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Abstract. Following the trend to combine techniques to cover several facets of the development of modern
systems, an integration of Z and CSP, called Circus, has been proposed as a refinement language; its relational
model, based on the unifying theories of programming (UTP), justifies refinement in the context of both Z and
CSP. In this paper, we introduce Circus Time, a timed extension of Circus, and present a new UTP time theory,
which we use to give semantics to Circus Time and to validate some of its laws. In addition, we provide a frame-
work for validation of timed programs based on FDR, the CSP model-checker. In this technique, a syntactic
transformation strategy is used to split a timed program into two parallel components: an untimed program that
uses timer events, and a collection of timers. We show that, with the timer events, it is possible to reason about
time properties in the untimed language, and so, using FDR. Soundness is established using a Galois connection
between the untimed UTP theory of Circus (and CSP) and our time theory.

Keywords: Relational models; Unifying theories of programming; CSP; Galois connections

1. Introduction

First generation real-time applications were relatively simple and did not involve sophisticated algorithms or
extensive computational complexity. In the last decades, however, there has been a demand for more complex
and safety-critical applications, in areas such as aerospace navigation and control, factories monitoring, and
nuclear power plants. For these modern systems, the choice of specification language is an important factor in
the success of the entire development. The language should cover several facets of the requirements, and should
have a model suitable to study the behavior of the system and to establish the validity of desired properties. Such
a formal model can also be the basis for a refinement into executable code.

During the last few years, researchers have developed a large number of formal specification languages.
Many of them are suitable for expressing and analyzing particular characteristics of a system. For example,
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Z [Toy02, WD96] is a formal language used to define data types and to show the effect of operations on these
types. It lacks, however, features to express the order in which the operations are executed [Eva94]. Process alge-
bras, like CSP [Hoa85, Ros98], on other hand, are suitable for showing the order of the occurrence of events but
lack the ability to handle complex abstract data types and operations. Finally, formalisms like temporal logics
and its derivatives [Pnu77, BH81] concentrate on time aspects.

The increasing complexity of real-time systems has made the use of formal specification more frequent in
this area, and new languages have proliferated. Timed CSP [RR88] is an extension of CSP that includes new
operators like Wait and � (timeout). It has a new semantic model, derived from the untimed models of CSP, to
represent dense time information, and a proof system [DS95, Sch00]. Timed CCS [Che93] has an operational
semantics; a communication on a described by a(t)e′

e is restricted to happen in the closed time interval [e, e′],
and, after the communication, the variable t holds the time at which it occurred. Proof rules for timed CCS have
been elaborated and shown to be independent of the time domain used. A detailed comparison of several timed
process algebras can be found in [EHLW97].

Logic approaches to specification benefit from clear notations and automated validation using existing the-
orem provers. Modal logic [Che99] adds time reasoning in logical formulae. Temporal logic is a modal logic in
which new operators for quantification either in the future or in the past are included. To overcome difficulties
with modularity, temporal logic is often used in combination with other techniques. An example is the work of
Duke and Smith [DS89], in which temporal logic is used in the invariants of Z specifications to define liveness
properties. Lamport in [Lam94], on other hand, adds the concept of actions to classical temporal logic. Dura-
tion calculus (DC) [CHR91] is concerned with intervals instead of time instances. Real-time logic (RTL) [JM86]
extends predicate logic by relating events with the time in which they occur. In contrast to other logics, RTL allows
specification of the absolute timing of events, and not only their relative ordering; it also provides a uniform way
of incorporating different scheduling disciplines.

Timed automata [AD94] extend state-transition systems with finitely many real-valued clock variables that
are used in annotations. Analysis is based on a finite quotient of the infinite space of clock valuations. Work has
been carried out on verification algorithms, including heuristics, and tools [BLL+95, Bey01].

Petri Nets allow mathematical modeling of discrete event systems in terms of conditions and events, and
the relationship between them [Mur89]. Time information has been added to Petri Nets in a number of forms.
The most common approach is to add time delays to transitions. A similar approach assigns delays to places
instead of transitions, and creates a delay between the time the token arrives in a place and the time it enables
a transition to fire. A more flexible approach assigns intervals to the transitions and time stamps to the tokens.
Such an approach is used by Time Basic Nets (TBNet) [GMMP89].

Specifications of complex systems normally involve a mixture of data types, operations, and time con-
straints; current research has focused on more comprehensive languages. Circus [WC02] combines CSP, Z,
specification statements [Mor94] and guarded commands [Dij76] to provide a notation for both specification
and programming, and for verification by refinement. Laws are explored in [CSW03] and tools are under
development [WCF05, FC06]. Several combinations of a process algebra with a state-based formalism have
been proposed [Fis98, TS99, MD00]; the distinguishing features of Circus are its refinement theory and
technique.

The combination of different formalisms in Circus, as well as its refinement theory, is justified in the semantic
framework of the UTP [HH98, OCW07a]. It proposes the use of relations as a basis for unification of differ-
ent programming paradigms, and studies their relationship using mappings that associate programs in different
relational theories. Here, we propose a new UTP theory to capture discrete time information; it extends the exist-
ing Circus theory [OCW07b]. The new model can be used to specify and reason about hard and soft real-time
systems; it is also suitable for representing periodic and aperiodic tasks.

Time is continuous by nature, but a discrete representation of time is also satisfactory in most cases. In speci-
fication languages, time is often represented by real numbers, but in programming languages, time is represented
by integers. In principle, the continuous time model is more appropriate because it can express time in both
forms, and time in the real world is continuous. A continuous time model, however, cannot be implemented by
a software system. Since we aim at a language for refinement, which can be used for programming as well as
specification, we adopt a discrete model. As a consequence, the original untimed refinement laws of Circus can
be extended in a natural way.

Works like those in [LH99, HV02], which use Extended Duration Calculus (EDC) to add continuous time to
language semantics, show the elegance and powerful expression capacity of the EDC formulas. Both approaches,
however, make it clear that the new model cannot be easily related to the original untimed model. Proving
properties in the new model is a tedious task.
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The addition of time operators to Circus was first discussed in [SH02], where we proposed a new refinement
language, Circus Time. We considered the impact of the extra operators on the Circus UTP model, but we did
not present a complete theory. We omitted, for example, a definition of parallelism, and did not study healthiness
conditions or any other algebraic properties of the language or UTP theory.

In [SHCS05] we have also presented an initial proposal for a validation framework. It is based on the reduction
of a timed program to a normal form that partitions it into an untimed program that uses timer events, and a set
of timers. The untimed program relies on timer events to preserve the semantics of the original timed program.
In this way, the framework allows reasoning in the untimed model to establish properties of timed programs. Its
soundness, however, was not formally addressed in [SHCS05].

In this paper, we both completely formalize the Circus Time model, and establish the soundness of our
reasoning framework. Our new UTP model is a semantic characterization of the Circus Time operators. The
result is a detailed description of a UTP theory for state-rich timed reactive systems; following the style of the
UTP, we define the relevant observational variables, the healthiness conditions that characterise feasibility, and
programming operators. An extensive set of algebraic laws clarifies how the operators interact. In addition, we
formalise the relationship between our new theory and the existing UTP Circus theory for untimed state-rich
reactive systems. We conclude that the original model is an abstraction of the time model, and that there is a
Galois connection between them. The new operators of Circus Time are not significantly different from those of
Timed CSP, for example, but by considering them in the context of the UTP, we make a contribution to unification
and integration. Circus Time is an example of how these results can be used in the context of a language much
richer than CSP. The UTP, of course, provides a foundation for many other paradigms, which can be combined
and related in a uniform framework.

We also provide here the semantics of new operators required by the reasoning framework, namely, varia-
tions of external choice and parallel composition, and show that their algebraic characterisation is complete by
providing a reduction strategy that eliminates them. To establish the soundness of the validation strategy, we
prove that when an untimed program generated during normalisation and its timers are composed in parallel, the
resulting program is equivalent to the original one: normalisation preserves the semantics of timed programs. In
addition, we prove that if the timers of the normalised specification and those of the normalised implementation
are the same, then if refinement holds for the untimed programs in the untimed model, then it holds for the timed
programs as well.

This justifies the use of untimed tools, like the CSP model-checker FDR [For97], to analyse timed specifica-
tions. In this approach, the specification of requirements and the implementation are both described using Circus
Time, and normalised by applying a syntactic transformation. We can then use FDR to show that the program
meets its specification, dealing only with the untimed components of each normal form.

The approach that we follow is based on well established work on Timed CSP, which has been applied in
a variety of areas: avionics, protocols, and robotics are a few examples. Our main contributions are a semantic
model that can be used for state-rich languages, of which Circus Time is an example, and its relationship to the
existing untimed model, as explored in the reasoning framework. These results have already inspired others to
model different languages using (extensions of) our UTP theory [SH03, QDC03, BSW07].

In the next section, we present Circus Time. It is a subset of Circus, extended with two new constructs related
to time constraints. An extension of the Circus UTP theory is presented, and used to defined the semantics of
Circus Time. In Sect. 3 we explore the relationship between the timed model of Circus Time and the untimed
model of Circus; mapping functions are used to relate the two models. Our validation framework is described
in Sect. 4. Finally, in Sect. 5, we present our conclusions, and discuss related and future work. Appendix A lists
the definitions of Circus Time operators that are very similar to those of the corresponding CSP operators, and
therefore do not require detailed discussion, but may be used in some proofs, and Appendix B gives a few laws
of Circus Time used in the proofs.

2. Circus Time and its model

This section introduces Circus Time: we describe the language informally, and provide a brief introduction to
the UTP, before presenting our UTP theory for Circus Time.
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Fig. 1. Circus Time syntax

2.1. Circus Time: syntax and informal description

A Circus program defines a collection of processes that encapsulate a state defined using Z, and exhibits a behav-
iour defined by a main action using a mixture of Z data operations, specification statements, assignments and
conditionals, and CSP constructs. Processes can also be combined using CSP constructs.

For our study of Circus Time, we concentrate on the notation for definition of actions, but observe that
processes can be defined in Circus Time just as they are defined in Circus, since our Circus Time theory is also
rich enough to cope with states. To simplify its presentation, though, we assume here the existence of a global
state, and allow assignments to introduce new variables. We also omit specification constructs, which again have
definitions similar to those in Circus, in as much as the definition of assignment in the Circus Time theory is
similar to that in the original Circus theory.

The challenges for our new model and technique arise from the free combination of data operations, com-
munications, choices and parallelism, and timed constructs; recursion also imposes important restrictions. All
these constructs are included in Circus Time; Fig. 1 presents a BNF description of the syntax. In this figure, b
stands for a predicate, e for any expression, t for a positive integer expression, N for any valid name (identifier),
NS for a set of variable names, and CS for a set of channel names.

A Circus Time program is formed of one single action. An action can be basic or a combination of one or
more actions. Skip is a basic action that terminates immediately. Stop represents deadlock; it is a program in
an ever waiting state. Wait t puts the program in a waiting state for a period of time determined by the positive
integer t. Chaos is the worst action; nothing can be guaranteed about its behaviour.

An action can be prefixed with a communication, which takes place before the action starts. A communication
can be a simple synchronisation c over a channel c, an input communication c?x, which assigns to x the value
input through the channel c, or an output communication c!e (or c.e), which outputs the value of the expression
e through c. A communication can also involve a combination of inputs and outputs; in Fig. 1, CParameter∗ is
a list of zero or more communication parameters defining inputs and outputs. For an arbitrary communication
c, the prefixed action c → A waits for the other actions that need to synchronise on c before the communication
can take place, and then it behaves like A. If the communication is an input, the scope of the input variable is
restricted to A. In b & A, b is a guard: a boolean expression that has to hold for the action A to take place;
otherwise we have a deadlock.

The internal choice A � B arbitrarily selects A or B for execution. The external choice A � B waits for
interaction with the environment; the first action that engages on a communication or terminates is chosen. The
sequential composition A; B behaves as A followed immediately by B. The parallel composition A |[sA | cs | sB ]|B
of actions A and B determines the set cs of channels through which communication requires synchronisation,
and disjoint sets sA and sB of variables that they can change. The variables that do not appear in the set associated
with the action cannot be changed by it; however, all variables can be accessed by both A and B, and their
values are those that they hold before the parallelism starts. In an action A \ cs the communications through
the channels in the set cs are hidden, that is, internal to A; hidden channels cannot be used for interaction with
other actions.

The timeout action A
t
� B is a time guarded choice; its behaviour is that of either A or B. If A performs an

observable event or terminates before the specified time t elapses, it is chosen. Otherwise, A is suspended and the
only possible observations are those produced by B.
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The assignment action simply assigns a list of values to a corresponding list of variables in the current state.
If the variable already exists, its value is overwritten; otherwise it is added to the current state. The conditional
action A � b � B executes A if b evaluates to true, otherwise the action B is executed. Finally, µ X • F (X )
defines a recursive action F ; any reference to X within it stands for a recursive call.

As an example, we present a specification of an alarm system [TM87]. It is a common burglar alarm control-
ler connected to sensors which detect movements or changes in the environment. When disabled, the controller
ignores any disturbance; when enabled, it will sound an alarm when a sensor signals a disturbance. There are
two timing requirements on the alarm controller. Firstly, after enabling the alarm controller, there is a period T1
before a disturbance is detected. This period permits a person to enable the alarm and get out. Secondly, when
a disturbance is detected, the controller will wait for a period T2 before activating the alarm. This will allow a
person to enter the building and deactivate the alarm.

We use the event enable, that is, a synchronisation on the channel enable, to indicate that the alarm system is
enabled. To disable the alarm, the event disable is used. When the alarm system is disabled it responds only to
the event enable. The event disturbed indicates that a sensor has detected a disturbance. Finally, alarm signals the
firing of the alarm. For clarity of presentation, we name a few actions, Disable, Running, and Active, which are
composed in the description of the action Alarm that defines our system.

Disable � disable → Skip
Running � Disable � (disturbed → Active)

Active � Disable
T2
� (alarm → Disable)

Alarm � µ X • (enable → (Disable
T1
� Running)); X

The action Disable simply offers to engage on the event disable. The action Running represents the armed behav-
iour of the alarm controller: the controller can either be disabled or it can be disturbed . When the alarm is
disturbed, it behaves as Active, which models the active state of the alarm. In this state, the controller can again
be disabled for the first T2 time units; after this period an alarm is fired. When fired, the controller will only
terminate once disabled. The main action Alarm is recursive. The controller starts by assuming that the alarm is
disabled and offers the enable event to start the controller. After the event enable, the action can be disabled for
the first T1 time units before it is armed.

In Sect. 2.3, we give a formal UTP definition of the Circus Time constructs.

2.2. Unifying theories of programming

In the unifying theories of programming of Hoare and He [HH98], specifications and programs are all called pro-
grams, and interpreted as relations (defined as predicates) between an initial observation and a single subsequent
(intermediate or final) observation of the behaviour of a device executing a program. Programming paradigms are
differentiated by their alphabet, signature, and a selection of laws known as healthiness conditions; together, they
characterise a UTP theory. The alphabet of a theory gives names for external observations of program behaviour.
Like in the Z notation, the UTP uses the convention that the name of an initial observation is undecorated, but
the name of a similar observation taken subsequently is decorated with a dash. The set of undecorated names of
the alphabet is called the input alphabet, and the set of dashed names is the output alphabet. The signature of
a theory provides syntax for denoting the predicates (and expressions) of the theory. The healthiness conditions
identify the valid predicates.

The alphabet of a theory is determined by the observations relevant to understand programs in the particu-
lar paradigm of interest. For example, in the theory of reactive programs, a boolean observation variable wait
distinguishes an intermediate observation from one of a terminated program. In the theory of communicating
processes, the variable tr is a sequence of events that records the interactions between the process and its envi-
ronment, and ref is a set of interactions that can be refused by the process. In both of these theories, the boolean
variable ok records whether the program has been properly started in a stable state, and ok′ records subsequent
stabilization in an observable state. This permits a description of divergent programs: a stable state is either a
termination state or a state in which the program is waiting for an interaction with its environment; if a program
diverges, then it does not reach a stable state.

The alphabet of the UTP theory for CSP includes ok, wait, tr, and ref , and their dashed counterparts. This
theory, however, does not preclude the existence of extra observational variables corresponding to programming
variables. In this sense, and in a few others, it is already richer than the failures–divergences model of CSP. Indeed,
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in the Circus theory the programming variables, and their dashed counterpart are in the alphabet, and in the
Circus Time theory presented in Sect. 2.3, we have observational variables state and state′ to record the initial
and subsequent values of the variables in scope.

A healthiness condition identifies feasible descriptions. Typically, there are healthiness conditions associated
with each observation variable in the alphabet, and with groups of related variables. For example, if a program
p has not started, observations of its behaviour are impossible, and no predictions can be made. This is captured
by a healthiness condition that requires programs p to satisfy the following equation.

p � ok ⇒ p

If ok is true, then ok ⇒ p is p itself: p started and its behaviour is described by p. On other hand, if ok is false,
then ok ⇒ p is true, which means that the behaviour of p is not restricted.

Alternatively, we can define this healthiness condition in terms of a function on predicates H(p) � ok ⇒ p;
the healthy programs, or predicates, are the fixed points of H. We use the term healthiness condition to refer both
to these functions and to the requirement that predicates are one of their fixed points. All healthiness conditions
are idempotent and monotonic with respect to refinement. They can be applied to an unhealthy predicate to
make it healthy, and so have an important role in linking theories.

The most general UTP theory includes only programming variables (and their dashed counterparts) in the
alphabet; there are no healthiness conditions. In this theory, we already have definitions for programming opera-
tors like sequence, conditional, and others. Sequence corresponds to relational composition. Provided the output
alphabet of p is the same as the input alphabet of q, except, of course, for the decorations, then we can define the
sequence p; q as shown below, where v is a list of the variables in the input alphabet of q.

p; q �̂ ∃ v0 • p[v0/v′] ∧ q[v0/v]

The list of variables v0 is obtained by 0-subscripting those in v; they represent their intermediate values. The sub-
stitutions replace the dashed variables of p and the undashed variables of q with the corresponding 0-subscripted
variables, which are existentially quantified.

A conditional that selects the program (or predicate) p if a condition c holds, and selects q otherwise, is written
p � c � q, and defined in terms of disjunction and conjunction as follows.

(p � c � q) �̂ c ∧ p ∨ ¬ c ∧ q

An (internal) nondeterministic choice p � q is defined by disjunction.

(p � q) �̂ p ∨ q

A variable declaration (var x) and a variable undeclaration (end x) construct are used to introduce and remove
variables from the alphabet. In the case of var x, the undecorated variable x is not in its alphabet, but x′ is; the
alphabet of (end x), on other hand, includes x, but not x′. Their definitions are simple.

var x �̂ ∃x • II
end x �̂ ∃x′ • II

The predicate II is a conjunction of equalities v′ � v, for all variables v and v′ in the alphabet. A standard block
(var x • p) that declares a variable x whose scope is p is defined as var x; p; end x. The definition of independent
constructs for declaration and undeclaration of variables is perhaps unusual, but very useful for reasoning. As
explained below, they are also central to the definition of parallelism.

Another operator concerned chiefly with the alphabet of predicates is alphabet extension. For a predicate p
that does not include x or x′ in its alphabet, p+{x} is a predicate whose alphabet is that of p with both x and x′
added; it does not change the value of the extra observational variable x.

p+{x} �̂ p ∧ x′ � x

In general, this operator can be applied to an arbitrary set of undecorated names; all the variables in the set and
their dashed counterparts are added to the alphabet, and all their values are preserved.

Refinement p 
 q is characterised by universal reverse implication. Since specifications and programs are all
predicates in a UTP theory, they can all be compared directly. In the definition below, square brackets are used
as an abbreviated notation for a universal quantification over all variables of the alphabet.

p 
 q �̂ [p ⇐ q]

In words, q is a refinement of p if its behaviour is permitted by p.
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More specific theories define operators of more particular interest. For example, the CSP theory provides a
definition for parallelism. The main general parallel composition operator is defined with the aid of a restricted
parallel operator that combines predicates with disjoint alphabets: it is just conjunction.

p‖q �̂ p ∧ q

A more general parallel by merge operator is defined using a merge predicate M that establishes how common
variables of the parallel programs should be combined.

p‖M q �̂ ((p; U0(m)+A)‖(q; U1(m)+B))+m; M

The set m contains the undashed variables that correspond to the output variables shared by the parallel programs:
m′ �̂ outαP ∩ outαQ. The predicates U0(m) and U1(m) introduce new prefixed variables.

U0(m) �̂ var 0.m; (0.m � m); end m
U1(m) �̂ var 1.m; (1.m � m); end m

In U0(m) and U1(m), the new prefixed variables are declared and assigned the value of the corresponding unda-
shed variables. The new variables are declared using the var operator and the original variables m are undeclared
using the end operator. The sets of variables A′ and B′ are the output alphabets of p and q, but without m′.
The predicates U0(m)+A and U1(m)+B establish that the variables not in m are not changed. In p; U0(m)+A and
q; U1(m)+B, they retain the output values defined by p and q.

The merge predicate M defines the values of the variables m, in terms of the outputs of the parallel programs
in 0.m and 1.m, to reflect the result of their merge. A valid merge predicate should be symmetric on 0.m and
1.m ((0.m, 1.m :� 1.m, 0.m); M � M); associative ((0.m, 1.m, 2.m :� 1.m, 2.m, 0.m); M3 � M3, where M3
is a three-way merge relation generated by M); and have no effect when the parallel programs produce the same
values ((0.m, 1.m :� m, m); M � II ). The CSP parallel composition uses a valid merge function N, that is,
p‖CSPq �̂ p‖N q, where N is defined as follows.

N �̂
(

ok′ � (0.ok ∧ 1.ok) ∧ wait′ � (0.wait ∨ 1.wait) ∧ ref ′ � (0.ref ∪ 1.ref ) ∧
∃u • (u ↓ Ap � 0.tr − tr) ∧ (u ↓ Aq � 1.tr − tr) ∧ (u ↓ A(p‖q) � u) ∧ (tr′ � tr � u)

)

; Skip

The parallel composition diverges if either of the processes diverge (ok′ � (0.ok ∧ 1.ok)); it terminates if both
processes terminate (wait′ � (0.wait ∨ 1.wait)); and if an event is refused by one process, then the parallel com-
position refuses to engage in the same event (ref ′ � (0.ref ∪ 1.ref )). Finally, the parallel processes synchronise
on the common events in their alphabet; the sets Ap, Aq and A(p‖q) are the alphabets of the processes p, q and
(p‖q), that is, A(p‖q) � Ap ∪ Aq. It is important to distinguish between, for example, Ap and the alphabet of
the predicate p; the set Ap contains the events in which the process p can engage, and the alphabet of the UTP
model of p, as already said, includes, ok, wait and others. Traces u produced by the parallel composition are such
that tr′ � tr � u. Moreover, when u is restricted to events in Ap(Aq), it results in a valid trace of p (q). Finally, u
should be a valid trace of the parallel composition (u ↓ A(p‖q) � u). The sequence s ↓ E is that derived from s
by restricting it to elements of E only.

In the definition of N , the composition with Skip enforces the arbitrariness of ref ′. The definition of Skip
uses a healthiness condition R of the theory of reactive systems; it is presented in the next section where we also
introduce the corresponding healthiness condition of our timed theory.

Skip �̂ R(∃ ref • II )

This process terminates without changing any variable; the quantification over ref makes its value irrelevant, and
that of ref ′ arbitrary. CSP processes do not depend on ref , and, on termination, do not restrict ref ′.

Stop is a CSP process that waits forever and does not interact with the environment. Its definition uses two
healthiness conditions of the CSP theory: CSP1 and R3.

Stop �̂ CSP1(ok′ ∧ R3(tr′ � tr ∧ wait′)) (2.1)

In the next section, we present our model for Circus Time; there we provide additional examples of healthiness
conditions, including the definitions of CSP1 and R3 used above.
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2.3. Circus Time: semantic model

The alphabet and the healthiness conditions of our theory are similar to those of the Circus theory. There are only
two differences, which are reflected in some healthiness conditions. The first difference is related to the variables
tr and ref . The second difference is related to the program variables as already discussed.

In our theory, interaction with the environment is recorded as a sequence of pairs trt (and correspondingly
tr′

t), instead of as a sequence of events tr (and correspondingly tr′). Each pair of trt and tr′
t records the interaction

over a single time unit represented by the sequence index. The first component of the pair is the sequence of
events which occurred during the time unit. The second component is the set of events that can be refused at
the end of the time unit. There is, therefore, no need for a separate record of the sets of refusals in ref and ref ′.
Regarding the program variables, to simplify their treatment, they are collected together in a single observation
variable state (and the corresponding variable state′).
Alphabet The following is a formal description of the observation variables in the alphabet of our theory. As in
the UTP theory for CSP, we include boolean variables ok and ok′, and wait and wait′.

ok, ok′, wait, wait′ : Boolean

The variables state and state′ are mappings from variable names (in the set N) to values.

state, state′ : N → Value

Finally, interaction is captured in the timed traces trt and tr′
t

trt, tr′
t : seq +(seq Event × P Event)

The set Event contains all possible events of a program. The sequences trt and tr′
t are defined to be nonempty

using the constructor seq +. We use sequences indexed from 0; the first element represents the initial observations
of the program in the state in which it started, and so trt and tr′

t include at least that element.
In order to simplify definitions, we introduce the name trace′ as an abbreviation for the sequence of events

that occurred since the last observation; its value is determined by those of tr′
t and trt. In this observation variable

we are interested in recording only the events without time.

trace′ : seq Event
trace′ � Flat(tr′

t) − Flat(trt)

Flat maps timed traces to untimed traces, as defined below.

Flat : seq +(seq Event × P Event) → seq Event
Flat(〈(el, ref )〉) � el

Flat(S � 〈(el, ref )〉) � Flat(S) � el

The sequence s1 − s2 is that obtained by removing from s1 its prefix s2 : for instance, 〈a, b, c〉 − 〈a, b〉 � 〈c〉; the
subtraction s1 − s2 is well defined only if s2 is a prefix of s1. Our specification of trace′ is well defined because the
healthiness condition R1t of our theory enforces that Flat(trt) is a prefix of Flat(tr′

t).
Healthiness conditions There are often intuitive reasons why programs satisfy a given healthiness condition. For
example, it would be unusual for a program to make time go backwards or change the history of what happened
before it started. Circus Time satisfies the healthiness conditions similar to those defined in [HH98] for CSP
processes and in [OCW07a] for Circus, with some additional considerations regarding time.

The first healthiness condition for Circus (and CSP) is R1; it requires that a program cannot change the
trace tr that occurred before it started. It is defined as R1(A) �̂ A ∧ tr ≤ tr′, where tr ≤ tr′ states that tr is a
prefix of tr′. Our corresponding healthiness condition R1t states that the timed traces can only be expanded. This
means that programs cannot make time go backwards: new traces cannot be shorter.

R1t(A) �̂ A ∧ Expands(trt, tr′
t)

We define a relation Expands between two timed traces as follows.

Expands(trt, tr′
t) �̂ (front(trt) ≤ tr′

t) ∧ (fst(trt(#trt))) ≤ fst(tr′
t(# trt)))

We define that tr′
t expands trt if, and only if, the front of trt is a prefix of tr′

t, and the untimed trace registered at the
last time unit of trt is a prefix of the trace registered at the same time in tr′

t. The standard operations on sequences
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head, last, front, tail, fst and snd are defined in [She06]. The healthiness condition R1t is idempotent and closed
over conjunction, disjunction, sequence, and conditional. Detailed proofs of these and other properties of R1t
can be found in [She06] as well.

The condition R2 states that the program execution is independent of the previous interactions with the envi-
ronment. In the UTP, two definitions for R2 are given. The first definition presented below states that starting A
after a particular trace tr, and finishing with tr′ is the same as starting it after an arbitrary trace s and finishing
with this trace as a prefix of the trace tr′ − tr.

R2(A) �̂�s A[s, s � (tr′ − tr)/tr, tr′]
The indexed nondeterministic choice (�s) captures the fact that the value of s is irrelevant. The second charac-
terisation of R2 says that A can alternatively start after an empty trace.

R2(A) �̂ A[〈〉, (tr′ − tr)/tr, tr′]
The equivalence of the two definitions in terms of their characterization of healthy predicates is explored in
[CW06]. We define R2t in a form similar to that of the second definition, which we believe to be clearer and
simpler for reasoning. The initial trace in our model, however, is not 〈〉, but a trace that contains a single pair
composed of an empty sequence of events and an arbitrary refusal set. Consequently, our healthiness condition
also imposes that the initial refusal set of a program is also irrelevant for its behaviour. This is an issue that is
considered in a separate healthiness condition in the original CSP theory of the UTP.

R2t(A) �̂ ∃ ref • A[〈(〈〉, ref )〉, dif (tr′
t, trt)/trt, tr′

t]

where dif is used to obtain the difference between two timed traces and is defined as follows.

dif (tr′
t, trt) �̂ 〈(fst(tr′

t(#trt)) − fst(trt(#trt)), snd(tr′
t(#trt)))〉 � tail(tr′

t − front(trt))

The reason why we use the dif function, instead of simply using trace subtraction, is because the initial timed
trace trt is not necessarily a prefix of the final trace tr′

t. Instead, R1t established that they are related by Expands.
In [She06] we show that R2t is idempotent, and closed over conjunction, disjunction, sequence, and conditional.
We also show that it is commutative with respect to R1t.

The healthiness condition R3, as defined for Circus, assures that a program cannot start in a waiting state:
R3(A) �̂ II � wait � A. If wait is true (the previous program did not terminate), then the program behaves as II ;
otherwise, its effect takes place. The program II preserves the traces if the previous program diverges, otherwise
it simply leaves the program variables unchanged. We give a definition for II below.

II �̂ (¬ok ∧ tr ≤ tr′) ∨ (ok′ ∧ (tr′ � tr) ∧ (wait′ � wait) ∧ (state′ � state) ∧ (ref � ref ′))
We define the healthiness condition R3t following the same principle; the definition is identical to that of R3
except for the use of II t, which acts on timed traces and uses Expands.

R3t(A) �̂ II t � wait � A

The definition of II t does not mention explicitly ref � ref ′ because, in the time model, the refusal information is
encoded in the timed traces, so (trt � tr′

t) covers the condition that the refusal sets need to be maintained.

II t � (¬ok ∧ Expands(trt, tr′
t)) ∨ (ok′ ∧ (tr′

t � trt) ∧ (wait′ � wait) ∧ (state′ � state))

The condition R3t is idempotent, and closed over conjunction, disjunction, sequence, and conditional [She06].
A reactive program satisfies the condition Rt defined by the functional composition of R1t, R2t and R3t.

Rt �̂ R3t ◦ R2t ◦ R1t

A similar condition R for reactive programs is given in the UTP. The order in which the healthiness conditions
are applied in Rt is irrelevant as they are commutative [She06].

As described in the UTP, a reactive program is also a CSP process if it satisfies five more healthiness conditions.
The condition CSP1 enforces that, if a program starts in an unstable state, then we only have the guarantee that
traces are extended CSP1(A) �̂ (¬ok ∧ tr ≤ tr′) ∨ A. Again a similar condition is defined for the time model,
except that we use the Expands relation instead of the trace prefix relation.

CSP1t(A) �̂ (¬ok ∧ Expands(trt, tr′
t)) ∨ A

The healthiness condition CSP1t has been shown to be idempotent, closed over conjunction, disjunction,
sequence, and conditional, and commutative with R1t, R2t and R3t [She06].
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The healthiness condition CSP2t imposes that a program cannot require nontermination. Therefore, if an
observation is valid when ok′ is false, then it should also be valid if ok′ is true.

CSP2t(A) �̂ A; ((ok ⇒ ok′) ∧ (tr′
t � trt) ∧ (wait′ � wait) ∧ (state′ � state))

CSP2t is idempotent and closed over disjunction, sequence, and conditional, but not conjunction [She06].
In the Circus theory, a condition CSP3 requires Skip to be the left unit of sequential composition. This

imposes that the value of ref is irrelevant; as mentioned above, this is already guaranteed by R2t.
The condition CSP4t enforces that Skip is the right unit of sequential composition. It is similar to CSP4 :

intuitively, CSP4t requires that, on termination or divergence, the value of the refusal set is irrelevant.

CSP4t(A) �̂ A; Skip

The action Skip terminates without consuming time; its definition is similar to that in the CSP theory.

Skip �̂ Rt(∃ ref • ref � snd(last(trt)) ∧ II t)

The action Skip is Rt healthy by definition; it is CSP1t and CSP2t healthy because II t is. The condition CSP4t
is idempotent and closed over disjunction, conditional and sequence, but not conjunction [She06].

Finally CSP5t requires that Skip is the unit of interleaving. Because Circus Time has no interleaving operator,
we use the parallel composition operator with an empty synchronisation set.

CSP5t(A) �̂ A |[ �A | {||} | {} ]| Skip

The set �A contains all the programming variables that the action A can change. This condition enforces that
the refusal sets are subset closed: if a particular set of events is a valid refusal set, so are all its subsets.

The UTP parallel operator is based on the alphabet of events of the processes, but in Circus, and in CSP, it
is based on a synchronisation set: it can only refuse events that are refused by both parallel actions and that are
in the synchronisation set, since an event that is refused by one action can be accepted by the other, if it is not in
the synchronisation set. In addition, in Circus, the parallel operator enforces a partition on the state variables to
avoid interference. We call TM the merge predicate that defines parallelism in Circus.

A |[ sA | cs | sB ]| B �̂ A ‖TM(cs,sA,sB) B

We define the merge predicate TM(cs, sA, sB) as shown below. It takes as parameters the synchronisation set cs
and the sets of variables sA and sB that each action can change.

TM(cs, sA, sB) �̂
⎛

⎜

⎝

ok′ � (0.ok ∧ 1.ok) ∧
wait′ � (0.wait ∨ 1.wait) ∧
dif (tr′

t, trt) ∈ TSync(dif (0.trt, trt), dif (1.trt, trt), cs) ∧
state′ � (sB −� 0.state) ∪ (sA −� 1.state)

⎞

⎟

⎠

As for the UTP operator, the parallelism diverges if one of the engaged actions diverges, and terminates when
both actions terminate. The resulting trace is a member of the set of traces produced by the synchronisation
function TSync. It takes two timed traces and a set of events on which the actions should synchronise, and yields
the set containing all possible traces resulting from the synchronisation. Its definition is equational.

TSync(S1, S2, cs) � TSync(S2, S1, cs)
TSync(〈〉, 〈〉, cs) � {}
TSync(〈(t, r)〉, 〈〉, cs) � {〈(t′, r)〉 | t′ ∈ Sync(t, 〈〉, cs)}
TSync(〈(t1, r1)〉 � S1, 〈(t2, r2)〉 � S2, cs) �

{〈(t′, r′)〉 | t′ ∈ Sync(t1, t2, cs) ∧ r′ � (((r1 ∪ r2) ∩ cs) ∪ ((r1 ∩ r2)\cs)) } � TSync(S1, S2, cs)

The first equation states that TSync is symmetric. Next, we consider the case in which the two input traces
are empty: the result is the empty set. If one of the traces contains a single element, and the other is empty, then
the set of synchronisation traces is determined by the results of the synchronisation of the trace element from the
non-empty trace with the empty trace; the refusal set is the same in all cases. The synchronisation is defined by
the standard function Sync defined for CSP in [Ros98]; it gives the set of all possible combinations of untimed
traces, given two untimed traces and a synchronisation set. If both traces are non-empty, then the first elements of
the sequences are synchronised. The refusal set at each time instant is determined by the refusals of both actions.
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The refusal set is ((r1 ∪ r2) ∩cs) ∪ ((r1 ∩ r2)\cs), which includes only events that appear in the synchronisation set
and are refused by either action, and events that are refused by both actions and do not appear in the synchroni-
sation set. Finally, state is defined by combining 0.state and 1.state, after removing from them the variables over
which the other action has control. The domain subtraction operator −� is used to remove the names in sB from
the domain of 0.state, and those in sA from the domain of 1.state. The sets sA and sB partition the state, so that
the combination can be achieved by union. In examples, we usually relax this restriction, and use disjoint sets,
which can be made into partitions in the obvious way. Some laws of parallelism are presented in Appendix B.

A Circus Time action needs to satisfy the condition CSPt.

CSPt �̂ CSP5t ◦ CSP4t ◦ CSP2t ◦ CSP1t ◦ Rt

The condition CSPt includes the condition Rt for timed reactive action and the four CSP-like conditions.

2.4. Circus Time: semantics

In this section we give the semantics of Circus Time using the UTP theory presented in the previous section. We
use a denotational style, where each construct of Circus Time is mapped to a predicate of the UTP theory. Here,
we define only the time operators, prefixing, and external choice and hiding, which are used in the definition
of timeout. The definitions of the other operators are either similar to those in the UTP theories for CSP and
for Circus [She06], and can be found in Appendix A, or were introduced in previous sections. The definitions
of internal choice, sequence, and conditional are those of the general theory of relations, and were discussed in
Sect. 2.2. Recursion is just the least fixed-point operator, which is defined algebraically like in [HH98, p.54]. Our
model is a complete lattice with respect to the refinement relation, with Chaos at the bottom, and internal choice
as the greatest lower bound operator. This follows directly from properties of the healthiness conditions, which
are monotonic idempotent functions. Skip and parallelism are used as part of the description of the healthiness
conditions, and were also discussed previously in Sect. 2.3.

2.4.1. Wait

The only possible behaviour for Wait t is to wait for the specified number of time units before terminating.

Wait t �̂ CSP1t(Rt(ok′ ∧ delay(t) ∧ trace′ � 〈〉))
In this definition, we use the predicate delay(t), which is defined as follows.

delay(t) �̂ (wait′ ∧ (#tr′
t − #trt) < t) ∨ (¬wait′ ∧ (#tr′

t − #trt) � t ∧ state � state′)

The delay(t) predicate requires the program to wait for t time units, and terminate at time t. The delay is directly
reflected in the timed trace. The passage of each time unit is captured by the inclusion of a new element in the
sequence, but no state change (state � state′) nor new communication (trace′ � 〈〉) occurs. Therefore, before
t time units have passed, the sequence will have increased no more than t elements; precisely when the process
terminates (¬wait′), the sequence will have t new observations. In the next section, we study the relation that
exists between Wait t and the UTP Skip.

The functions Rt and CSP1t are used in the definition of Wait t to ensure its healthiness. The other healthiness
conditions are already satisfied. CSP2t is satisfied because Wait t does not require divergence. It also does not
restrict the refusals, since its only requirement on tr′

t is based on trace′, which ignores the refusal sets, or on the
sizes of tr′

t and trt, and so Wait t is CSP4t and CSP5t as well.
The action Wait t satisfies expected properties already discussed, for example, in [Sch00]. The proofs are

presented in [She06]. Some properties are listed in Appendix B.

2.4.2. Prefixing

While the program is waiting to communicate on a channel, time can pass and this is registered in the trace as
entries (〈〉, {x : Event • x �� c}), where c is the channel through which communication is expected. We divide the
definition of communication in two parts. The first part is the predicate wait com(c), which models the state of an
action waiting to communicate on channel c. The only possible observation is that the communication channel



164 A. Sherif et al.

cannot appear in the refusal set during the observation period.

wait com(c) �̂ wait′ ∧ possible(trt, tr′
t, c) ∧ trace′ � 〈〉

During the waiting period, we may have more than one refusal set; the predicate possible(tr, tr′, c) is used to
assure that the channel c is not refused in any of the refusal sets.

possible(trt, tr′
t, c) �̂ ∀ i : #trt..#tr′

t • c �∈ snd(tr′
t(i))

The final part of the predicate wait com(c) indicates that, during the waiting period the program will not com-
municate on other channels, but would allow time to pass (trace′ � 〈〉).

The second part of the definition of communication models the terminating state, and is partially represented
by the predicate term com(c). It reflects the communication of a value e over a channel c. The communication
does not take any time (#tr′ � #tr), but the event appears in the traces of the observation.

term com(c) �̂ ¬wait′ ∧ trace′ � 〈c〉 ∧ #tr′
t � #trt

It is important to observe that the above predicate term com only represents the exact moment in which the com-
munication takes place. Terminating observations in the time model are either an initial waiting period followed
by termination or an immediate termination. This is expressed as follows.

terminating com(c) �̂ (wait com(c); term com(c)) ∨ (term com(c))

Finally, we define the communication c.e → Skip as shown below.

c → Skip �̂ CSP1t(ok′ ∧ Rt(wait com(c) ∨ terminating com(c)))

The semantics of prefixing can be given in terms of communication and sequential composition.

com → A �̂ (com → Skip); A

Here com stands for a synchronisation c as above, or an input or output, which are defined in Appendix A.

2.4.3. External choice

An external choice A � B is determined by the environment; it behaves as either A or B, whichever reacts first to
the environment. This is characterised as two possible behaviours: either the choice is in a waiting state, and only
internal behaviour acceptable by A and B can take place, or the choice reacts to its environment after waiting
for an external event that satisfies either A or B, or both and, in this case, the choice is non-deterministic. The
definition in the CSP theory is as follows.

A � B �̂ CSP2((A ∧ B) � Stop � (A ∨ B))

The use of Stop, which is a process, as a condition is perhaps surprising, but we observe that CSP processes in
the UTP theory for CSP are just predicates, and can be used interchangeably.

Using the definition of conditional, we can rewrite the above definition of external choice as shown below.

A � B � CSP2(((A ∧ B) ∧ Stop) ∨ ((A ∨ B) ∧ ¬Stop))

The definition of external choice is a disjunction. The first disjunct ((A ∧ B) ∧ Stop) defines the behaviour when
A and B agree on waiting. The second disjunct (A ∨ B) ∧ ¬Stop) defines the state in which the choice is made; it
is conditioned by ¬Stop. A choice is taken when either A or B diverges or terminates, or when there is a change
to the trace recording a reaction of A or B. The healthiness condition CSP2 is applied because it is not preserved
by conjunction; it ensures that an external choice of healthy actions is healthy.

The resolution of the choice based on divergence or termination is perhaps surprising. In the case of diver-
gence, we observe that external choice is a strict operator: if one of the actions diverges, then the whole choice
diverges. Regarding termination, we follow the CSP semantics, since we want Circus to be compatible with that
notation. In CSP, it is necessary for termination to define an external choice to make sure, for example, that
sequence is associative and that Skip is the unit of sequence [Ros98].

In Circus Time, we take a similar approach, but we need to consider time. Time considerations for an external
choice arise in two forms: first, while both actions agree on waiting, we need to track the passage of time. Secondly,
we need to eliminate the observations of A and B that do not satisfy the initial waiting conditions. To illustrate
this consider the following action A � Wait 2 � Wait 3. It makes a choice of either terminating after 2 time
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units (Wait 2) or after three time units (Wait 3). If we used the CSP definition of external choice above, we could
conclude the following.

A � CSP2((Wait 2 ∧ Wait 3) � Stop � (Wait 2 ∨ Wait 3))

The predicate Wait 2 ∧ Wait 3 describes the behaviour when both actions agree on waiting. This, however, only
occurs in the first 2 time slots; after that, Wait 2 does not agree on waiting further and terminates. Therefore,
the behaviour of A is that of Wait 2. In the above description, however, the terminating behaviour is defined by
((Wait 2 ∨ Wait 3) ∧ ¬Stop). This allows the terminating observation of Wait 2 after 2 time units, but also the
termination of Wait 3 after 3 time units; this is not admissible in our time theory.

A similar consideration needs to be made regarding external choices involving Wait and communication. To
illustrate the problem, we study the behaviour of the action B � Wait 2 � (a → Skip). Both actions in the choice
agree on waiting for the first 2 time units, and so, the communication on a can only occur during this period.
This external choice acts as a timeout, offering to communicate on a for the first 2 time units, and then forcing
a termination. It would not be appropriate to describe the choice as ((Wait 2 ∨ (a → Skip)) ∧ ¬Stop), because
the behaviour of (a → Skip) is not possible after 2 time units.

In view of these considerations, our definition of external choice is as follows.

A � B �̂ CSP2t(ExtChoice1(A, B) ∨ ExtChoice2(A, B))

As with the CSP definition, we have a disjunction: the disjunct ExtChoice1(A, B) describes the behaviour when
both actions are waiting, agree on internal behaviour, and do not interact with the environment.

ExtChoice1(A, B) �̂ (A ∧ B ∧ Stop)

The disjunct ExtChoice2(A, B) captures the behaviour in the case A and B do not agree on internal behaviour or
on waiting for the environment, by either reacting to an external event or terminating.

ExtChoice2(A, B) �̂ Dif Detected(A, B) ∧ (A ∨ B)

The predicate DifDetected(A, B), rather than ¬ Stop, is used to determine when a choice is made.

Dif Detected(A, B) �̂ ¬ok′ ∨
(

(ok ∧ ¬wait ∧ ((A ∧ B ∧ ok′ ∧ wait′ ∧ trace′ � 〈〉) ∨ Skip));
(ok′ ∧ ((¬wait′ ∧ tr′

t � trt) ∨ fst(head(dif (trt, tr′
t))) �� 〈〉))

)

The predicate DifDetected(A, B) is a disjunction: the first disjunct captures the behaviour when A or B diverges
and, as a consequence, the external choice diverges. The second disjunct defines the situation in which A and B
either agree on waiting without interacting with the environment (ok′ ∧ wait′ ∧ trace′ � 〈〉) or do not agree on
waiting at all (Skip). In both cases, a predicate in sequence defines that we should then either have a terminating
behaviour, if there is no interaction with the environment, or the interaction should take place immediately after
the waiting period. A few properties or external choice are listed in Appendix B, and a comprehensive set, with
proofs, can be found in [She06].

2.4.4. Hiding

The CSP hiding operator is used to define that some events occur internally and are not recorded in observations.
When events are hidden in this way, they occur automatically and instantaneously, as soon as they can: they
become urgent. The UTP definition for this operator is as follows.

p(tr′, ref ′) \ cs �̂ R(∃ s • p(s, (cs ∪ ref ′)) ∧ L); Skip

The definition of L is shown below.

L �̂ (tr′ − tr) � (s − tr) ↓ (Ap − cs)

The definition of hiding takes an arbitrary valid trace s of the process p, and restricts it to the set (Ap− cs), which
contains all the events in the alphabet of p, that is, Ap, except for those that occur in the set of hidden events cs.
These are also added to the refusal set (cs ∪ ref ′) of the resulting process. The healthiness condition R and the
sequence with Skip guarantee that hiding preserves healthiness.
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The definition for the hide operator in the time model is similar.

A \ cs �̂ Rt(∃ st • A[st/tr′
t] ∧ dif (tr′

t, trt) � dif (st, trt) ↓t (Event − cs)); Skip

We use a timed trace restriction operator ↓t, which, similarly to the sequence operator, restricts the resulting
traces at each time unit to the given set of events cs. Because time traces register the refusals at the end of each
time unit, we add the complement of the restricted events (Events −cs) to the refusals of the resulting timed trace.
The timed trace restriction operator is defined as follows.

tb � ta ↓t cs ⇔ ∀ i : 1..#ta •
(

fst(tb(i)) � fst(ta(i)) ↓ cs ∧
snd(ta(i)) � (snd(trb(i)) ∪ (Events − cs)) ∧
#ta � #tb

)

It is important to notice that the timed trace restriction does not change the size of the trace (#ta � #tb). There-
fore, the interactions are hidden, but the time that they take is still recorded. Several properties of hiding are listed
in Appendix B; many more can be found in [She06].

Like with the definition of hiding in the CSP theory for the UTP, the final Skip turns the possibility of diver-
gence into the actual Chaos [HH98, p.214]. For example, the semantics of µ X • a → X allows ok′ to be false,
and this lets us conclude that (µ X • a → X ) \ {|a|} � Chaos because of the sequence with Skip.

2.4.5. Timeout

In the timeout A
d
� B, the action A should react within d time units, otherwise B takes over. We define this

behaviour using external choice, Wait, and hiding, as shown below.

A
d
� B � (A � (Wait d ; int → B)) \ {int}

The action A
d
� B can only behave as A if it engages on a communication or terminates before the wait period d

elapses. The event int is fresh: not used by A or B; it is internal (hidden), and so it triggers the external choice
and forces it to select the second option once the wait period is finished.

An extensive list of expected properties of timeout have been proved in [She06].

3. Linking models

When studying the features and models of a language, it is important to relate them to other models and lan-
guages. A special benefit of using the UTP is that these relationships can be explored in a natural way. Different
models are characterised by different alphabets or healthiness conditions. The difference in the expressive power
of the models is a motivation to explore the relationships between them: we want to make the most of all models.
Studying the relationship that exists between the models makes it possible to create a solid semantic basis for
frameworks that use integrated techniques and tools.

In this section, we present a relationship between the Circus Time model and the untimed model of Circus.
An inverse mapping, which links the untimed model to the Circus Time model is presented as well. We show that
the combination of such links is a Galois Connection.

3.1. A conservative mapping L

Our theory was developed to capture time information, but also preserves the untimed semantics of programs.
In this section, we explain what we mean by semantic preservation.

To show the relationship between the untimed and the timed theories, we define a function L which, given a
predicate of the Circus Time theory, defines its behaviour in the original Circus theory.

L(A) �̂ ∃ trt, tr′
t •
(

A ∧ tr � Flat(trt) ∧ tr′ � Flat(tr′
t) ∧

ref � snd(last(trt)) ∧ ref ′ � snd(last(tr′
t))

)

The function L maps a predicate A of the timed theory to a predicate in the untimed theory. This is achieved by
hiding the timed traces, trt and tr′

t, while introducing the untimed observation variables: tr and tr′ are obtained
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by applying the Flat function to the timed traces, and a projection on the second element of their last entries
determine the refusal sets ref and ref ′. The variables ok, wait, and state, and their dashed counterparts, are not
affected by L. It establishes a very direct correspondence between the predicates.

An important property of L is that it preserves healthiness. For any timed healthiness condition Ht, except
only for R2t, L maps Ht-healthy predicates to H-healthy predicates, where H is a healthiness condition in the
untimed theory [She06]. For example, for R1t, we have the following law.

Law 1 L(R1t(A)) � R1(L(A))

For R2t, however, we have the weaker result below.

Law 2 L(R2t(A)) ⇒ ∃ ref • R2(L(A))

Proof.

L(R2t(A)) [definition of R2t]

� L(∃ ref • A[〈(〈〉, ref )〉, dif (tr′
t, trt)/trt, tr′

t]) [predicate calculus]

� L(∃ ref , ttr, ttr′ • A[ttr, ttr′/trt, tr′
t] ∧ ttr � 〈(〈〉, ref )〉 ∧ ttr′ � dif (tr′

t, trt)) [definition of L]

� ∃ trt, tr′
t •
(

(∃ tref , ttr, ttr′ • A[ttr, ttr′/trt, tr′
t] ∧ ttr � 〈(〈〉, tref )〉 ∧ ttr′ � dif (tr′

t, trt)) ∧
tr � Flat(trt) ∧ tr′ � Flat(tr′

t) ∧ ref � snd(last(trt)) ∧ ref ′ � snd(last(tr′
t))

)

[predicate calculus]

� ∃ tref , ttr, ttr′ •
⎛

⎜

⎝

A[ttr, ttr′/trt, tr′
t] ∧ ttr � 〈(〈〉, tref )〉 ∧

∃ trt, tr′
t •
(

ttr′ � dif (tr′
t, trt) ∧

tr � Flat(trt) ∧ tr′ � Flat(tr′
t) ∧

ref � snd(last(trt)) ∧ ref ′ � snd(last(tr′
t))

)

⎞

⎟

⎠

[definition of diff and properties of sequences]

� ∃ tref , ttr, ttr′ •

⎛

⎜

⎜

⎜

⎜

⎝

A[ttr, ttr′/trt, tr′
t] ∧ ttr � 〈(〈〉, tref )〉 ∧

∃ trt, tr′
t, p, t, r•

⎛

⎜

⎜

⎝

trt � p � 〈(t, r)〉 ∧
tr′

t � p � 〈(t � fst(head(ttr′)), snd(head(ttr′)))〉 � tail(ttr′) ∧
tr � Flat(trt) ∧ tr′ � Flat(tr′

t) ∧
ref � snd(last(trt)) ∧ ref ′ � snd(last(tr′

t))

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

[predicate calculus, and properties of Flat and sequences]

� ∃ tref , ttr, ttr′ •
(

A[ttr, ttr′/trt, tr′
t] ∧ ttr � 〈(〈〉, tref )〉 ∧

∃p, t • tr � Flat(p) � t ∧ tr′ � Flat(p) � t � Flat(ttr′) ∧ ref ′ � snd(last(ttr′))

)

[predicate calculus and properties of sequences]

� ∃ ref , trt, tr′
t • A ∧ trt � 〈(〈〉, ref )〉 ∧ Flat(tr′

t) � tr′ − tr ∧ ref ′ � snd(last(tr′
t))

[properties of sequences]

⇒ ∃ ref , trt, tr′
t •
(

A ∧ Flat(trt) � 〈〉 ∧ ref � snd(last(trt)) ∧
Flat(tr′

t) � tr′ − tr ∧ ref ′ � snd(last(tr′
t))

)

[property of substitution]

� ∃ ref • ∃ trt, tr′
t •
(

A ∧ Flat(trt) � tr ∧ ref � snd(last(trt)) ∧
Flat(tr′

t) � tr′ ∧ ref ′ � snd(last(tr′
t))

)

[〈〉, tr′ − tr/tr, tr′]

[definitions of L and R2]

� ∃ ref • R2(L(A)) �

As we mentioned previously, R2t enforces independence from both history of interaction and initial refusals.
Therefore, in the untimed model, it does not correspond directly to R2; it covers CSP3 as well.

By applying L to Circus Time constructs, we obtain corresponding programs in the untimed theory. An
important observation is that L(A) does not change the untimed behaviour of A. In fact, L preserves all the basic
actions, except Wait t; for example, for an assignment, we have the law below.
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Law 3 L([[x :� e]]time) � [[x :� e]]

Because the syntax of Circus Time and Circus are similar, we use the notation [[A]]time to represent the action A
in the time theory, and [[A]] to stand for the same action in the untimed theory. In addition, L distributes over all
programming constructs [She06]; for example, for a conditional, we have the law below.

Law 4 L([[A � b � B]]time) � [[L(A) � b � L(B)]]

For Wait t, by hiding the time information in the program that waits for a determined amount of time, L gives a
program that can either wait forever (Stop) or terminate immediately (Skip).

Law 5 L([[Wait t]]time) � [[Stop]] � [[Skip]]

Proof.

L([[Wait t]]time) [definition of Wait t]

� L(CSP1t(Rt(ok′ ∧ delay(t) ∧ trace′ � 〈〉))) [properties of L, definition of Rt]

� CSP1(R1(R3(L(R2t(ok′ ∧ delay(t) ∧ trace′ � 〈〉))))) [as shown in the proof of Law 2]

� CSP1
(

R1
(

R3
(

∃ ref , trt, tr′
t •
(

ok′ ∧ delay(t) ∧ trace′ � 〈〉 ∧
trt � 〈(〈〉, ref )〉 ∧ Flat(tr′

t) � tr′ − tr ∧ ref ′ � snd(last(tr′
t))

))))

[definitions of delay and trace]

� CSP1

⎛

⎜

⎜

⎜

⎝

R1

⎛

⎜

⎜

⎜

⎝

R3

⎛

⎜

⎜

⎜

⎝

∃ ref , trt, tr′
t •

⎛

⎜

⎜

⎜

⎝

ok′ ∧
(

wait′ ∧ (#tr′
t − #trt) < t ∨

¬wait′ ∧ (#tr′
t − #trt) � t ∧ state′ � state

)

∧
Flat(tr′

t) − Flat(trt) � 〈〉 ∧
trt � 〈(〈〉, tref )〉 ∧ Flat(tr′

t) � tr′ − tr ∧ ref ′ � snd(last(tr′
t))

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

[predicate calculus and properties of sequences]

� CSP1

⎛

⎝R1

⎛

⎝R3

⎛

⎝∃ tr′
t •
⎛

⎝

ok′ ∧
(

wait′ ∧ (#tr′
t − 1) < t ∨

¬wait′ ∧ (#tr′
t − 1) � t ∧ state′ � state

)

∧
tr′ � tr ∧ Flat(tr′

t) � 〈〉 ∧ ref ′ � snd(last(tr′
t))

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

[properties of sequences]

� CSP1(R1(R3(ok′ ∧ tr′ � tr ∧ (wait′ ∨ ¬ wait′ ∧ state � state′))))
[distribution of healthiness conditions over disjunction]

� CSP1(R1(R3(ok′ ∧ tr′ � tr ∧ wait′))) ∨ CSP1(R1(R3(¬ wait′ ∧ state � state′)))
[definition of R1 and properties of sequences]

� CSP1(R3(ok′ ∧ tr′ � tr ∧ wait′)) ∨ CSP1(R1(R3(¬ wait′ ∧ state � state′)))
[CSP1(R3(ok′ ∧ p)) � CSP1(ok′ ∧ R3(p))]

� CSP1(ok′ ∧ R3(tr′ � tr ∧ wait′)) ∨ CSP1(R1(R3(¬ wait′ ∧ state � state′))) [definition of Stop]

� Stop ∨ CSP1(R1(R3(¬ wait′ ∧ state � state′)))
[definition of R2 and commutativity of healthiness conditions]

� Stop ∨ R(CSP1(¬ wait′ ∧ state � state′)) [definition of CSP1]

� Stop ∨ R(¬ ok ∧ tr ≤ tr′ ∨ ¬ wait′ ∧ state � state′)) [definition of R1 and properties of sequences]

� Stop ∨ R(¬ ok ∨ ¬ wait′ ∧ state � state′)) [property of Skip [CW06] and definition of choice]

� [[Stop]] � [[Skip]] �

For a timeout action, L is consistent with its characterisation in terms of a wait command.
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3.2. The inverse mapping R

The function L is an abstraction; L(A) hides time information and gives a weaker representation of A in the
untimed theory. As a result, L(A) can only give a best approximation of the meaning of A, and there might not
be an exact inverse of L. It is possible, however, to find a function R which as far as possible undoes the effect of
L. Given an untimed predicate B, R gives the weakest timed predicate with the same behaviour.

R(B) �̂� {A | L(A) � B}
Because R is a weak inverse of L, then there is an unavoidable loss of information when applying R to the result
of an application of L. The following theorem captures this fact.

Theorem 1 A � R(L(A))

Proof.

R(L(X )) [definition of R]

�� {A | L(A) � L(X )} [L is monotonic, and property of greatest lower bound]

�� {A | A � X } [property of greatest lower bound]

� X �

If we apply the weakening function R to a predicate B and then apply the strengthening function L to the result,
this may yield a predicate stronger than B in the untimed theory, as established below.

Theorem 2 L(R(B)) � B

Proof.

L(R(B)) [definition of R]

� L(� {A | L(A) � B} [L is monotonic]

�� {L(A) | L(A) � B} [property of greatest lower bound]

� B �

These results mean that the functions L and R form a Galois connection.
This permits us to explore some properties of the timed language. In particular, we are able to characterise

predicates of the timed theory that do not impose any time requirements.

Definition 1 A predicate A is time insensitive if R(L(A)) � A.

The above definition states that if, by applying the abstraction function L to a predicate A, and then apply-
ing the weak inverse function R to the result, we obtain the same initial predicate A, then the time information
in the original predicate A is irrelevant. An example is the action Stop. It waits forever and permits time to pass;
however, it is time insensitive in the sense that it does not impose any restriction on the time passage. Therefore,
removing the time information from Stop and then adding arbitrary time records results in the same action Stop.
On other hand, if we consider Wait 3, we observe the following.

R(L(Wait 3)) [definition of R]

�� {A | L(A) � L(Wait 3)} [Law 5]

�� {A | L(A) � (Stop � Skip)} [properties of 
 and definition of L]

�� {A | A � Skip ∨ A � Stop ∨ ∃n • A � Wait n}
�� Wait 3

From the above inequality we see clearly, as expected, that the action Wait 3 is not time insensitive.
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The relationship between the UTP theories permits us to explore properties of timed programs that can be
expressed in the untimed theory. The parts of a program that are not time sensitive can be identified and explored,
and safety properties of time sensitive programs can still be validated in the untimed theory.

Properties of R with respect to each of the action constructs remain to be formulated. The Galois connection
and the laws of L presented in the previous section, however, give a strong indication that the derivation of a rich
set of laws is not difficult. An additional property that is central to the argument of soundness of our validation
framework is discussed in Sect. 4.5.

3.3. Non-conservative mapping

As discussed above, the abstraction function L, when applied to Wait d, gives a nondeterministic choice between
Skip and Stop. This actually introduces a deadlock state into the program, and therefore liveness properties can-
not be explored after the application of this abstraction function. The program that results from the application
of L may deadlock, even when the original program does not.

A more suitable abstraction for reasoning about liveness would substitute Wait d with Skip. For that, a new
mapping can be defined using L; it ensures that the only possible waiting state for a program is a waiting state
that can wait forever, that is, deadlock. The definition of this function L̂ is as follows.

L̂(A) �̂ L(A) ∧ (wait′ ⇒ ∀ n • ∃ tro • tro � trt
� 〈(〈〉, ref )〉n ∧ A[tro/tr′

t])

The notation 〈e〉n stands for a sequence with n occurrences of e. With the above definition, we state that the traces
and refusals of L̂(A) are defined from trt and tr′

t in the same way as they were for L(A), and also if wait′ holds,
then it is because there are arbitrarily long traces tro of A that record only passage of time: no communications
or change in the refusals ref (as defined by L(A)) take place.

For this new function, we have L̂([[Wait d ]]time) � [[Skip]]. On other hand, the function L is conservative: it
preserves the behaviour of the original program as indicated by the Laws 1–5 in the previous section, and other
distribution laws in [She06]. The function L̂ is not conservative as it does not distribute over parallel composition.
To explain what happens, we consider the following example.

A �̂ (a → Skip)
2
� Skip

B �̂ Wait 3; (a → Skip)
C �̂ A |[ {} | {| a |} | {} ]| B

We observe that L̂(C) � L̂(Stop) � Stop because the action A times out before the action B is ready to synchronise
on the event a. On other hand, L̂(A) |[ {} | {|a|} | {} ]| L̂(B) is the following action.

(((a → Skip) � (Skip; int → Skip))\{int}) |[ {} | {| a |} | {} ]| (Skip; (a → Skip))
� (((a → Skip) � (int → Skip))\{int}) |[ {} | {| a |} | {} ]| (a → Skip)
� ((a → Skip) � Skip) |[ {} | {| a |} | {} ]| (a → Skip)
� (a → Skip) � Stop

In this parallelism, a may occur immediately, and in this case progress is made.
The two mappings L and L̂ capture the two extreme observations of the timed model. The first replaces a

quantified wait by the option to either wait forever or terminate immediately. The second mapping replaces the
quantified wait with an immediate termination; it does not allow the program to wait. Using the first mapping,
we obtain corresponding untimed programs that are suitable for analysis of properties of traces, while the second
mapping yields results adequate for analysis of liveness properties.

The validation framework that we present in the next section can be used with either L or L̂; our discussions,
however, are based on L. In addition, we observe that some properties can only be proven in the time model
because they are related directly to the timing requirements of the system. Deadlock freedom, for example, cannot
be established after the application of L or L̂ because synchronisation is time dependent. With L̂, at least, if we
prove that the untimed program deadlocks, then we know that the timed program does as well. On other hand,
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Fig. 2. A heterogeneous framework for analysis of timed programs in Circus

if the untimed program does not deadlock, it may still be the case that the timed program deadlocks due to the
timing restrictions.

In [Sch00], Schneider presents a notion of timewise refinement to relate Timed CSP programs to untimed CSP
specifications. A stepwise development process is proposed, where the early steps are based on untimed programs
that describe behaviour without any time constraints. In subsequent steps, time is introduced and the timewise
refinement relation is used to ensure that correctness with respect to the untimed properties is preserved. What
we propose in the sequel has a different objective: given that we already have a timed program, we want to use
techniques of the untimed notation and theory to prove properties.

Mathematically, we define functions like L and L̂ that map timed to untimed models, and compare predicates
of the different theories only indirectly, using the Galois connection defined by the functions. Schneider, on the
hand, introduces new refinement relations that compare timed and untimed programs; as for standard CSP,
there are relations based on traces, failures, and failures-divergences. We, of course, work with the UTP theory
and its refinement relation, which is closest (though not isomorphic) to the failures-divergences model. In both
approaches, it is possible to compare timed and untimed programs; in particular, Schneider’s timewise refinement
relations give results closer to those obtained with our L̂ function. A precise comparison is not trivial, since the
models are different. The validation framework that we now describe, in addition, can be used with any Galois
connection between the timed and untimed UTP theories.

4. Validation framework

In this section, we present a framework for specification and validation of real-time programs using the timed
and untimed theories of Circus. It uses the timed theory for specification, and the untimed theory to validate
system requirements. A normal form for a timed program is used to obtain a corresponding untimed program
that includes special timer events and can be verified to meet time requirements. In this way, we can reason about
time properties without making explicit use of time.

Figure 2 illustrates the steps for using the framework, which can be summarised as follows.

1. We start with a program P and a time requirement R, both defined using Circus Time. The designer gives a
complete description of the system and uses the same notation to describe the desired properties.
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2. With the help of the function �, defined in the next section, we obtain a normal form program that has the
same semantics as the original program (Theorem 3). The normal form is composed of two parts: a set of
interleaved timers and a program P′ � �(P) with no time operators, but containing internal timer events.
The structure of the normal form of the requirement R is the same. Furthermore, the validation requires that
the timers of the normal forms of P and R are equivalent. In practice, adjustments may be needed to the
normal form of the specification to add extra timers that may be used in the implementation. The presence
in the abstract model of timers that are not used does not affect its behaviour. Our normal form, however, is
not appropriate for recursive programs that involve the time operators.

3. Next, we apply the function L, or any other abstraction function, to the program P′ and to the requirements
R′. Although we illustrate our framework with L, since we explore the validation of safety properties, the
framework is actually parametrised by the mapping function. For proving liveness properties, the function
L̂ can be used, instead. Other mapping functions can also be defined.

4. Finally, we show that the untimed program L(P′) satisfies the untimed requirements L(R′). This guarantees
that the timed program P satisfies the timed requirements R (Theorem 5).

In Sect. 4.1, we introduce the normal form, including a definition for timers, and a normalisation strategy. In
Sect. 4.2, we introduce variations of the external choice and parallel composition operators to capture the special
treatment of the timer events. The function � is defined in Sect. 4.3. We prove the correctness of the normalisation
strategy in Sect. 4.4. Finally, Sect. 4.5 considers refinement of programs in the normal form, and links it to the
refinement relation in the untimed theory.

4.1. The normal form

Usually, timed programs are implemented with timers: the system clock or a dedicated timer. Following this
idea, we define a normal form for Circus Time actions: a parallel composition of a set of timers and an untimed
program that synchronises on the timer events. Semantically, these events have a specialised behaviour when they
appear in an external choice or in a parallel composition. Therefore, strictly, the language used to express the
normal form is an extension of Circus Time with the timer events.

More precisely, a normalised Circus Time action takes the following form.

�(A) par Timers(k, n)

The normalisation function � maps an arbitrary Circus Time action to an action that relies on timer events
to synchronise with timers, and does not include any of the time operators. These are confined to the other
component of the normal form, Timers(k, n), which is a set of interleaved timer actions Timer(i) with indices i
from k to n. The par operator is defined in terms of the parallel composition operator, but deals explicitly with
termination of the synchronisation between �(A) and Timers(k, n). We use indices k to n for the timers because
each normalised action has its own set of timers. To combine them, we need to avoid clashes between their timers,
and so we assign arbitrary disjoint intervals to the indices.
The following is the specification of an indexed timer i, which provides a delay of d time units.

Timer(i) �̂
⎛

⎜

⎝µ X •
(

setup.i?d →
(

(halt.i → X )
� Wait d ; ((out.i.d → X ) � (terminate.i → Skip))
� (terminate.i → Skip)

))

� (terminate.i → Skip)

⎞

⎟

⎠

The timer is initiated with the event setup.i.d ; it then offers the event halt.i while it waits for d time units; at the
end, the event out.i.d is also offered. When either halt.i or out.i.d takes place, the timer is reset. The timer always
offers the event terminate.i, which terminates its execution. The reason to use the delay d as a parameter to the
events setup and out is that, in an external choice or in a parallelism, these events present a special behaviour that
is sensitive to the delay, as explained in detail in the next section. In addition, we observe that the setup, out, halt,
and terminate events are internal in the normalised system. This means that they are urgent when they become
available, and so the time limits defined by the delays are enforced.

Timers(k, n) is the interleaving of the needed timers: one for each time operator.

Timers(k, n) �̂||| i : k . . n • Timer(i)

For conciseness, we use the interleaving operator directly, which, as already mentioned, can be expressed in terms
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of the parallel operator with an empty synchronisation set. The timers do not change the state, and so they do
not need access to any of its variables. In the interleaving above the name set associated with each timer is empty.
For simplicity we omit the empty name sets.

The special parallel composition operator par applies to an arbitrary action A and to an interleaving of timers
Timers(k, n); it is defined as follows.

A par Timers(k, n) �̂ (A; Terminate(k, n) |[ sA | TSet | {} ]| Timers(k, n))\TSet

The set sA contains all the variables changed by A. Terminate(k, n) assures that, if A terminates normally, then
all the timers are terminated. This is necessary to terminate the parallelism; otherwise the timers do not allow the
parallel composition to terminate. Terminate(k, n) is defined as follows.

Terminate(k, n) �̂||| i : k . . n • terminate.i → Skip

TSet is the set of events that the timer can engage on. Particularly, the events setup and out have a special behav-
iour captured by a new external choice and a new parallel composition operator defined in the next section; the
set timerEvents is used when we need to refer only to these events.

timerEvents �̂ ⋃{i : k . . n; d : Z • {setup.i.d, out.i.d } }
TSet � timerEvents ∪⋃{i : k . . n • {halt.i, terminate.i } }

The operator par treats these events as internal. The lemma below establishes that termination of A is handled
appropriately: Terminate(k, n) parTimers(k, n) terminates immediately.

Lemma 1 (Terminate(k, n) |[ sA | TSet | {} ]| Timers(k, n)) \ TSet � Skip

Proof.

(Terminate(k, n) |[ sA | TSet | {} ]| Timers(k, n)) \ TSet [definition of Terminate(k, n)]

� ((||| i : k . . n • terminate.i → Skip) |[ sA | TSet | {} ]| Timers(k, n)) \ TSet
[definition of Timers(k, n)]

� ((||| i : k . . n • terminate.i → Skip) |[ sA | TSet | {} ]| (||| i : k . . n • Timer(i))) \ TSet
[definition of Timer(i) and fixed point]

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(||| i : k . . n • terminate.i → Skip)
|[ sA | TSet | {} ]|

||| i : k . . n •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

µ X •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

setup.i?d →
⎛

⎜

⎜

⎜

⎝

(halt.i → X )

�

(

Wait d ;

( (out.i.d → X )
�

(terminate.i → Skip)

) )

� (terminate.i → Skip)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

� (terminate.i → Skip)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ TSet

[step laws (Law 22 and 21)]

� (||| i : k . . n • terminate.i → Skip) \ TSet
[terminate.i ∈ TSet, property of hiding (Law 25), and unit of |||]

� Skip �

Before presenting the normal form reduction process in detail, to provide some intuition, we consider the alarm
controller that we introduced in Sect. 2.1. The corresponding untimed program is presented below.

DisableNF � disable → Skip
RunningNF � DisableNF � (disturbed → ActiveNF )
ActiveNF � setup.2!T2 → ((DisableNF ; halt.2 → Skip) � (out.2.T2 → alarm → DisableNF ))

AlarmNF � µ X • enable → setup.1!T1 →
(

(DisableNF ; halt.1 → Skip)
�

(out.1.T1 → RunningNF )

)

; X

The generated program contains no time information: just timer events. There is one timer for each timeout
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operator used in the original program: the two timers below.

Timer1 � Timer(1)
Timer2 � Timer(2)

The normal form of the process Alarm (in Sect. 2.1) is given by

((AlarmNF ; Terminate(1, 2)) |[ {} | TSet | {} ]| (Timer1 ||| Timer2)) \ TSet

In the normalisation, Disable and Running are not changed, since they do not involve time constructs directly.

ActiveNF , on other hand, is obtained from Active � Disable
T2
� (alarm → Disable) by replacing the timeout oper-

ator with timer events. The event setup.2.T2 sets the second timer to wait for T2 time units. If ActiveNF engages on
disable before T2 time units, then ActiveNF and Timer2 synchronise on halt.2, and ActiveNF terminates; Timer2 is
then reset. After T2 time units, Timer2 and, therefore, ActiveNF synchronise on out.2.T2, and ActiveNF becomes
ready to engage on alarm. The Alarm action includes another timeout operator that is normalised in an analogous
way, but using a separate timer (Timer1).

We observe that our example involves a recursion whose body involves timed operators. Although our tech-
nique does not cover recursion in general, in this case the recursion does not cause problems. They arise, for
example, when the recursion spawns independent (interleaved) timed actions, each requiring its own timer. In
such cases, the normalisation as presented here creates a single timer and is not appropriate. Another source
of problems is the fact that each timer is associated with a single operator and recursion can create dynamic
dependencies between them. As already said, in our example, the presence of recursion raises no difficulties, but
we leave the formal treatment of recursion as future work.

Before presenting the normalisation strategy, which is an entirely algebraic process, we motivate and define
two new operators used at intermediate stages of the reduction process.

4.2. Normal form operators

In this section, we present variations of the choice and parallel composition operators. They capture the special
behaviour attached to the timer events. Both their UTP definition and algebraic laws are presented.

4.2.1. Normal form choice

To explain why we need a new choice operator and why the timer events need to be treated in a special way, we
consider the following example: (Wait 5) � (a → Skip). The normalised action corresponding to Wait 5, that is,
�(Wait 5), is setup.i.5 → out.i.5 → Skip. If we defined � to distribute over external choice, the result of applying
� to our example would be ((setup.i.5 → out.i.5 → Skip) � (a → Skip)). This is not appropriate because the
event setup should be used only to start the timer and the choice should not be resolved by a communication on
setup. The desired behaviour is that setup.i.5 occurs first and then the choice is made over a or out. In other words,
the desired behaviour is setup.i.5 → ((out.i.5 → Skip) � (a → Skip)). To keep the definition of � compositional,
and yet get the choice right, we define a new choice operator �.

We give the semantics of our new choice using the UTP parallel by merge. To justify that, we give below an
alternative definition for the conventional choice; it is equivalent to the standard semantics [She06].

A � B �̂ CSP2
(

CSP1
(

(A‖CM B) ∨
(

ok′ ∧ wait ∧
(tr′ � tr) ∧ (wait′ � wait) ∧ (ref ′ � ref )(state′ � state)

)))

CM is a choice parallel merge predicate defined as follows.

CM �̂
(

(0.ok, 0.wait, 0.tr − tr, 0.ref , 0.state),
(1.ok, 1.wait, 1.tr − tr, 1.ref , 1.state)

)

ChSynch (ok′, wait′, tr′ − tr, ref ′, state′)

The relation ChSynch maps the prefixed variables of the actions A and B to the corresponding dashed observation
variables, but in the case of tr′ (and 0.tr and 1.tr), it is concerned only with the new interactions that are not
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already recorded in tr, that is, 0.tr − tr, 1.tr − tr, and tr′ − tr.

(

(0.ok, 0.wait, 0.tr, 0.ref , 0.state),
(1.ok, 1.wait, 1.tr, 1.ref , 1.state)

)

ChSynch (ok′, wait′, tr′, ref ′, state′) ⇔
⎛

⎜

⎝

Diverge ∨
WaitokNoEvent ∨
DoAnyEvent ∨
Terminate

⎞

⎟

⎠

The predicate Diverge captures the diverging behaviour: the choice operator can diverge if one of the actions
involved in the choice diverges, and that action is selected.

Diverge�̂ok ∧ ¬ok′ ∧
(

(0.ok � ok′ ∧ 0.wait � wait′ ∧ 0.tr � tr′ ∧ 0.ref � ref ′ ∧ 0.state � state′)∨
(1.ok � ok′ ∧ 1.wait � wait′ ∧ 1.tr � tr′ ∧ 1.ref � ref ′ ∧ 1.state � state′)

)

Next, we consider the waiting state of the external choice. In an external choice, a waiting state is only observed
if both actions agree on waiting and no external events are observed.

WaitokNoEvent �̂ ¬wait ∧
⎛

⎜

⎝

ok′ ∧ 0.ok � ok′ ∧ 1.ok � ok′ ∧
wait′ ∧ 0.wait � wait′ ∧ 1.wait � wait′ ∧
tr′ � 〈〉 ∧ 0.tr � tr′ ∧ 1.tr � tr′ ∧
0.ref � ref ′ ∧ 1.ref � ref ′ ∧ 0.state � state′ ∧ 1.state � state′

⎞

⎟

⎠

This reflects only the non-diverging behaviour, since the diverging behaviour is captured by Diverge. Next we
consider the situation is which an event is observed on the output trace indicating that a communication took
place. In such case, the action that can observe the same event on the head of its traces is chosen.

DoAnyEvent�̂ok ∧
⎛

⎝

tr′ �� 〈〉 ∧
(

(0.ok � ok′ ∧ 0.wait � wait′ ∧ 0.tr � tr′ ∧ 0.ref � ref ′ ∧ 0.state � state′)∨
(1.ok � ok′ ∧ 1.wait � wait′ ∧ 1.tr � tr′ ∧ 1.ref � ref ′ ∧ 1.state � state′)

)

⎞

⎠

Finally, if any of the two actions terminates with no communication observed on the outputs, then the terminating
action is chosen. This is expressed in the following predicate:

Terminate�̂ok ∧
⎛

⎝

¬wait′ ∧
(

(0.ok � ok′ ∧ 0.wait � wait′ ∧ 0.tr � tr′ ∧ 0.ref � ref ′ ∧ 0.state � state′) ∨
(1.ok � ok′ ∧ 1.wait � wait′ ∧ 1.tr � tr′ ∧ 1.ref � ref ′ ∧ 1.state � state′)

)

⎞

⎠

In a similar way, we give the definition of the semantics of the special choice operator �.

A � B �̂ CSP2t

(

CSP1t

(

A‖TCM B ∨
(

ok′ ∧ wait ∧
(tr′

t � trt) ∧ (wait′ � wait) ∧ (state′ � state)

) ) )

TCM is a new merge predicate that embeds the semantics of the new choice operator. The relation TChSynch is
similar to ChSynch; it is concerned with the new interactions in dif (0.trt, trt), dif (1.trt, trt), and dif (tr′

t, trt). This
means that, at the head of the trace in the first position of these timed traces, we have the first interaction that
has been recorded since the start of the external choice.

TCM �̂
(

(0.ok, 0.wait, dif (0.trt, trt), 0.state),
(1.ok, 1.wait, dif (1.trt, trt), 1.state)

)

TChSynch (ok′, wait′, dif (tr′
t, trt), state′)

The definition of the relation TChSynch is as shown below.
(

(0.ok, 0.wait, 0.trt, 0.state),
(1.ok, 1.wait, 1.trt, 1.state)

)

TChSynch (ok′, wait′, tr′
t, state′) ⇔

(

Diverget ∨ WaitokNoEventt ∨
DoAnyEventt ∨ Terminatet

)

Like Diverge, the predicate Diverget is used to capture the diverging behaviour of the timed choice.

Diverget �̂ ok ∧ ¬ok′ ∧
(

(0.ok � ok′ ∧ 0.wait � wait′ ∧ 0.trt � tr′
t ∧ 0.state � state′) ∨

(1.ok � ok′ ∧ 1.wait � wait′ ∧ 1.trt � tr′
t ∧ 1.state � state′)

)

Next we consider the waiting state of the external choice; the requirement tr′ � 〈〉 in the definition of the standard
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choice operator is now a restriction on Flat(tr′
t) instead.

WaitokNoEventt �̂
⎛

⎜

⎝

ok′ ∧ 0.ok � ok′ ∧ 1.ok � ok′ ∧
wait′ ∧ 0.wait � wait′ ∧ 1.wait � wait′ ∧
Flat(tr′

t) � 〈〉 ∧ 0.trt � tr′
t ∧ 1.trt � tr′

t ∧
0.state � state′ ∧ 1.state � state′

⎞

⎟

⎠

Termination is considered below in the definition of the predicate Terminatet.

Terminatet �̂ ok ∧
⎛

⎝

¬wait′ ∧ Flat(tr′
t) � 〈〉 ∧

(

(0.ok � ok′ ∧ 0.wait � wait′ ∧ 0.trt � tr′
t ∧ 0.state � state′) ∨

(1.ok � ok′ ∧ 1.wait � wait′ ∧ 1.trt � tr′
t ∧ 1.state � state′)

)

⎞

⎠

The predicate DoAnyEventt is similar to DoAnyEvent, but now we need to consider the timer events.

DoAnyEventt �̂ ok′ ∧ Flat(tr′
t) �� 〈〉 ∧

⎛

⎜

⎝

DoTimePassing ∨
DoSetup ∨
DoAnyOut ∨ DoEventWithOut ∨ DoOrderedOut ∨
DoEvent

⎞

⎟

⎠

In the above definition, each of the predicates captures a particular situation. The predicate DoTimePassing
registers the passage of time if both actions register empty traces at the head of the timed traces.

DoTimePassing �̂
⎛

⎝

fst(head(tr′
t)) � 〈〉 ∧ fst(head(0.trt)) � 〈〉 ∧ fst(head(1.trt)) � 〈〉 ∧

(

(0.ok, 0.wait, tail(0.trt), 0.state),
(1.ok, 1.wait, tail(1.trt), 1.state)

)

TChSynch (ok′, wait′, tail(tr′
t), state′)

⎞

⎠

The predicate DoSetup describes the behaviour of the program when a setup event is observed at the head of the
resulting timed trace. Such a situation arises when one of the actions engages in the setup event, which is shown
at the head of its timed trace. The choice is not solved, and after the setup event is removed, the timed traces of
both actions are further considered in the choice.

DoSetup�̂ ∃ i, d •
⎛

⎝

head(fst(head(tr′
t))) � setup.i.d ∧

(

((head(fst(head(0.trt))) � setup.i.d) ∧ StepFirst) ∨
((head(fst(head(1.trt))) � setup.i.d) ∧ StepSecond)

)

⎞

⎠

The predicates StepFirst and StepSecond specify the merge of the variables, taking into account a modified timed
trace of the action that engaged in the setup event. In the new trace, the setup event is eliminated, but all the other
events are kept, and so the event that follows the setup can contribute to the choice resolution.

StepFirst �̂

⎛

⎜

⎜

⎝

(

(0.ok, 0.wait, 〈(tail(fst(head(0.trt))), snd(head(0.trt)))〉 � tail(0.trt), 0.state),
(1.ok, 1.wait, 1.trt, 1.state)

)

TChSynch
(ok′, wait′, 〈(tail(fst(head(tr′

t))), snd(head(tr′
t)))〉 � tail(tr′

t), state′)

⎞

⎟

⎟

⎠

While StepFirst covers the case in which the first action can engage in a setup event, the similar predicate
StepSecond is concerned with the second action. If both actions can engage in a setup event, then the choice
of which appears first in the trace of the external choice is nondeterministic.

StepSecond �̂

⎛

⎜

⎜

⎝

(

(0.ok, 0.wait, 0.trt, 0.state),
(1.ok, 1.wait, 〈(tail(fst(head(1.trt))), snd(head(1.trt)))〉 � tail(1.trt), 1.state)

)

TChSynch
(ok′, wait′, 〈(tail(fst(head(tr′

t))), snd(head(tr′
t)))〉 � tail(tr′

t), state′)

⎞

⎟

⎟

⎠

The predicate DoAnyOut captures the behaviour when one, but not both, of the actions can perform an out
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event: the choice is not made, but the out event is observed in the trace of the external choice.

DoAnyOut �̂ ∃ i, d •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

head(fst(head(tr′
t))) � out.i.d ∧

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

head(fst(head(0.trt))) � out.i.d ∧
∀ j, n • i �� j ∧ head(fst(head(1.trt))) �� out.j.n ∧
StepFirst

)

∨
(

head(fst(head(1.trt))) � out.i.d ∧
∀ j, n • i �� j ∧ head(fst(head(0.trt))) �� out.j.n ∧
StepSecond

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The next predicate considers the situation in which both actions can perform the event out; in this case, the
external choice is still not solved, but the choice of which out event is observed in the trace of the external choice
first is based on the delay of the timers: the out event with the smallest delay is chosen. If the delays are the same,
then the order of the events is nondeterministic.

DoOrderedOut �̂ ∃ i, d •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

head(fst(head(tr′
t))) � out.i.d ∧

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

head(fst(head(0.trt))) � out.i.d ∧
∃ j, n • (head(fst(head(1.trt))) � out.j.n) ∧ i �� j ∧
StepFirst ∧ (d ≤ n)

)

∨
(

head(fst(head(1.trt))) � out.i.d ∧
∃ j, n • (head(fst(head(0.trt))) � out.j.n) ∧ i �� j ∧
StepSecond ∧ (d ≤ n)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The predicate DoEvent is concerned with the standard events, that is, those that are not timer events. It is very
similar to the DoAnyEvent predicate used in the definition of the standard external choice.

DoEvent �̂ ∃a •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

head(fst(head(tr′
t))) � a ∧ a �∈ timerEvents ∧

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

head(fst(head(0.trt))) � a ∧
head(fst(head(1.trt))) �∈ timerEvents ∧
(ok′ � 0.ok ∧ wait′ � 0.wait ∧ tr′

t � 0.trt ∧ state′ � 0.state)

)

∨
(

head(fst(head(1.trt))) � a ∧
head(fst(head(0.trt))) �∈ timerEvents ∧
(ok′ � 1.ok ∧ wait′ � 1.wait ∧ tr′

t � 1.trt ∧ state′ � 1.state)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

As defined in Sect. 4.1, the set timerEvents contains the relevant setup and out events.
Finally, DoEventWithOut specifies the situation in which an event out is possible in the presence of an ordinary

event. The choice offers both of them: as described above by DoAnyOut, if the out event is selected, then the
choice is not solved and the other event can occur. If the other event is selected, then the event halt, related to the
same timer as the out event, is observed in the trace immediately afterwards.

DoEventWithOut �̂ ∃a •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

head(fst(head(tr′
t))) � a ∧ a �∈ timerEvents ∧

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

head(fst(head(0.trt))) � a ∧
∃ i, d • head(fst(head(1.trt))) � out.i.d ∧ i �� j ∧
(

ok′ � 0.ok ∧ wait′ � 0.wait ∧ state′ � 0.state ∧
tr′

t � addHead(a, i, 0.trt) � tail(0.trt)

)

⎞

⎟

⎟

⎠

∨
⎛

⎜

⎜

⎝

head(fst(head(1.trt))) � a ∧
∃ i, d • head(fst(head(0.trt))) � out.i.d ∧ i �� j) ∧
(

ok′ � 1.ok ∧ wait′ � 1.wait ∧ state′ � 1.state ∧
tr′

t � addHead(a, i, 1.trt) � tail(1.trt)

)

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The sequence addHead(a, i, t) �̂ 〈(〈a, halt.i〉 � tail(fst(head(t))), snd(head(t)))〉 is a singleton. The validation of
the definition of this special external choice operator is provided by the profs of many laws that involve this
operator [She06], a few of which are presented below.

Our new choice operator is idempotent, commutative, and associative. In addition, the following laws, where
we take ci to be ordinary events, as opposed to timer events, hold; they confirm the special nature of a choice
involving timer events. First, a setup event is not determinant in the choice and does not affect it. When in choice
with other events, ordinary or timer events, a setup event has priority.
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Law 6 (setup.i.d → A) � B � setup.i.d → (A � B) provided ¬ ∃ j, n • setup.j.n ∈ initials(B).

If two setup events are available for choice, then either of them may be chosen.

Law 7

(setup.i.d → A) � (setup.j.n → B)
�
(setup.i.d → (A � (setup.j.n → B))) � (setup.j.n → (setup.i.d → A � B))

As in the case of setup, an out event is not determinant in the choice, but differently from setup, the out event
offers the ordinary events ci as a choice using the standard external choice operator.

Law 8

(out.j.d → A) � (� i : 1 . . n • ci → Bi)
�
(out.j.d → (A � (� i : 1 . . n • ci → Bi))) � (� i : 1 . . n • ci → halt.j → Bi)

In the case where the choice operator � involves two out events, the next law states that they are offered in the
order determined by the delays: the event with the shorter delay is offered first.

Law 9

(out.i.d → A) � (out.j.n → B) �

⎧

⎪

⎨

⎪

⎩

out.i.d → (A � (out.j.n → B)), if d > n;
out.j.n → ((out.i.d → A) � B), if d < n;
(out.i.d → (A � (out.j.n → B))) � (out.j.n → (out.i.d → A � B)),

if d � n.

provided i �� j.

The next law states that the choice operator � is solved between timer events.

Law 10 ((out.i.d → A) � C) � ((out.j.n → B) � D) � ((out.i.d → A) � (out.j.n → B)) � (C � D)

The final law for the operator � states that if all actions in the choice do not start with timer events, then the
choice is the same as that characterised by the standard external choice operator.

Law 11 A � B � A � B
provided timerEvents ∩ (initials(A) ∪ initials(B)) �� ∅.

The set initials(A) contains the events in which the action A is prepared to engage. Its definition for Circus can be
found in [Fre06]. Together, these laws establish that an action A � B can always be reduced to an action A′ � B′
such that A′ and B′ do not contain the operator �.

4.2.2. Normal form parallel composition

We also need to introduce a new parallel operator A |[sA | cs | sB ]|nf B, and some expansion laws, that capture the
special nature of the synchronisation and interleaving of timer and ordinary events. The semantics of this new
operator is given using the parallel by merge operator of the UTP.

A |[ sA | cs | sB ]|nf B �̂ A‖NPM B

In this case, the merge predicate is NPM , which is defined as shown below.

NPM(cs, sA, sB) �̂
⎛

⎜

⎝

ok′ � (0.ok ∧ 1.ok) ∧
wait′ � (0.wait ∨ 1.wait) ∧
state′ � (sB −� 0.state) ∪ (sA −� 1.state) ∧
dif (tr′

t, trt) NTSync(cs) dif (0.tr, tr), dif (1.tr, tr)

⎞

⎟

⎠

The synchronisation relation NTSync associates prefixed traces 0.trt and 1.trt of the parallel actions, a
synchronisation set cs, and the combined trace trt of the parallelism. It is concerned with the interactions
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dif (0.tr, tr), dif (1.tr, tr), dif (tr′
t, trt) that are recorded after the parallelism starts.

trt NTSync(cs) 0.trt, 1.trt �̂

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(0.trt � 〈〉 ∧ 1.trt � 〈〉 ∧ trt � 〈〉) ∨
(0.trt �� 〈〉 ∧ 1.trt � 〈〉 ∧ trt NTSync(cs) 0.trt, 〈(〈〉, {})〉) ∨
(0.trt � 〈〉 ∧ 1.trt �� 〈〉 ∧ trt NTSync(cs) 〈(〈〉, {})〉, 1.trt) ∨

∃ t1, r1, t2, r2 •

⎛

⎜

⎜

⎝

(0.trt � 〈(t1, r1)〉 � S1) ∧ (1.trt � 〈(t2, r2)〉 � S2) ∧
fst(head(trt)) NPSync(cs) t1, t2 ∧
snd(head(trt)) � ((r1 ∪ r2) ∩ cs) ∪ ((r1 ∩ r2)\cs)
tail(trt)NTSync(cs) S1, S2

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

NTSync is defined as a disjunction. The first disjunct handles the case in which the prefixed traces are empty: the
combined trace is also empty. Next we have the case in which just one of the prefixed timed traces is empty: the
synchronisation is carried out between the non-empty trace and 〈(〈〉, {})〉. Finally, if both prefixed traces are not
empty, then we synchronise the first time slots of the two traces: we synchronise the trace element of each timed
trace using a new relation NPSync defined below.

tr NPSync(cs) 0.tr, 1.tr �̂ EmptyTraces ∨ SynchEvents ∨ NoSynchEvents ∨ doSetupEvent ∨ doOutEvent

The predicate EmptyTraces considers the case in which both prefixed traces are empty, in which case the combined
trace is empty as well. If any of the two traces is not empty, then the Circus untimed synchronisation relation
Sync [She06, Oli06] is used; it is similar to the standard CSP synchronisation relation [Ros98].

EmptyTraces �̂
(

(0.tr � 〈〉 ∧ 1.tr � 〈〉 ∧ tr � 〈〉) ∨
(0.tr �� 〈〉 ∧ 1.tr � 〈〉 ∧ tr ∈ Sync(0.tr, 1.tr, cs)) ∨
(0.tr � 〈〉 ∧ 1.tr �� 〈〉 ∧ tr ∈ Sync(0.tr, 1.tr, cs))

)

SynchEvents describes the situation in which the event observed at the heads of the traces is in the synchronisation
set cs. If the event at the head of the combined trace is in cs, then the prefixed traces should both have the same
event at their heads, and the tails of all traces should also be related by NPSync(cs).

SynchEvents �̂
(

(head(tr) ∈ cs) ∧ (head(0.tr) � head(tr)) ∧ (head(1.tr) � head(tr)) ∧
tail(tr) NPSync(cs) tail(0.tr), tail(1.tr)

)

NoSynchEvents describes the behaviour when the element at the head of the combined trace is not a member of
cs and is not a timer event. This is only possible if the head event of 0.tr (or 1.tr) is that same event, and the head
event of 1.tr (0.tr) is not a setup. This gives priority to the setup event in the parallelism.

NoSynchEvents �̂

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(head(tr) �∈ cs) ∧ (head(tr) �∈ timerEvents) ∧
⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

(head(0.tr) � head(tr)) ∧
∀ i, d • head(1.tr) �� setup.i.d ∧
tail(tr) NPSync(cs) tail(0.tr), 1.tr

)

∨
(

(head(1.tr) � head(tr)) ∧
∀ i, d • head(0.tr) �� setup.i.d ∧
tail(tr) NPSync(cs) 0.tr, tail(1.tr)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The next predicate, doSetupEvent, deals in particular with the situation in which a setup event is observed at the
head of the combined trace. It must be a head event of one of the prefixed traces.

doSetupEvent �̂ ∃ i, d • head(tr) � setup.i.d ∧

⎛

⎜

⎜

⎝

(

head(0.tr) � head(tr) ∧
(tail(tr) NPSync(cs) tail(0.tr), 1.tr)

)

∨
(

head(1.tr) � head(tr) ∧
(tail(tr) NPSync(cs) 0.tr, tail(1.tr))

)

⎞

⎟

⎟

⎠

Finally, doOutEvent is similar to doSetupEvent, except that it considers out events, which are ordered by their
delays. If an out event is observed at the head of the combined trace, then it must be at the head of 0.tr or 1.tr.
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If an out event is at the top of both of them, then that with the smallest delay is chosen.

doOutEvent�̂∃ i, d •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

head(tr) � out.i.d ∧
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

head(0.tr) � head(tr) ∧
(

(∀ j, n • (head(1.tr ↓ timerEvents) �� out.j.n) ∧ i �� j) ∨
(∃ j, n • head(1.tr ↓ timerEvents) � out.j.n ∧ i �� j) ⇒ d ≤ n

)

∧
(tail(tr) NPSync(cs) tail(0.tr), 1.tr)

⎞

⎟

⎠

∨
⎛

⎜

⎝

head(1.tr) � head(tr) ∧
(

(∀ j, n • (head(0.tr ↓ timerEvents) �� out.j.n) ∧ i �� j) ∨
(∃ j, n • head(0.tr ↓ timerEvents) � out.j.n ∧ i �� j) ⇒ d ≤ n

)

(tail(tr) NPSync(cs) 0.tr, tail(1.tr))

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We present below step laws that can be used to convert a parallel action into a sequential action. They give an
algebraic semantics for the new operator, and confirm the behaviour associated with timer events. We omit laws
that involve only ordinary events; they are standard and also valid for the CSP parallel operator [Ros98]. The
first law states that setup events, when in parallel, have to occur before any other events.

Law 12

(setup.i.d → A) |[ sA | cs | sB ]|nf (setup.j.e → B)
�
((setup.i.d → setup.j.e → Skip) � (setup.j.e → setup.i.d → Skip)); (A |[ sA | cs | sB ]|nf B)

provided i �� j.

The next two laws state the order in which out events occur based on their delays. If both parallel actions are
ready to engage in an out event, but they have different delays, that with the smallest delay occurs first.

Law 13

((out.i.d → A) |[ sA | cs | sB ]|nf (out.j.n → B)) � out.i.d → (A |[ sA | cs | sB ]|nf (out.j.n → B))

provided d < n.

If the delays are the same, then the order in which the out events occur is nondeterministic.

Law 14

(out.i.d → A) |[ sA | cs | sB ]|nf (out.j.n → B)
�
((out.i.d → out.j.n → Skip) � (out.j.n → out.i.d → Skip)); (A |[ sA | cs | sB ]|nf B)

provided d � n.

The following two laws capture the behaviour when an out event is offered in parallel with ordinary events: they
do not have priority, and are guaranteed to occur first only if the ordinary events are all in the synchronisation
set, and therefore, blocked by the parallelism.

Law 15

((out.i.d → A) |[ sA | cs | sB ]|nf (� j : 1 . . n • cj → Bj)
�
⎛

⎝

out.i.d → (A |[ sA | cs | sB ]|nf (� j : 1 . . n • cj → Bj))
�
(� j : 1 . . n • cj → ((out.i.d → A) |[ sA | cs | sB ]|nf Bj))

⎞

⎠

provided for all j, (cj �∈ cs) ∧ (cj �� out.i.d), for any timer index i and delay d .
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Law 16

((out.i.d → A) |[ sA | cs | sB ]|nf (� j : 1 . . n • cj → Bj))
�
(out.i.d → (A |[ sA | cs | sB ]|nf (� j : 1 . . n • cj → Bj)))

provided for all j, (cj ∈ cs) ∧ (cj �� out.i.d) for any timer index i and delay d .

The next laws consider the case in which the parallel actions can either do out or ordinary events. In this case,
the out event with the shorter delay has priority.

Law 17

((out.i.d → A) � B) |[ sA | cs | sB ]|nf ((out.j.n → C) � D)
�
out.i.d → (A |[ sA | cs | sB ]|nf ((out.j.n → C) � D))

provided d < n.

If the delays in the parallel out events are the same, then either can be chosen.

Law 18

((out.i.d → A) � B) |[ sA | cs | sB ]|nf ((out.j.n → C) � D)
�
⎛

⎝

(out.i.d → (A |[ sA | cs | sB ]|nf ((out.j.n → C) � D)))
�

(out.j.n → (((out.i.d → A) � B) |[ sA | cs | sB ]|nf C))

⎞

⎠

provided d � n.

Together, these laws (and the omitted standard step laws) establish that any action A |[ sA | cs | sB ]|nf B can be
reduced to an action A′ � B′ where A′ and B′ do not contain the normal form operators.

Finally, we present a law that relates the new and the original parallel operators.

Law 19 A |[ sA | cs | sB ]|nf B � A |[ sA | cs | sB ]| B
provided {setup, out, halt} ∩ (usedC(A, B)) � ∅.

The set usedC(A, B) contains all the channels used by the actions A and B [Oli06]. This law establishes that it
is not always necessary to sequentialise the normal form parallelism to eliminate it. If the actions in parallel
have no timer events, then the normal form parallelism reduces to the standard parallelism. The definition of the
normalisation function �, which uses the new operators, is presented in the next section.

4.3. Reducing timed actions to actions with timer events

The action �(A) uses the timer events, instead of time operators, to specify the same time constraints as A. The
function � is an identity for the basic actions (except for Wait), and distributes through the binary operators,
except for timeout, external choice and parallel composition. For Wait d, � gives an action that initialises a
timer using the event setup.i.d , and then waits for the occurrence of out.i.d .

�(Wait d) � (setup.i.d → out.i.d → Skip)

For the timeout operator, without loss of generality, we consider a particular case: (� j : 1 . . n • cj → Aj)
d
� B,

where the events cj are ordinary. We consider the application of the timeout operator only to this special form
of external choice because the timeout has to stop the corresponding timer (using the event halt.i) after the
occurrence of the first event. This does not lead to loss of generality of our definition because, using the algebraic
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laws of Circus Time, we can transform any action into the required form [She06].

�((� j : 1 . . n • cj → Aj)
d
� B) �

setup.i.d → ((� j : 1 . . n • cj → halt.i → �(Aj)) � (out.i.d → �(B)))

Like with Wait d , the action that corresponds to the timeout initialises a timer using setup.i.d . Afterwards, it
offers a choice of synchronising on an event cj or recording a timeout with the event out.i.d . If an event cj occurs
before d time units, then the timer is stopped with the event halt.i.

External choice is mapped by � to the new external choice operator � introduced in the previous section.

�(A � B) � �(A) � �(B)

Similarly a parallel composition is mapped by � to the new parallel operator.

�(A |[ sA | cs | sB ]| B) � �(A) |[ sA | cs | sB ]|nf �(B)

In summary, applying the definition of �, and the laws of the new choice and parallelism operators presented in
the previous section, we can reduce any timed action to an action with timer events and no time operators. The
soundness of this process is the subject of the next section.

4.4. Normalisation soundness

For every timed action A, its normalisation involves the introduction of a set of timers, Timers(k, n), where k and
n depend on the number m � n − k + 1 of such time operators in A, and the evaluation of the application of the
� function. This is a purely syntactic process that generates a timer for each wait or timeout operator in A; the
theorem below establishes its soundness.

Theorem 3 For any timed action A whose recursions do not involve any timed operators, there is an action
Timers(k, n) such that A � �(A) par Timers(k, n), where k..n is the integer range used to identify the timers, one
for each wait or timeout action in the original A.

Proof. By structural induction on the Circus Time constructs; we include here only proofs for the time operators,
which are the most affected by the normalisation.

Case Wait d : A single Wait d requires only one timer, so we show that Wait d � �(Wait d) parTimer(i, d),
where i is the arbitrary identifier of the timer used for this particular command.

�(Wait d) par Timer(i, d) [definition of � ]
� (setup.k.d → out.k.d → Skip) par Timer(i, d) [definition of par ]
� (((setup.k.d → out.k.d → Skip); Terminate(i, i)) |[ {} | TSet | {} ]| Timer(i, d)) \ TSet

[definition of Timer(i, d) ]

�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

((setup.k.d → out.k.d → Skip); Terminate(i, i))
|[{} | TSet | {}]|

⎛

⎜

⎝ µ X •
⎛

⎜

⎝

setup.k.d →
( (halt.k → X )

� (Wait d ; ((out.k.d → X ) � (terminate.k → Skip))
� (terminate.k → Skip)

)

� (terminate.k → Skip)

⎞

⎟

⎠

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

\TSet

[fixed point and definition of Timer(i, d) ]

�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

((setup.k.d → out.k.d → Skip); Terminate(i, i))
|[{} | TSet | {}]|

⎛

⎜

⎝

setup.k.d →
( (halt.k → Timer(k, d))

� (Wait d ; ((out.k.d → Timer(k, d)) � (terminate.k → Skip)))
� (terminate.k → Skip)

)

� (terminate.k → Skip)

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

\TSet

[setup.k.d ∈ TSet and step law (Law 21)]
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�

⎛

⎜

⎜

⎜

⎝

setup.k.d →

⎛

⎜

⎜

⎜

⎝

((out.k.d → Skip); Terminate(i, i))
|[{} | TSet | {} ]|

( (halt.k → Timer(k, d))
� (Wait d ; ((out.k.d → Timer(i, d)) � (terminate.k → Skip)))
� (terminate.k → Skip)

)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

\ TSet

[{out.k.d, halt.k, terminate.k } ⊆ TSet and step law (Law 20)]

�
(

setup.k.d → Wait d ;

( ((out.k.d → Skip); Terminate(i, i))
|[{} | TSet | {} ]|

((out.k.d → Timer(i, d)) � (terminate.k → Skip))

))

\ TSet

[out.k.d ∈ TSet and step law (Law 21)]

� (setup.k.d → Wait d ; out.k.d → Skip; (Terminate(i, i) |[ {} | TSet | {} ]| Timer(i, d))) \ TSet
[property of hiding (Law 30)]

� (setup.k.d → Wait d ; out.k.d → Skip) \ TSet; (Terminate(i, i) |[ {} | TSet | {} ]| Timer(i, d)) \ TSet

[Lemma 1]

� ((setup.k.d → Wait d ; out.k.d → Skip) \ TSet); Skip [right unit of sequence]

� (setup.k.d → Wait d ; out.k.d → Skip) \ TSet [properties of hiding (Law 25)]

� (Wait d ; out.k.d → Skip) \ TSet [property of hiding (Law 30)]

� (Wait d \ TSet); ((out.k.d → Skip) \ TSet) [properties of hiding (Laws 27 and 25)]

� Wait d ; Skip [right unit of sequence]

� Wait d �

Case (c → A)
d
� B: The induction hypothesis allows us to assume that �(A) par Timers(k, n) � A and

�(B) par Timers(j, m) � B with disjoint timer index intervals (k, n) and (j, m). What we need to prove is that

�((c → A)
d
� B) in parallel with an interleaving of the timers Timers(k, n) for A and Timers(j, m) for B, and an

additional timer Timer(i, d) for the timeout operator, with a fresh index i, has the same behaviour as the timeout

action (c → A)
d
� B. We proceed as shown below.

�((c → A)
d
� B) par (Timer(i, d) ||| Timers(k, n) ||| Timers(j, m)) [definition of �]

�
(

setup.i.d → ((c → halt.k → �(A)) � (out.k.d → �(B)))
par

(Timer(i, d) ||| Timers(k, n) ||| Timers(j, m))

)

[int is fresh and properties of hiding (Laws 28, 25, 26, and 31)]

�
(

setup.i.d → ((c → halt.k → �(A)) � (out.k.d → int → �(B))) \ {int})
par

(Timer(i, d) ||| Timers(k, n) ||| Timers(j, m))

)

[definition of par (sAB is the set of variables that can be changed by A and B]

�
⎛

⎜

⎝

(

setup.i.d → ((c → halt.k → �(A)) � (out.k.d → int → �(B))) \ {int};
(Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m))

)

|[sAB | TSet | {}]|
(Timer(i, d) ||| Timers(k, n) ||| Timers(j, m))

⎞

⎟

⎠ \ TSet

[int is fresh and properties of hiding (Laws 26, 28, 30, 32, and 29)]
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�
⎛

⎜

⎝

(

setup.i.d → ((c → halt.k → �(A)) � (out.k.d → int → �(B)));
(Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m))

)

|[sAB | TSet | {}]|
(Timer(i, d) ||| Timers(k, n) ||| Timers(j, m))

⎞

⎟

⎠ \ TSet ∪ {int}

[definition of Timer(i, d) and fixed point]

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

setup.i.d → ((c → halt.k → �(A)) � (out.k.d → int → �(B)));
(Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m))

)

|[sAB | TSet | {}]|
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

setup.i.d →

⎛

⎜

⎜

⎜

⎝

(halt.k → Timer(i, d))

� Wait d ;

(

(out.k.d → Timer(i, d))
�

(terminate.k → Skip)

)

� (terminate.i → Skip)

⎞

⎟

⎟

⎟

⎠

� (terminate.i → Skip)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

|||

Timers(k, n) ||| Timers(j, m)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ TSet ∪ {int}

[step law (Law 24)]

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

setup.i.d →

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

((c → halt.k → �(A)) � (out.k.d → int → �(B)));
(Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m))

)

|[ sAB | TSet | {} ]|
⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

(halt.k → Timer(i, d))

� Wait d ;

(

(out.k.d → Timer(i, d))
�

(terminate.k → Skip)

)

� (terminate.i → Skip)

⎞

⎟

⎟

⎟

⎠

|||

Timers(k, n) ||| Timers(j, m)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ TSet ∪ {int}

[setup.i.d ∈ TSet and properties of hiding (Laws 29 and 25)]

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

((c → halt.k → �(A)) � (out.k.d → int → �(B)));
(Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m))

)

|[ sAB | TSet | {} ]|
⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

(halt.k → Timer(i, d))

� Wait d ;

(

(out.k.d → Timer(i, d))
�

(terminate.k → Skip)

)

� (terminate.i → Skip)

⎞

⎟

⎟

⎟

⎠

|||

Timers(k, n) ||| Timers(j, m)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ TSet ∪ {int}

[distribution of sequence and parallelism over choice]
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�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

(c → halt.k → �(A));
(Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m))

)

|[ sAB | TSet | {} ]|
⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

(halt.k → Timer(i, d))

� Wait d ;

(

(out.k.d → Timer(i, d))
�

(terminate.k → Skip)

)

� (terminate.i → Skip)

⎞

⎟

⎟

⎟

⎠

|||

Timers(k, n) ||| Timers(j, m)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

(out.k.d → int → �(B));
(Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m))

)

|[ sAB | TSet | {} ]|
⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

(halt.k → Timer(i, d))

� Wait d ;

(

(out.k.d → Timer(i, d))
�

(terminate.k → Skip)

)

� (terminate.i → Skip)

⎞

⎟

⎟

⎟

⎠

|||

Timers(k, n) ||| Timers(j, m)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ TSet ∪ {int}

[step laws (Laws 23 and 21)]

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

c → halt.k →
(

(�(A); (Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m)))
|[ sAB | TSet | {} ]|

(Timer(i, d) ||| Timers(k, n) ||| Timers(j, m))

)

⎞

⎟

⎠

�
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

(out.k.d → int → �(B));
(Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m))

)

|[ sAB | TSet | {} ]|
⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

(halt.k → Timer(i, d))

� Wait d ;

(

(out.k.d → Timer(i, d))
�

(terminate.k → Skip)

)

� (terminate.i → Skip)

⎞

⎟

⎟

⎟

⎠

|||

Timers(k, n) ||| Timers(j, m)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ TSet ∪ {int}

[step laws (Laws 20, 21 and 23]

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

c → halt.k →
(

(�(A); (Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m)))
|[ sAB | TSet | {} ]|

(Timer(i, d) ||| Timers(k, n) ||| Timers(j, m))

)

⎞

⎟

⎠

�
⎛

⎜

⎝

Wait d ; out.k.d → int →
(

(�(B); (Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m)))
|[ sAB | TSet | {} ]|

(Timer(i, d) ||| Timers(k, n) ||| Timers(j, m))

)

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ TSet ∪ {int}

[properties of hiding (Laws 29, 31, 25, 26, 30, and 28)]
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�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

c →
(

(�(A); (Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m)))
|[ sAB | TSet | {} ]|

(Timer(i, d) ||| Timers(k, n) ||| Timers(j, m))

)

\ TSet

⎞

⎟

⎠

�
⎛

⎜

⎝

Wait d ; int →
(

(�(B); (Terminate(i, i) ||| Terminate(k, n) ||| Terminate(j, m)))
|[ sAB | TSet | {} ]|

(Timer(i, d) ||| Timers(k, n) ||| Timers(j, m))

)

\ TSet

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ {int}

[step law (Law 24) and Lemma 1]

�
(

(c → ((�(A); Terminate(k, n)) |[ sAB | TSet | {} ]| Timers(k, n)) \ TSet
�

(Wait d ; int → ((�(B); Terminate(j, m)) |[ sAB | TSet | {} ]| Timers(j, m))) \ TSet

)

\ {int}

[definition of par]

� (c → (�(A) par Timers(k, n)) � Wait d ; int → (�(B) par Timers(j, m))) \ {int} [hypothesis]

� (c → A � Wait d ; int → B) \ {int} [property of � (Law 11) and definition of timeout]

(c → A)
d
� B �

Proofs for the remaining cases of the induction can be found in [She06].

4.5. Linking refinement of untimed and timed actions

The main motivation for our normal form is to isolate explicit time concerns in the timers, with the aim of con-
ducting reasoning using only the action resulting from the application of the function �. It would be desirable
that, for any actions A and B, the compositionality property (�(A) � �(B)) ⇒ (A � B) held, but this is not
true in general: when the timers in the normal forms of A and B are different, they cannot be easily compared.
It is reasonable, however, to assume that the timers of a specification and corresponding implementation are the
same; if they are not, extra timers can be added. In such cases, the following theorem holds; for simplicity, we
omit the parameters of the Timers component.

Theorem 4 If, for an action Timers, we have that A � �(A) par Timers and B � �(B) par Timers, then (�(A) �
�(B)) ⇒ (A � B).

Proof. Direct from the monotonicity of the par operator. �

This theorem shows that, provided the timers of the normal forms of a specification and an implementation are
the same, we can ignore them for reasoning. This is, however, still a result in the Circus Time model. To justify
reasoning in the untimed Circus model, we abstract �(A) and �(B) using the function L. As explained in Sect. 4.3,
syntactically, L(�(A)) is identical to �(A), since �(A) does not contain any time operators, but L(�(A)) is an
action in the untimed Circus theory, which we want to use for reasoning. The same abstraction can be applied to
�(B). The theorem below establishes the soundness of this final step of our validation approach: we can conclude
that �(A) refines �(B), by proving that L(�(A)) refines L(�(B)).

Theorem 5 For any A and B, let A′ � �(A) and B′ � �(B) then (L(A′) � L(B′)) ⇒ (A′ � B′).

Proof.

L(A′) � L(B′) [R is monotonic]

⇒ R(L(A′)) � R(L(B′)) [Theorem 1]

⇒ A′ � R(L(B′)) [B′ is time insensitive]

� A′ � B′ �

In summary, the proposed validation framework can be used as follows. Starting from a timed specification S
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and a timed program P, we generate their respective normal forms, with the same set of timers.

S � �(S) par Timers

P � �(P) par Timers

Afterwards, we abstract �(S) and �(P) into the untimed model and prove that the following holds.

L(�(P)) � L(�(S))

From Theorem 5, it follows that �(P) � �(S). Then, using Theorem 4, we reach the required conclusion.

P � S

The fact that the normal form reduction preserves semantics is guaranteed by Theorem 3.
As an example, we verify an implementation Imp of our alarm controller as a car alarm system. When enabled,

it waits for the elapse of T1 time units before the alarm can be disturbed . It also assures that after detecting a
disturbance, it waits for at least T2 time units before the alarm is triggered.

Imp �̂ µ X • enable → Wait T1; disturbed → Wait T2; alarm → disable → X

We can obtain an untimed version of our implementation by applying the � function.

�(Imp) � µ X • enable → setup.1!T1 → out.1.T1 → disturbed → setup.1!T2 → out.1.T2alarm → disable → X

The timers defined for the above program are the same used for the normalised specification AlarmNF in Sect. 4.1,
that is, Timer1 �̂ Timer(1, T1) and Timer2 �̂ Timer(2, T2). Therefore, we prove that the untimed alarm controller
L(�(Imp)) satisfies its untimed specification AlarmNF . Because both actions do not contain time operators, we
can use the CSP model checker FDR in the verification. It easily proves that the untimed action AlarmNF is
refined by the untimed action L(�(Imp)), in the traces model. Consequently, we can then conclude that the timed
specification of the alarm is refined by the implementation.

5. Conclusions

In this paper, we present a proposal for extending the UTP framework by adding a theory for discrete time,
state-rich reactive systems. The new theory is validated by a detailed comparison with the original CSP and
Circus theories, and by its use to define a semantics for Circus Time. New healthiness conditions are proposed
and related to the original UTP healthiness conditions for reactive programs and CSP processes. We also explore
here the semantic relation between the Circus and the Circus Time theories. Finally, we propose a framework
for the specification and validation of real-time systems using Circus Time as a specification notation; it allows
us to use FDR for analysis of timed programs.

Our proposed time theory has inspired others to define languages using the UTP. Ri Hoyn Sul and He Jifeng
defined semantics for a timed version of the RAISE Specification Language, namely, Timed RSL, using our
theory [SH03]. An interesting contribution of theirs is an interlock composition operator, which is similar to a
parallel composition, but differs in the interaction of the processes with the environment.

Our theory has also inspired the development of new models, like that proposed by Qin Shengchao, Jin Song
Dong, and Wei-Ngan Chin in [QDC03], which is an extension to our theory to add observations of sensor–actu-
ator variables along with the timed traces; the model was used to give semantics to a subset of TCOZ [MD00].
An interesting aspect of that work is the definition of two additional time operators. The first is used to define
a maximum execution time: P • Deadline t imposes a time constraint on the process P, which requires it to
terminate within time t. The second operator P • Waituntil t behaves as follows: if the process P terminates
within t time units, then the program waits until t time units have passed before finishing; otherwise, it behaves
as P. In [DHQ+04], a set of transformation rules are presented to convert a TCOZ specification into a Timed
Automata; then UPPAAL [LPY97] is used to verify time properties.

The work presented in [BSW07] describes slotted Circus: a family of UTP theories based on that presented
here. It provides different ways of organising the events in each of the elements (time slots) of the timed trace.
In our theory, they are organised in sequences, but the family in [BSW07] also allows the use of multisets, for
example. This supports the modelling of synchronous languages like Handel-C, in which data and communica-
tion operations are in synchrony with a global clock edge marking the end of a computation cycle. The generality
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of the family of theories provides further unification and, therefore, paves the way to a reasoning technique that
uses the simple untimed model, or different time models, when needed.

For an early effort to encode timed into untimed models, we can refer back to work on converting timed into
untimed automata [AD94, ON96]. Based on these results, the approach reported in [CH04] starts with a specifi-
cation in DC and generates a model in a variation of the DC notation in which formulas correspond to regular
expressions over a state of special symbols. These formulas can be easily translated into an untimed automata or,
alternatively, into Promela models for analysis using SPIN. This work, however, does not address soundness of
the translations, and the change of DC notation does lead to loss of time information.

The idea of timed specification decomposition into untimed specification and timers was introduced by Meyer
in [Mey01]. In that work, a strategy to decompose a Timed CSP specification into an untimed CSP specification
and a collection of timers is presented. The focus of Meyer’s work is on its application within the RT-Tester test
system, with the objective of generating test cases, test execution and test evaluation. The timer used by Meyer does
not consider timeouts or termination. Here, we have extended the structural decomposition approach proposed
by Meyer and applied it to refinement checking.

Ouaknine [Oua01] developed an algorithm for transforming a dense time model of Timed CSP into a discrete
time model that is based on a tock event and the CSP untimed semantic models. The event tock represents the
passage of time and has a special semantics captured by a new external choice operator. Standard methods for
model checking have been applied with the aid of FDR. The use of the tock event was also introduced by Schneider
[Sch00], and has a drawback in terms of the size of the models. For example, a command Wait 3 is represented
as tock → tock → tock → Skip. On other hand, in our approach we give a direct semantic representation
for the timed program, and then present a normal form where time operators are interpreted by timer events;
this means that we only mark the beginning and end of the wait period with timer events without considering the
passage of time in between. In this way, we reduce the number of possible states in the verification and make
the use of a tool such as FDR much more efficient. Experimental results, however, are not available, and will
be the subject of future work.

In a previous work [SSC01], we presented Timed CSP-Z, a language that integrates Timed CSP and Z using
the same approach used by CSP-Z [Fis00]. The language was used in the specification of an industrial case study,
and rules were provided to convert a Timed CSP-Z specification into a special type of Timed Petri Net known as
TBNets [GMMP89], with CABERNET [GP92] used to automate validation [SSC03]. In the approach that we
have presented here, we avoid the need for any translation between different formalisms; rather, we have defined
Galois connections between the timed and untimed models.

A reasoning framework similar to ours is proposed in [RU05] for µCRL, a process algebra that is based on
ACP and includes facilities for equational specification of data. In that work, a timed specification is transformed
to a normal form using a technique called linearisation, and then a time-free abstraction is used for reasoning
using techniques for untimed µCRL. For example, strong bisimilarity between time-free abstractions establishes
bisimilarity for the corresponding timed specifications.

In a future line of work, we will explore other time operators. The timed interrupt operator, in particular, can
be defined in terms of Wait t and the standard interrupt operator. A UTP semantics for interrupt is presented in
[MW09]. An interesting approach to modelling deadlines using miracles is discussed in [Woo09].

Another interesting piece of future work is related to continuous-time models. A major challenge is the health-
iness conditions concerning finite variability. These are properties of a (possibly infinite) number of observations
of the process: there can only be finitely many events in a finite period of time, and refusal sets record intervals
over which sets of events are refused. Just like prefix closure is a challenging healthiness condition for the UTP
model of CSP, because it is a property of the set of traces of a process, and not of a pair of observations of
its behaviour, we expect that healthiness conditions related to finite variability will be challenging as well. How
much we can achieve without considering such healthiness conditions, or how we can overcome the difficulty in
expressing them, is an open question at this stage.

In Circus much work has been done on the elaboration of refinement laws [CSW03, Oli06]. Our work is a
solid foundation to extend the catalogue of Circus refinement laws to include both time and untimed programs.
It is interesting to observe that most algebraic properties of untimed programs are preserved in the timed model.
Before tackling this point, we will apply our validation framework to a number of elaborate case studies with
different types of real-time properties.
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A. More semantic definitions
Stop �̂ CSP1t(R3t(ok′ ∧ wait′ ∧ trace′ � 〈〉))

Chaos �̂ Rt(true)
x :� e �̂ CSP1(Rt(ok � ok′ ∧ wait � wait′ ∧ tr′

t � trt ∧ state′ � state ⊕ {x �→ val(e, state)}))
c!e → Skip � c.e → Skip
c?x → Skip � ∃ e • c.e → Skip[stateo/state] ∧ state′ � stateo ⊕ {x �→ e}

b&A �̂ A � b � Stop

B. Laws of timed actions

Here we present a small subset of the Circus Time laws that are used in the proofs presented in this paper.

Law 20

(a → A) |[ sA | cs | sB ]| ((Wait d ; (a → A′)) � (b → B))
�
Wait d ; (a → (A |[ sA | cs | sB ]| A′))

provided a ∈ cs and b ∈ cs.

Law 21 ((a → A) |[ sA | cs | sB ]| (a → A′) � (b → B)) � (a → (A |[ sA | cs | sB ]| A′))
provided a ∈ cs and b ∈ cs.

Law 22 ((a → A) ||[sA | sB]|| (b → B)) � ((a → (A ||[sA | sB]|| (b → B))) � (b → ((a → A) ||[sA | sB]|| B)))

Law 23 ((a → A) ||[sA | cs | sB]|| B) � a → (A ||[sA | cs | sB]|| B)
provided a �∈ cs and initials(B) ⊆ cs.

Law 24 ((a → A) |[ sA | cs | sBC ]| ((a → B) ||[sB | sC ]|| C) � (a → (A |[ sA | cs | sBC ]| (B ||[sB | sC ]|| C)))
provided {a} ∪ initial(C) ⊆ cs and a �∈ initials(C).

Law 25 (c → A) \ cs � A \ cs
provided c ∈ cs.

Law 26 (c → A) \ cs � c → (A \ cs)
provided c �∈ cs.

Law 27 Wait n \ cs � Wait n

Law 28 A \ cs � A
provided cs ∩ usedC(A) � ∅.

Law 29 (A \ cs1) \ cs2 � A \ (cs1 ∪ cs2)

Law 30 (A; B) \ cs � (A \ cs); (B \ cs)

Law 31 ((a → A) � (b → B)) \ cs � (a → (A \ cs)) � (b → (B \ cs))
provided a �∈ cs and b �∈ cs.

Law 32 (A |[ sA | pcs | sB ]| B) \ cs � (A \ cs |[ sA | pcs | sB ]| B \ cs)
provided pcs ∩ cs � ∅.

Law 33 ((a → A) � (Wait d ; b → c → B)) \ {b, c} � ((a → A) � (Wait d ; c → B)) \ {b, c}
Law 34 ((a → A) � (Wait d ; b → B)) \ cs � ((a → (A \ cs)) � (Wait d ; b → (B \ cs)))
provided a �∈ cs and b �∈ cs.
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