
A Process Catalog for Workflow Generation

Michael Wolverton, David Martin, Ian Harrison, and Jerome Thomere

SRI International

333 Ravenswood Ave

Menlo Park, CA 94025

{Wolverton,Martin,Harrison,Thomere}@ai.sri.com

Abstract. As AI developers increasingly look to workflow technologies to per-

form complex integrations of individual software components, there is a growing

need for the workflow systems to have expressive descriptions of those compo-

nents. They must know more than just the types of a component’s inputs and

outputs; instead, they need detailed characterizations that allow them to make

fine-grained distinctions between candidate components and between candidate

workflows. This paper describes PROCAT, an implemented ontology-based cata-

log for components, conceptualized as processes, that captures and communicates

this detailed information. PROCAT is built on a layered representation that allows

reasoning about processes at varying levels of abstraction, from qualitative con-

straints reflecting preconditions and effects, to quantitative predictions about out-

put data and performance. PROCAT employs Semantic Web technologies RDF,

OWL, and SPARQL, and builds on Semantic Web services research. We describe

PROCAT’S approach to representing and answering queries about processes, dis-

cuss some early experiments evaluating the quantitative predictions, and report on

our experience using PROCAT in a system producing workflows for intelligence

analysis.

Recent research and development in technology for intelligence analysis has produced

a large number of tools, each of which addresses some aspect of the link analysis

problem—the challenge of finding events, entities, and connections of interest in large

relational data sets. Software developed in recent projects performs many diverse func-

tions within link analysis, including detecting predefined patterns [1,2,3,4], learning

these patterns of interest [5], classifying individuals according to group membership [6]

or level of threat [7], resolving aliases for individuals [8], identifying neighborhoods of

interest within the data, and others.

While these tools often perform complementary functions within the overall link

analysis space, there has been limited success in getting them to work together. One-

time integration efforts have been time-consuming to engineer, and lack flexibility. To

address this problem, a recent focus of research has been to link these tools together

dynamically, through workflow software [9], a blackboard system [10], or some other

intelligent system architecture.

One key challenge in building this kind of dynamic link analysis workflow en-

vironment is representing the behavior of the individual link analysis processes be-

ing composed. In this paper, we describe an implemented Process Catalog software

component—PROCAT for short—that serves information about processes that allows

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 833–846, 2008.

c© Springer-Verlag Berlin Heidelberg 2008

834 M. Wolverton et al.

a workflow generation component to select, rank, and execute them within a work-

flow. (Our focus here is on PROCAT’S design and functionality; space constraints allow

for only a few brief comments about the characteristics of the larger workflow sys-

tem.) PROCAT is based on a layered approach to process representation, in which a

process is described in terms of both the qualitative features that distinguish it from

other processes, and quantitative models that produce predictions of the process’s out-

puts and performance.

PROCAT is implemented and deployed within the TANGRAM workflow architecture,

a complex system that generates and executes workflows for intelligence analysis. This

deployment requires it to be integrated with several other workflow modules developed

by other contractors. PROCAT’s current knowledge base encodes a collection of real

link analysis tools that perform a variety of functions. It produces quantitative predic-

tions of those tools that early experiments suggest are accurate.

The sections that follow describe PROCAT and its use in more detail. First, we give

an overview of its approach and architecture. We then describe the Capabilities Layer

of the process description, which represents processes at a qualitative level. Next, we

cover the quantitative layers of the process description, including some experiments

evaluating the accuracy of those layers’ predictions. We then discuss PROCAT’s use

within the TANGRAM workflow system in some detail. And finally, we compare this

work to other related research, and outline future work and other research issues.

1 Overview

The problem of designing a process characterization language for link analysis presents

a number of research challenges, many of which arise because of the need for flexibility

in the process description. The representation must be flexible to accommodate hetero-

geneous processes, multiple possible workflow systems that reason about processes at

differing levels of fidelity, and the evolution of the workflow systems’ reasoning abili-

ties as they are developed over time.

To meet this need of flexibility, PROCAT is built upon a layered approach to process

characterization, where each process is represented at multiple levels of fidelity, and

where the workflow system can retrieve and reason about processes at the representation

level(s) they can handle. The layers include

• Capabilities, which provides a qualitative description of the process’s behavior,

along with the hard constraints for running it.
• Data Modification, which describes how the statistical profile of the data (e.g., the

number of nodes and links of each type) changes as the process is run over it.
• Performance, which quantitatively describes the performance of processes (e.g.,

time to complete, maximum amount of memory consumed) given a data set with a

particular statistical profile.
• Accuracy, which describes how the accuracy of each node and link type in the data

changes as the process is run over it.

The Capabilities Layer is described in the next section, while the Data Modification

and Performance Layers are described in the subsequent, Quantitative Predictions, sec-

tion. While PROCAT’s current process representation incorporates the Accuracy Layer,

A Process Catalog for Workflow Generation 835

Fig. 1. PROCAT Architecture. The Query Handler accepts a variety of queries about processes

from an external Workflow Component (not shown in the figure), and farms these queries out to

the appropriate reasoning module.

models for producing accuracy predictions are not currently part of the system and are

part of our ongoing work.

The PROCAT architecture is shown in Figure 1. PROCAT feeds information about

processes to the workflow system via a set of predefined query types. The system

has two mechanisms for answering these queries. Queries that involve the Capabili-

ties Layer are answered by reasoning over a set of ontologies that encode the processes’

functionality, resource requirements, invocation details, and so on. Queries that involve

the quantitative layers are answered using the processes’ models from the Quantitative

Models Repository. These two mechanisms are described in more detail in the next two

sections.

2 Capabilities Layer

The Capabilities Layer (CL) describes in a qualitative, symbolic manner what a process

does, what the requirements are for running it, and how it is invoked. This section

explains the representational approach and ontology underlying PROCAT’s Capabilities

Layer, and the manner in which capabilities queries are handled.

2.1 Capabilities Ontology

PROCAT employs the Resource Description Framework (RDF) [11], the Web Ontol-

ogy Language (OWL) [12], and the RDF query language SPARQL [13]. Each of these

836 M. Wolverton et al.

Fig. 2. Class Hierarchy of Processes for TANGRAM

knowledge representation technologies has been standardized at the World Wide Web

Consortium in recent years, as part of the Semantic Web initiative. A number of syn-

taxes have been defined for OWL, which is layered on top of RDF. PROCAT makes use

of the RDF/XML syntax [14], as discussed below. The internal representation of RDF and

OWL content takes the form of a set of triples, which are maintained in a triple store.

OWL, a description logic language, is well suited to the Capability Layer’s objectives of

describing, classifying, and answering queries about categories of processes, individual

processes, and their characteristics.

In PROCAT, a process is any well-defined, reusable procedure, and a process in-

stallation is an executable embodiment of a process. In the TANGRAM application,

the processes described in PROCAT are data analysis programs, and each process in-

stallation is a version of a program installed on a particular machine. The capabili-

ties ontology is organized around the PROCESS class. That class can very naturally

be decomposed into a hierarchy of categories of processes for various purposes. TAN-

GRAM, as shown in Figure 2, employs a hierarchy of data analysis processes. Some

TANGRAM queries quite naturally need to ask for processes belonging to a particular

subclass within this hierarchy, with additional query constraints expressed using proper-

ties. We refer to the set of terms defined in the capabilities ontology, along with certain

conventions for its use, as the Process Description Language (PDL).

The core of a capabilities description is a functional characterization of the process,

in terms of its parameters (inputs and outputs), preconditions that must be met to run

it, and postconditions that will hold after running it. The most essential element of

parameter characterization is type. The type of each parameter is specified as an OWL

class or an XML datatype. A parameter also has a role (e.g., HypothesisOutputRole

in Figure 5); roles may be shared across multiple processes. The characterization of

a parameter also includes such things as default values and invocation conventions.

Figure 3 shows the main classes that are found in the process ontology, and relationships

between them. Properties HASINPUT and HASOUTPUT relate a process to instances of

class PARAMETER. In general, those instances will also be instances of data source

classes (classes that indicate the types of parameters). Thus, multiple inheritance is

A Process Catalog for Workflow Generation 837

Legend

hasInput
hasOutput
hasPreCondition
hasPostCondition
processInstallation

Process

parameterName
parameterType
parameterValue
commandLineName
commandLinePosition
hasBinding

Parameter

InputParameter

OutputParameter *

1

*

1

process
siteID
architecture
hasInput
hasOutput
environmentRequirements
operatingSystem

ProcessInstallation
*
1

PreCondition

PostCondition*

1

*

1

Condition

Superclass

Subclass *1Class Classattribute

*

1

*

1

variableName
variableValue

EnvironmentVariable

*

1

hasPreCondition

hasPostCondition
hasOutput

hasInput

hasOutput hasInput

environmentRequirements

Fig. 3. Key Classes and Relations in the Process Ontology

used to indicate parameter types, which simplifies in some ways the expression of both

descriptions and queries. Some conditions may be represented using properties of these

data source classes. For instance, some data analysis processes take an analysis pattern

as one of their inputs.

A process may be related to zero or more instances of PROCESSINSTALLATION,

each representing a specific installation of a process on a particular machine. Various

characteristics are specified for process installations, including resource requirements

and invocation details. HASINPUT and HASOUTPUT are also present for PROCESSIN-

STALLATIONs, to allow for the specification of platform-specific parameters. Informa-

tion about environment variables required to run the process is also included, as well

as details about the physical characteristics of the installed platform, such as machine

architecture, operating system, and other details needed to reason about execution re-

quirements and to remotely invoke the process installation.

Preconditions and Postconditions. Preconditions are conditions that must be true in

order for a process to successfully occur; postconditions are conditions that will hold

true after an occurrence of a process. Preconditions and postconditions in general can be

difficult to represent, and can require considerable expressiveness. For one thing, they

are not ordinary facts about the process. They are conditions that might or might not

hold true when the process is used. The sense of a precondition is that if it evaluates true

prior to an occurrence (execution) of the process, then (assuming the process executes

normally without exceptions) that occurrence will be successful. Similarly, postcon-

ditions cannot be understood as ordinary facts about a process. Thus, in a complete

838 M. Wolverton et al.

logical theory of processes, neither preconditions nor postconditions could be simply

asserted, but would need to be reified in some way, and subject to special handling

during query answering. Further, as noted just above, preconditions and postconditions

apply to process occurrences rather than processes. If both processes and process oc-

currences are to be explicitly included in a representational framework, it becomes nec-

essary to explicitly capture the relationship between them, as axioms. Such axioms,

however, would exceed the expressiveness of RDF and OWL, and thus increase the com-

plexity of reasoning involved in answering queries.

In PROCAT, we have mitigated these difficulties by adopting a simplifying perspec-

tive, that a process description is considered to be a snapshot of an arbitrary successful

occurrence of a process. (Roughly speaking, then, a process description is somewhat

like a skolem representative of all possible successful occurrences of the process.) Fur-

ther, because PROCAT does not store information about actual occurrences of a process,

there is no inconsistency in including in its description facts that apply to the process itself

(rather than to any particular occurrence). Adopting this perspective removes the need to

explicitly distinguish between processes and process occurrences. Instead, a process de-

scription in the catalog can be viewed as capturing aspects of both at once. Given this per-

spective, reification is no longer needed and preconditions can be stated as facts about in-

puts (and postconditions as facts about outputs). For example, Figure 5, in the “PROCAT

Implementation and Use” section, shows a query that will match against a process hav-

ing an output dataset that is saturatedWith instances of the class MoneyLaunderingEvent.

(saturatedWith is an ontology term meaning that as many instances as possible have been

inferred within a given dataset. In the example, the query uses ?dataVariable5 to stand for

the output dataset parameter.) A KB statement matching the query triple (?dataVariable5

saturatedWith MoneyLaunderingEvent) would be a simple example of a postcondition.

2.2 Capabilities Layer Functionality

As shown in Figure 1, the Capabilities Layer makes use of the Query Handler compo-

nent and the CL Reasoning component, which in turn accesses the Capabilities Layer

KB. The reasoning component includes both application-specific and general-purpose

query processing functionality.

Query Handler. Queries are received by means of a Web service API, as discussed

in “PROCAT Implementation and Use” below. To provide catalog services for TAN-

GRAM, PROCAT queries and responses are expressed in a slightly extended form of the

RDF/XML syntax. The extension allows for the use of variables, in a manner similar

to that of SPARQL. In our syntax, variables can appear in subject, predicate, or object

position of any query triple, are named by URIs (and thus belong to a namespace), and

are indicated by a question mark as the first character of the name part of the URI. (See

Figure 5 for a simple example query using this syntax.) Our experience to date indicates

that standard RDF/XML parsers recognize these URIs without difficulty.

SPARQL is used internally within PROCAT for accessing the KB, as discussed below.

Although we considered using SPARQL as the external query syntax for TANGRAM,

we determined that SPARQL was not well suited to meet certain application-specific

requirements of TANGRAM. However, we plan to support SPARQL in future versions, as

A Process Catalog for Workflow Generation 839

a general-purpose query syntax to supplement the existing, application-specific query

conventions.

The Query Handler component is responsible for parsing the RDF/XML-based query

syntax and capturing it in an internal format. Because the query syntax is consistent

with RDF/XML, we are able to take advantage of standard parsing functionality. Each

incoming query is parsed directly into a temporary triple store. In this way, we are able

to use triple store queries and triple store manipulations in analyzing and processing the

query.

Capabilities Reasoner. An important requirement for PROCAT is to provide flexibility

in supporting application-specific query requirements, that is, requirements that cannot

be met by a standard query language such as SPARQL. For example, in TANGRAM, one

type of query asks PROCAT to formulate a commandline for a particular invocation of

a given process installation. Although the KB contains the essential information such

as commandline keywords, default values, and proper ordering of commandline argu-

ments, nevertheless the precise formulation of a commandline requires the coding of

some procedural knowledge that cannot readily be captured in a KB. (“PROCAT Imple-

mentation and Use” below discusses further the types of queries used in TANGRAM.)

PROCAT’s architecture allows for the use of arbitrary Lisp code to provide the

application-specific query processing. This code, in turn, can use a variety of mech-

anisms (including SPARQL queries) to examine the temporary triple store containing

the parsed form of the incoming query. In most cases, this examination results in the

construction of one or more queries (which, again, may be SPARQL queries) to be sub-

mitted to the capabilities KB to retrieve the needed information about the process(es) in

question. Once that information has been retrieved, Lisp code is called to analyze it and

formulate the requested response.

The capabilities KB, including ontologies, is stored within a single triple store. Ac-

cess to the capabilities KB is provided by a layer of general-purpose (application-

independent) utility procedures for triple store update, management, and querying. This

includes procedures for formulating and running SPARQL queries.

3 Quantitative Predictions

We designed the quantitative prediction models of PROCAT to meet three criteria:

• The prediction models are precise, in that they allow fine-grained predictions of

process performance.

• The prediction models are efficient, so that predicting a process’s performance on a

given data set generally takes less time than running the process.

• The individual prediction models are composable, so that a workflow component

can accurately predict and reason about combinations of processes run in sequence

or in parallel.

PROCAT currently produces two types of quantitative predictions: Data Modification

and Performance.

840 M. Wolverton et al.

(a) (b)

Fig. 4. Predicted vs. actual (a) data modification and (b) performance for a pattern matching

process

For predictions in the Data Modification Layer, each process is described as a func-

tion that maps a problem description and a data model into a data model. The problem

description will vary depending on the type of process; for example, a problem for a

graph matcher could consist of a pattern graph and various parameters specifying the

match criteria. A data model is a statistical description of the data set along whatever

parameters are determined to be useful in selecting and composing processes. PRO-

CAT’s current data model is a statistical description of the data that consists of (1) the

number of nodes of each type and (2) the branching factor per node and link type. Here,

(2) is the answer to the question: For each entity type T and link type L, given a node

of type T , how many expected links of type L are connected to it?1

Performance Layer predictions estimate the process’s efficiency given the data set

and problem. These predictions map a (problem description, data model, resource

model) triple into a performance model. The resource model represents the performance

characteristics of the hardware available to the process—processor speed, amount of

physical and virtual memory, network throughput, database response, and so on. The

performance model will represent the predicted time to process the data set, and possi-

bly other measures of performance that we determine are useful for selecting processes.

For example, one could imagine building a more complicated model of performance for

an anytime process, which includes a tradeoff between execution time and the number

of (and completeness of) the results produced.

The quantitative models are represented procedurally—as lisp functions. A model

can be custom-built for a particular process by the knowledge engineer populating the

catalog, or it can be created by instantiating a preexisting model class. Currently, PRO-

CAT has two built-in model classes, shown in the lower right portion of Figure 1. The

1 This level of representation implicitly assumes that link and node type distributions are

independent—that is, that the existence of link L1 attached to node T1 tells nothing about

the likelihood of link L2 also being attached to T1. For many processes, especially pattern

matching processes, this seems to be a reasonable assumption. However, for other processes,

especially relational classification processes, the independence assumption may be too strong.

A Process Catalog for Workflow Generation 841

first is a linear model, where predictions of a quantity characterizing data or perfor-

mance are derived via a weighted sum of features of the input data.2 The coefficients

for this model can be learned through a regression method, such as least-squares, based

on runs of the process being modeled. The second is a nonlinear model that is specific

to pattern matchers. This model predicts pattern matcher output and performance by

using a recurrence relation to estimate the number of states expanded in the search for

a match.

While a detailed description of this latter model is beyond the scope of this paper, we

show in Figure 4 the results of some of its predictions for the LAW pattern matcher [4]

against actual behavior of the system, to give a sense of the level of accuracy of predic-

tions for one well-understood tool. Figure 4(a) shows the predicted and actual number

of results found by LAW matching a relatively simple pattern against five different data

sets varying in size, branching factor, and other characteristics. Figure 4(b) shows pre-

dicted and actual search states expanded (here we use states expanded as a proxy for

runtime because of the ability to get consistent results across machines) for the same

runs. The average error of the predictions was 20% for data modification, and 19% for

performance. The time taken to run the prediction model was faster than the run of the

pattern matcher by over two orders of magnitude.

While this model was built specifically for LAW, the data modification portion of

it should be transferable to other pattern matchers. Furthermore, experiments with an-

other pattern matcher, CADRE [3], indicate that its runtimes are roughly proportional

to LAW’s when matching the same pattern, despite the fact that their pattern-matching

approaches are quite different. This suggests that this predictive model may be applica-

ble (with some fitting) to other pattern matchers. Testing that hypothesis is part of our

ongoing work.

4 PROCAT Implementation and Use

As discussed above, PROCAT is presently being applied as a module in the TANGRAM

system for building and executing workflows for intelligence analysis. To support this

application, we worked with the developers of the workflow generation/execution soft-

ware, WINGS and PEGASUS [9], to design a set of queries that provide the information

WINGS/PEGASUS needs to instantiate and execute workflows effectively. These queries

are broken into two distinct phases of workflow generation:

– In the Backward Sweep, WINGS produces candidate workflows starting with the

desired output. Given an output data requirement (a postcondition) and class of

processes, PROCAT returns all matching processes that can satisfy that postcondi-

tion, along with their input data requirements and other preconditions for running

them.

– In the Forward Sweep, WINGS and PEGASUS prune the workflow candidates gen-

erated in the Backward Sweep, rank them, and map processes to actual grid clusters

2 The linear coefficients also depend on the values of non-data parameters being passed to the

process, and, for performance, the hardware on which the process is to be run.

842 M. Wolverton et al.

<SOAP-ENV:Envelope> <SOAP-ENV:Body>

<pcat:FindInputDataRequirements>

<pcat:component xsi:type=’xsd:string’>

<rdf:RDF>

<rdf:Description rdf:about="http://...#?component2">

<rdf:type rdf:resource="http://.../Process.owl#PatternMatchingProcess"/>

<pdl:hasOutput rdf:resource="http://...#?dataVariable5"/>

<pdl:hasInput rdf:resource="http://...#?dataVariable4"/>

<pdl:hasInput rdf:resource="http://...#?dataVariable3"/>

</rdf:Description>

</rdf:RDF>

</pcat:component>

<pcat:constraints xsi:type=’xsd:string’>

<rdf:RDF>

<rdf:Description rdf:about="http://...#?dataVariable5">

<pdl:hasRole

rdf:resource="http://.../Process.owl#HypothesisOutputRole"/>

<rdf:type rdf:resource="http://...#Hypothesis"/>

<pdl:saturatedWith

rdf:resource="http://...#MoneyLaunderingEvent"/>

</rdf:Description>

</rdf:RDF>

</pcat:constraints>

</pcat:FindInputDataRequirements> </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fig. 5. Example PROCAT Query

to run. The queries in this sweep require PROCAT to predict output data characteris-

tics, predict process performance on particular Grid clusters, return actual physical

location(s) of the process, return resource requirements for running the process in-

stallation, and return the relevant information for building a valid command line for

the process installation.

The implementation choices for PROCAT were driven by the requirements described

above, together with the fact that PDL is encoded in OWL. We decided to use ALLEGRO-

GRAPH3, which is a modern, high-performance, persistent, disk-based RDF graph data-

base. ALLEGROGRAPH provides a variety of query and reasoning capabilities over the

RDF database, including SPARQL, HTTP, and PROLOG query APIs and built-in RDFS++

reasoning. ALLEGROGRAPH also allows one to define a SOAP Web service API to an

ALLEGROGRAPH database, including the ability to generate WSDL files from the code’s

SOAP server definition, to facilitate the creation of Web service clients.

PROCAT is implemented as an HTTP/SOAP-based Web service with an ALLEGRO-

GRAPH RDF triple store. Component (process) definitions, encoded using PDL, are

stored in the triple store, and SOAP services provide the specific information required

by WINGS and PEGASUS. Each service is associated with a message handler and re-

sponse generation code for the SOAP API. No Web service for updating KB content

was developed for the initial version of PROCAT, as this capability was not essential

to test its ability to provide a useful service as part of a workflow generation/execution

experiment. We plan to add this service for the next release of PROCAT.

Figure 5 shows an example of a SOAP query for the Backward Sweep phase. The

query specifies a general class of component (in this case, PatternMatchingProcess)

3 http://agraph.franz.com/allegrograph/

A Process Catalog for Workflow Generation 843

and a requirement that the component has an output of type Hypothesis containing

objects of type MoneyLaunderingEvent. PROCAT will return any actual components in

its repository that match these constraints. It should be noted that all components in

the repository are defined as belonging to one or more classes of component, and that

these are drawn from the process ontology described above. The results are returned as

RDF/XML fragments, one for each matching component instance.

5 Related Work and Discussion

The problem of process characterization and the related problem of process selection

to meet a particular set of requirements have been investigated for several decades

under various research headings, including program verification, deductive program

synthesis, automatic programming, AI planning, agent-based systems, Semantic Web /

Grid services, and e-science. Because of space constraints, we can only mention exam-

ples from the last three of these areas. For a more extensive summary of related work,

see [15].

The field of agent-based systems (ABS) includes a significant body of work on char-

acterizing and reasoning about agent capabilities, which often are conceived as remotely

invocable processes. As in earlier work on AI planning, the common denominator of

many approaches is the representation of preconditions and effects, often with addi-

tional information about the inputs and outputs of the operations that an agent pro-

vides. LARKS [16], for example, employs InConstraints and OutConstraints, expressed

as Horn clauses referring to inputs and outputs, respectively, for this purpose. This

approach, while flexible, requires special handling for these Horn clauses outside of

the description logic framework that underlies LARKS’s ontology. PROCAT’s approach,

in contrast, remains within the representational framework defined by RDF and OWL.

Agent systems have also experimented with the use of additional kinds of information,

such as quality of service, response time, and other kinds of performance characteri-

zation. Generally speaking, however, these have been captured using static, one-size-

fits-all characterizations, rather than computed on-the-fly based on the specifics of input

datasets and resources in the execution environment, as PROCAT does.

ABS has explored a variety of styles of matchmaking. For example, in the Open

Agent Architecture (OAA), [17], the basic capability description is a logic program-

ming predicate structure (which may be partially instantiated), and matchmaking is

based on unification of goals with these predicate structures. In addition, both goals and

capabilities declarations may be accompanied by a variety of parameters that modify

the behavior of the matchmaking routines. Although PROCAT does not make use of

unification, it achieves greater flexibility by building on SPARQL, and a more effective

means of categorization of capabilities (processes) based on OWL class hierarchies.

Most recently, these same problems have been the focus of inquiry in the context of

research on Semantic Web Services (SWS). This field aims to enable the automation

of the development and use of Web services. The first challenge in SWS has been the

enrichment of service descriptions, which essentially is the same problem as process

characterization. OWL for Services (OWL-S) [18], the pioneering effort in this field,

introduces the expression of preconditions and effects in a Semantic Web-compatible

844 M. Wolverton et al.

manner, and also relies on the ability to use OWL to construct class hierarchies of

services. PROCAT’s ontology is based in part on OWL-S, but goes much further in dis-

tinguishing process installations and characterizing their resource requirements and in-

vocation methods. OWL-S also includes a composite process structure model—a set of

ontology elements used to formulate a step-by-step representation of the structure of a

composite process. PROCAT thus far has had no need for this kind of representation.

The Semantic Web Services Framework (SWSF) [19] builds out from OWL-S by in-

cluding some additional concepts (especially in the area of messaging); employing first-

order logic, which is more expressive than OWL; and drawing on the axiomatization of

processes embodied in the Process Specification Language (PSL). The Web Services

Modeling Ontology (WSMO) [20], is an EU-funded effort with many of the same ob-

jectives and approaches as OWL-S and SWSF. WSMO distinguishes two types of precon-

ditions (called assumptions and preconditions), and two types of postconditions (called

postconditions and effects). In addition, WSMO associates services with goals that they

can satisfy, and models choreography—the pattern of messages flowing between two

interacting processes. PROCAT thus far has not encountered requirements for captur-

ing these additional aspects of processes, but could be extended in these directions if

needed. On the other hand, PROCAT’s expressiveness requirements have deliberately

been kept smaller than those of SWSF and WSMO, allowing for relatively lightweight

implementation, scalability, and quick response times.

In the field of e-science, scientific experiments are managed using distributed work-

flows. These workflows allow scientists to automate the steps to go from raw datasets to

scientific results. The ultimate goal is to allow scientists to compose, execute, monitor,

and rerun large-scale data-intensive and compute-intensive scientific workflows. For ex-

ample, the NSF-funded KEPLER project4 has developed an open-source scientific work-

flow system that allows scientists to design scientific workflows and execute them ef-

ficiently using emerging Grid-based approaches to distributed computation. Compared

to PROCAT, the KEPLER Actor repository can be seen to be a more general-purpose

repository for storing workflow components—both the actual software, as well as meta-

data descriptions of that software. However, compared to PDL, the actor definitions are

impoverished, and cover simply I/O parameters.

By and large, process characterization in all these disciplines has been predomi-

nantly concerned with what we here call the Capabilities Layer of description. Where

quantitative descriptions have been used, they have most often been used to solve very

specialized problems. Further, quantitative descriptions have rarely taken advantage of

probabilistic methods to characterize data modification and accuracy, or to enable pre-

dictions regarding the content and structure of generated data, as has been done in PRO-

CAT. Another significant difference is PROCAT’s combined specification of a process’s

behavioral characterization with the fine-grained characterization of its data products.

Looking ahead, our research directions are focused on four major areas:

– Extending the Capabilities Layer to make more sophisticated use of rules and de-

duction in finding matching components and inferring the requirements for running

them.

4 http://kepler-project.org

A Process Catalog for Workflow Generation 845

– Gathering data and running more experiments to test the accuracy of PROCAT’s

quantitative predictions, both to evaluate the existing models and to drive the cre-

ation of new and better ones.

– Implementing the Accuracy Layer, discussed above. This layer will produce es-

timates (rough to begin with) of the accuracy of the output data produced by a

process.

– Automating some parts of the population of the process repository. For example, we

have started to automate some of the experiments needed to create the quantitative

models of the Data Modification and Performance layers.

Workflow generation and execution technologies are becoming increasingly important

in the building of large integrated systems. More expressive process descriptions, and

new kinds of reasoning about them, will play a critical role in achieving this long-term

goal. We have described the process representation and reasoning approaches embodied

in PROCAT, the rationale behind its current design, its role in a particular integrated

system, and research directions under investigation in connection with this work.

Acknowledgments

This research was supported under Air Force Research Laboratory (AFRL) contract

number FA8750-06-C-0214. The concept of a process catalog for Tangram is due to

Eric Rickard. Thanks also to the builders of the other Tangram modules discussed in

this paper, including (but not limited to) Fotis Barlos, Ewa Deelman, Yolanda Gil, Dan

Hunter, Jihie Kim, Jeff Kudrick, Sandeep Maripuri, Gaurang Mehta, Scott Morales,

Varun Ratnakar, Manoj Srivastava, and Karan Vahi.

References

1. Boner, C.: Novel, complementary technologies for detecting threat activities within massive

amounts of transactional data. In: Proceedings of the International Conference on Intelli-

gence Analysis (2005)

2. Coffman, T., Greenblatt, S., Marcus, S.: Graph-based technologies for intelligence analysis.

Communications of the ACM 47(3) (2004)

3. Pioch, N.J., Hunter, D., White, J.V., Kao, A., Bostwick, D., Jones, E.K.: Multi-hypothesis

abductive reasoning for link discovery. In: Proceedings of KDD 2004 (2004)

4. Wolverton, M., Berry, P., Harrison, I., Lowrance, J., Morley, D., Rodriguez, A., Ruspini, E.,

Thomere, J.: LAW: A workbench for approximate pattern matching in relational data. In: The

Fifteenth Innovative Applications of Artificial Intelligence Conference, IAAI 2003 (2003)

5. Holder, L., Cook, D., Coble, J., Mukherjee, M.: Graph-based relational learning with appli-

cation to security. Fundamenta Informaticae 66(1–2) (2005)

6. Adibi, J., Chalupsky, H.: Scalable group detection via a mutual information model. In: Pro-

ceedings of the First International Conference on Intelligence Analysis, IA 2005 (2005)

7. Macskassy, S.A., Provost, F.: Suspicion scoring based on guilt-by-association, collective in-

ference, and focused data access. In: Proceedings of the NAACSOS Conference (2005)

8. Davis, J., Dutra, I., Page, D., Costa, V.S.: Establishing identity equivalence in multi-relational

domains. In: Proceedings of the International Conference on Intelligence Analysis, IA 2005

(2005)

846 M. Wolverton et al.

9. Gil, Y., Ratnakar, V., Deelman, E., Mehta, G., Kim, J.: Wings for Pegasus: Creating large-

scale scientific applications using semantic representations of computational workflows. In:

The Nineteenth Innovative Applications of Artificial Intelligence Conference, IAAI 2007

(2007)

10. Corkill, D.D.: Collaborating software: Blackboard and multi-agent systems and the future.

In: Proceedings of the International Lisp Conference (2003)

11. Klyne, G., Carroll, J.J.: Resource description framework (RDF): Concepts and ab-

stract syntax. W3C recommendation, W3C (February 2004), http://www.w3.org/

TR/2004/REC-rdf-concepts-20040210/

12. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview, World

Wide Web Consortium (W3C) Recommendation (2004), http://www.w3.org/TR/

owl-features/

13. Seaborne, A., Prud’hommeaux, E.: SPARQL query language for RDF. W3C rec-

ommendation, W3C (January 2008), http://www.w3.org/TR/2008/REC-rdf-

sparql-query-20080115/

14. Beckett, D.: RDF/xml syntax specification (revised). W3C recommendation, W3C (February

2004),

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

15. Wolverton, M., Harrison, I., Martin, D.: Issues in algorithm characterization for link analysis.

In: Papers from the AAAI Fall Symposium on Capturing and Using Patterns for Evidence

Detection (2006)

16. Sycara, K., Wido, S., Klusch, M., Lu, J.: LARKS: Dynamic matchmaking among hetero-

geneous software agents in cyberspace. Journal of Autonomous Agents and Multi-Agent

Systems 5(2), 173–203 (2002)

17. Cheyer, A., Martin, D.: The Open Agent Architecture. Journal of Autonomous Agents and

Multi-Agent Systems 4(1), 143–148 (2001)

18. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,

S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: Owl-s: Se-

mantic markup for web services (2004) W3C Member Submission 22 (November 2004),

http://www.w3.org/Submission/2004/07/

19. Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,

Martin, D., McIlraith, S., McGuinness, D., Su, J., Tabet, S.: Semantic web ser-

vices framework overview (2005) W3C Member Submission (November 22, 2004),

http://www.w3.org/Submission/2004/07/

20. Bruijn, J.D., Lausen, H., Polleres, A., Fensel, D.: The web service modeling lan-

guage WSML: An overview. Technical Report 2005-06-16, DERI (2005), http://www.

wsmo.org/wsml/wsml-resources/deri-tr-2005-06-16.pdf

21. Osterweil, L.J., Wisel, A., Clarke, L.A., Ellison, A.M., Hadley, J.L., Boose, E., Foster, D.R.:

Process technology to facilitate the conduct of science. In: Unifying the Software Process

Spectrum, pp. 403–415. Springer, Heidelberg (2006)

http://www.w3.org/
TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/
owl-features/
http://www.w3.org/TR/2008/REC-rdf-
sparql-query-20080115/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/Submission/2004/07/
http://www.w3.org/Submission/2004/07/
http://www.
wsmo.org/wsml/wsml-resources/deri-tr-2005-06-16.pdf

	A Process Catalog for Workflow Generation
	Overview
	Capabilities Layer
	Capabilities Ontology
	Capabilities Layer Functionality

	Quantitative Predictions
	{\sc ProCat} Implementation and Use
	Related Work and Discussion
	References

