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The purpose of this paper is to discuss a methodology for determining some modal parameters (frequencies, damping ratios, and
seismic eigenvectors) and, under certain hypotheses, the physical matrices of a general structure with proportional damping and
subjected to seismic loads. The procedure is based on a time-domain state space formulation from which the modal parameters,
including the seismic eigenvectors, and the complex eigenvectors of the system can be derived also in the case of a limited set
of instrumentations. The conditions to normalize the eigenvectors are then illustrated and, finally, applied to derive the second-
order matrices of the system. The proposed procedure is applied to some numerical examples also in the case of noise-polluted
measurements and to an experimental investigation performed on a four-story steel frame subjected to earthquake excitations.
An optimization procedure to improve the prediction of the first-order modal parameters of the system is also discussed and
experimentally proved.

1. Introduction

System identification (SI) has shown a growing development
in civil engineering during the last decades. A central
issue of SI, especially within the field of civil engineering
constructions, concerns the set of input/output experimental
data with a particular emphasis on two main aspects: the
number and the types of measurements (displacements,
velocities, and accelerations) and the category of external
actions to use in the process. Both the aspects are, in fact,
related to the large-scale dimensions of civil engineering
systems. The first aspect is widely discussed in [1, 2] where
the minimum number of sensors and/or actuators required
for a complete identification of a system is defined, in the case
of input forces. Concerning the second aspect, Brownjohn
[3] provides a clear discussion of the problem with specific
reference to the external actions used in the dynamic tests on
civil structures. In particular, these actions can be artificial
forces applied to the structural system, such as those induced
by a shaker or a vibrodine, and ambient vibrations, such as
those due to traffic, earthquakes, and wind.

The use of forced vibration test data allows to identify the
system’s modal parameters and, also, retrieve the normalized
eigenvectors, the mass, stiffness, and damping matrices of the
system. The main drawback of the forced vibration test is that
it requires large machineries which are often very expensive
and cumbersome especially for large-scale structures such as
civil constructions. A way to overcome this shortcoming is
to adopt ambient vibration tests which use ambient actions
always acting on the structures. The use of ambient vibration
test data allows to identify the system’s modal parameters as
well. A comprehensive state-of-the-art review on fundamen-
tals of system identification in structural dynamics in the case
of environmental loads is reported in Imai et al. [4]. One
common type of ambient vibrations in civil constructions is
the earthquake excitations. In this field, some contributions,
although the list is not exhaustive, are Ghanem and Shino-
zouka [5] and Shinozouka and Ghanem [6], which review
and apply some structural identification algorithms for sys-
tems subjected to earthquake excitations, Beck and Jennings
[7] and Mc Verry [8], which present an output-error method,
respectively, in the time and frequency domain, and [9–11]
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which concern the identification of frequencies and damp-
ings. In the case of the assumption of shear type buildings,
some interesting contributions are the work by Yuan et al.
[12] which provides a procedure to retrieve the normalized
eigenvectors and the mass, stiffness, and damping matrices
of the system, and Takewaki and Nakamura [13] which
proposes a method of stiffness-damping simultaneous iden-
tification of the system using limited earthquake records.
One of the more recent approaches in SI is based on a time-
domain first-order formulation which provides the complex
modal parameters of the system and a state space model
capable of reproducing the input/output mapping of the
system. These approaches are mostly used in control theory
but notable contributions are also found in the field of
identification [1, 2, 14, 15]. Some of these studies specifically
concerning systems subjected to earthquake loadings are Luş
et al. [16] which identifies the modal parameters of the
analyzed systems including the modal shapes and Fraraccio
et al. [17] which presents an experimental study of different
algorithms for the health monitoring of a shear-type system.

This paper discusses a methodology for determining
some modal parameters (frequencies, damping ratios, and
seismic eigenvectors) and, under certain hypotheses, the
physical matrices of a general structure (not a shear-type one
as usually analyzed in available literature) with proportional
damping and subjected to seismic loads. In particular, the
methodology is based on a time-domain first-order state
representation using the well-known algorithm ERA/OKID
(Eigensystem Realization Algorithm/Observer Kalman filter
Identification) on the basis of the procedure discussed in [16,
18]. It allows, first, to identify the complex eigenvectors and
the modal parameters of the system including, beyond the
frequencies and the damping ratios, the seismic eigenvectors
[19, 20], sometimes also named effective participation fac-
tors [7, 8]. Then, the procedure is able to provide the con-
ditions to normalizing the eigenvectors and, hence, deriving
the second-order matrices of the system as reported in De
Angelis et al. [1]. The significance of the proposed metho-
dology consists, first, in the fact that the seismic eigenvectors
are independent of the normalization of the mode shapes,
and, hence, they can be determined whatever the number of
sensors is and with no information and restrictions about the
physical model of the system. This means that the seismic
eigenvectors can represent a useful tool for health monitor-
ing and of significance in updating models where they pro-
vide, jointly with the frequencies and dampings, additional
information for validating the model. The other point of
interest of the proposed procedure is that, in the case of
full set of instrumentations, it provides the conditions to
normalizing the eigenvectors and, hence, deriving the sec-
ond-order matrices of the system without any restrictions
about the system behaviour (such as the shear-type assump-
tion). The methodology is discussed theoretically and, then,
applied to some numerical examples which have shown the
efficacy of the procedure also in the case of noise-polluted
measurements. Finally, the procedure is also applied to an
experimental test performed on a four-story steel frame sub-
jected to earthquake excitations.

2. Some Background

Let us consider a seismically loaded N degree of freedom
structural system whose second-order equations of motion
can be written as follows:

Mẍ(t) + Lẋ(t) + Kx(t) = −MUẍg(t),

y(t) = cpx(t),
(1)

where x(t) is the N × 1 vector of generalized nodal displace-
ments relative to the ground and the notation (·) indicates
the differentiation with respect to time; M, L, and K are the
N × N mass, damping and stiffness matrices of the system,
U is the N × 1 influence vector, with all terms equal to 1,
and ẍg(t) is the ground acceleration. The m×1 output vector
y(t) contains the m time histories of the displacement output
measurements and cp is the matrix which selects the degrees
of freedom where the displacements are known. In the case of
accelerations output measurements, equations similar to the
second of (1) can be written with a matrix ca used in place
of the matrix cp to select the degrees of freedom where the
accelerations are known.

By using the modal transformation x(t) = φq(t), being
φ = [φ1φ2 . . .φN ] the eigenvector matrix and q(t) the mo-
dal coordinates, (1), in modal coordinates, result in the fol-
lowing:

q̈(t) + εq̇(t) + Ωq(t) = −φTMUẍg(t),

y(t) = cpφq(t),
(2)

with φTMφ = I, φTKφ = Ω = diag(ω2
k).

If the system is classically damped, the matrix ε is
diagonal, that is, ε = diag(εk) and εk = φT

k Lφk = 2ζkωk with
ζk the kth damping ratio. In this case, the Laplace transform
of (2) provides the following, for the jth dof:

y j(s) = −
N∑

k=1

φ jkPk
s2 + εks + Ωk

ẍg(s) = −
N∑

k=1

θ jk
s2 + εks + Ωk

ẍg(s),

(3)

where Pk = φT
k MU/φT

k Mφk is the kth modal participation
factor and θ jk = φ jkPk is the effective modal participation
factor at position j of mode k [7, 8] or also named the
seismic eigenvector θk [19, 20]. The components θ jk satisfy
the following relationship:

θU = U. (4)

By introducing the state vector η(t) = {x(t)T ẋ(t)T}T , (1)
can be transformed to the symmetrical first-order form:

Aη̇(t) + Bη(t) = Eẍg(t),

y(t) = Cη(t) + Dẍg(t),
(5)

where the matrices A, B, E, C, and D are given by:

A =
[

L M
M O

]
; B =

[
K O
O −M

]
; E =

[
−MU

O

]
;

C =
[

cp O
]

; D = [O],

(6)

being O the zero vector or matrix.
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The eigenvalue problem associated to (5) provides the
complex eigenvalues λi and eigenvectors ψ i (i = 1, 2, . . . , 2N)
which can be arranged respectively, in the square matrix Λ =
diag(λ1λ2 · · · λ2N ), of dimension 2N × 2N , and in the eigen-
vector matrix ψ = [ψ1ψ2 · · ·ψ2N ] of dimension N × 2N .
It results in λ∗k = λN+k and ψ∗k = ψN+k (the superscript (∗)
indicates the complex conjugate) with k = 1, 2, . . . N .

Considering the following matrix Ψ = [ψT(ψΛ)T]T the
complex eigenvector can be normalized according to the fol-
lowing relations:

Ψ
TAΨ = ν; Ψ

TBΨ = −νΛ, (7)

where the matrix ν can be defined alternatively as follows:
ν = Λ−Λ

∗; in this case the matrix ν can be related to the
natural modes φ previously defined and, in particular, equal
to them when the system is classically damped.

ν = I; in this case, when the damping is proportional, the
eigenvalues have the same real and imaginary parts.

In this paper it is assumed ν = I.
By using the modal transformation η(t) = Ψξ(t), with

ξ(t) expressing the modal coordinates, (5), in modal coordi-
nates, result in the following:

ξ̇(t) = Λξ(t)−Ψ
TMUẍg(t) = Λξ(t)−Qẍg(t),

y(t) = cpΨξ(t),
(8)

where the vector Q is defined as Q = Ψ
TMU, being Qk =

ψT
k MU = Q∗N+k.

The Laplace transform of (8) provides the following, for
the jth dof:

y j(s)

= −
N∑

k=1

⎛
⎝
(
ψ jkQk + ψ∗jkQ

∗
k

)
s+
(
ψ jkλ

∗
k Qk + ψ∗jkλkQ

∗
k

)

s2 −
(
λk+λ∗k

)
s + λkλ

∗
k

⎞
⎠ẍg(s),

(9)

which is valid for both classically and nonclassically damped
systems.

The frequencies Ωk and damping ratios ζk can be

evaluated through the following expressions: Ωk =
√
α2
k + β2

k ,

ζk = −αk/Ωk where the kth eigenvalue, λk, and its conjugate,
λ∗k = λN+k, are given by λk,N+k = αk ± iβk (i =

√
−1 is the

imaginary number).
It is worthy to mention that, if the eigenvectors are nor-

malized through (7), then the mass, stiffness, and damping
matrices can be expressed as functions of the complex eigen-
values and eigenvectors, De Angelis et al. [1], as follows:

M =
(
ψΛψT

)−1
; K = −

(
ψΛ−1ψT

)−1
;

L = −MψΛ2ψTM,
(10)

with the eigenvectors satisfying the following conditions:

ψψT = 0. (11)

For general damping assumptions the relationship be-
tween the modal parameters of the second- and the first-
order models are quite difficult to derive, Chen et al. [11],

while in the case of classical damping, the two representa-
tions are related through simple relationships. In fact, by
comparing (3) and (9) it results in the following:

0 = ψ jkQk + ψ∗jkQ
∗
k ,

θ jk = ψ jkλ
∗
k Qk + ψ∗jkλkQ

∗
k ,

s2 + εks + Ωk = s2 −
(
λk + λ∗k

)
s + λkλ

∗
k .

(12)

The quantities ǫ jk and ǫ∗jk, given by the second expression

of (12), can be rewritten as follows:

ǫ = ψΛ∗ diag
(
Qk,Q∗k

)
. (13)

Similarly to the matrix θ, also the matrix ǫ is independent
on the transformation and, thus, satisfies a relationship anal-
ogous to (4), that is,

ǫU = U, (14)

which is valid for general damping assumptions.

3. Identification of Modal and
Physical Parameters

This section is devoted to discuss a methodology for iden-
tifying the natural frequencies, the modal damping ratios,
the seismic eigenvectors, and, in some cases, the physical
matrices of a linear classically damped structure subjected
to seismic ground motion. The methodology is based on a
time-domain first-order state representation and, in detail,
identifies the following quantities: (i) first-order model; (ii)
frequencies, dampings, and seismic eigenvectors; (iii) physical
parameters (stiffness, damping, and mass matrices).

(i) Identification of the First-Order Model. The first phase
of this methodology consists of identifying the first-order
state space model of the system from general input/output
data using an Eigensystem Realization Algorithm/Observer
Kalman filter Identification- (ERA/OKID-) based approach
[16, 21]. The identified modal model is expressed as follows
(De Angelis et al. [1]):

ξ̇1(t) = Λξ1(t) + B1ẍg(t),

y(t) = C1pξ1(t),
(15)

where Λ, B1 and C1p are complex matrices given by

Λ = T−1
0 A0T0,

B1 = T−1
0 B0,

C1p = C0pT0.

(16)

In (16), A0, B0, and C0p are the identified continuous state
matrices, and T0 is a transformation matrix which relates
the two representations of the first- and second-order of
the model, De Angelis et al. [1]. The matrix Λ contains the
complex eigenvalues, λk and λ∗k , and the matrix C1p contains
the complex eigenvectors of the system.
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It is worthy to remember that the relationship between
the identified matrix related to the absolute accelerations,
C1a, and that related to the displacements, C1p, is given by

C1p = C1aΛ
−2. (17)

(ii) Identification of Frequencies, Dampings, and Seismic
Eigenvectors. Once the complex eigenvalues λk and λ∗k are
identified, the frequencies and dampings parameters of the
system can be derived from (12), that is,

Ωk = λkλ
∗
k = ω2

k ; −
(
λk + λ∗k

)
= 2ζkωk . (18)

Once the matrices C1p and B1 are identified through (15),
the seismic eigenvectors can be derived from (12) that is,

θ jk = C1p jkλ
∗
k B1k + C∗1p jkλkB

∗
1k. (19)

It is worthy to remind that the seismic eigenvectors
identified at this stage has a double advantage. First they
are independent of the normalization of the normal modes
and, thus, can be determined also in case of limited set of
instrumentations and without any information about the
physical model of the system. In addition, they constitute
a set of modal parameters which are of primary interest
in many system identification applications such as finite
element models or health monitoring problems. In fact, in
the first case, they provide further information for the model
validation which can be added to frequencies and damping;
in health monitoring, they can be efficiently used in detecting
damage and its location.

(iii) Identification of the Physical Parameters. The physical
parameters of the system can be obtained by (10) if the
complex eigenvectors contained in the matrix C1p are
normalized through (7). To this purpose the conditions, in
terms of number of sensors and information about the mass
of the system, to normalizing the eigenvectors and deriving
the second-order matrices are discussed.

Let us assume that the complex eigenvectors contained
in the matrix C1p and the normalized complex eigenvector ψ
are related through a scaling matrix τ such that,

ψ = C1pτ, (20)

where τ is a complex diagonal matrix with terms such that
τk = τ∗N+k which contains the unknown scaling factors.

Using the scaling condition of (20), written as follows:

M−1 = ψΛψT , (21)

and in the common assumption of a diagonal mass matrix,
(21) provides ne1 = m(m+1)/2−m equations expressing the
zero off-diagonal terms. Equation (11) provides ne2 = m(m+
1)/2 equations, where m is the number of measurement
points. The total number of equations is neT given by neT =
m2. Then, the eigenvectors can be normalized only when

neT + nm ≥ 2N , (22)

where nm (≥1) is the number of known masses connected to
the measured dofs. If the condition is satisfied, it is possible
to determine the following quantities:

(1) the transformation matrix τ, (2) the normalized
eigenvectors ψ , and (3) the physical matrices M, L, and K.

Using (20), (11) and (21) become:

N∑

k=1

(
cikc jkτ

2
k + c∗ikc

∗
jkτ

∗2
k

)
= 0,

N∑

k=1

(
cikc jkλkτ

2
k + c∗ikc

∗
jkλ

∗
k τ

∗2
k

)
= m−1

i j ,

(23)

with i, j = 1, 2, . . . .,m. When i = j, the second set of (23)
is utilized only if the mass mii is known. The system of
equations (23) can be rewritten in the following form:

Zv = t, (24)

where v is the vector containing the unknown terms τ2
k and

τ∗2
k (vk = τ2

k and v∗k = τ∗2
k ), Z is the coefficients matrix,

t is a vector that contains all the known quantities. If all
masses are unknown, t is the zero vector and the system
is homogeneous. Then the solution depends on a single
parameter which can be determined only if one mass of
the measured dofs is known. Generally the system (24) is
characterized by a number of equations greater than the
number of unknowns and the vector v is given by v = Z+t,
where Z+ is the pseudoinverse of the matrix Z. Once the
vector v is known, the matrix τ can be derived.

In the case of a complete set of measurements, that is m =
N , the physical matrices of the system can be derived by (10)
with ψ = C1pτ.

In the case of incomplete measurements, that is, m <
N , it is still possible to normalize the eigenvectors if the
condition (22) is satisfied. However, only reduced forms of
the physical matrices are possible to be derived, Luş et al. [2].
The approximation of these reduced forms depends on the
damping system assumptions.

In the case of classically damped systems, the modes of
vibration φ of the system can be derived from the complex
eigenvectors ψ . Then, the m × m “reduced” form of the
mass, damping, and stiffness matrices are as follows:

M̂ =
(
φ̂

+)T(
φ̂

+)
; L̂ =

(
φ̂

+)T
ε
(
φ̂

+)
;

K̂ =
(
φ̂

+)T
Ω

(
φ̂

+)
,

(25)

where φ̂ is the m × N matrix containing the identified

eigenvectors and φ̂
+

is its pseudoinverse. The matrices
(25) are the partitions of the “full-order” physical matrices
referred to the measured degrees of freedom.

In the case of nonclassically damped systems, the reduced
forms of the physical matrices are expressed in terms of the
complex eigenvectors ψ̂ , of dimension m × 2N , as follows:

M̂ =
(
ψ̂Λψ̂

T
)−1

, L̂ = −M̂ψ̂Λ2ψ̂
T

M̂,

K̂ ≃
(

L̂M̂−1L̂− M̂ψ̂Λ3ψ̂
T

M̂
)
.

(26)

The “reduced” forms given by the first two equations
(26) are exact and provide the known partitions of the “full-
order” mass and damping matrices of the system. On the
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contrary the “reduced” form given by the third equation (26)
provides only an approximation of the exact partition of the
“full-order” stiffness matrix, Luş et al. [2].

3.1. The Case of All Unknown Masses. The assumption of
having at least one known mass at the measured degrees
of freedom to identify the physical properties of the system
can be easily verified if the procedure is applied to buildings
where the evaluation of the floor mass is quite simple.

However, the hypothesis of a known mass can be also
removed in the case of damage detection problems and
health monitoring models. In fact, if all the masses are
unknown, it is possible to determine a transformation matrix
τ′ such that

τ2
k = m−1

l τ′2k , (27)

where ml is the unknown mass related to the lth dof. Then
(23) becomes

N∑

k=1

(
cikc jkτ

′2
k + c∗ikc

∗
jkτ

′∗2
k

)
= 0,

N∑

k=1

(
cikc jkλkτ

′2
k + c∗ikc

∗
jkλ

∗
k τ

′∗2
k

)
= δi j ,

(28)

with the condition that the second set of equations (28)
includes only the term with i = j = l in addition to the
terms with i /= j. The solution of the system (28) provides the
unknown matrix τ′.

Then, using (20) and (27), the eigenvectors are given by

ψ = m−0.5
l C1pτ

′ = m−0.5
l ψ′, (29)

and the “full-order” physical matrices (m = N) are expressed
through the following expressions:

M = ml

(
C1pτ

′
Λτ′TCT

1p

)
= mlM

′,

K = −ml

(
C1pτ

′
Λ
−1τ′TCT

1p

)
= mlK

′,

L = −ml

(
M′C1pτ

′
Λ

2τ′TCT
1p

)
M′ = mlL

′.

(30)

In the case of incomplete measurements, that is, m < N ,
it is still possible to derive expressions analogous to (25) and
(26) and containing the unknown mass ml.

It is interesting to observe that the identified matrices
(30) depend linearly on the unknown mass ml. This could
be useful in the case of finite element updating models
as well as in damage detection processes. In this last case
the comparison between the system’s state before and after
damage would be independent on the unknown mass ml if it
is assumed constant.

4. Optimization of Modal Parameters

The identification process is generally affected by errors
which depend either on modelling errors or noise pollution.
The prediction of the modal parameters can be improved by
minimizing the following objective function:

f
(

p, t
)
=
[

y(t)− y
(

p, t
)]T[

y(t)− y
(

p, t
)]

, (31)

where y(t) is the measured data, and y(p, t) is the predicted
data, being p a vector containing the modal parameters to be
optimized. The parameters pi already identified and referred
to the eigenvectors, can be constrained through (11) and (14)
and the condition of diagonal mass (21); if the system is
classically damped the parameters pi can also be constrained
through (12).

The predicted data y(p, t) included in (31) can be ob-
tained by considering the identified first-order model:

ξ̇(t) = Λξ(t) + Qẍg(t),

y(t) = ψ̂Λ2ξ(t).
(32)

The McMillan transformation, Luş [18], applied to (32) pro-
vides a first-order model with real matrices and vectors given
by:

ξ̇(t) = AMcξ(t) + BMcẍg(t),

y(t) = CMcξ(t),
(33)

where the matrix AMc has the following expression:

AMc =
[

O I
−diag(Ωk) diag(εk)

]
, (34)

with O and I the zero and unity N×N matrices, BMc an N×1
vector and CMc an m×N matrix.

To perform the optimization, the system (33) is trans-
formed from the continuous to the discrete time:

x(k + 1) = ΦMcx(k) + ΓMcẍg(k),

y(k) = CMcx(k),
(35)

where k is a time index, ΦMc is the discrete state transition
matrix, ΓMc is the discrete time input vector. It is worthy
to underline that the system (35) in the discrete time is
equivalent to the system (33) in the continuous time and it
is used in the computational procedure. Using (35), (31) can
be rewritten as follows:

f
(

p, k
)
=
[

y(k)− y
(

p, k
)]T[

y(k)− y
(

p, k
)]
. (36)

5. Applications

5.1. Numerical Applications. The identification procedure
is applied, De Angelis et al. [22], to the five degrees of
freedom system illustrated in Figure 1. The data used in the
identification are provided by numerical analyses.

The response of the system is expressed in terms of
absolute accelerations at each degree of freedom and is
evaluated through the finite element model subjected to
the north-south component of the El Centro Earthquake
(18/5/1940). It is assumed dt = 0.02 sec and a number of
points equal to 1560. The time history accelerations are, then,
polluted with Gaussian, zero-mean, white noise sequences
whose root mean square is equal to 10% of the unpolluted
data.
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Table 1: Eigenvalues (×102).

λ1,6 λ2,7 λ3,8 λ4,9 λ5,10

−0.0016∓ 0.0781i −0.0050∓ 0.2506i −0.0094∓ 0.4681i −0.0148∓ 0.7381i −0.0206∓ 1.0298i

Table 2: Matrix B1(×10−2).

b1,6 b2,7 b3,8 b4,9 b5,10

+0.7517± 0.3543i +0.3940± 0.9553i +0.9173± 0.9067i +1.1515± 1.0904i +1.5067± 1.0867i

Table 3: Matrix C1p(×10−3).

c1,6 c2,7 c3,8 c4,9 c5,10

+0.0677∓ 0.1451i −0.0445± 0.0190i +0.0163± 0.0157i +0.0056∓ 0.0064i +0.0010∓ 0.0015i

+0.1848∓ 0.3960i −0.0829± 0.0354i +0.0112± 0.0108i −0.0032± 0.0036i −0.0016± 0.0024i

+0.2954∓ 0.6330i −0.0593± 0.0253i −0.0133∓ 0.0128i −0.0035± 0.0040i +0.0015∓ 0.0023i

+0.3808∓ 0.8161i +0.0145∓ 0.0062i −0.0137∓ 0.0132i +0.0059∓ 0.0067i −0.0009± 0.0015i

+0.4354∓ 0.9330i +0.0952∓ 0.0407i +0.0175± 0.0169i −0.0034± 0.0039i +0.0004∓ 0.0006i

Table 4: Identified frequencies and damping coefficients.

Modes 1 2 3 4 5

f (Hz) 1.2429 3.9873 7.4486 11.748 16.393

ζ (%) 2.000 2.000 2.000 2.000 2.000

5.1.1. Registrations at All Floors. In this first case the accelera-
tions at each floor and the ground acceleration are measured.

The ERA/OKID algorithm, Luş et al. [16], provides the
identified matrices A0, B0, and C0a; next, the matrices Λ, B1,
and C1p = C1aΛ

−2 are derived through (16) and reported
in Table 1, 2, and 3. Using the eigenvalues of the first-
order system and applying (18), it is possible to identify the
frequencies and damping coefficients of the system (Table 4)
which are coincident with the exact ones. The complex
eigenvectors ψ obtained by (20) provide, through (13), the
vector ǫ. Finally, the seismic eigenvectors θk are evaluated
through (19) and the results are reported in Table 5. Figure 2
shows the first two identified seismic eigenvectors θk.

The exact values of the modal parameters have been
obtained and conditions (4) and (14) are satisfied for θ jk and
ǫ jk.

Once the modal parameters are obtained, the physical
matrices of the system can be obtained only if the complex
eigenvectors are normalized. In this case, under the as-
sumption of full measurements (i.e., m = 5) and the know-
ledge of the mass at the first degree of freedom (i.e., nm =
1), the condition (22) is satisfied and provides 26 available
equations. The solution of the system (24), then, provides
the vector v′ reported in Table 6.

The normalized and nonscaled eigenvectors ψ′ (Table 7)
are derived from (29).

From ψ′, using the value of the mass m1 = 50t, it is
possible to evaluate the transformation matrix and, then, the
eigenvector ψ .

The real and imaginary parts of the eigenvectors being
equal, the system is classically damped.

The vectors φk (Table 8) are then evaluated from the ei-
genvectors ψ . In Figure 2 the first two identified eigenvectors
φk are also reported (to note the proportionality between the
two eigenvectors).

The mass and stiffness matrices are, finally, derived from
(10) and are given by:

M = diag
[

50.0000; 40.0000; 40.0000; 40.0000; 30.0000
]

,

(37)

K = 105

⎡
⎢⎢⎢⎢⎢⎣

+2.3120 −1.3790 +0.4300 −0.0860 +0.0140
−1.3790 +1.9130 −1.2820 +0.3860 −0.0550
+0.4300 −1.2820 +1.8440 −1.1550 +0.2530
−0.0860 +0.3860 −1.1550 +1.4400 −0.6050
+0.0140 −0.0550 +0.2530 −0.6050 +0.3970

⎤
⎥⎥⎥⎥⎥⎦
.

(38)

It is clear, then, that the proposed identification proce-
dure provides, in the case of noise-free measurements, the
exact values of the modal and physical parameters.

5.1.2. Registrations at 1st, 3rd, 4th, and 5th Floors. The iden-
tification of the first-order model and modal parameters is
not affected by the number of measurements and, thus, the
frequencies and the damping coefficients are exactly the same
obtained in the previous case (Table 4). Also the eigenvector
θk is the same except for the component related to the 2nd
dof where the data are missed.

In this case, of incomplete measurements (m = 4) and
still one known mass at the first degree of freedom (nm = 1),
the condition (22) is still satisfied and the eigenvectors can
still be normalized. The eigenvectors φk are, then, evaluated
from the complex eigenvectors and are the same as the
previous case except for the component related to the 2nd
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Table 5: Identified vectors θi = ǫi + ǫ∗i .

θ1 θ2 θ3 θ4 θ5

∑5
k=1 θ jk

+0.2079 +0.2507 +0.2730 +0.2002 +0.0679 1.000

+0.5674 +0.4670 +0.1885 −0.1128 −0.1100 1.000

+0.9070 +0.3341 −0.2231 −0.1237 +0.1057 1.000

+1.1693 −0.0818 −0.2303 +0.2093 −0.0665 1.000

+1.3368 −0.5361 +0.2930 −0.1203 +0.0266 1.000

Table 6: Vector v′T .

τ′21,6 τ′22,7 τ′23,8 τ′24,9 τ′25,10

−0.0003∓ 0.0002i −0.0077± 0.0073i +0.0658± 0.0023i −0.3467p0.0447i −2.3819∓ 1.0753i

Table 7: Matrix ψ ′.

ψ ′1,6 ψ ′2,7 ψ ′3,8 ψ ′4,9 ψ ′5,10

+0.0210∓ 0.0210i +0.0353± 0.0353i −0.0410∓ 0.0410i +0.0357± 0.0357i +0.0203± 0.0203i

+0.0574∓ 0.0574i +0.0657± 0.0657i −0.0283∓ 0.0283i −0.0201∓ 0.0201i −0.0329∓ 0.0329i

+0.0918∓ 0.0918i +0.0470± 0.0470i +0.0335± 0.0335i −0.0221∓ 0.0221i +0.0316± 0.0316i

+0.1183∓ 0.1183i −0.0115∓ 0.0115i +0.0346± 0.0346i +0.0374± 0.0374i −0.0199∓ 0.0199i

+0.1353∓ 0.1353i −0.0754∓ 0.0754i −0.0440∓ 0.0440i −0.0215∓ 0.0215i +0.0079± 0.0079i

Table 8: Identified normalized eigenvectors φk .

φ1 φ2 φ3 φ4 φ5

+0.0166 +0.0499 +0.0793 +0.0869 +0.0582

+0.0454 +0.0930 +0.0548 −0.0489 −0.0943

+0.0726 +0.0665 −0.0649 −0.0537 +0.0907

+0.0935 −0.0163 −0.0669 +0.0908 −0.0570

+0.1069 −0.1068 +0.0852 −0.0522 +0.0228

dof where the data are missed. Also, only reduced form of
the physical matrices can be derived from (25). The results
are the m × m reduced form obtained by removing from
each of (37) and (38) the second column and the second row.
The reduced stiffness K̂ matrix can be also derived by using
(26), valid in the case of general damping. It results in the
following:

K̂ = 105

⎡
⎢⎢⎢⎣

−2.3115 −0.4295 0.0860 −0.0140
−0.4295 −1.8435 1.1550 −0.2530
+0.0860 1.1550 −1.4400 0.6050
−0.0140 −0.2530 0.6050 −0.3970

⎤
⎥⎥⎥⎦. (39)

The comparison with the matrix (38) shows that the
reduced stiffness matrix is slightly different from the exact
one with differences among the correspondent diagonal
terms less than 1% and those among the off-diagonal terms
less than 3%. This means that the reduced stiffness matrix
(39) can be considered a good approximation of the exact
one.

It is worthy to compare the results of the identification
process without and with the optimization procedure
described in the paragraph 4, when the time history accelera-
tions are polluted with a Gaussian, zero-mean, white noise
(10%). The procedure has been adopted to improve the

estimates of the modal parameters (frequencies, dampings,
and eigenvectors). In the procedure to minimize the objective
function (31) a Levenberg-Marquardt algorithm is used.

Table 9 shows the frequencies and damping coefficients
when evaluated using the optimization procedure ( f opt e
ζopt) and without it ( f e ζ). It is evident that the iden-
tification is satisfactory also without the optimization proce-
dure which, however, reduces the differences with respect to
reference values. The efficacy of the optimization procedure
is also evidenced in the results reported in Tables 10 and 11
in terms of the θk and φk eigenvectors.

5.2. Experimental Application. The proposed methodology
has also been used to identify the modal and physical
parameters of the structure shown in Figure 3. The test struc-
ture represents a 1 : 5 scaled adjacent structures model used
in a shaking table experimentation on both coupled and
uncoupled configurations, Cimellaro et al. [23]. In this paper
the attention is focused to the four dofs structure in the
uncoupled configuration.

The structure has plan dimension of 60 × 60 cm and
interstory height of 60 cm, so that the structure is 240 cm
high. The vertical elements have been realized with commer-
cial steel profiles L 40 × 40 × 4 mm and all the connections
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Figure 1: Five dofs frame.

Table 9: Identified frequencies (Hz) and dampings (%) without and with optimization.

Modes 1 2 3 4 5

f 1.252 4.015 7.499 11.828 16.518

f opt 1.252 4.014 7.499 11.828 16.517

ζ 2.020 2.008 2.021 2.065 2.577

ζopt 2.000 2.000 2.000 2.010 2.050

Table 10: Identified seismic eigenvectors θk with optimization.

Floor θ
opt
1 θ

opt
2 θ

opt
3 θ

opt
4 θ

opt
5

∑5
k=1 θ jk

1 +0.2077 +0.2502 +0.2718 +0.1996 +0.0701 0.9994

3 +0.9078 +0.3347 −0.2249 −0.1238 +0.1073 1.0011

4 +1.1698 −0.0834 −0.2281 +0.2102 −0.0677 1.0008

5 +1.3372 −0.5347 +0.2923 −0.1216 +0.0272 1.0004

Table 11: Identified normalized eigenvectors φk with optimization.

Floor φ
opt
1 φ

opt
2 φ

opt
3 φ

opt
4 φ

opt
5

1 +0.0166 +0.0499 +0.0791 +0.0866 +0.0589

3 +0.0726 +0.0667 −0.0655 −0.0537 +0.0901

4 +0.0935 −0.0166 −0.0664 +0.0912 −0.0570

5 +0.1069 −0.1066 +0.0851 −0.0527 +0.0231

1

2

3

4

5

−0.6 −0.4 −0.2 0 0.2 0.6 0.8 1.2 1.40.4 1

φ1φ2 θ1θ2

Figure 2: First and second identified eigenvectors.
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Figure 3: Experimental model.

are bolted. Four steel blocks, of 19 kg mass each, have been
installed at each floor to simulate the floor mass. The total
mass of the structure is about 500 kg.

In order to measure the structural response, the test
structure has been instrumented with accelerometers at each
floor and on the shaking table, and with laser displacement
transducers, Figure 3. In the characterization tests several
monodirectional excitations (random white noise and natu-
ral seismic records), with different intensities have been used.
The data acquisition has been made by using an MTS 468D
system, with sampling rate of 200 Hz.

The mass matrix is assumed to be diagonal, with mi =
125 kg. In Table 12 the identified frequencies and damp-
ing coefficients are reported. The identified damping and
stiffness matrices are presented in the following matrices:

L = 102

⎡
⎢⎢⎢⎣

7.3899 −0.9820 −1.4820 0.8828
−0.9820 5.5690 −0.5126 −0.5928
−1.4820 −0.5126 6.3829 −1.7643
0.8829 −0.5928 −1.7643 5.1474

⎤
⎥⎥⎥⎦,

K = 106

⎡
⎢⎢⎢⎣

8.2009 −4.3274 0.3621 0.3665
−4.3274 8.1550 −4.7931 0.3545
0.3621 −4.7931 8.2536 −3.8763
0.3665 0.3545 −3.8763 3.3340

⎤
⎥⎥⎥⎦.

(40)

Finally, Figure 4 shows, for the El Centro input, the ex-
perimental and numerical accelerations at each floor. The
figure proves that the identified numerical model reproduces
the experimental data very well.

6. Conclusions

In this paper a procedure to identify the modal and physical
parameters of a linear system subjected to ground motion
has been discussed. In particular, the paper has proposed a
methodology which is based on a time-domain first-order
state representation and allows, first, to identify the modal
parameters of the system including the seismic eigenvectors
which do not require any normalization. Then, the proce-
dure is able to provide the conditions to normalizing the
eigenvectors and, hence, deriving the second-order matrices

of the system. The significance of the proposed methodology
can be summarized in the following points.

(a) The procedure identifies the seismic eigenvectors of
a classically damped system instead of the normal
modes (as usually found in the literature) which,
in contrast with the normal modes, do not require
any normalization and, thus, they can be determined
whatever the number of sensors is and with no infor-
mation and restrictions about the physical model of
the system. This means that the seismic eigenvectors
can represent a useful tool for health monitoring
and of significance in updating models where they
provide, jointly with the frequencies and dampings,
additional information for validating the model.

(b) In the case of a full set of instrumentations, it pro-
vides the conditions to normalizing the eigenvectors
and, hence, deriving the second-order matrices of
the system without any restrictions about the system
behaviour. This represents a new finding with respect
to the available literature which instead proposes
methodologies valid under the assumption of shear-
type behaviour.

(c) In the case of incomplete set of measurements, it is
still possible to normalize the eigenvectors with the
unique assumption of having at least one mass of the
measured dofs known and under the satisfaction of a
certain condition (22). In this case, it is also possible
to obtain reduced forms of the physical matrices.

(d) The assumption of having at least one known mass
at the measured degrees of freedom to identify the
physical properties of the system can be easily verified
if the procedure is applied to buildings where the
evaluation of the floor mass is quite simple. However,
it is interesting to observe that the identified matrices
M, K, and C (see (30)) depend linearly on one
unknown mass. This could be useful in the case of
finite element updating models as well as in damage
detection processes because, in this last case, the
comparison between the system’s state before damage
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Table 12: Identified frequencies and damping coefficients.

Modes 1 2 3 4

f (Hz) 8.30 25.34 43.11 55.61

ζ (%) 2.68 1.30 1.40 0.74
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Figure 4: Time histories absolute accelerations: experimental vs numerical.

would be independent on the unknown mass if it is
assumed constant.

The procedure has been discussed theoretically and, then,
applied to some numerical examples which have shown the
efficacy of the procedure. Finally, the procedure has been
validated also by an experimental test performed on a four-
story steel frame subjected to earthquake excitations. The

authors are actually analyzing the extension of the proposed
procedure to nonclassically damped systems.
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