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[1] Modeling transport of reactive solutes is a challenging problem, necessary for
understanding the fate of pollutants and geochemical processes occurring in aquifers,
rivers, estuaries, and oceans. Geochemical processes involving multiple reactive species
are generally analyzed using advanced numerical codes. The resulting complexity has
inhibited the development of analytical solutions for multicomponent heterogeneous
reactions such as precipitation/dissolution. We present a procedure to solve groundwater
reactive transport in the case of homogeneous and classical heterogeneous equilibrium
reactions induced by mixing different waters. The methodology consists of four steps:
(1) defining conservative components to decouple the solution of chemical equilibrium
equations from species mass balances, (2) solving the transport equations for the
conservative components, (3) performing speciation calculations to obtain concentrations
of aqueous species, and (4) substituting the latter into the transport equations to evaluate
reaction rates. We then obtain the space-time distribution of concentrations and

reaction rates. The key result is that when the equilibrium constant does not vary in space
or time, the reaction rate is proportional to the rate of mixing, V' u D Vu, where u is the

vector of conservative components concentrations and D is the dispersion tensor. The
methodology can be used to test numerical codes by setting benchmark problems but
also to derive closed-form analytical solutions whenever steps 2 and 3 are simple, as
illustrated by the application to a binary system. This application clearly elucidates that in
a three-dimensional problem both chemical and transport parameters are equally important

in controlling the process.

Citation: De Simoni, M., J. Carrera, X. Sanchez-Vila, and A. Guadagnini (2005), A procedure for the solution of multicomponent
reactive transport problems, Water Resour. Res., 41, W11410, doi:10.1029/2005WR004056.

1. Introduction

[2] Reactive transport modeling refers to the transport of
a (possibly large) number of aqueous species that react
among themselves and with the solid or gaseous phases. It is
relevant because it helps in understanding the fate of
pollutants in surface and groundwater bodies, the hydro-
chemistry of aquifers, and many geological processes [e.g.,
Gabrovsek and Dreybrodt, 2000; Freedman et al., 2003;
Salas and Ayora, 2004; Emmanuel and Berkowitz, 2005].
Unfortunately, it is complex, both conceptually and math-
ematically. Modeling reactive transport involves two cou-
pled ingredients: (1) the mass balance of all participating
species, which is expressed by the solute transport equation
for mobile species; and (2) a set of equations describing the
reactions among species. The nature of participating species
and reactions leads to a broad range of possible behaviors of
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the system [Rubin, 1983; Molins et al., 2004]. Moreover,
reactions such as dissolution can also modify the aquifer
properties (i.e., porosity and hydraulic conductivity) [e.g.,
Wood and Hewett, 1982; Philips, 1991; Kang et al., 2003;
Singurindy and Berkowitz, 2003; Singurindy et al., 2004].
Therefore it is not surprising that numerous general math-
ematical formulations to solve reactive transport problems
are available [e.g., Rubin, 1990, 1992; Yeh and Tripathi,
1991; Friedly and Rubin, 1992; Lichtner, 1996; Steefel and
MacQuarrie, 1996; Clement et al., 1998; Saaltink et al.,
1998, 2001; Tebes-Stevens et al., 1998; Robinson et al.,
2000; Molins et al., 2004]. The resulting sets of governing
equations have been included in a large number of reactive
transport codes that can handle several species with differ-
ent types of reactions (see Saaltink et al. [2004] for a list of
codes).

[3] As opposed to numerical solutions, very few analyt-
ical results are available. These are of general interest, as
they provide insights on the nature of the solution and allow
evaluating the relative importance of the involved parame-
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ters and processes. Analytical and semianalytical solutions
are available in the case of linear and nonlinear equilibrium
sorption reactions [e.g., Serrano, 2003, and references
therein]. Analytical solutions are also available to solve
reactive transport problems in case of (networks of) first-
order kinetic reactions [Sun et al., 1999, 2004; Clement,
2001; Serrano, 2003; Quezada et al., 2004]. These meth-
odologies are appropriate for radioactive decay chains and
for many biochemical processes. However, they are difficult
to extend to geochemical processes whose rates are nonlin-
ear functions of the concentrations of the dissolved species,
or to cases in which equilibrium conditions can be assumed
and the reaction rates cannot be written explicitly.

[4] Because transport times are generally large in aqui-
fers, most aqueous reactions and many dissolution/precip-
itation reactions can be modeled with the assumption of
chemical equilibrium conditions at each point of the
domain. As equilibrium is reached instantaneously, the
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at equilibrium conditions at all times. Emphasis is placed on
evaluating not only concentrations, but also reaction rates.
The method is first applied to a binary system, providing an
original analytical expression for the reaction rate in the
case of mixing-driven precipitation. The methodology is
then extended to deal with all kinds of classical heteroge-
neous and homogeneous equilibrium reactions. The com-
plete methodology allows the mathematical decoupling of
the problem into four steps: (1) definition of mobile
conservative components of the system, (2) transport of
these components, (3) speciation, and (4) evaluation of
reaction rates and mass change of constant activity species.
The method is proposed as a useful tool in deriving further
analytical solutions describing reactive transport processes.
It can also be of practical use in developing, adapting, or
testing numerical codes to solve solute transport problems
involving multiple reactions.

[6] The outline of the paper is as follows. In section 2 we
present the mathematical formulation of the problem.
Section 3 is focused on the reactive transport problem in
the presence of a pure dissolution/precipitation reaction.
Specifically, we analyze in detail a three-dimensional
porous medium with uniform flow carrying two dissolved
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Figure 1. Schematic representation of a pure dissolution/
precipitation process during the mixing of two waters. (a)
Concentrations of the dissolved species, ¢; and c¢,, in the
mixing waters satisfy the equilibrium condition ¢;c, = K, K
being the equilibrium constant. From the conservative
mixing point (at which the concentrations are weighted
arithmetic averages of the input ¢ values), the mixture
evolves toward the equilibrium curve following a straight
line (whose slope is given by the ratio of the stoichiometric
coefficients and is equal to 1 in the simple binary case
presented in the text). (b) Example of the evaluation of
(22a). Function u (arbitrarily chosen, for illustrative
purposes) and the two factors in (22a) are displayed versus
the distance from the location at which u reaches its
maximum value. Note the different scales: 9%c,/0u® is
nearly constant, while the term accounting for mixing
displays the largest variations.

constituents at equilibrium with a solid mineral. We derive a
closed-form solution for the mixing-driven precipitation
process induced by an instantaneous point-like injection
of water containing the same constituents of the resident
water, but at a different equilibrium state. Finally, in
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section 4 we generalize the formulation to solute transport
problems involving multiple reactions.

2. Preliminary Concepts
2.1.
[7] Equilibrium reactions are described by mass action

laws, which in the case of multiple species can be written in
a compact form as [Saaltink et al., 1998]

Chemical Equilibrium

S.loga = logK/, (1)

where S, is the stoichiometric matrix, that is a N, x N,
matrix (N, and N, being the number of reactions and the
total number of chemical species, respectively) containing
the stoichiometric coefficients of the reactions, a is the
vector of activities of all species and K’ is the vector of
equilibrium constants. In general, the activity of aqueous
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remaining aqueous species, respectively. Matrix S, is also
divided into two parts, that is, S, = (S¢4|Sec), where S, and
S., contain the stoichiometric coefficients of constant
activity species and of the aqueous species, respectively.
Since N, activities are fixed and (1) can be used to eliminate
N, activities, we can now pose the problem in terms of Ny —
N. — N, independent activities (conforming with Gibbs
phase rule). Once these are calculated, we would obtain the
remaining N, activities on the basis of the chemical equi-
librium relations (equation (1)). We call as primary those
species corresponding to the independent Ny — N. — N,
activities; the remaining N, species are called secondary. We
then split S,,, into two parts, that is, S., = (S.4|St), where
S.. and S/, contain the stoichiometric coefficients of the
primary and secondary species, respectively.

[o] Itis convenient to redefine the chemical system so that
the matrix of the stoichiometric coefficients of the secondary
species coincides with the opposite of the identity matrix, I.
Mathematically, this is equivalent to multiplying equation (1)
by (§Za)__1 (a proper choice of primary and secondary species
leads to S/, invertible). As activities a, are fixed and known,
we can rewrite the mass action law (1) as

"

loga)l =S, loga), — logK, (3)

a
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where a’, and a/, are the activities of primary and secondary
species, respectively; Si, = —I and S, are the redefined
matrices of stoichiometric coefficients of secondary and
primary species, respectively; K is the redefined vector of
equilibrium constants, log K= (S.,) "' (log K’ — S.. log a,).
With these definitions and upon assuming unitary activity
coefficients, the mass action law (1) reduces to

Sea loge, = logK. (4)

When the assumption of unitary activity coefficients is not
justified, one needs (2) to relate activities and concentrations.
However, it is still possible to write the mass action law in
terms of concentrations. This is accomplished by substitut-
ing K with an equivalent equilibrium constant, K*, defined
as

log K* = logK — S,, logy(c,), (5)
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Matrix M is diagonal and its diagonal terms are unity when
a given species is mobile and zero otherwise; f is a general
source/sink term. The linear operator L,(c;) appearing in (6)
is defined as

L(ci) ==V -(qc¢;) + V- (nDV¢;), (7)

where D is the dispersion tensor and q is Darcy’s flux.

[12] Assuming that the source/sink terms are only due to
chemical reactions and that the system is always at chemical
equilibrium, we can express f as

f=Sr, (8)

where r is the vector of reaction rates (expressed per unit
volume of medium) and S, is defined after (1). We notice
that reactive transport processes also affect immobile spe-
cies. For instance, while a mineral at equilibrium with the
solution is not transported, its mass is changed in order to
allow the system to attain equilibrium.

[13] A reactive transport process is completely described
by the concentrations of the N; species, together with the
definition of the N, (unknown) reactions rates, including the
N, rates of mass change of the constant activity species. To
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this end, one has to solve the N, mass balance equations (6)
together with the N, equilibrium equations (4). While the
problem is very complex because of the nonlinearity of the
governing system, it can be significantly simplified upon
introducing the concept of components [e.g., Rubin, 1990,
1992; Friedly and Rubin, 1992; Steefel and MacQuarrie,
1996; Saaltink et al., 1998, 2001; Molins et al., 2004], as
described below.

2.3. Components

[14] Components are linear combinations of species
whose mass is not affected by equilibrium reactions. Their
introduction is convenient since it allows eliminating the
chemical reactions source term in the transport equations.
Most of the solution methods for reactive transport prob-
lems mentioned in the introduction are based on this
concept. We introduce the components matrix, U, defined
such that
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[15] In the following we first solve a simple binary
system and then generalize the methodology to deal with
classical heterogeneous and homogeneous chemical reac-
tions at equilibrium.

Bt 1 TS

3. Binary System
3.1.

[16] We consider a reaction of pure dissolution/precipita-
tion [Philips, 1991] at equilibrium, where an immobile solid
mineral Sz, dissolves reversibly to yield ions By and B,:

(12)

We further assume that the mineral, S5, is a pure phase, so
that its activity equals 1. With the notation of section 2,
vector m, contains the mass per unit volume of medium,
my = ncy and my = nc,, of the aqueous species By and B,
respectively, while m,. contains the mass per unit volume of
medium, mjs, of the solid mineral, Ss,. The stoichiometric
matrix of the system described by (12) is

Problem Statement

= S

B, + B,

Se=(—=1 —1 1). (13)
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For this system, S, can be split as
See = (1) (14a)
Sea = (Sl | SL,) = (=1] =1). (14b)

Matrices S,. and S,, contain the stoichiometric coefficients
related to the constant activity species and to the remaining
aqueous species, respectively. Equation (14b) implicitly
identifies B as primary species and B, as secondary.

[17] Thus the mass action law (equation (4)) for the
considered system is expressed as

= logK. (15)

logc) + loge,
The equilibrium constant, K, is strictly related to solubility
of the solid phase, Ss,, and usually depends on temperature,
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[19] In order to obtain the space-time distribution of the
concentrations of the two aqueous species and the
reaction rate, we need to solve the nonlinear problem
described by the mass balances of the aqueous species
(equations (16a) and (16b)) and the local equilibrium
condition (equation (15)). The rate of change in the solid
mineral mass is then provided by (16c¢).

3.2. Methodology of Solution

[20] The general procedure to solve a multispecies trans-
port process will be detailed in section 4. Here, we start by
illustrating the application of the method to the binary
system described in section 3.1 and provide a closed-form
analytical solution.

[21] In essence, the solution procedure develops accord-
ing to the following steps:

[22] 1. Definition of mobile conservative components of
the system: Using (10) for U and (14b) for S,,, yields

U= (1 —1); (17)
this implies that one needs to solve the transport problem for
only one conservative component u = Uc, = ¢; — ¢,. Notice
that simply subtracting (16b) from (16a) leads to the
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equation which governs the transport of the conservative
component u# = (¢; — ¢). In other words, dissolution or
precipitation of the mineral S, equally affects ¢; and ¢, so
that the difference (¢c; — ¢») is not altered.

[23] 2. Transport of the conservative components: Since
only one component is evidenced in this case, one needs to
solve (11) for u.

[24] 3. Speciation: Here one needs to compute the con-
centrations of (Ny — N,.) mobile species from the concen-
trations of the components. In our binary system, this
implies solving

co—c=u (18a)

logey + loge, = logK. (18b)

[25] Assuming that K is independent of c¢; and c¢,, the
anlitinn af (1Ra) and (1Rh) ic

u—+
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Moreover, in the case of constant K, equation (20) reduces
to

r (&)

0? T
Peo 2K (22b)
8”2 - (uz +4K)3/2 .

In general, the reaction rates should be used to compute the
mass change of solid mineral. In turn, this would cause a
modification in the medium properties. Here, however, we
will neglect such changes assuming that modification in
the solid mass due to transport involves very thin layers of
the matrix [Rubin, 1983] and no significant variations of the
pore system occur.

[27] The results encapsulated in (20), (21) and (22)
deserve some discussion. First of all, under chemical

DE SIMONI ET AL.: MULTICOMPONENT REACTIVE TRANSPORT PROBLEMS

W11410

equilibrium conditions, they provide a way to compute
directly the rate of dissolution/precipitation as a function
of quantities such as the concentrations of components, the
equilibrium constants, and the dispersion coefficients, with-
out the need to actually evaluate the concentrations of the
dissolved species. We note that (21) includes the model of
Philips [1991] as a particular case.

[28] Furthermore, equation (22) shows that the reaction
rate is always positive (i.e., precipitation occurs) in systems
where K is constant. This is consistent with the comments of
Rubin [1983], who points out that, in the case of the reaction
described by (12), reactive transport processes cannot result
in dissolution of the solid mineral. This is also evident from
Figure la. Figure la displays another interesting feature.
The equilibrium point can be obtained by drawing a line
from the conservative mixing point toward the equilibrium
line. The slope of this line is equal to the ratio of the
stoichiometric coefficients and is equal to 1 in our example.

IPEDIA

Register for free at https//www.scipedia.com to dewnloadntheversion without thewatéfiiark

LISt Conuiouuon on uie rignt ndndad siae o1 (£v), dail CriIls dre
proportional to the dispersion tensor, D, thus strengthening
the relevance of mixing processes to the development of
such reactions. In particular, the term V' u D Vu can be
used as a measure of the mixing rate, which is consistent
with the concept of dilution index, as defined by Kitanidis
[1994] on the basis of entropy arguments. This result also
suggests that evaluating mixing rates may help to properly
identify not only the sources of water [Carrera et al., 2004],
but also the geochemical processes occurring in the system.

[31] In general, the amount of S, that can precipitate is
controlled by the less abundant species. Thus we expect
precipitation to be highest when mixing induces similar
values of ¢; and ¢,. Mathematically, this is evidenced by the
dependence of the reaction rate on 0%c,/0u?, that reaches a
maximum when # = 0 (see equation (22b)). We also notice
that the rate (22a) increases with decreasing K, since
solubility also decreases (in a system described by (12),
solubility is the square root of K).

[32] The methodology we have presented can easily be
extended to deal with solute transport in the presence of
multiple reactions. This is shown in section 4. It is then
relevant to stress the point that analytical solutions for these
types of systems are possible whenever an analytical solu-
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tion is available for the conservative transport problem (11).
One such case is discussed below.

3.3. Analytical Solution: Pulse Injection in a
Binary System

[33] In this section we apply the general methodology to
derive a closed-form solution for a mixing-driven precipi-
tation reaction. Closed-form solutions provide basic means
to investigate the physical underlying processes and to
analyze the relative importance of the parameters involved.
Moreover, analytical solutions are potentially useful as
benchmark for numerical codes and can be of assistance
in developing methodologies for the setup of laboratory
experiments and procedures for data analysis and/or
interpretation.

[34] We consider a three-dimensional homogenecous
porous formation, of constant porosity, n, under uniform
flow conditions. The system is affected by an instantaneous
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¢i(x, t =0) = ;e Ved(X)/n + cio, i=1;2, (24)
where equilibrium must be satisfied at all points in the
aquifer. This implies that (1) ¢1oc9 = K, and (2) (c19 + ¢10)
(c20 + ¢2.) = K. From these two equilibrium conditions, it
should be clear that ¢;, and ¢,, would have different signs.

[36] With this in mind, we then follow the steps detailed
in section 3.2. The (conservative) component u = ¢; — ¢»
satisfies (11) with boundary and initial conditions

Uso = u(X — 00,1) = ¢1(Xx — 00,1) — ca(x — 00,1) =uy (25a)

u(x, t =0) = u,V,58(x)/n + up. (25b)

With this definition, u, is then the excess of the injected
component u that remains in the aquifer immediately after
injection. The solution of (11), subject to boundary and
initial conditions (25a) and (25b) is [Domenico and
Schwartz, 1997, p. 380]

18  u, 1
u(x,t) = up + W i;_d exp [—EPZ} ) (26)
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where p is the normalized radial distance from the center of
the plume, defined as

(x=Vi)* 2422
2tD; 2tDr '

p= (27)

The dimensionless quantity ¥, is the ratio between the
volume containing about the 99, 7% of the excess of
injected mass [Domenico and Schwartz, 1997] and the
injection volume

7 7272682\ /DDy
=
v,

(28)

and is a measure of the temporal evolution of the dispersive
effect.
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characterized by c1o/VK = 0.25 and co/vVK = 4.0 (uo/
VK = —3.75); we then inject water from an external source,
characterized by cio/VK = 0.184, Coo/VK = 5434
(tor/ VK = — 5.25). Equilibrium condition is satisfied when
c1/VK = —0.066, c»/vVK = 1.434 (u VK = —1.5).
Figure 2a depicts the dependence of the dimensionless
concentrations ¢; = ¢;/v/K and ¢, = ¢,/v/K on the normalized
distance from the center of the (moving) plume, (x — V?)/
V2tDy (while z=y = 0), and V,; = 3.5. Dimensionless
concentrations (¢yyg, Cang) for the corresponding nonreac-
tive system are also shown for comparison. Notice that while
both concentrations are higher than the initial ones in the
nonreactive case, in the reactive case ¢; decreases while ¢,
increases (in agreement with the fact that ¢;, <0 and ¢, > 0).

[39] The spatial distribution of the (local) dimensionless
reaction rate, 7 = rt/(nv/K), for the same conditions of
Figure 2a, is depicted in Figure 2b. A comparison of
Figures 2a and 2b clearly elucidates that the system is chem-
ically active (i.e., the reaction rate is significant) at locations
where concentration gradients of both species are relevant.
This implies, in turn, that strong gradients of the component u
give rise to significant reaction rates, in agreement with (22a).
In general, no reactions occur within the system when concen-
tration gradients vanish. As a consequence, no reaction occurs

6 of 16



W11410

DE SIMONI ET AL.: MULTICOMPONENT REACTIVE TRANSPORT PROBLEMS

u,/NK=-15  u,/NK =-3.75

f/'u’ :3.5 y =Z= 0 o
g 1.50 — — 19 &q
s (a) — — . Initial conditions by
=] =]
o 1.25 4 ~ ~ L 16 o
.2 —_ G — C2 .2
= 7 = =
2 1.00 —— CanR }F 13 E
> )
: :

0.75 4 L 10

S 3
o 75]
£ 0.50 - -7 5
g 5
‘B 0.25 - L4 D
5 g
£ 8
A 000 : T - I A

i
=
=]
—
2
]
L

\

¢y, ¢ and (b) dimensionless reaction rate, 7, on the
normalized distance from the center of the (moving) plume,
(x — Vi)\/2tDy, forz=y=0, V;=3.5, u/vVK = —1.5, and
uo/vK = —3.75. In Figure 2a, the dimensionless concentra-
tions Ciyp, Cong are those of a nonreactive system; the
dashed line indicates the initial concentrations of the two
species within the system.

at the (moving) center of the plume, that is, at the points of
highest (or lowest) concentration values.

[40] Figures 3a and 3b display the same quantities of
Figures 2a and 2b but for V', = 16. A comparison between
Figures 2a and 3a reveals that the concentration profiles
display a lower amplitude when V', increases. A larger value
for V,; (equation (28)) can be seen as an increase either in
elapsed time or in the effects of dispersion for a given time.
Thus it is expected that more dispersed plumes are associ-
ated to weaker gradients of u and thus to reduced precip-
itation rates. This behavior is not observed in the range of
small dispersion effects (V,;, < 1), where an increase of
dispersion phenomena enhances the mixing process and the
related reaction. This feature can be observed mathemati-
cally by taking the limit of (29) when V', tends to zero.

W11410

From (29) we also observe that a change in D7 has stronger
effects rather than a modification in D;. This is so since Dy
is not squared in the definition of V'; and is also clear when
considering that dispersion is enhanced along two directions
by increasing Dz while an increase in D, affects only one
spatial direction. We will comment further on this topic in
the following.

[41] The sensitivity of the reaction rate to u, for a given
uy is presented in Figure 4, with reference to a resident
water with uo/vV/K = —20 (c1o/VK = 0.05; c20/v/K = 20.05).
We start by considering the case with a negative u, (u,/ VK =
—30). The dimensionless mixing volume is set as V', = 3.5.
The shape of the reaction rate function is displayed in
Figure 4a at the plane z = 0. From the plot it is clear that, at
any given time, precipitation would concentrate in a (three-
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Figure 3. Dependence of (a) dimensionless concentrations
¢y, ¢ and (b) dimensionless reaction rate, 7, on the
normalized distance from the center of the (moving) plume,
(x — Vi)\/2tDy, forz=y=0, V,=16, u,/vK = —1.5, and
uo/v/K = —3.75. In Figure 3a, the dimensionless concentra-
tions Ciyp, Cong are those of a nonreactive system; the
dashed line indicates the initial concentrations of the two
species within the system.
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note that Figure 4a displays an artificial symmetry, as
coordinate x is normalized by /2¢D;, while the y direction
is normalized by /2tDy. Figure 4b depicts radial profiles
of the dimensionless reaction rate, 7, for different u,.
Because of the symmetry of the solution with respect to
the normalized coordinates, we display only radial profiles
starting from the plume center. Figure 4b is organized in
such a way that while the curves resulting from positive
values of u, are displayed on the larger scale, those arising
by negative values of u, are displayed within the insert.
Figure 4b reveals that the reaction rate is larger when u,/
\/%( and uo/v/K have opposite signs. An explanation of
this is provided with the aid of Figure 5 where, for the
sake of discussion, we consider the effect of |u/vK]| =
30. From the points reached on the equilibrium curve
right after injection, characterized by (c;. + c¢i)/VK,
concentrations would evolve until they reach the asymp-
totic condition characterized by the same concentrations
as the resident water. In the case of conservative solutes,
the paths would be the straight lines depicted in Figure 5
as dashed lines. For reactive solutes the path would be
along the hyperbola (equilibrium line: ¢;¢, = 1). From
Figure 5 we see that there is no symmetry: in the case of
u, < 0 reactive and conservative solutes paths are quite
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509 Resulting water after injection:
40 4 ® u/JK=-30
A /JK =30
~ 30 A
Ci
Initial water
208
10 Ty
s
Q1+— i T A
0 5 2 10 15

Figure 5. Scheme of a pure dissolution/precipitation
reaction induced by a point-like injection. The equilibrium
condition at the injection point is characterized by |u./v/K| =
30, while the initial water is identified by ug/ \/_)' = =20 (the
initial point is also the final equilibrium point). Dashed lines
outline the path of the reaction in the case of conservative
solutes. For reactive solutes, the path would develop along
the hyperbola (equilibrium line).
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similar, which is not the case when u, > 0. As a
consequence, in the latter case a larger amount of precip-
itation is needed in order to reach equilibrium at all
locations and times. Going back to Figure 4b, we observe
that the largest absolute value of u./+v/K produces the
largest reaction rate, as a consequence of the mixing of
increasingly different waters, thus inducing significant
gradients of u.

[42] Knowledge of the local rate is essential to evaluate
the global reaction rate

VQ(Z) :/V(X,t)dQ,

Q

(30a)

which is an integral measure of the rate of precipitation of
the mineral mass of the system at any given time. Here, €2 is
the entire volume of the medium. This information is of
practical interest for experimental applications devoted to

[ cral a close
(30a) does not exist. Upc
three-dim [ mt

followin

7

Vo1 -
36/1 & / K(p

8m

Oro. _Org Va _0ra Va _ Dr Oro (31)
oD, 9V, 0D, 9V, 2D, 2D; Dy’

Equation (31) shows that the overall reaction rate, rq), is much
more sensitive to D7 than to D;. Considering that long-
itudinal dispersion is often taken to be about five to ten times
of transverse dispersion, equation (31) implies that the
overall reaction rate would be ten to twenty times more
sensitive to Dy than to D;. Furthermore, the input of
solutes is frequently continuous in time and reactants do
not enter directly into the flow domain, as they are laterally
driven into it. Both factors would tend to enhance the role of
transverse dispersion in reactive transport problems. This is
particularly relevant in view of the uncertainties surrounding
the actual values of transverse dispersion. While some argue
that transverse dispersion tends to zero in three-dimensional
domains for large travel times [Dagan, 1989], others
[Neuman and Zhang, 1990; Zhang and Neuman, 1990;
Attinger et al., 2004] show that this is not the case, thus
corroborating the idea that the actual transverse dispersion is
linked to the interplay between spatial heterogeneity and
time fluctuations of velocity [Cirpka and Attinger, 2003;
Dentz and Carrera, 2003].
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[44] An asymptotic expression for (30b) (see Appendix D
for details) can be derived analytically in the presence of
large dispersion effects (i.e., large V) as

_ V.K ug 27
t ’[;d 4TY1/2(010 + 020)3 '

ro(?) (32)

Recalling the definition of V', (equation (28)), expression
(32) reveals that, for large V,, the global reaction rate, r,
decreases with time proportionally to />, Figure 6 depicts
the dependence of the dimensionless global reaction rate,
7o = ro t((V. VK), on V, for different u,//K and uo/vK =
—20; bold lines are the asymptotic solution (32), while thin
lines with symbols correspond to 7 as obtained by
numerical solution of (30b). We observe that 7 increases
with V', in the range of small dispersion effects (V,; < 9),

since an increase of dispersion effects enhances the mixing
N tha
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/r(xJ)dt
~(y _ 0
7(x) = -

obtained by numerical integration of (29) on the horizontal
plane z = 0 for the entire duration of the process. Figures 7a
and 7b have been obtained on the basis of the initial
condition uo/v/K = —20, while the boundary conditions are
u VK = £20.

[47] Figures 7a and 7b corroborates the findings that the
system is active within a region close to the injection point.
We note that the reaction can be considered exhausted when
Vx/D; > 0.5 and Vy/Dy > 2. Considering, as an example, a
medium characterized by Dy = 0.21 m?*/day and D, =
2.1 m?/day, setting V,/n = 1 m®> and ¥ = 0.5 m/day, this
means that the precipitation process is negligible for x >
2.1 m and y > 0.85 m.

(33)

4. Generalization of the Methodology of Solution

[4¢] We now extend the methodology illustrated in
section 3 to describe multispecies transport processes in
the presence of generic homogeneous and classical hetero-
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1.E+02 geneous reactions. We assume that all the variable activity
u,/ \/_ =-20 species are mobile, so that mass balances (equation (6)) for
dissolved and constant activity species are expressed as
b One,)
“ = Li(e,) +SL 34
1.E+00 - u,/NK =20 g Lile) +Sar (34a)
30 o(m,
40 (6t )_ ML (m.) + S, (34b)

where matrix M, is diagonal and its diagonal terms equal 1
when a given constant activity species is mobile or zero

1.E-02 otherwise. Our aim is to evaluate the concentrations of
dissolved species, ¢, (N; — N. unknowns) and the rates of

=30 the reactions, r (N, unknowns). Once r is known, (34b)

40 provides the rates of mass change of the constant activity

Dimensionless global reaction rate

1.E-04 T T species. In order to calculate ¢, and r, we need to solve the
1 B01 1.E+01 LLE+03  1.E+05 algebraic-differential system given by the Ny — N, partial
differential equations of transport for ¢, (equation (34a))

Dimensionless dispersive volume and the N, nonlinear algebraic equilibrium conditions
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dence ¢
the dimen
Yredatt ()/\/1? and u
symbols correspond to
integration
asymptotic

1.5 4 E-2
VylD,
2E-2
1.0 0
0.5
0
0 0.25 0.50 0 0.25 0.50
Vx/D, VxiD,

Figure 7. Spatial distribution of the dimensionless total rate of precipitation, 7, as obtained by
numerical integration of (29) on the horizontal plane z = 0 during the entire process, for uy/v/K = —20,
(a) u/vK =20 and (b) u/v/K = —20.
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boundary conditions for (11) are given by uy = Ucy, ¢
being the vector of initial and/or boundary species concen-
trations. Since the reaction sink/source terms have been
eliminated, all components are independent. Moreover, the
resulting transport equation is identical for all components,
the only difference being in the boundary conditions. Only
in some particular cases (such as in the example of
section 3.3) a closed-form analytical solution is possible.
Otherwise, any conventional transport simulator can be
used. The underlying hypotheses are that (1) the mobile
species are subject to the same advective flow field and
(2) the same dispersion processes apply to all species, with
equal dispersion coefficients. Other than that, the formula-
tion does not impose any additional restrictions on the
nature of flow. That is, flow can be steady or transient,
saturated or unsaturated, single phase or multiphase, and
temperature may be constant or variable.

4.3. Step 3: Speciation

[s1] This step is devoted to evaluating the concentrations
of the N; — N, aqueous species, ¢,. The components,
computed in step 2, provide N , = Ny — N, — N, equations.
The mass action law for each reaction provides the remain-
ing N, equations. Thus one needs to solve the nonlinear
algebraic system

u = Uc, (35a)

loge! =S/, logc, — logK. (35b)
It is clear that the system is nonlinear, both explicitly
(simultaneous linear dependence on ¢, and log ¢,) and
implicitly (in general, K may depend on activity coefficients
and thus be a nonlinear function of ¢, as discussed in
section 2.1). The solution of this system can be very
complex. However, in some geochemical problems (such as
the binary system of section 3) it is possible to derive an
analytical solution. Formally, one can substitute (35b) into
(35a), obtaining N, nonlinear algebraic equations for ¢/,
Their solution renders ¢’,, as a function of u and K, which is
then substituted in (35b) to obtain ¢”,. In summary, we can
write

¢, = ¢,(u,K) (36a)

¢ =cl(u,K). (36b)

4.4. Step 4: Evaluation of Reaction Rates and
Mass Change of Constant Activity Species

[52] Here, we substitute the concentrations computed in
step 3 into the mass balance equations to obtain the N,
reaction rates. We recall (section 2) that each equilibrium
reaction yields a secondary species and that the
corresponding transport equation solely depends on its
reaction rate, as the redefined matrix of the stoichiometric
coefficients of the secondary aqueous species coincides with
the opposite of the identity matrix, I. Therefore, considering
the N, transport equations of the secondary species leads to

d(nc))

l‘:L,(CZ) - ot

(37)
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Substituting the functional dependences of (36b) into (37),
it is possible to evaluate the rates of the reactions (see
Appendix E for details). The rate of the mth reaction (we
switch temporarily to index notation to avoid ambiguities) is
given by

N, /"
T . Oc 0K,
— = am | _ 2P _ Y. VK, +V - (DVK,
r= Y G |V TR V)
A ’ Ny Ny 62 ’
I lan 7, DV 42 an T, DVK,
+l:l;8u8u] DV + ;;a oK, " "
N, N, 82 " ,
an_TK DVK,. 38
+p:l;8K6K (38)

This equation can be simplified when K is a function of
state variables satisfying nonreactive transport equation
(recall equation (21)) and, especially, when K is constant.
The latter condition leads to

N, N,
P u u 82 /"

2= Can g7y, DV
n — £~ OQu;0u; UiV -

=1 j=I

(39)

Reverting to vector notation, (39) can then be expressed as

r =nHV uD Vu, (40)
where H is the vector of Hessian matrices (a third-order
tensor) of the reactions (as represented by the corresponding
secondary species) with respect to the components.

[53] The rate of mass change of constant activity species
is then obtained by substituting the reaction rates into the
corresponding mass balance equations (34b). In the case of
immobile species (minerals subject to precipitation or dis-
solution), the rate of mass change is given directly by the
reaction rate. Knowledge of these rates of solid mass change
is of particular interest, since it is a prerequisite to estimate
the characteristic time of changes in medium properties
[Wood and Hewett, 1982; Philips, 1991].

[54] When the constant activity species are mobile (e.g.,
dissolved gases or some colloids), the formulation is still
valid but more complex, as one would need to use the
complete equation (34b) to obtain the reaction rate. If the
species is water, then one is rarely interested in finding its
concentration, other than in special cases, such as in the
presence of osmotic effects. In such cases our formulation is
still valid, but water would not be a constant activity species
anymore.

4.5. Additional Considerations

[s55] As previously pointed out, a key feature of our
methodology is that it allows obtaining concentrations of
solutes and reaction rates independently of constant activity
species.

[s6] As compared to existing formulations proposed in
the literature to solve multispecies transport processes in the
presence of a generic number of homogeneous and classical
heterogeneous reactions [Rubin, 1990, 1992; Friedly and
Rubin, 1992; Steefel and MacQuarrie, 1996; Saaltink et al.,
1998, 2001; Molins et al., 2004], our method is simpler and
more concise. It allows eliminating constant concentration
species from the beginning, thus simplifying the formula-
tion from the outset.
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[57] The method leads to general expressions for reaction
rates. The latter should then be used to compute the mass
change of solid mineral, which may induce modifications in
the medium properties. Here we neglect such changes and
assume that modifications in solid mass due to transport
involve very thin layers of the matrix [Rubin, 1983] and no
significant variations of the pore system occur. In many
practical problems minerals may appear (in response to the
changes caused by mixing and reactions) or disappear (by
being totally dissolved) in zones of the flow domain. This
can be handled by defining different chemical systems in
each zone. Unfortunately, this would lead to severe math-
ematical complications.

[s8] The first three steps of the proposed method are
similar to those implemented in many computer codes, such
as HYDROGEOCHEM [Yeh and Tripathi, 1991],
PHREEQC [Parkhurst, 1995] and RETRASO [Saaltink et
al., 2004] (which also includes a detailed list of codes). The
evaluation of reaction rates using (38) or (40) is no less
cumbersome than simply substituting the concentrations of
secondary species into the transport simulator to solve for r,
as implied by (37). In fact, conventional speciation codes do
not yield the second derivatives of secondary species. Our
equations yield valuable insights into the basic processes
controlling the rate of equilibrium reactions and allow for
explicit evaluations of these rates in cases when an analyt-
ical solution is feasible.

5. Conclusions

[s9] Our work leads to the following major conclusions:

[60] 1. The methodology we propose allows obtaining the
local concentrations of dissolved species and the rates, r, of
the reactions occurring in the system. It also allows evaluating
the rate of change in the mass of the solid minerals involved in
the phenomena as a function of r; this is a prerequisite to
estimate the characteristic timescale of changes in medium
properties [Wood and Hewett, 1982; Philips, 1991].

[61] 2. An appealing feature of our method is that it
allows separating the solution of chemical equations to the
mass balance equations of dissolved species. This leads to a
reduced number of transport equations to be solved, and,
more importantly, deconstructs the problem to the solution
of a set of independent nonreactive advection-dispersion
equations.

[62] 3. From a practical standpoint, our methodology is a
very powerful tool in deriving analytical solutions for
multispecies system where homogeneous or classical het-
erogeneous reactions occur [Rubin, 1983] on the basis of
known classical solutions describing nonreactive processes.
It can also be used to develop and/or simplify numerical
codes for solving reactive transport problems.

[63] 4. As compared to formulations previously proposed
in the literature to solve multispecies transport phenomena
in the presence of a generic number of homogeneous and
classical heterogeneous reactions [Rubin, 1990, 1992;
Friedly and Rubin, 1992; Steefel and MacQuarrie, 1996;
Saaltink et al., 1998, 2001; Molins et al., 2004], our method
is simpler and more concise. Moreover, it permits not only
to evaluate concentrations of dissolved species, but also
provides general expressions for the rates of the system
reactions and for the rate of change in solid mass involved
in the phenomena.
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[64] 5. The general expression provided for the reaction
rates highlights that mixing processes control equilibrium
reaction rates and evidences the possibility of inducing
reaction by simply mixing waters at different equilibrium
conditions. This type of mixing-driven chemical reactions
can help in explaining the enhancement of reaction pro-
cesses observed when different solutions mix in carbonate
systems [Gabrovsek and Dreybrodt, 2000; Corbella et al.,
2003; Rezaei et al., 2005].

[65] 6. We applied the general methodology to a binary
system and derived an original closed-form analytical
solution of a mixing-driven precipitation reaction induced
by a pulse injection in a three-dimensional homogeneous
porous medium in the presence of uniform flow. Our results
prove that in binary systems the mixing process of two
waters, both of which are at equilibrium, induces precipita-
tion processes throughout the system. The solution also
demonstrates that (1) the presence of precipitation signifi-
cantly modifies the concentrations of aqueous species, when
compared to a nonreactive situation; (2) the features of the
reactive process are strongly dependent on flow character-
istics and on the difference in the concentrations of both the
initial and the injected water; (3) the bulk of the reactive
process develops at early time, thus remaining confined
within a region of the domain which is relatively close to
the injection point; and (4) the overall reaction rates are
more sensitive to transverse than to longitudinal dispersion.

Appendix A: Illustrative Example of the
Chemical Equilibrium Formulation

[66] As an example to help understanding the meaning of
vectors and matrices employed within the mass action law
(1), we analyze the system of reactions leading to dedolo-
mitization [Ayora et al., 1998]. The system is governed by
four equilibrium reactions (N, = 4)

COJ” =HCO; —H' (Ala)

CO, = HCO; +H' — H,0 (A1b)
CaMg(CO3),,= Ca’" + Mg*" +2C0%~ (Alc)
CaCO;, = Ca*t +CO3~. (A1d)

We identify H,O, CaCOjs(,y and CaMg(COs),, as constant
activities species (N, = 3; one aqueous and two solid
species). As the total number of species involved is Ny =9,
we need to define Ny — N, — N, = 2 primary species. We
then define H" and HCO5 as the primary species and CO3 ™,
CO,, Mg*" and Ca®" as the secondary species.

[67] We write the vector of activities, a, as

a= (H",HCO;,CO; ", CO,, Mg*",

Ca’*, CaMg(CO03),,, CaCOs,, Hy0)” (A2)
which is written respecting the order presented in section 2,
first the primary species, then the secondary, and last the
constant activity species. The stoichiometric matrix is
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HY HCO; | CO¥ €O, Mg*t
-1 1 -1 0 0
Se=1| 1 1 0 -1 0
0 0 2 0 1
0 0 1 0 0

=/

Note that negative and positive coefficients in S, are related
to reactants and products of the reactions, respectively.
Multiplying S'., and S”,, by —(8"..)"" we rewrite the
stoichiometric matrix so that the matrix of the stoichio-
metric coefficients of the secondary species coincides with
the opposite of the identity matrix, I, and redefine the
matrices S,, as

— (Su |8) = (8L,

HY HCO; | CO¥ CO, Mg*t Ca*'
-1 1 -1 0 0 0
S, |-)=1] 1 1 0 -1 0 0
1 -1 0 0o -1 0
1 -1 0 0 0 -1

(A4)

This last operation has simply implied rewriting the last two
reactions (Alc) and (Ald) in terms of primary species (i.e.,
eliminating CO3 "), so that the last two reactions now read

Mg?* = CaMg(CO;),,—CaCO;3, + H" — HCO; (ASa)

Ca’" = CaCO;, +H' — HCO;. (ASb)

Appendix B: Reaction Rate for a Binary System

[68] Here we detail the steps leading to a general expres-
sion for the rate of the reaction of pure precipitation/
dissolution processes in a binary system (given by
equation (20)). We start from the transport equation of the
species B, (equation (16b)) and assume n to be constant.
Recalling (19b), the time derivative of ¢, can be expressed
as

dlncy(u, K)] (362 Ou (B1)

(962 6[(
ot Ou Ot

oK ot

We introduce the advective and diffusive linear operators,
L; gav and L, 4, defined as

Li(c) = n[Li_aav(c) + Li_a(c)], (B2)
where
Lt_adv(c) =-V-Vc (B3a)
L, _4(c) =V - (DVc) (B3b)
and V = g/n.
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Ca*™ | CaMg(COs),, CaCO; H,O
0 0 0 0
0 0 0 -1 (A3)
1 -1 0 0
1 0 -1 0

[69] Applying the advective operator to ¢, leads to

662

ﬁ(—V -Vu) + K

13
Ou
while applying the diffusive operator to ¢, leads to

Li_aav(c2) = (=V-VK), (B4)

) )
Lialcs) =V~ { ;2 (DVu )] +V- { ajé (DVK)}
_ 8C2 aCZ (92 T
+2 ; S VIuDVK +g 2 YTKDVK. (BS)

Substituting (B4) and (B5) into the transport operator (B2),
applied to ¢;, leads to

L) = n{% [V -Vu+ V- (DVu)]
+%[ V.VK+ V- (DVK)]
8 [y
8 —— V uDVu Em 8 uDVK
g Qgr KDVK} (B6)

Finally, substituting (B1) and (B6) into (16b) and recalling
(11), yields

r Ol 0K 1 ey ey
n_aK[ 8t+nL(K)] 82VuDVM—i—288 V' uDVK
((“)202 T
asz KDVK. (B7)

Appendix C: Reaction Rate for a Binary
System When the Equilibrium
Constant Depends on Conservative Quantities

[70] This Appendix is devoted to finding the expression for
the rate of the reaction of pure precipitation/dissolution, when
the equilibrium constant, K, is a function of a given quantity,
s, satisfying a nonreactive form of the advection-dispersion
equation. This could be, for example, the case of salinity.

[71] We start from the general expression of the reaction
rate (20)

862

r ol 0K 1 r

" T K [— o +nLt(K)] D Viu o 0 uDVK
(962 T
8K2V KDVK. (C1)
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As K is function of s, the time derivative of K can be
expressed as

d[K(s)] _ 0K s
ot 0s ot
Recalling the definition of advective and diffusive linear

operators, L, ,q, and L, 4, (equations (B3a) and (B3b)), we
split the operator L, (K) as

(€2)

1

2L,(K) = Li_aav(K) + L;_a(K). (C3)
Applying the advective operator to K leads to
0K
Li_aav(K) = e (—V - Vs). (C4)
The diffusive operator acting on K provides
oK oK K _,
L_s(K)=V" {a (DVs )} 5, V- (DVs HWV sDVs.
(C5)

By virtue of (C4) and (C5), (C3) results

%L,(K) = {%—Ij[—V -Vs+V- (DV?)]+7VTVDV€} (C6)

Substituting (C2) and (C6) into (C1), and recalling that s
satisfies a nonreactive format of the advection-dispersion
equation, leads to

2
r_de (a—KVT DVs ) NECTEY

n 0K \ Os? Ou?
862 T 062 T
+25 o VIUDVK + = = VIKDVK. (C7)

Since K is a function of s, the last two terms in (C7) can be
written as

8 [5) T o 6 C T
Ok V uDVK = Duds V' uDVs (C8)
8202 T 8 8K T

Substituting (C8) and (C9) into (C7) and noticing that

Pey 0, K 0 (81{)2’ fnallv obtai
—=———+—>(— we finally obtain
0s? 0K 0s* OKZ? \ Os
ro 8262 e T Pe € or
;_Wv sDVs +FV uDVu -i-2a % ViuDVs. (C10)

Appendix D: Analytical Solution for the
Overall Reaction Rate in a Binary System

[72] Here we provide the analytical expression of the
overall rate, rq (equation (30b)), in the case of large
dispersion effects (large dimensionless volumes, V).
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[73] The derivation relies on the fact that when I7d is large
we can write an approximate expression for the local rate
upon disregarding terms of order larger than 2 (in 1/V,) as

r 2K 1 [( 18 1)

2
Ue | 2 2
- = | PTEXp|—pP7|,
n (u% +4K>3/2 2t 2’1{)1/2 Vd:| [ }

where p is defined by (27).
[74] Recalling that

(D2)

integration of (D1) over the domain renders r (equation
(32)) as

V.K u 27
t Vd 47‘(1/2(6‘10 + 6‘20)3 ’

rq =

(D3)

Appendix E: General Expression for the
Reaction Rate

[75] Here we detail the steps needed to obtain (38),
expressing the reaction rates for the general case of multi-
component transport. We start from the transport equations
for the secondary species (equation (37)) and recall that ¢, is
solely a function of u and K (equation (36b)). Let us first
consider a single secondary species’ concentration, c,,,.
Using the chain rule, we express the time derivative of ¢,
as

(’)[11 ( N, acll, 0K,
— 0K, Ot

aocl ., (’“)u,
Z u; 8t (ED)

where N, = Ny — N. — N,.is the number of primary species.

[76] Application of the advective operator, L, 44
(equation (B3a)), yields
Li_aav(c), )72“84','"( V. Vi) +Z Com (_y . VK,).
Ju; 0K,

(E2)

The diffusive operator, L, 4 (equation (B3b)), acting on c/,,
is expressed as

86‘” a i
Lia(c!,) :Z aamv (DVu;) +Zv(au > (DVu;)
i=1 !

+Zacamv DVK,) +Zv(aa‘;().(nv1<],).
(E3)

Upon noting that

ocl ., 0%,
< Ou; ) Zau,au,

62 /"
f*za K,
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equation (E3) can be rewritten as

O Ny ac"

Ltfd(c;’m)— 6“mv (DVu,-)+Za’”"V (DVK,)
=1 P

Nu N, 82 !

CamT

22 puiny” MOV

=1 j=

Nu_ Ny P

+2) 3
ilql

Ny

+ ZZ&KIGI’”{ V'K,DVK,.

p=1 g=1

+

Cam T D K
Ou;0K, duoK, " PV

(Es)

Using (E2) and (E5), the linear operator (7) acting on ¢,
can be written as

.
L) :n{ a‘””[ V- Vu; + V- (DVy;)]
N C”
K, " [-V-VK,+ V- (DVK,)]
M Nu e —
+;I_ o, 8ujv uDV;
N, N,
+2,21:q2 o 5Km v'u,DVK,
o & 02 am T
+;;8K8K VKDVK} (E6)

Substituting (E1) and (E6) into (37), when written for a
single species, c,,, and recalling (11), leads to

N I
T oc/m| 0K,
I ~ZP_v.VK, DVK,
n :aK,,{ a VY +V(VP)}
N N 92l N Qe 92l
am —T D 2 am T D K
T2 2w, PV ; ok, PV
N, Ny azcé/m ,
+ > 2 mv K,DVK,. (E7)
p=1 g=1

Finally, the rate of reaction of the entire system is

/!
L Zacam{ Ky N .VK,+ V- (DVKP)}

n

I’
Ny Ny 2 Vi
9% &
T uDVu; + 2 T uDVK,
T2 2o A Zzauia&j DV
N, Ny 82c/a/m ’
+ V’K,DVK, (E8)
Lo 0K, 0K, T
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