
A Process Calculus Analysis of Compensations

Luı́s Caires Carla Ferreira Hugo Vieira

CITI / Departamento de Informática, FCT Universidade Nova de Lisboa, Portugal

Abstract. Conversations in service-oriented computation are frequently long run-
ning. In such a setting, traditional ACID properties of transactions cannot be
reasonably implemented, and compensation mechanisms seem to provide con-
venient techniques to, at least, approximate them. In this paper, we investigate
the representation and analysis of structured compensating transactions within a
process calculus model, by embedding in the Conversation Calculus certain struc-
tured compensation programming abstractions inspired by the ones proposed by
Butler, Ferreira, and Hoare. We prove the correctness of the embedding after
developing a general notion of stateful model for structured compensations and
related results, and showing that the embedding induces such a model.

1 Introduction

Conversations in service-oriented computing scenarios are frequently long running. In
such a setting, traditional ACID properties of transactions cannot be reasonably imple-
mented, and compensation mechanisms seem to provide convenient techniques to, at
least, approximate them. Although well known in the context of transaction processing
systems for quite a long time (see e.g., [9]), the use of compensation as a mechanism
to undo the effect of long running transactions, and thus recover some properties of
confined ACID transactions, is now usually assumed to be the recovery mechanism of
choice for aborted transactions in distributed services.

In this paper, we investigate the representation and analysis of structured compen-
sating transactions in the Conversation Calculus [17, 16], a session based nominal pro-
cess calculus for service-oriented computing. In particular, we show how the basic ab-
stractions present in the CC are enough to express general structured compensating
transactions, and illustrate how a process calculus model may be used to reason about
the correctness of such programming abstractions. In order to carry out our study in
an abstract, implementation independent setting, we introduce and analyze a general
model of stateful compensating transactions. We take as starting point the core lan-
guage for structured compensations introduced in [7], the compensating CSP calculus
(cCSP), but reinterpret the basic constructions in a way more suitable for reasoning
about stateful computation models, where programs (e.g, tasks, activities, elements of
transactions) may have visible side effects on global resources. In our model, the most
elementary program is an atomic action. An atomic action enjoys the following atom-
icity property: it either executes successfully to completion, or it aborts. In the case of
abortion, a basic action is required not to perform any relevant observable behavior, ex-
cept signaling abortion by throwing an exception. Structured compensable transactions
are defined from basic compensable transactions.

The basic compensable transaction is a pair P ÷ Q where P and Q are atomic ac-
tions. The action Q is intended to undo the effect of the P action, leading to a state
that should be in some precise sense “similar” to the state right before P was executed;
in general such state cannot be recovered precisely. Complex structured compensable
transactions may then be defined by composition under various control operators: se-
quential composition T ;R, parallel composition T | R, choice T ⊕ R (or conditional
if c then T else R), and exception handling T B R. This last operator is not present
in [7] and turns out useful to deal with failure detection inside compensating transac-
tions. An arbitrary structured compensable transaction T may then be encapsulated as
a basic action, by means of the operator 〈T 〉, enjoying the fundamental properties of a
basic action described above, in particular, the atomicity property.

The first part of the paper develops a general notion of stateful model for structured
compensations, providing a precise foundation for the forthcoming semantic analysis.
Our notion of compensating model (Definition 3.1) is fairly abstract, parametric on the
intended notion of “similarity” between states, and independent of the concrete under-
lying operational model in which compensating transactions would be embedded. How-
ever, it already allows us to state precise conditions on basic actions enough to derive
general reversibility, cancellation and atomicity results (Theorems 3.6, 3.7 and 3.9), that
may then be reused in each particular application, as would be needed to reason about
compensating transactions in some process calculus model.

In the second part of the paper, we present and prove correct (Theorem 4.5) an em-
bedding of our language for compensating transactions in the Conversation Calculus.
The encoding builds on the Conversation Calculus exception handling primitives, but
highlights the essential difference between exceptions and compensations: obviously
these are quite different and even independent concepts. Exceptions are a mechanism to
signal abnormal conditions during program execution, while compensations are com-
mands intended to undo the effects of previously successfully completed tasks during
a transaction. The synergy between exceptions and compensations is also usefully ex-
ploited in the compensable exception handler construct T BR available in compensable
programs. We will also illustrate how our encoding may be used to specify and reason
about specifications of service-oriented systems using compensating transactions, in-
cluding distributed ones, in the Compensation Calculus and related models. To the best
of our knowledge, this work is the first addressing the semantic analysis of structured
compensating transactions, within a concurrent process calculus framework.

In Section 2 we review the syntax and semantics of the Conversation Calculus. In
Section 3, the general framework of compensating model is defined and analyzed. In
Section 4, we present, prove, and exemplify our embedding of compensating transac-
tions in the Conversation Calculus.

2 The Conversation Calculus

The Conversation Calculus (CC) [17, 16] is a process model for service-oriented com-
puting that builds on the concepts of process delegation, loose-coupling of subsystems,
and, crucially, conversation contexts. A conversation context is a medium where sev-
eral partners may interact by exchanging messages, possibly concurrently. It can be

a, b, c, . . . ∈ Λ (Names) d ::= � | � (Directions)
x, y, z, . . . ∈ V (Variables) α ::= ld!(n) (Output)
n, m, o . . . ∈ Λ ∪ V | ld?(x) (Input)
l, s . . . ∈ L (Labels)
X ,Y, . . . ∈ χ (Process Vars)

P, Q ::= 0 (Inaction) | n J [P] (Conversation Access)
| P | Q (Parallel Composition) | Σi∈I αi.Pi (Prefix Guarded Choice)
| (νa)P (Name Restriction) | try P catch Q (Exception Block)
| recX .P (Recursion) | throw.P (Exception Throw)
| X (Variable)

Fig. 1. The Conversation Calculus.

distributed in many pieces, and processes in any piece may seamlessly talk to processes
in the same or any other piece of the same conversation context. Conversation context
identities can be passed around, allowing participants to dynamically join and leave
conversations, while being able to coordinate the interactions from a local viewpoint.
Mechanisms for handling exceptional behavior seem to be essential in distributed com-
putation in general, and in service-oriented computing in particular. Thus, the CC also
includes basic exception handling primitives. In this section, we present the syntax of
the Conversation Calculus (CC), and recall its operational semantics.

The CC extends the π-calculus [14] static fragment with the conversation construct
n J [P], and replaces channel based communication with context-sensitive message
based communication. We use here a monadic version, and omit the context-awareness
primitive of [17], which is irrelevant for the purpose of this paper. The syntax of the
calculus is defined in Figure 1. We assume given an infinite set of names Λ, an infinite
set of variables V , an infinite set of labels L, and an infinite set of process variables
χ. The static fragment is defined by the inaction 0, parallel composition P | Q, name
restriction (νa)P and recursion recX .P . The conversation access construct n J [P],
allows a process to initiate interactions, as specified by P , in the conversation n.

Communication is expressed by the guarded choice construct Σi∈I αi.Pi, meaning
that the process may select some initial action αi and then progress as Pi. Communi-
cation actions are of two forms: ld!(n) for sending messages and ld?(x) for receiving
messages. Thus, message communication is defined by the label l and the direction d.
There are two message directions: � (read “here”) meaning that the interaction should
take place in the current conversation or � (read “up”) meaning that the interaction
should take place in the enclosing (caller) conversation. N.B.: to lighten notation we
omit the � in the �-directed messages without any ambiguity. Notice that message la-
bels (from l ∈ L) are not names but free identifiers (cf. record labels or XML tags), and
therefore not subject to fresh generation, restriction or binding.

The CC includes two exception related primitives; we adapt the classical try −
catch− and throw− to a concurrent setting. The primitive to signal exceptional be-
havior is throw.Excp. This construct is used to throw an exception with continuation

ld!(a).P
ld!(a)−→ P (out) ld?(x).P

ld?(a)−→ P{x/a} (inp)
P{X/recX .P} λ−→ Q

recX .P
λ−→ Q

(rec)

αj .Pj
λ−→ Q j ∈ I

Σi∈I αi.Pi
λ−→ Q

(sum)
P

(νa)λ−→ P ′ Q
λ−→ Q′

P | Q
τ−→ (νa)(P ′ | Q′)

(clo)
P

λ−→ P ′ Q
λ−→ Q′

P | Q
τ−→ P ′ | Q′

(com)

P
λ−→ Q a = out(λ)

(νa)P
(νa)λ−→ Q

(opn)
P

λ−→ Q a 6∈ fn(λ)

(νa)P
λ−→ (νa)Q

(res)
P

λ−→ Q

P | R
λ−→ Q | R

(par)

Fig. 2. Basic operators (π-calculus).

P
λ�
−→ Q

c J [P]
λ�
−→ c J [Q]

(her)
P

λ�
−→ Q

c J [P]
c·λ�
−→ c J [Q]

(loc)

P
a λ�
−→ Q

c J [P]
a λ�
−→ c J [Q]

(thr)
P

τ−→ Q

c J [P]
τ−→ c J [Q]

(tau)

Fig. 3. Conversation operators.

throw.P
throw−→ P (i)

P
throw−→ R

P | Q
throw−→ R

(ii)
P

throw−→ R

n J [P]
throw−→ R

(iii)

P
λ−→ Q λ 6= throw

try P catch R
λ−→ try Q catch R

(iv)
P

throw−→ R

try P catch Q
τ−→ Q | R

(v)

Fig. 4. Exception handling operators.

Excp. It has the effect of forcing the termination of all other processes running in all
enclosing contexts, up to the point where a try − catch block is found (if any). The
continuation Excp will be activated when (and if) the exception is caught by such an
exception handler. The exception handler construct try P catch Handler actively
allows a process P to run until some exception is thrown inside P . At that moment, P
is terminated, and the Handler process guarded by try−catch, will be activated con-
currently with the continuation Excp of the throw.Excp that originated the exception,
in the context of the given try− catch− block.

Only conversation names (in Λ) may be subject to binding, and freshly gener-
ated via (νa)P . The distinguished occurrences of a, x and X are binding occurrences
in (νa)P , ld?(x).P , and recX .P , respectively. The sets of free (fn(P)) and bound
(bn(P)) names, free variables (fv(P)), and free process variables (fpv(P)) in a process
P are defined as usual. We implicitly identify α-equivalent processes.

The operational semantics of the CC is defined by a labeled transition system. For
clarity, we split the presentation in three sets of rules, one (in Figure 2) containing the

rules for the basic operators, which are similar to the corresponding ones in the π-
calculus (see [15]), other (in Figure 3) grouping the rules specific to the conversations,
and a final one (in Figure 4) grouping the rules specific to exceptions. A transition
P

λ−→ Q states that process P may evolve to process Q by performing the action
represented by the transition label λ. Transition labels (λ) and actions (σ) are given by

σ ::= τ | ld!(a) | ld?(a) | throw λ ::= c σ | σ | (νa)λ

An action τ denotes an internal communication, and actions ld!(a) and ld?(a) represent
communications with the environment; these correspond to the basic actions a process
may perform in the context of a given conversation. To capture the observational se-
mantics of processes, transition labels need to register not only the action but also the
conversation where the action takes place. So, a transition label λ containing c σ is
said to be located at conversation c (or just located), otherwise is said to be unlocated.
In (νa)λ the distinguished occurrence of a is bound with scope λ (cf., the π-calculus
bound output actions). For a communication label λ we denote by λ the dual match-
ing label obtaining by swapping inputs with outputs, such that ld!(a) = ld?(a) and
ld?(a) = ld!(a). We use fn(λ) and bn(λ) to denote (respectively) the free and bound
names of a transition label.

Transition rules presented in Figure 2 closely follow the ones for the π-calculus and
should be fairly clear to a reader familiar with mobile process calculi. For example, rule
(opn) corresponds to the bound output or extrusion rule, in which a bound name a is ex-
truded to the environment in an output message λ: we define out(λ) = a if λ = ld!(a)
or λ = c ld!(a) and c 6= a. We discuss the intuitions behind the rules for conversation
contexts (Figure 3). In rule (her) an � directed message (to the caller conversation)
becomes � (in the current conversation), after passing through the conversation access
boundary. We note by λd a transition label λd containing the direction d (�, �), and
by λd′

the label obtained by replacing d by d ′ in λd (e.g., if λ� is askPrice�?(a)
then λ� is askPrice�?(a)). In rule (loc) an unlocated � message (in the current con-
versation) gets explicitly located at the conversation c in which it originates. Given an
unlocated label λ, we represent by c · λ the label obtained by locating λ at c (e.g., if
λ� is askPrice�?(p) then c · λ� is c askPrice�?(p)). In rule (thr) an already located
communication label transparently crosses some other conversation boundary, and like-
wise for a τ label in (tau). The rules for exceptions (in Figure 4) should be easily
understood, given the explanation already provided above.

The operational semantics of the CC is given by a relation of reduction, noted
P → Q, and defined as P

τ−→ Q. The behavioral semantics is defined by a standard
notion of bisimilarity, defined in terms of our labeled transition system.

Definition 2.1 (Strong Bisimulation). A (strong) bisimulation is a symmetric binary
relationR on processes such that, for all processes P and Q, if PRQ then:

If P
λ−→ P ′ and bn(λ) ∩ fn(Q) = ∅ then there is Q′ such that

Q
λ−→ Q′ and P ′RQ′.

We denote by ∼ (strong bisimilarity) the largest bisimulation.

Theorem 2.2. Strong bisimilarity is a congruence.

For input, we consider the universal instantiation congruence principle: if P{x/a} ∼
Q{x/a} for all a then ld?(x).P ∼ ld?(x).Q (cf., [15] Theorem 2.2.8(2)). Using con-
versation contexts and the basic message based communication mechanisms, useful
programming abstractions for service-oriented systems may be idiomatically defined
in the CC, namely service definition and instantiation constructs (defined as primitives
in [17]).

def s⇒ P , s?(x).x J [P]

new n · s⇐ Q , (νc)(n J [s!(c)] | c J [Q])
?def s⇒ P , recX .s?(x).(X | x J [P])

The def form publishes a service definition, while the new form instantiates a service
definition. Interaction between new and def results in the creation of a fresh conversa-
tion context where a session between client and server may take place.

We present a simple example of a CC specification of a service oriented system.
Consider a service provider Artic providing a persistent service getTemp. Whenever
invoked such service reads the current value of a sensor at the service provider site, and
sends it to the caller endpoint.

ASite , Artic J [Sensor | ? def getTemp ⇒ (readSens�?(x).value!(x))]

Sensor is a process running in context Artic J [· · ·] that may output ReadSens(t)
messages therein. To use the service in “one shot”, a client may use the code

Client , new Artic · getTemp ⇐ (value?(x).temp�!(x))

The net effect of this code is to drop a temp(t) message in the client conversation con-
text, where t is the temperature value as read at the remote Artic site. The conversation
in this example is just the exchange of a value(t) message. More examples of CC mod-
els of service oriented scenarios may be found in [16]. We will show in the rest of
the paper how the basic abstractions present in the CC are enough to express general
structured compensating transactions, and illustrate how a process calculus model may
be used to reason about the correctness of such programming abstractions. In order to
carry out such a study in a abstract, implementation independent setting, we introduce
and analyze in the next section a general model of stateful compensating transactions.

3 A Stateful Model of Compensating Transactions

In this section we construct a model of compensating transactions that provides a frame-
work to reason about compensations.

Definition 3.1 (Compensation Model). A compensation model is a pair (S,D) where
S gives its static structure and D gives its dynamic structure. The static structure S =
(S, | ,#, ./) is defined such that:

– S is a set of (abstract) states
– | is a partial composition operation on states
– # is an apartness relation on states

Atomic actions:
A, B ::= a (Primitive action)

| 〈R〉 (Transaction)

Basic programs: Compensable programs:
P, Q ::= A (Action) R, T ::= A÷B (Compensation pair)

| P ; Q (Sequential composition) | R ; T
| P ⊕Q (Choice) | R⊕ T
| P | Q (Parallel composition) | R | T
| P B Q (Exception handler) | R B T
| skip (Normal termination) | skipp
| throw (Throw an interrupt) | throww

Fig. 5. Syntax of Compensating CSP.

– ./ is an equivalence relation on S

The relation s#s′ is symmetric. We have that s | s′ is defined if and only if s#s′. The
composition operation | is symmetric, associative, and commutative.

The dynamic structure D = (Σ,
a→) is defined such that:

– Σ is a set of primitive actions
– a→ is a labeled (by elements of Σ) transition system between states.

Independent transitions are assumed to preserve apartness, as expressed by the follow-
ing locality principle: if s#s′, s

a→ t, and s′
b→ t′ then t#t′.

Intuitively, we can view a state as a collection of state entities. In this context, given
states s and s′, the apartness relation asserts that the state entities of s and s′ do not
interfere. If two states s and s′ are independent (s#s′), they may be composed into a
new state t = s | s′. Actions denote imperative transformations on states, in the usual
sense. The equivalence relation ./ expresses what states are to be considered “equiv-
alent” from the view point of the model. Remember that undoing an action may roll
the system back to a state that may not be strictly semantically equivalent to the initial
one in terms of the underlying operational semantics, but “equivalent enough” for the
purpose of compensation.

3.1 Compensating CSP

Our cCSP syntax (in Figure 5) includes two types of atomic actions: primitive actions
and transactions. Both types of actions can be seen as atomic in the sense that they
either occur as a whole, or they do not occur at all. While primitive actions are atomic
by definition, for transactions it is necessary to prove that their behavior approximates
atomicity (see Theorem 3.9).

In basic programs atomic activities can be composed by sequential, parallel, and
internal choice operators. The language includes two primitive programs: throw which

Bookstore = 〈chooseBooks ; Pay ; ProcessOrder〉
ChooseBooks = checkout÷ skip ⊕ (ChooseBook ; ChooseBooks)
ChooseBook = (addBook÷ removeBook ; (priceOk÷ skip ⊕ throww)) B skipp

Pay = processCard÷ refund B (sendNotice÷ skip ; throww)

Fig. 6. Bookstore example.

raises an exception causing the program to stop and fail; and skip that describes an
inactive program. The exception handler may be used to catch abortion: in P B Q, an
abortion of P triggers execution of the handler Q. Transaction 〈R〉 converts a compens-
able program into a basic one with atomic behavior.

When dealing with compensable programs a transaction processing system must
ensure that on failure of a transaction, all the necessary atomic compensations are per-
formed in an appropriate order to compensate for the effect of everything that has
actually happened so far. To achieve reversibility, compensable programs have com-
pensation pairs as their building unit. A compensation pair is constructed from two
atomic activities. In the pair A ÷ B, if forward behavior A successfully terminates,
then compensation behavior B is stored, to be possibly used in a later compensation.
If A fails, the compensation is just discarded. Notice that the model assumes that com-
pensations never fail, as it is intended for reasoning about consistent programs (see
Definition 3.5). Sequential composition of compensable processes must ensure that the
compensations for all actions performed will be accumulated in the reverse order to
their original performance. Parallel composition of compensable processes ensures that
compensations for performed actions will be accumulated in parallel. Internal choice
is similar to the basic case. Programs skip and throw are mapped to compensable pro-
grams by assigning program skip as their compensation, so that skipp , skip ÷ skip
and throww , throw ÷ skip. Notice that it is irrelevant which compensation is paired
with throw , as only a successful terminated program may run its compensation (throw
always fails). Compensable exception handler behaves similarly to the correspondent
standard operator: an abortion raised by R will trigger the execution of handler T .

Figure 6 presents a transaction for ordering books. The transaction starts with pro-
gram chooseBooks that allows the user to repeatedly select individual books until
checkout occurs. In ChooseBook we have a compensation pair. On the occurrence
of forward action addBook, that adds the book to the client’s basket, compensation
removeBook is stored. Next, if the price of the book is deemed too expensive, an ex-
ception is thrown triggering the execution of compensation removeBook. Compensa-
tion reverses the forward action by removing the book that has just been added to the
basket. This exception is then caught by a handler to avoid its propagation, allowing the
user to continue selecting books. The second program in the transaction is exception
handler Pay . It starts with a compensation pair with forward action processCard and
compensation refund. On abort of action processCard the fault is catch by a handler. The
aim of this handler is to notify the client whenever there are problems processing the
payment with the credit card. Having done that, the handler re-throws the exception,
causing the compensation stored until that point to be executed, removing all books

Rules (xi), (xii), (f), (g), and (h) assume that s = r | t, r#t, and s′ = r′ | t′.

(skip)s
s X (i) (throw)s

s ∗ (ii)
s

a−→ s′

(a)s
s′ X

(iii)
@s′ s

a−→ s′

(a)s
s ∗

(iv)

(P)s
s′ X (Q)s′

s′′ X
(P ; Q)s

s′′ X
(v)

(P)s
s′ ∗

(P ; Q)s
s′ ∗

(vi)
(P)s

s′ X (Q)s′

s′′ ∗
(P ; Q)s

s′′ ∗
(vii)

(P)s
s′ d

(P ⊕Q)s
s′ d

(viii)
(Q)s

s′ d

(P ⊕Q)s
s′ d

(ix)
(R)s

s′
d← P

(〈R〉)s
s′ d

(x)

(P)r
r′ X (Q)t

t′ X
(P | Q)s

s′ X
(xi)

(P)r
r′ dp (Q)t

t′ dq dp = ∗ ∨ dq = ∗
(P | Q)s

s′ ∗
(xii)

(P)s
s′ X

(P B Q)s
s′ X

(xiii)
(P)s

s′ ∗ (Q)s′

s′′ X
(P B Q)s

s′′ X
(xiv)

(P)s
s′ ∗ (Q)s′

s′′ ∗
(P B Q)s

s′′ ∗
(xv)

Fig. 7. Rules for basic programs.

from the basket. Although we omit the description of the last program, ProcessOrder ,
the cCSP semantics ensures that this program is executed only when the payment suc-
ceeds. Furthermore, a failure on ProcessOrder would reverse all actions done until
then, i.e., return all books in the basket and refund the clients payment.

Having defined its syntax and informal semantics, we now show how cCSP can be
interpreted in a compensation model.

Definition 3.2 (cCSP semantics). Given a compensation modelM, a cCSP interpre-
tation inM is a pair (B,C) of relations B ⊆ S×P×S×T and C ⊆ S×R×S×T×P
that specify the effects and the final status of programs. The final state is represented by
an element of T = {∗,X} , where X means success and ∗ abortion. The last component
of relation C specifies the stored compensation of a compensable process.

We write (P)s
s′ d for (s, P, s′, d) ∈ B and (R)s

s′
d← P for (s,R, s′, d, P) ∈ C. B

and C are required to minimally satisfy the properties shown in Figs. 7 and 8.

We briefly review some of the rules of Figure 7 for basic programs: rules (iii) and
(iv) state, respectively, that primitive action a either terminates successfully if it causes
the state to evolve, or fails if it cannot evolve from state s; rules (viii) and (ix) show
that basic program P ⊕Q replicates the outcome of either program P or program Q.

For defining the properties for compensable programs it is necessary to introduce
the notion of forward programs. The definition of forward programs is trivial, with the
exception of (R B T)+. For this program it is necessary to propagate the outcome of R
and clear all stored compensations.

Definition 3.3 (Forward program). For a compensable program R we define the for-
ward program R+ (or positive program) inductively follows:

(A÷B)+ ,A skipp+ , skip throww+ , throw (R ; T)+ ,R+ ; T+

(R⊕ T)+ ,R+ ⊕ T+ (R | T)+ ,R+ | T+ (R B T)+ , 〈R〉B T+

(A)s
s′ X

(A÷ B)s
s′

X← B
(a)

(A)s
s ∗

(A÷ B)s
s

∗← skip
(b)

(R)s
s′

X← P (T)s′

s′′
X← Q

(R ; T)s
s′′

X← Q ; P
(c)

(R)s
s′

∗← skip

(R ; T)s
s′

∗← skip
(d)

(R)s
s′

X← P (T)s′

s′′
∗← skip (P)s′′

r X

(R ; T)s
r

∗← skip
(e)

(R)r
r′

X← P (T)t
t′

X← Q

(R | T)s
s′

X← P | Q
(f)

(R)r
r′′

X← P (T)t
t′

∗← skip (P)r′′

r′ X

(R | T)s
s′

∗← skip
(g)

(R)r
r′

∗← skip (T)t
t′′

X← Q (Q)t′′

t′ X

(R | T)s
s′

∗← skip
(h)

(R)s
s′

d← P

(R ⊕ T)s
s′

d← P
(i)

(T)s
s′

d← Q

(R ⊕ T)s
s′

d← Q
(j)

(R)s
s′

X← P

(R B T)s
s′

X← P
(l)

(R)s
s′

∗← skip (T)s′

s′′
X← Q

(R B T)s
s′′

X← Q
(m)

(R)s
s′

∗← skip (T)s′

s′′
∗← skip

(R B T)s
s′′

∗← skip
(n)

Fig. 8. Rules for compensable programs.

Figure 8 shows the properties compensable programs must satisfy. Next, we explain
the rules for compensable exception handler. The remaining rules for compensable pro-
grams are analogous. Rule (n) states that when R and T abort in sequence, first R and
then T , the overall program also aborts and consequently no compensation is stored.
Rule (l) shows that whenever R succeeds with stored compensation P , both the final
status and compensation program are raised to process RBT . Finally, in rule (m) han-
dler T starts executing after program R has aborted. T terminates with success with Q
as its compensation. Again, as in (l), these results are lifted to R B T .

The syntactic definition of a compensation pair A ÷ B does not a priori impose
any relation between forward action A and compensation action B. However, if trans-
actions are expected to have an all or nothing semantics, compensation B should be
programmed to cancel (or revert) the effects of action A, leaving the system in a state
./-equivalent to the initial one.

Definition 3.4 (Reverts). Given atomic actions A and B, we say that B reverts A w.r.t.
./ if for all s, t, t′ such that (A)s

t X, if t′ ./ t then (B)t′

s′ X and s ./ s′.

The above definition describes the property a compensation should satisfy: given a com-
pensation pair A÷B, action B should revert A. We expect that compensable programs
and transactions are constructed in a way consistent to the underlying compensation
model in order to be meaningful.

Definition 3.5 (Consistency). A compensable program R is ./-consistent when for ev-
ery compensation pair A÷B occurring in R, B reverts A w.r.t. ./.

Theorem 3.6 below states that consistent compensable programs are globally reversible.
In this context, a programmer just has to ensure reversibility of individual compensa-
tion pairs, according to the intended compensation model, to achieve reversibility of
arbitrary structured transactions.

Theorem 3.6 (Reversibility). Let R be a ./-consistent compensable program such that
(R)s

s′
X← P for some P and s, s′ ∈ S. Then (P)s′

s′′ X and s′′ ./ s.

Proof. Induction in the structure of the program R.

3.2 Cancellation Semantics

In this section we show that, based on the general notions of compensation model and
definition of ./-consistency, atomicity of transactions (in a sense to be made precise
below) can be effectively achieved. For that very reason, transactions may be used as
atomic actions in compensable processes, either as forward or backward actions within
compensation pairs. For example, a compensation pair may have a primitive action as
its forward activity, while its backward action is a complex transaction. Conversely, a
complex transaction might be compensated by a primitive action.

The notion of cancellation for atomic activities can then be extended to compensable
programs. Theorem 3.7 asserts that whenever abortion is induced within a ./-consistent
compensable program, all its effects will be reverted. More specifically, the program
will terminate in a state equivalent to the initial state.

Theorem 3.7 (Cancellation). Let compensable program R be an ./-consistent pro-
gram such that (R)s

s′
∗← skip for some s, s′ ∈ S. Then s′ ./ s.

Proof. Induction in the structure of the program R.

For our next results it is useful to introduce a notion of program behavioral preorder;
P v Q means that program P is simulated by Q w.r.t. the intended compensation
model. We restrictv to basic programs because our results refer only to transactions (if
needed, v could be easily extended to compensable programs).

Definition 3.8 (Program equivalence). Program preorder v is the relation on basic
programs defined by P v Q if and only if for all s, s′ such that s ./ s′, if (P)s

t d then
(Q)s′

t′ d and t ./ t′.

Our main theorem states that the behavior of transactions approximates atomicity: a
transaction either throws doing “nothing”, because its forward actions have been re-
verted, or terminates successfully after executing all of its forward actions.

Theorem 3.9 (Atomicity). Let R be a ./-consistent compensable program.
Then 〈R〉 v R+ ⊕ throw .

4 Compensating Transactions in the Conversation Calculus

In this section we present a provably correct embedding of the cCSP language for struc-
tured compensating transactions in the Conversation Calculus. We consider a basic ac-
tion to be implemented by a CC process P conforming to the following behavior: after
some interactions with the environment it either sends (only once) the message ok�! in
the current conversation context without any further action, or aborts, by throwing an

JP ÷QKok,ab,cm,cb , [try JP Kok catch ab�! |
ok?.ok�!.(cm�?.JQKcb | cb?.cb�!)]

JT1; T2Kok,ab,cm,cb , [JT1Kok1,ab1,cm1,cb |
ab1?.ab

�! |
ok1?.JT2Kok,ab,cm,cm1 |
ab?.cm1!.cb?.ab�!
ok?.ok�!.cm�?.cm!.cb?.cb�!]

JT1 ⊕ T2Kok,ab,cm,cb , [t! + f ! | t?.JT1Kok,ab,cm,cb |
f ?.JT2Kok,ab,cm,cb | ab?.ab�! |
ok?.ok�!.cm�?.cm!.cb?.cb�!]

JT1 | T2Kok,ab,cm,cb , [JT1Kok1,ab,cm1,cb1 | JT2Kok2,ab,cm2,cb2 |
ok1?.ok2?.ok

�!.
cm�?.(cm1! | cm2! |

cb1?.cb2?.cb
�!) |

ab?.(ok1?.cm1!.cb1?.ab
�! |

ok2?.cm2!.cb1?.ab
�! |

ab?.ab�!)]

JT1 B T2Kok,ab,cm,cb , [JT1Kok1,ab1,cm1,cb1

ok1?.ok
�!.

cm�?.(cm1! | cb1?.cb
�!) |

ab1?.(JT2Kok2,ab2,cm2,cb2 |
ok2?.ok

�!.
cm�?.(cm2! | cb2?.cb

�!) |
ab2?.ab

�!)]

JthrowwKok,ab,cm,cb ,
ˆ
ab�!

˜
JskippKok,ab,cm,cb ,

ˆ
ok�!.cm�?.cb�!

˜
JAKok , Aok

JP ; QKok ,
ˆ

JP Kok1 | ok1?.JQKok | ok?.ok�!
˜

J〈T 〉Kok , [JT Kok,ab,cm,cb | ab?.throw.0 | ok?.ok�!]

JP Kcm,cb ,
ˆ
cm�?.JP Kcb | cb?.cb�!

˜
Fig. 9. Encoding Structured Compensating Transactions in the CC.

exception, without any further action. If the outcome is abortion, the system should be
left in the “same” state (in the sense of an appropriate ./ relation) as it was before the
execution of the basic action was attempted.

Our encoding is defined in Fig. 9. We use the abbreviation [P] , (νn)(n J [P]),
to represent an anonymous (restricted) context (useful to frame local computations). We
denote by JP Kok the encoding of basic actions P (including structured compensating
transactions) into a conversation calculus process JP Kok . The ok index represents the
message label that signals the successful completion of the basic action, while abor-
tion is signaled by throwing an exception. We only present the cases for the sequential
composition P ;Q and for transactions 〈T 〉; the other constructions are handled along
standard lines (cf. Milner’s encoding of concurrent programs [13]), using the termina-
tion signal ok to thread the flow graph. We also assume given some atomic actions A,
implemented by certain CC processes Aok.

The encoding of compensable transaction T is denoted by JT Kok ,ab,cm,cb . The en-
coding of T will either issue a single message ok� to signal successful completion (and
the implicit installation of compensation handlers) or (in exclusive alternative) a sin-
gle message ab� to signal abortion. After successful completion, reception of a single
message cm� (“compensate me”) by the residual will trigger the compensation process.
When compensation terminates, a single message cb� (“compensate back”) will be is-
sued, to possibly trigger compensation of previous successfully terminated activities.

We prove that our encoding is correct, by showing that it induces a compensating
model in the general sense of Definitions 3.1 and 3.2. To that end, we introduce a few
technical notions related to CC processes. A passive process is a process that can only
perform an input labeled transition as a first possible action (no τ or output). We will
consider the (stable) states of our CC compensating model to be passive in this sense,
they should not exhibit any relevant autonomous activity, but may start interacting on
client demand. After a transaction successfully terminates or aborts, the system should
again reach a passive state. This reflects a view where clients engage into transactions
with an external environment populated by waiting servers, and where the resources
manipulated by a transaction are not subject to concurrent interference by other pro-
cesses. For the CC compensating model we adopt a simple notion of apartness based on
non-interference. We first define a relation of barb observation by P ⇓ x l , x ∈ fn(P)

and P
λ∗

⇒x σl−→. Intuitively, P ⇓ x l means that P may interact via a message labeled by l
in the free context name x. Then two processes are apart if they will not get to interact.

Definition 4.1 (CC Apartness). Let P#Q be the largest symmetric relation on CC
processes defined by P#Q , If P ⇓ x l and Q ⇓ y l then x 6= y.

More flexible notions of apartness could be defined, but the one proposed here is enough
to enforce the required locality principle, and already seems useful. We now introduce

Definition 4.2 (CC CM - Static structure). The static structure of a CC compensating
model is given by a tuple S = (S, | ,#, ./) where

– ./ is a congruence on CC processes containing bisimilarity
– S is a ./-closed set of passive CC processes
– | is parallel composition of CC processes
– # is apartness of CC processes

Recall that composition P | Q is defined in S only if P#Q. We consider processes in S
up to structural congruence, defined by the commutative monoid laws for | and scope
extrusion. We now characterize the dynamic structure of CC compensating models.
Instead of defining a fixed set of basic activities, we specify in behavioral terms what
we consider to be an atomic activity in a CC compensating model. We expect basic
programs to be interpreted by atomic activities.

Definition 4.3 (CC Atomic Activity). An atomic activity for a CC compensating model
with structure S = (S, | ,#, ./) is a CC process P such that, for all Q ∈ S,

– For all processes R, if Q | P ⇒ R then there is Q′ such that R ⇒ λ−→ Q′ where
either λ = ok�! or λ = throw.

– If Q | P ⇒ λ−→ R and λ = a� then a = ok�! and R ∈ S.
– If Q | P ⇒throw−→ R then Q ./ R.

Intuitively, an atomic activity exercises capabilities (or services) provided from a state
Q of S. It either successfully terminates, signaling such condition by sending an ok
message in the current conversation context and leaving the system in a state of S, or
fails, throwing an exception and leaving the system in a state of S ./-equivalent to the
initial one. The first condition ensures that either success or failure will happen (we
assume that no divergence or deadlock occur). Moreover, since such atomic activity P
may only throw an exception or drop a message ok in its enclosing conversation context,
it is a consequence of the CC semantics that it may be embedded in any computational
context while preserving the intended atomic conditions, so the restriction to parallel
computational contexts in the Definition 4.3 does not bring any loss of generality.

Definition 4.4 (CC CM - Dynamic structure). The dynamic structure of a CC com-
pensating model is given by a pair D = (Σ,

a−→) where

– Σ is a set of CC atomic activities

– For any A ∈ Σ and P,Q ∈ S define P
A−→ Q , P | A⇒ok�!−→ Q.

Notice that activity skip is represented by the CC process ok�! and throw by the CC
process throw.0. Moreover, P 6 A−→ if and only if P | A⇒throw−→ Q and Q ./ P .

We can now state our main Theorem 4.5, asserting the correctness of our encoding.
It states that the mapping J−Kok yields a sound embedding of arbitrary (./-consistent)
structured compensating transactions in any CC compensating model.

Theorem 4.5 (Correctness). Let S = (S, | ,#, ./) and D = (Σ,
a−→) define a CC

compensating modelM = (S,D). If 〈T 〉 is a ./-consistent CC program over Σ, then
J〈T 〉Kok is a CC atomic activity, that either behaves as T+, or aborts without any ob-
servable behavior modulo ./.

The proof builds on the developments in Section 3, in particular on the fact that our
encoding satisfies the operational principles required by a cCSP interpretation in any
compensating model (Definition 3.2), as formalized by the following technical Lemma.

Lemma 4.6. Let S = (S, | ,#, ./) and D = (Σ,
a−→) define a CC compensating

modelM = (S,D). Let B and C be the relations (−)P
R d and (−)P

R
d← − defined on

CC processes as follows:

– (A)P
R ∗ , P | JAKok ⇒

throw−→ R and R ./ P

– (A)P
R X , P | JAKok ⇒

ok�!−→ R and R ∈ S.

– (T)P
R

∗← skip , P | JT Kok,ab,cm,cb ⇒
ab�!−→ R and R ./ P

– (T)P
R

X← Q , P | JT Kok,ab,cm,cb ⇒
ok�!−→∼ R | JQKcm,cb and R ∈ S.

Then, the relations B and C thus defined are a cCSP interpretation forM.

Trans , 〈(bookFlight÷ cancelFlight); bookHotel÷ skip〉
bookFlight , new Airline · book ⇐

(flight !().ack?().pay!().ok�!())

cancelFlight , new Airline · cancel ⇐
(flight !().ack?().refund !().ok�!()

bookHotel , new Hotel · book ⇐
(room!().ack?(rp).if rp then pay!().ok�!() else throw)

AirlineSite , Airline I [def book ⇒ − | def cancel ⇒ − | · · ·]
HotelSite , Hotel I [def book ⇒ − | · · ·]
World , AirlineSite | HotelSite

System , World | Trans

Fig. 10. A travel booking example with compensable transactions in CC.

Proof. Induction on the defining rules for a cCSP interpretation (Definition 3.2). Notice
that the auxiliary encoding JQKcm,cb (Figure 9) coerces a basic program Q into a thunk
that may be activated by a message cm, and signals termination by a message cb.

As a consequence of Lemma 4.6, all results in Section 3, in particular Theorem 3.9
apply to any CC compensation model. Indeed, our main Theorem 4.5 is just a special-
ization of Theorem 3.9 for any concrete CC compensation model.

We now illustrate our encoding and associated results with a simple example. Here,
we freely mix cCSP transactions T inside the CC code as an abbreviation of the in-
tended encoding JT Kok. Consider the CC definitions in Fig. 10 (we assume a standard
if− then− else construct for the example). Trans represents a long running trans-
action for booking a flight and hotel accommodation. The transaction is defined from
the CC basic activities bookFlight, cancelFlight and bookHotel. Each of these activities
is implemented by service instantiations that trigger a conversation (a session) with an
appropriate service provider. Such service providers reside in process World . The set
SW of passive processes accessible (via labeled transitions) from World can be pre-
sented as a CC compensating model, by introducing an appropriate equivalence ./ on
states. Such equivalence might e.g. equate states of AirlineSite that differ on the total
payment amount and back log state, but not on the travels effectively sold (in many
situations we may just take ./=∼). Then Theorem 4.5 allows us to conclude that if
CancelFlight and BookFlight are atomic activities in the sense of Definition 4.3 and
if cancelFlight reverts BookFlight in the sense of Definition 3.4 (so that Trans is ./-
consistent), then the two following conditions hold

– For all S ∈ SW , if S | Trans ⇒ λ−→ R and λ = a� then a = ok�! and R ∈ SW .
– For all S ∈ SW , if S | Trans ⇒throw−→ R then R ./ S.

By Theorem 4.5, we conclude Trans either behaves as Trans+ (bookFlight; bookHotel)
or throws an exception without any observable effect modulo ./. Notice that since
Trans local behavior may only result on an exception being thrown or on a single
message ok being dropped in its conversation context. It is a consequence of the CC se-
mantics that it will always exhibit such local behavior locally inside any arbitrary client
computational context C [Trans] not interfering with the states of SW .

5 Related Work and Concluding Remarks

We have developed an analysis of structured compensating transactions, with an ap-
plication to models of service-oriented systems expressed in the Conversation Calcu-
lus [17, 16], a session based process calculus for service-oriented computing [11, 3, 2].

Our approach is inspired by Korth et al. [10], where compensating transactions have
been introduced as a way to overcome the limitations of atomicity when dealing with
long-running transactions. The authors propose the use of compensating transactions to
allow access to uncommitted data and to undo committed transactions in databases.
More recently, Butler et al. [7] defined a framework to reason about compensation
soundness. The authors define a cancellation semantics for a structured language cCSP
based on a cancellation function that processes traces, extracting reversible forward and
compensation actions from process traces. Their approach does not explicitly character-
ize reversibility in terms of state equivalence, and is restricted to compensation pairs of
primitive actions, while with our approach transactions may be used as atomic actions
in compensable programs. Furthermore, our approach builds on a generic model that
may be used to reason about other compensable languages than cCSP. Several process
calculi, both flow and interactions based, have been proposed with support for forms of
compensation and primitives for handling the unexpected [6, 1, 4, 5, 12].

In this work, besides showing how to encode compensating transactions from lower
level constructs in the Conversation Calculus, we also put forward a general framework
that may be used to reason about the correctness (e.g., atomicity) of arbitrary com-
pensating transactions in arbitrary programs. In order to perform such an analysis, one
just needs to define an appropriate equivalence on system states, which is in general
application dependent, and to show reversibility for the considered alphabet of atomic
actions. Our framework naturally supports distributed transactions (since basic actions
may be realized by service calls), and may benefit from the use of types (for example, it
would be interesting to consider state equivalence relations based on behavioral types).
It would also be challenging to study more refined notions of apartness and locality,
allowing for extended yet safe forms of interference between concurrent transactions.

Acknowledgments We thank CITI, IST FP6 IP Sensoria, and our coleagues of the Sen-
soria project.

References

1. L. Bocchi, C. Laneve, and G. Zavattaro. A Calculus for Long-Running Transactions. In 2884
of LNCS, FMOODS, pages 124–138, 2003.

2. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Monta-
nari, A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. SCC: a Service Centered
Calculus. In 4184 of LNCS, WS-FM, pages 38–57, 2006.

3. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and Pipelines for Structured
Service Programming. In 5051 of LNCS, FMOODS, pages 19–38, 2008.

4. R. Bruni, H. C. Melgratti, and U. Montanari. Nested Commits for Mobile Calculi: Extending
Join. In Kluwer Academics, IFIP TCS, pages 563–576, 2004.

5. R. Bruni, H. C. Melgratti, and U. Montanari. Theoretical Foundations for Compensations in
Flow Composition Languages. In POPL, pages 209–220, 2005.

6. M. Butler and C. Ferreira. A Process Compensation Language. In 1945 of LNCS, IFM,
pages 61 – 76, 2000.

7. M. J. Butler, C. A. R. Hoare, and C. Ferreira. A Trace Semantics for Long-Running Trans-
actions. In 3525 of LNCS, 25 Years CSP, pages 133–150, 2004.

8. I. Lanese C. Guidi, F. Montesi and G. Zavattaro. Dynamic Fault Handling for Service Ori-
ented Applications. In Proceedings of ECOWS, 2008.

9. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann, 1993.

10. H. Korth, E. Levy, and A. Silberschatz. A Formal Approach to Recovery by Compensating
Transactions. In 16th VLDB Conference, 1990.

11. I. Lanese, V. T. Vasconcelos, F. Martins, and A. Ravara. Disciplining Orchestration and Con-
versation in Service-Oriented Computing. In 5th ICSEFM, pages 305–314. IEEE Computer
Society Press, 2007.

12. C. Laneve and G. Zavattaro. Foundations of Web Transactions. In 3441 of LNCS, FoSSaCS,
pages 282–298, 2005.

13. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
14. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I + II. Information

and Computation, 100(1):1–77, 1992.
15. D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge

University Press, 2001.
16. H. T. Vieira, L. Caires, and J. C. Seco. A Model of Service Oriented Computation. TR-

DI/FCT/UNL 6/07, Universidade Nova de Lisboa, Departamento de Informatica, 2007.
17. H. T. Vieira, L. Caires, and J. C. Seco. The Conversation Calculus: A Model of Service-

Oriented Computation. In 4960 of LNCS, ESOP, pages 269–283, 2008.

