 

Variance 
Estimator of 

k of 8 estimator 95% CI CI width 

Omit missing estimates 
Vote counting 
Impute zero for missing estimates 
Impute mean estimate for missing 

estimates 
Buck's method 
Combined procedure 

9 0.207 0.012 [-0.005, 0.419] 
13 0.298 0.022 [0.007, 0.589] 
13 0.161 0.009 [-0.026, 0.348] 
13 0.205 0.009 [0.018, 0.392] 

13 0.119 0.009 [-0.068, 0.306] 
13 0.217 0.011 [0.011, 0.423] 

0.424 
0.582 
0.374 
0.374 

0.374 
0.412 

Note. k = number of independent studies; CI = confidence interval. 

1 . 9 6 ~  -< ~ --- 0.119 + 1.96 0.X/-~0-~). Because 

the confidence interval includes the value zero, 

the null hypothesis that d~l = ... = ~13 = ~ = 0 is 

not rejected. 

Table 8 lists the estimates and 95% confidence 

intervals for the various procedures for handling 

missing effect-size estimates. Note that the vari- 

ance is unnecessarily large when studies with 

missing estimates are deleted and that the vari- 

ance is unnecessarily small when single or condi- 

tional values are imputed for missing estimates. 

Note also that the estimate of 8 is overly conser- 

vative when the value zero is imputed for missing 

estimates. Finally, note that the combined proce- 

dure confidence interval is shorter than are the 

effect-size and vote-counting procedure confi- 

dence intervals. 

A d v a n t a g e s  o f  the  C o m b i n e d  P r o c e d u r e  

O v e r  C o n v e n t i o n a l  P r o c e d u r e s  fo r  

H a n d l i n g  Missing Ef fec t -S ize  Es t ima t e s  

Missing effect-size estimates pose a particularly 

difficult problem in meta-analysis. Often studies 

do not include enough information to permit the 

computation of an effect-size estimate. The com- 

bined procedure described in this article has at 

least five advantages over conventional proce- 

dures for dealing with the problem of missing ef- 

fect-size estimates. First, the combined procedure 

uses all the information available from studies in 

a research synthesis; other  procedures ignore in- 

formation about the direction and statistical sig- 

nificance of results. Second, the combined estima- 

tor is consistent (i.e., if the number  of studies k 

under review is large, the combined estimator will 

not overestimate or underestimate the population 

effect size). None of the conventional procedures 

for handling missing effect-size estimates are con- 

sistent; they all either underestimate or overesti- 

mate the population effect size. Third, the com- 

bined estimator is more efficient than either the 

effect-size or vote-counting estimators (i.e., the 

variance of the combined estimator is smaller than 

variance of the effect-size and vote-counting esti- 

mators). Fourth, the variance of the combined esti- 

mator is known. All of the conventional procedures 

for handling missing effect-size estimates either ar- 

tificially inflate or artifically deflate the variance of 

the effect-size estimates. Fifth, the combined pro- 

cedure gives weight to all studies proportional to 

the Fisher information they provide (i.e., no studies 

are overweighted). This article focused on the stan- 

dardized mean difference in fixed effects models, 

although the combined procedure can be used with 

any effect-size index in either fixed or random ef- 

fects models. We currently are working on ex- 

tending the combined procedure to other  effect- 

size indexes and to random effects models. In sum- 

mary, the combined procedure seems to be the 

method of choice in handling missing effect-size es- 

timates when some studies do not provide enough 

information to compute effect-size estimates but do 

provide information about the direction or statisti- 

cal significance of results. 
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Appendix A 

Computation Details for Obtaining an Estimator of the Population Standardized Mean 
Difference Using Unequal Sample Size Vote-Counting Procedures 

Under the alternative hypothesis in Equation 12, the 
probability density function of the sample effect size t~ 
(Equation 13) is 

+ i ' 

e_(~fm(1 ~)-(~+w2 ® [ V ' 2 ~ t i ]  2 

f~;,,,('i) (1 _u,~ i _ _ ~ o d i [ ~ j  , (A1) 

V'-~u~B \ 2 ' 2  ] 

where 

[1 ] 
F ~ ( v ~ + j +  1) 

dr= 

j!F n + 1) 

v~ = nF + n c - 2, B(., .) is the complete beta function, 
and F(.) is the complete gamma function (Johnson & 

Kotz, 1970). Under the null hypothesis given in Equa- 
tion 12, the probability density function given in Equa- 
tion A1 reduces to 

(1 + /i2/-(~+1)/2 
vd 

f~;=o,~(t,) ~u,B (12,2vi) (A2) 

The probability of a positive result is 

Pi = Pr,M(ti > O) = fo  fs;,~(ti) dt = @(&'), (A3) 

where qb(.) is the standard normal distribution function 
(Hawkins, 1975). The probability of a significant positive 
result at significance level c~ is 

= Pr,, ~(ti > t,,~) = ( ~  fsM(ti) dt, Pi 
i '  i J t , ~ , v  i 

= ¢ ( 6 ; )  - Pra;,,,(0 < t, < t~,~), (A4) 

where t,,~ is the one-sided critical value from the distri- 
bution of t such that a = f~,~ f~;=0,~(t 3 dt, and 0 < c~ < 
.5. To evaluate Equation A4, t~,~ must first be obtained 
by solving the equation: 

fs;=o,~(t,) dt 

= 1 - ft.[~ f~;=o,~(ti) dt 

= 1 - ~ - - ~ I \ 2 , 2 , x  i 

li(vi 1 -xi'~, =~ \~,~,1 (A5) 
1 

where I( . . . . .  ) is the incomplete beta function and 
2 2 xi = t~,~/t~.~, + ui. After t~,~ has been obtained, the 

probability given in Equation A4 can be evaluated as 
follows: 

Pr~;.~(ti > G. 0 = @(6") - PrG~(0 < ti </a,~) 

=@(~ ' )  2 [ a f t ( j +  1 vi "~ 
-=0 

(A6) 

where 

1_ _(8;~12) (812/2) j 
a i = 2 e j! 

and 

b~ = 1 8[e-(e; 2/2) (8"2/2)i 

2 v 2 r ( j  + 3/2) 

(Guenther, 1978). 

Appendix B follows on next page. 
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A p p e n d i x  B 

P roo f  Tha t  the  C o m b i n e d  Es t ima to r  Has  Smaller  Var iance  T h a n  Does  the Effect-Size 

Es t ima to r  and  Vo te -Coun t ing  Es t ima to r  

Var($c) < Var(d+ u) 

Var(&c) - Var(d+ u) 

Var(d+U)Var($) 
- Var(d+ U) + Var($) - Var(d+~) 

Var(d+U)Var($) - Var(d+U)2 - Var(d+U)Var($) 

Var(d+ u) + Var($) 

-Var(d+U) 2 
<0  

Var(d+ u) + Var($) 

Var(Sc) < Var(d+ ~) 

Var($c) < Var($) (B1) 

Var(~c) - Var(8) 

- Var(d+U)Var(6) - Var(~) 
Var(d+ U) + Var(&) 

Var(d+U)Var(~) - Var(~) 2 - Var(d+V)Var(~) 

Var(d+ u) + Var(d~) 

-Var($)2 < 0 
Var(d+ U) + Var(6) 

Var(Sc) < Var($) (B2) 
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