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Abstract: Digital evidence is critical in cybercrime investigations because it is used to connect
individuals to illegal activity. Digital evidence is complicated, diffuse, volatile, and easily altered,
and as such, it must be protected. The Chain of Custody (CoC) is a critical component of the digital
evidence procedure. The aim of the CoC is to demonstrate that the evidence has not been tampered
with at any point throughout the investigation. Because the uncertainty associated with digital
evidence is not being assessed at the moment, it is impossible to determine the trustworthiness of
CoC. As scientists, forensic examiners have a responsibility to reverse this tendency and officially
confront the uncertainty inherent in any evidence upon which they base their judgments. To address
these issues, this article proposes a new paradigm for ensuring the integrity of digital evidence (CoC
documents). The new paradigm employs fuzzy hash within blockchain data structure to handle
uncertainty introduced by error-prone tools when dealing with CoC documents. Traditional hashing
techniques are designed to be sensitive to small input modifications and can only determine if the
inputs are exactly the same or not. By comparing the similarity of two images, fuzzy hash functions
can determine how different they are. With the symmetry idea at its core, the suggested framework
effectively deals with random parameter probabilities, as shown in the development of the fuzzy
hash segmentation function. We provide a case study for image forensics to illustrate the usefulness
of this framework in introducing forensic preparedness to computer systems and enabling a more
effective digital investigation procedure.

Keywords: blockchain; chain of custody; digital evidence; digital forensics; fuzzy hash; image forensic

1. Introduction

Any digital data containing trustworthy information that supports an event hypoth-
esis is considered digital evidence. Digital evidence’s extent is continuously increasing,
including both established and emerging technology such as computers, networks, memory,
and mobile devices [1]. Digital evidence has many features, including the ease with which
it can be copied and transferred, the ease with which it can be changed and deleted, the ease
with which it may be tainted by new data, and the fact that it is time-sensitive. Additionally,
digital evidence may be easily transferred across countries. As a result, managing digital
evidence is much more complex than processing physical evidence [2]. Digital evidence
may take the form of images, videos, text, or device logs. Additionally, it incorporates data
from social media platforms such as Twitter, Instagram, and Facebook [3–10].

There are many ways for enhancing the integrity of digital evidence. These techniques
include cyclic redundancy checking, hashing functions, digital signatures, time stamps,
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encryption, and watermarking. Each technique has a number of benefits and drawbacks;
see [8,11–14] for more details. The majority of digital forensic tools and apps use some kind
of hashing algorithm to ensure the integrity of digital evidence. Hashing is a cryptographic
method for determining an entity’s unique representation. When utilizing the conventional
hash, certain problems will occur, particularly regarding data integrity since digital data
can readily altered. Tampering will always be a problem. This occurs as a result of the
exchange procedure being poorly documented [15]. Additionally, a conventional hash
cannot be utilized to calculate similarity or to identify traces of evidence. Fuzzy hashing
is a kind of hashing that is used to determine the degree to which two entities are similar.
Fuzzy hashing enables the investigator to concentrate on possibly incriminating images
that would not be seen using conventional hashing techniques.

Meanwhile, a Chain of Custody (CoC) is a critical process in the management of
evidence and investigations. CoC is a term that refers to the process of preserving and
documenting the chronological history of digital evidence [4–6]. CoC and integrity of
digital evidence play a part in the digital process of forensic investigation since forensic
investigators must know where, when, and how digital evidence was found, gathered,
tracked, handled, and preserved throughout its trip to a court of law. A proper CoC
must include documentation that addresses each of these points. If any one of these
questions is left unanswered, the CoC is compromised and disturbed. Without a certificate
of conformity, the evidence is useless [7–15].

There are many indications that may be used to identify problems with the manage-
ment of CoC [6,16–19]: (1) threats to the data integrity of digital evidence throughout its
lifetime; (2) a massive amount of data is produced by billions of linked devices and must
be stored, presenting significant difficulties in ensuring authenticity; (3) because digital
evidence is complicated and volatile, and may be altered inadvertently or incorrectly after
acquisition, the CoC must guarantee that the evidence gathered is admissible in court; (4) as
the number of devices and types of software in the computer and information technology
fields continues to increase, cybercrime faces difficulties in terms of the amount of evidence
being examined; (5) documentation of the CoC is secure. This is a critical problem since
digital evidence may be copied and transferred to other systems; and (6) CoC adaptability
and capacity, which comes as a result of the growing amount of data produced by different
new digital forensics technologies.

To address the aforementioned issues, an integrated system is required. This system
must be capable of presenting data with established integrity and storing CoC for digital
evidence, providing an auditing facility to ensure the accuracy of forensic tools and their
application procedures, and preserving the artifacts of the evidence, in order for digital
evidence to be admissible in court [6,15]. The blockchain may be used to verify the validity
and legality of the processes used to collect, store, and transmit digital evidence, as well as
to offer a consolidated view of all CoC interactions [20].

In its simplest form, a blockchain is a collection of linked data structures called blocks
that store or monitor the state of any distributed system on a peer-to-peer network. Each
block is connected to the previous block via a special pointer called a hash pointer, resulting
in an append-only system, a permanent and irreversible history that can be used as a
real-time audit trail by any participant to verify the accuracy of the records simply by
reviewing the data itself [9]. The blockchain has been extensively utilized in a variety of
areas, including cloud security, IoT security, and digital forensics. Blockchain technology is
also a potential method for evidence verification and management in the area of digital
forensics, and it is being extensively explored [10].

Digital image forgeries are becoming more prevalent today since image manipulation
software is widely accessible and the usage of digital images has grown in popularity. One
cannot tell if the image is genuine or has been altered. Images may be altered by removing
a portion of the image, hiding an area within the image or altering the image in such a
way that the image information is misrepresented. These flaws erode the validity of digital
images [4]. Numerous methods are discussed in detail in order to identify image forgery.
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They are categorized as active or passive algorithms [5]. The active method involves
embedding a watermark into the picture. Because embedding watermarks in images needs
specially equipped cameras, this technique is very restricted in practice. In contrast, passive
methods to forgery detection rely on the evidence left on the image by various processing
stages during image modification. Passive may also be used to detect the amount and
location of forgeries in an image.

To summarize, computer forensics professionals use forensic software to acquire
copies or images of electronic equipment and to capture associated data. Recent advances
in forensic software allow for remote gathering and analysis. Even if it is impossible to
precisely quantify the uncertainty inherent in a piece of digital evidence, courts should
consult experts to get a sense of the data’s reliability. Every piece of digital data has some
degree of uncertainty, and an expert should be able to describe and estimate the degree of
certainty that can be put on a particular piece of evidence. If we do not attempt to quantify
uncertainty in digital evidence, one might argue that there is no foundation for assessing
the evidence’s dependability or correctness. Additionally, forensic examiners who do
not account for ambiguity throughout their analysis risk arriving at incorrect conclusions
during the investigation stage and finding it more difficult to defend their claims when
cross-examined.

This paper focuses on the research of protecting digital evidence that is uncertain,
which is still a challenging research topic that has not been studied much by researchers.
Traditional blockchain-based chain of custody is mainly based on a concise description of
the evidence under examination and some kind of hash code. However, the conventional
hash method is inefficient at dealing with identical files that arise from benign or mali-
cious alteration of the images examined by the forensic investigator. Utilizing fuzzy hash
functions enables forensic investigators to successfully deal with permissible alteration to
digital evidence, while using conventional hash methods is ineffective in this situation.

The remainder of this paper will be structured as follows. Section 2 discusses several
similar works and their benefits and drawbacks. The suggested framework is described in
Section 3. Section 4 outlines the experiments used to verify the proposed framework, and
Section 5 concludes the paper.

2. Literature Review

Numerous methods have been presented to enhance the quality of CoC. Several
blockchain-based secure digital evidence systems have been suggested in recent years. The
authors in [21] suggested a Blockchain-based Chain of Custody (B-CoC) to dematerialize
the CoC procedure while ensuring the integrity of gathered evidence and owner traceability.
B-CoC was shown to effectively assist the CoC process during the performance assessment.
However, the degree of anonymity for validators must be increased without modifying
security attributes. In a similar manner, the authors in [15] integrated the Digital Evidence
Cabinet (DEC) architecture with Blockchain. This prototype is referred as (B-DEC). B-DEC
makes use of data storage integrity to handle digital evidence that relates to DEC. DEC is
written in an XML format. However, the system must be capable of securely storing digital
evidence through software. It needs to significantly strengthen the protection of digital
evidence, such as via the use of encryption.

The work in [8] established a reliable time-stamping technique for protecting digital
evidence during the investigative process. Timestamps are acquired from a secure third
party in order to establish the date and time of the staff’s access to the evidence. A
significant issue here is that a reliable source of time is contingent on the setting of the clock
that produces it. Another similar study is [12], in which the authors utilized a variety of
security techniques to protect the integrity of the digital evidence, including (CRC—Hash
Functions—Digital Signatures). SHA512 was chosen for integrity protection based on tests
and evaluations since it is computationally extremely fast and least susceptible. However,
one may alter the original data, recalculate the hash, and then exchange the original hash
with the recalculated one, thus subverting the integrity service.
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The authors in [19] encrypted the XML structure on the digital chain of custody data
storage using the RC4 cryptography technique. One benefit of utilizing XML is that it is
simple for non-professionals to comprehend. Another issue is that XML does not need a
specific database management system to be opened. On the other hand, since the material
is accessible to everyone, the integrity of digital evidence cannot be accepted in court.
Additionally, RC4 encryption will take longer if the plaintext is lengthy. The researchers
in [22] evaluated two automated disk imaging programs (Encase and FTK Imager). These
programs claim that they protect the integrity of digital evidence by computing MD5
and SHA1 hashes of extracted data. The offered solution is both effective and practical.
However, MD5 and SHA1 hashes are insufficient to ensure the evidence’s integrity.

Z. Tian et al. [10] proposed a secure Digital Evidence Framework (Block-DEF) based
on Blockchain technology, with a loose coupling structure in which evidence and evidence
information are stored independently. The Blockchain is used to keep just the evidence
information, which is then kept on a trustworthy storage platform. Experiments demon-
strated that Block-DEF is a scalable framework; it ensures the authenticity of evidence and
strikes an appropriate balance between privacy and traceability. However, when adding a
new node to the blockchain it takes an inordinate amount of time to download and validate
the blockchain.

While earlier blockchain-based image forensics systems employed standard hashing,
the suggested approach uses fuzzy hashing to examine the blockchain validity (evidence
items) in order to better handle evidence item alterations induced by both benign and
malicious cyberattacks. When the similarity between two blocks surpasses 95%, the block
is considered to be original.

3. Methodology

This section explains the suggested methodology for integrating digital evidence in
the presence of certain defects (uncertainty of integrity) for many versions of the same
document. The phase of data gathering encompasses all image forensic-capture methods.
To maintain CoC throughout this phase, the examiner must adhere to forensic standards
while acquiring data sources (e.g., hard drives, network packet captures, OS and appli-
cation logs, memory contents, and mobile devices). With respect to the CoC, blockchain
technology, especially when combined with fuzzy hashing, has the potential to provide
tamper-proof recording of evidence. By using fuzzy hash functions, forensic investigators
may effectively address permitted modification of digital evidence, while traditional hash
techniques are useless in this scenario. The suggested framework’s fundamental process is
shown in Figure 1. Each stage will be discussed in depth.

The efficiency of the proposed system has been verified for application in the field
of image forensics. Only images are used in the paper. However, this is a universal
approach for different types of data such as audio, video, image, and files. The reasons
for choosing images in the application lie in the following factors: (1) a large number
of cases within the scope of the work of digital forensics experts are related to image
counterfeiting as they represent the main segment in transactions for individuals, such as
images of signatures and checks; (2) with the advancement and availability of powerful
image processing software tools and computer technology, it is very easy to manipulate
digital images. So, it is essential to determine the authenticity, integrity, reliability, and
origin of digital images; (3) images can be used in very important fields such as forensic
science, medicine, astronomy, and surveillance.

The investigator does not modify the evidence, but the evidence may be altered by be-
nign modification within some application such as compression. The pseudo-randomness
of cryptographic hash algorithms makes it hard to identify similar files even if one bit of
the input is changed. A hash function that does not retain the resemblance of files (e.g.,
different versions of a file) is necessary in the area of computer forensics. How forensic
investigators may use traces from such situations is becoming more difficult to determine.
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3.1. Participants

Authorized parties (forensic investigation) gather digital evidence (images) and then
register it in blockchain. Lawyers, the police, the defense, and the court all participate in
forensic investigations because they need information regarding the CoC at various points
throughout an investigation. Only authorized parties have access to the data associated
with a specific piece of evidence [6]. Each authorized entity has a unique identity that is
publicly known, and he or she possesses credentials that enable authentication and action
throughout the CoC process [21].

3.1.1. Front End

This part is intended to serve as an interface for authorization, to access permissions,
and for media. It allows for the downloading of digital evidence and certificates of au-
thenticity, in line with access permissions and levels. The Blockchain interface enables
participants to see, invoke, and query blocks, transactions, and chain codes [15,20]. The
front end produces a hash of the digital evidence and a nonce that uniquely identifies it
(Evidence ID). As the hash generates the ID and the value nonce is randomly selected to
guarantee the uniqueness of the evidence’s identification, it aids in preserving the integrity
of digital evidence throughout its lifetime [21].

3.1.2. Evidence Log

The evidence log keeps track of user interactions with digital evidence. This Evidence
Log is implemented on the blockchain and contains information on each piece of evidence
on which decision-making depends, including its ID, a description, the submitter’s (cre-
ator’s) identity, and the full history of owners up to the present one, including the dates
of ownership transfers. The evidence log is built on top of a peer-to-peer network that
includes all authorized entities. A network of this kind may be split into two distinct groups
of nodes [15,21]: (1) validator nodes: they are primarily responsible for maintaining a copy
of the blockchain; validating transactions; and creating, proposing, and adding blocks
to the chain (i.e., participate in the consensus protocol). (2) Lightweight nodes: they are
considered clients of the chain since they just issue transactions and depend on validators
to add and validate them.

3.2. Blockchain

A blockchain is a decentralized ledger that is maintained by trustless nodes in a peer-
to-peer network. Data are stored on the blockchain in blocks that are linked through a
connection to the hash value of each block. It is not feasible to modify data in the midst
of a block [15]. The first responder initiates forensic-chain by hashing digital evidence
(image) and securely storing it on the blockchain through the smart contract. Additional
information such as the time and date of the incident, the location of the crime scene, the
address to which evidence is transferred, and the present condition of the evidence are also
stored on the blockchain. The chain of custody for digital forensics on the blockchain has
the potential to significantly improve forensic applications by ensuring the integrity and
security of digital evidence while achieving the intended result [9].

As there are just a few peers connected to the network, the block size on the blockchain
is smaller. In contrast, not all nodes are required to download the whole blockchain in
order to be operational. Some members in the blockchain network participate just for the
purpose of making transactions and not for the purpose of verifying them. Full nodes are a
subset of nodes that fall into this category. Participation in the current transaction requires
the use of complete nodes. The block headers and transactions in each block must be
downloaded in their entirety, which implies users must download the whole blockchain’s
contents. With the ever-increasing size of the blockchain, scalability also becomes a problem.
Furthermore, the blockchains’ number is determined by the number of available digital
pieces of evidence.



Symmetry 2022, 14, 334 7 of 16

The proposed system depends on the piecewise hashing technology for cryptography
since the main contribution is to handle uncertainty in CoC. Piecewise hashing uses an
arbitrary hashing algorithm to create many checksums for a file instead of just one. Rather
than generating a single hash for the entire file, a hash is generated for many discrete
fixed-size segments of the file. The following characteristics describe this particular kind
of hashing: (1) a hash function should be computationally difficult to reverse “pre-image
resistance”; (2) it should be difficult to discover another input with the same hash if you
know the hash of the input you’re looking for “second Pre-Image Resistance”; (3) it should
be difficult to locate two inputs of the same length that have the same hash value if this
characteristic is present “collision-free hash function” [22–24].

3.2.1. Piecewise Hashing

To account for the uncertainty associated with evidence item changes, we utilized
Fuzzy Hashing (FH) rather than conventional hashes such as SHA 256 in our study. FH,
also known as Context-Triggered Piecewise Hashing (CTPH), is a mix of Piecewise and
Rolling Hashing (RH). Unlike traditional hashes, where their hashes (checksums) can be
interpreted as correct or incorrect, and as black or white, CTPH is more akin to the “grey
hash type” as it can identify two files that are likely near duplicates of one another but
would not be detected using traditional hashing methods [23]. RH generates ‘segments’
of conventional hash strings by generating a pseudo-random value depending on the
context of the input. In comparison, PH (Piecewise Hashes), such as conventional hashes,
produce a final checksum for the whole picture. They circumvent the latter’s restrictions
by segmenting the whole image into defined segments and then generating hash values
for each of these parts. Finally, the produced values comprise the final hash sequence. FH
employs the concept of PH to preserve data similarity in this study. Additionally, PH was
designed to minimize possible mistakes during forensic imaging, ensuring that the data’s
integrity is absolute and complete since only one hash segment is void [23,24].

3.2.2. Approximate Matching

Approximate matching is an exciting new technique for determining the similarities
between two digital objects. Numerous approximation matching techniques developed
to address contemporary issues in digital forensics are essentially based on the capacity
to describe objects as sets of characteristics, which simplifies the similarity problem by
limiting it to the well-defined domain of set operations [25]. There are eight well-known
approximation matching algorithms, including the following ssdeep, sdhash, mrsh-v2,
bbHash, mvHash-B, SimHash, saHash, and TLSH. While the first three algorithms remain
expanded and relevant, the last four algorithms are less promising in terms of digital
forensics for a variety of reasons, including recall and accuracy rates, runtime efficiency, and
detection capabilities. For cross-correlation, the final method (TLSH) is less powerful than
sdhash and mrsh-v2 [25]. While ssdeep is the most well-known CTPH use today, another
method, Multi-Resolution Similarity Hashing, version 2 (MRSH-V2), has been suggested
based on the same principles or enhancements to the original ssdeep algorithm [26].

In ssdeep, the system computes the similarity of two files based on their signatures
throughout the comparison process [26]. Ssdeep analyzes two strings and calculates the
least number of operations required to convert one string into the other using an edit
distance method based on Levenshtein distance. While ssdeep is very efficient at detecting
similarities between text files, it has a poor detection rate for images due to the possibility
of an active adversary exploiting it [23]. In comparison, Sdhash (Similarity Digest hash)
encodes the output hash features with a low empirical probability using Bloom Filters. Its
results are based on a “similarity score calculated by computing the normalized entropy
of the digests, which runs from 0 to 100, with 0 being a mismatch and 100 representing a
perfect or near match. The sole drawback discovered for sdhash was its execution time [23].

Mrsh-v2 overcomes ssdeep’s limitations and becomes quicker than sdhash [25]. The
main objective of MRSH-v2 is to compress and produce a similarity digest for every byte
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sequence. Similarity digests are constructed in such a manner that they may be compared
to one another, generating a similarity score. Each digest of similarity is composed of
Bloom filters. To generate the similarity digest, MRSH-v2 divides the input into roughly
160-byte pieces (sub hashes). These chunks are hashed using FNV (Fowler/Noll/Vo) Fast
non-cryptographic hash function to establish the Bloom filter’s five bits. To chunk the input,
it employs a seven-byte window that glides across it byte by byte. Approximate matching
is accomplished by comparing similarity digests. A pairwise comparison of two file sets is
needed to compare them [27,28].

The root node of a hierarchical Bloom filter tree is a Bloom filter that represents the
whole collection. When searching for an image, if a match is discovered at the root of the
tree, all of the tree’s child nodes may be searched. The method of determining if a file
matches a Bloom filter node is identical to that of adding a file to the tree. Rather than
putting each hash into the node, the sub hashes are compared to the Bloom filter to see
whether they are included inside it. If a node has a certain number of consecutive hashes, it
is considered a match [27].

3.2.3. Similarity

A similarity tool’s ultimate aim is to function as a drop-in substitute for the crypto
hashes used in forensic file practice for file filtering [28]. Approximate matching may be
accomplished using two distinct abstractions: byte wise matching and semantic match-
ing. (1) Byte wise matching: this algorithm works at the byte level and accepts only byte
sequences as input. Byte wise algorithms serve two primary purposes. A feature extrac-
tion function detects and extracts properties from objects in order to compress them for
comparative purposes. Then, a similarity function compares these compressed versions
in order to provide a normalized match score. Typically, this comparison is made using
string formulae such as Hamming and Levenshtein distances [25]. Byte-wise has a number
of restrictions, including [25]. (1) It is unable to detect similarities at a higher level of
abstraction, for example, semantically. (2) It is unable to properly match two image files
that contain the same semantic image but are stored in various file kinds and formats as a
result of their differing binary encodings. (3) Due to the absence of a universally accepted
definition of similarity, not all types of byte-level similarity are equally useful since certain
artifacts (e.g., headers and footers) are trivial and result in false positives.

This research focuses on the second type, (2) semantic matching, which operates on
the content visual layer (i.e., digital evidence images) and thus closely resembles human
behavior, for example, the similarity of the content of a JPG and a PNG image, despite the
fact that the image file types are different. To put it another way, two images are semantically
similar if they convey the same information. For instance, a JPG file is semantically
equivalent to an exported PNG file containing the same image. Their cryptographic hashes
will not be same, but the images will be identical [25]. To compare two hash values, a
comparison function is required. The comparison function takes two hash values as input
and returns a number between 0 and X, where X is the maximum match score. A score of X
indicates that the hash values are identical or nearly similar, implying that the input files
are also identical or nearly identical. The similarity score should ideally be between 0 and
100 and expressed as a percentage.

The suggested framework uses MRSH-v2 for creating the digital grey hash for each
block within the blockchain network that utilizes the Hierarchical Bloom Filter Tree (HBFT)
approach. As stated in [27], HBFT is quite good at detecting files that share at least 40%
of their content, and it has excellent recall when dealing with identical sets of data. This
means that the HBFT data structure is an effective alternative to all-against-all comparisons
while also delivering significant speed benefits. The HBFT approach yielded a recall level
of 95% for similar files when using mrsh-v2 as ground truth. Therefore, the proposed
framework has considered 95% as the appropriate metric for resemblance [28]. See [29–34]
for more information regarding fuzzy hashing techniques.
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3.3. Peer to Peer (P2P) Network

P2P is used to create the network architecture and to facilitate communication between
the blockchain layer and the rest of the network (responsible for constructing a blockchain
for each node in the underlying network). The majority of blockchain schemes use a
peer-to-peer network as a blockchain network. This work utilizes a peer-to-peer network
to organize nodes, offers peer-to-peer routing, secures the transfer of proof information,
and maintains the Blockchain’s consensus. Existing peer-to-peer network methods may be
utilized directly or modified to build the Blockchain’s network [10].

3.4. Consensus Mechanism

The blockchain consensus process selects a node to generate and broadcast the
blockchain next block and ensures that each node’s blockchain is consistent [10]. A
blockchain transaction is verified via the application of a consensus concept. Consen-
sus ensures that each transaction has its own independent witness mechanism. On the
blockchain, there are many forms of consensus, including Proof of Work (PoW), Proof of
Stack (PoS), and Proof of Authority (PoA). Consensus types vary according to how the
blockchain interacts with data storage [15].

With PoW, nodes compete against one another by solving a mathematical problem
to confirm transactions and create new blocks. While solving a block is a computationally
demanding job, validating it is straightforward. To further incentivize such a system,
solving a block also results in the mining of a certain number of bitcoins, which serves as
the incentive for block makers (often referred to as miners) [21]. PoW is suitable for permis-
sionless networks, that is, networks in which nodes may join without prior authorization.
The primary disadvantage of PoW is its high energy consumption, which also precludes
its use in some situations [21]. This has resulted in the study of other types of blockchain
consensus, such as PoA. This study focuses on PoA, which is usually used in permissioned
networks, i.e., networks in which nodes cannot join and become validators freely. With
the PoA, validators must be pre-authorized and their identities must be known. As a
consequence, behaving maliciously leads in a loss of personal reputation and, eventually,
expulsion from the validator set [21].

3.5. Hyperledger Blockchain Platform

Hyperledger Fabric (HLF) is a blockchain-based system for electronic digital record
exchange across several organizations. Recently, several blockchain systems have been cre-
ated by different businesses, including Ethereum, Corda, and Ripple [35]. The Hyperledger
Composer (HLC) is a framework for building blockchain applications that significantly
speeds up and simplifies the process of designing blockchain use cases. One of the many
benefits of HLC is that it is completely open-source, with an open governance architecture
that allows for contributions by anybody [6]. By design, HLC satisfies all of the criteria
for developing an automated system that is both robust and secure in its recording of all
the information related to the evidence collection process for a specific cyber forensic case.
HLC is compatible with and runs on top of the current HLF blockchain architecture and
runtime, enabling pluggable blockchain consensus protocols to guarantee that transac-
tions are verified according to the policy established by the designated business network
members [6].

The proposed framework in this article is based on HLF and HLC and offers the
following major benefits [6,36]: (1) it is distinguished from the others by its usage of the
permissioned blockchain idea, in which transaction processing is delegated to a select group
of trustworthy network members; (2) as a consequence, the resulting environment is more
regulated and predictable than public permissionless blockchains; (3) block generation
does not require resource-intensive computations associated with PoW techniques; (4) due
to its modular nature, it enables the employment of a variety of methods to achieve
agreement among business process participants; and (5) Ethereum is probably not the ideal
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cryptocurrency to use for crime-scene investigation. Digital forensic investigations require
confidentiality and are conducted by genuine and trustworthy parties.

From a functional standpoint, the HLF network’s nodes are classified as follows [36]:
(1) clients initiate transactions, participate in their processing, and broadcast transactions to
ordering services; (2) peers execute the transaction processing workflow, verify them, and
maintain the blockchain registry; the blockchain registry is an append-only data structure
that contains a hash chain of all transactions, as well as a concise representation of the latest
ledger state; (3) Ordering Service Nodes (OSN) or, simply, orders establish the general
order of all transactions in the blockchain using the distributed consensus algorithm; each
transaction contains updates to the system’s state, the history of which is stored in the
blockchain, and cryptographic signatures of endorsing peers; the separation of processing
nodes (peers) and transaction order keeps HLF’s consensus as modular as feasible and
facilitates protocol replacement.

To define business processes within the framework of the (HLF and HLC) platform, a
variety of concepts are employed, the most important of which are assets, participants, and
network-stored transactions. (1) Assets: anything of value that can be traded or shared via
a network is considered an asset. The suggested approach treats digital evidence and the
comprehensive information associated with it as an asset that is kept in HLC’s asset registry.
(2) Collaborators: participants in the forensic chain model are forensic investigators. In
HLC, the participant’s structure is represented using a file. It is possible to generate new
instances of the modeled participant and add them to the participant register.

Additionally, HLC needs blockchain IDs as a form of identification, and an identity
registry stores a collection of mappings between identities and participants. At any point
in time, admin peers controlled by companies in the hyperledger composer blockchain
consortium may add new participants with suitable identity responsibilities to address
a specific scenario. Participants may exchange information in a secure manner using the
channels available on the (HLF and HLC) platform. (3) Transactions are used to explain
the activities that participants may take on assets as they travel through the network.
Transactions in the proposed framework either record information about the evidence or
the evidence transfer event on the network. See [37–40] for more information regarding
hyperledger blockchain platform.

3.6. Evidence Database

The evidence database is a standard database and/or file repository that stores the
actual digital evidence together with an identification ID computed from the evidence’s
hash and a nonce. This database is disseminated and is maintained by a number of
reputable organizations (e.g., law, court, officers). Additionally, each access is granted only
if the asking organization is allowed to provide it in accordance with its function. There are
two reasons for this split (between the Evidence Log and the Evidences database). To begin,
evidence may be too big to be kept effectively on the blockchain (for example, a piece of
evidence may be a bit-by-bit copy of a storage device of several TBs of capacity). Second,
and most crucially, if pieces of evidence are kept on the blockchain, they are accessible to
all nodes in the blockchain network, while only authorized nodes should be permitted to
collect evidence. As a result, we keep just information on the CoC process and a hash of the
evidence in the blockchain, which enables us to check the integrity of pieces of evidence
throughout acquisition [21]. See [41–47] for more information about protecting digital
evidence integrity and preserving chain of custody.

4. Performance Evaluation and Analysis

Performance is the most desired characteristic of any problem-solving endeavor, and
this is also true for Blockchain-based solutions. We utilized Hyperledger Caliper to assess
the performance of our prototype. Caliper enables users to benchmark the performance of
various blockchain systems against a specified set of use cases and produce reports that
include performance metrics such as transactions per second (tps) and transaction latency
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(the time elapsed from the issue of the transaction to its inclusion in the blockchain). The
experiments were conducted on an Intel Core i7–5500U, 2.4 GHz processor, 8 GB DDR3
RAM laptop, and Windows 10 operating system. The code was written in Python language
using Python 3.6 software.

4.1. Performance Analysis

The first set of experiments was implemented to test our prototype using Caliper’s
2-organization-1-peer and 3-organization-1-peer network models with four clients in the
first round of tests. To ascertain our suggested framework’s transactional efficiency, we
created a test file that targeted two primary functionalities of our framework, namely,
evidence creation and evidence transfer, due to their direct participation in changing the
Blockchain state. We conducted ten rounds of testing with varying transaction volumes
and send transaction rates. Multiple runs of the test were required to get the average values
of performance indicators with a low chance of error. Tables 1 and 2 show the latency and
throughput for various rounds of 2-organization-1-peer and 3-organization-1-peer network
architectures. The performance assessment results indicate that the prototype’s throughput
achieves a maximum value and then begins to decrease as the transmit rate increases. The
highest throughputs obtained in 2-organization-1-peer and 3-organization-1-peer network
architectures are 15 tps and 10 tps, respectively. Additionally, the results indicate that
increasing the number of peers reduces the prototype’s throughput, which is consistent
with the characteristic of Hyperledger-based consortium Blockchains.

Table 1. Performance evaluation results with 2-organization-1-peer network mode.

Round Send Rate
(tps)

Max Latency
(s)

Min Latency
(s)

Avg Latency
(s)

Throughput
(tps)

1 6 0.85 0.70 0.77 5
2 11 1.18 0.74 0.98 9
3 16 1.46 0.49 1.13 13
4 21 2.89 0.61 1.93 14
5 26 4.06 0.84 2.72 14
6 30 5.80 1.05 4.37 15
7 35 7.27 1.32 5.76 15
8 40 21.61 8.36 16.15 8
9 43 11.49 2.49 8.38 15
10 49 13.88 8.57 11.85 13

Table 2. Performance evaluation results with 3-organization-1-peer network framework.

Round Send Rate
(tps)

Max Latency
(S)

Min Latency
(S)

Avg Latency
(S)

Throughput
(tps)

1 6 1.24 1.01 1.16 5
2 11 8.32 2.74 6.34 4
3 16 4.60 1.00 3.13 8
4 21 8.42 5.24 7.01 8
5 26 9.56 3.95 7.11 10
6 30 11.62 3.85 9.07 10
7 33 14.16 3.22 10.99 10
8 39 17.16 10.77 14.34 9
9 46 47.84 19.93 34.37 5
10 50 19.35 12.21 16.29 10

The second round of tests assessed the block generator’s load, which is used to
determine the distribution of blocks generated by each node. This shows if each node in the
blockchain network being used has an equal probability of producing blocks. We utilized a
1000-node architecture in the simulator and created 105 blocks sequentially, counting the
blocks generated by each node. The cumulative percentage of produced blocks containing



Symmetry 2022, 14, 334 12 of 16

x nodes is shown in Figure 2, where k is the number of node names. The more evenly
distributed the load, the more likely the line will be straight. When k equals one, the
curve exhibits a sharp rise. The demand on the generator is balanced evenly by increasing
the number of node names. The greater the number of node names, the more linear the
growth becomes. However, as the number of node names grows, load balancing’s growth
impact progressively diminishes. By adding a modest number of node names, these block
generators may significantly improve load balancing. The number of blocks produced is
centered on the mean. In general, when k equals 5, the load balancing impact is satisfactory
for the block generator.
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The third set of experiments was conducted to evaluate the size of the blockchain
against different numbers of blocks on a topology with 1000 nodes. The name number was
set to one and the group size variable, h, was set to three bits for the topology. A block could
contain no more than 2000 transactions. Following that, we determined the blockchain’s
storage capacity on each node. We were primarily concerned with the distribution of full
blocks (block headers and contents) and the blockchain’s size. The distribution of full
blocks stored by each node represented the blockchain’s load balancing mechanism. We
conducted the experiment three times. Each time, we adjusted the variable h to create a
new group size and then counted the number of full blocks stored in each node. Figure 3
illustrates the blockchain’s size as a function of the block count. The maximum, mean, and
minimum blockchain sizes are all determined using the mixed blockchain, whereas the
entire blockchain size is determined using a typical scenario in which all nodes hold the
whole blockchain. The mixed blockchain is much smaller than the regular blockchain. For
all four kinds of outcomes, the blockchain’s size grows linearly as the number of blocks
increases, which is consistent with the theoretical theory.

We conducted the last set of experiments to determine the time required to conduct a
full search, in comparison to MRSH-v2, and to determine the approach’s success in locating
the 100 “illegal” files included verbatim in the hard disk image, as well as the 40 files
from the image that are similar to “illegal” files, as defined by MRSH-v2. A collection
of simulated “known-illegal” images consisted of 4000 images plus 140 more images, as
follows: within the 4000 “illegal” images, there were 100 images; 40 images were not
included in the “illegal” images but showed a high degree of resemblance to images in the
corpus, as determined by MRSH-v2.
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The main measure was the time needed to execute the whole process, which included
the time required to construct the tree, search the tree, and perform pairwise comparisons
at the leaves. MRSH-v2 ran for a total of 2592 s. Figure 4 illustrates the running times. The
tree was constructed using the smaller sample of 4000 “illegal” images, and then searches
were performed for all of the images in the bigger corpus. The “Search Time” column
covers both the time spent searching the tree and the time spent doing leaf comparisons.
As anticipated, having more leaf nodes resulted in the quickest execution time. The entire
duration of the race was 1182 s (a 54% reduction in the time required for an all-against-all
pairwise comparison). Due to the paired approach’s lack of scalability, this discrepancy is
expected to be much more apparent with bigger datasets.
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4.2. Analysis of Possible Attacks

As far as forensics are concerned, both blacklisting and whitelisting attacks are dis-
cussed in this section. Anti-blacklisting/anti-whitelisting may be used to conceal informa-
tion from the perspective of an attacker. An active attacker manipulates a file such that
fuzzy hashing does not recognize the files as being identical, which is what is meant by
“anti-blacklisting.” If a human observer cannot tell the difference between the original and
the manipulated version, we consider the attack to be effective. If a file was successfully
modified, it would be labelled as an unknown file rather than a known-to-be-bad file. This
anti-blacklisting attack aims to alter a single byte inside each chunk while keeping track
of the exact locations of the trigger points. Change the triggering such that the extent of
each change is determined by the Hamming distance, which is the most apparent concept.
As stated in [33], in a worst-case scenario, each building block has a Hamming distance
and a ‘one-bit change’ is enough to manipulate the triggering. In this case, an active adver-
sary approximately needs to change one bit for each position. Actually, a lot of 100 more
changes needs to be done as there are also positions where the Hamming distance has
small distance.

For anti-whitelisting to work, the attacker must utilize a hash value from one of the
files on the whitelist in order to change another file (typically one of the bad ones) such
that the new file’s hash value is identical to one on the whitelist. An attack is deemed
effective if a human observer cannot detect any differences between the original and altered
versions. Since files may be created for a given signature by generating legal trigger
sequences for each building block and inserting zero-strings in between, this technique is
not considered preimage-resistant. Even though it should be feasible, changing the hash
value of a particular file will lead to a worthless file. An active adversary’s initial action
is to delete all currently active trigger sequences. As a second step, he must completely
mimic the white-listed file’s triggering behavior, which will result in many additional
modifications to the system.

5. Conclusions

The integrity and credibility of the digital evidence in a single process for managing
the chain of custody are critical components of these operations (or chain of evidence).
The purpose of this study is to determine the efficacy of fuzzy hashing algorithms inside
blockchain technology, as opposed to conventional cryptographic hash algorithms, in
preserving the integrity of digital evidence in image forensics for assessing similarities.
We developed and tested a prototype of a forensic chain model based on a hyperledger
composer. According to the performance evaluation, fuzzy hash-based blockchains proved
to be an effective support for the chain of custody process due to their ability to sustain a
realistic workload with a manageable overhead in terms of memory used to store the chain
and their ability to handle the chain of custody-related uncertainty. Future work includes
testing the efficiency of the suggested framework when handling a large number of digital
pieces of evidence.
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