
A PROCESSOR ARCHITECTURE FOR HORIZON

Mark R. Thistle
Institute for Defense Analyses

Supercomputing Research Center
Lanham, Maryland 20706

thistle@super.org

ABSTRACT
Horizon is a scalable shared-memory Multiple Instruction

stream - Multiple Data stream (MIMD) computer architecture
independently under study at the Supercomputing Research Center
(SRC) and Tera Computer Company. It is composed of a few hun-
dred identical scalar processors and a comparable number of
memories, sparsely embedded in a three-dimensional nearest-
neighbor network Each processor has a horizontal instruction set
that can issue up to three floating point operations per cycle without
resorting to vector operations. Processors will each be capable of
performing several hundred Million Roating Point Operations Per
Second (PLOPS) in order to achieve an overall system performance
target of 100 Billion (10”) PLOPS.

This paper describes the architecture of the processor in the
Horizon system. In the fashion of the Denelcor HEP. the processor
maintains a variable number of Single Instruction stream - Single
Data stream (SISD) processes, which are called instruction streams.
Memory latency introduced by the large shared memory is hidden by
switching context (instruction stream) each machine cycle. The pro-
cessor functional units are pipelined to achieve high computational
throughput rates; however, pipeline dcpcndcnccs are hidden from
user code. Hardware mechanisms manage the resources to guarantee
anonymity and independence of instruction streams.

1. Introduction
Over the last decade, supercomputer performance has risen by

an order of magnitude. Machine cycle times of under 10
nanoseconds have become commonplace. However, this perfor-
mances comes with a cost. Maximum performance can only be
achieved with heavily vectorized codes. In addition, these codes
must be tuned precisely to the machine on which they will run in
order to achieve this maximum performance, thereby thwarting any
effort to generate portable programs. Although non-vectorizable
problems may benefit from the scalar performance of supercomput-
ers over that of the more general purpose minisupercomputers, they
still do not utilize the full potential of the machine. Consequently,
scalar speed is low. A fundamental limit for scalar performance is
memory latency for large memories. The problem is exacerbated in
multiple processor systems by the physical and logical nonlocality of
memory with respect to a processor. Cacheing techniques have been
developed to reduce effective memory latency; however, in shared
memory systems, cache coherence is a significant problem [l].

The Horizon supercomputer is a shared memory, Multiple
Instruction stream, Multiple Data stream (MIMD) system that
bridges the gap between scalar and vector performance. Each pro-
cessor in the multiple processor system uses internal multistream

t Work performed at the Supercomputing Research Center.

Burton J. Smith t
Tera Computer Company

P. 0. Box 25418
Washington, DC 2C007-84 18

burton@lll-crg.llul.gov

parallelism to compensate for the latencies introduced by the large
shared memory and the pipeline. The architecture of the processor in
Horizon bears a strong resemblance to that of its predecessor: the
Denelcor HEP. At the time of this writing, the SRC is completing a
one-year study to demonstrate the feasibility of the Horizon architec-
ture, its implementation, and its software approach. This paper
describes the architecture of the Horizon processor and highlights
many of the features which support the high performance targeted
for the machine. Section 2 introduces the programmer’s model of
the Horizon system and of the individual processors. The details of
the architecture are discussed in Section 3, with some of the major
unresolved issues in Section 4.

2. Programmer Model

2.1 Global Machine Model
A Horizon machine consists of P processors, where P is

currently defined in the range 256 to 1024, that share a memory with
an address space of 248 bits. Memory is organized into 64-bits
words and is addressed through 48-bit virtual bit addresses, the most
significant 42 bits of which form the word address. Loads and stores
fetch or store the 64-bit word that contains the bit that was
addressed. Associated with each memory word is a six-bit access
state composed of a full/empty bit, an indirect bit, and four trap bits
numbered 0 to 3. These access state bits can modify the behavior of
memory references to the associated location. All communication
among processes in the machine is through the shared memory [2].
describes the options available for memory access.

Processors and memory modules are spatially and logically dis-
tributed throughout a multidimensional, nearest-neighbor, packet-
switched interconnection network. Each processor is individually
connected to one node in the network and sends data to or receives
data from a memory module by via this node. The current design
calls for a ratio of Ihe number of processors to memory modules
from 1:l to 1:2. The response time of the memory request is a func-
tion of the addressed module’s distance from the processor and the
traflic in the network. Simulation indicates that average response
times of 50-80 cycles are attainable in a system containing 256 pro-
cessors and 512 memory modules, with nearly all responses avail-
able within 128 cycles. Each machine cycle, the network is capable
of receiving a message from every processor and memory module,
and delivering a message to every processor and memory module.
[3] describes the interconnection network for Horizon.

2.2 Processor Model
The Horizon processor manages a variable number of

processes, as in the HEP architecture [4], called instruction streams
(i-streams), each of which is an autonomous virtual processor with
its own register set, program counter, and associated processor state.
Each cycle, the processor issues the next instruction from an i-stream
chosen from the set of active i-streams. Instructions from any single
i-stream are executed in sequential order. Pipelining of instruction

35
CH2617-9/88/0000/0035$01.00 0 19881EEE

execution is hidden from the user to avoid the complexity of manag-
ing exposed pipelines. The maximum number of i-streams per pro-
cessor is 128. There is no sharing of registers or other processor
state between i-streams; the processor manages each i-stream’s state
independently.

The processor has three major execution units: the Memory
unit (M-unit), Arithmetic unit (A-unit), and the Control unit (C-unit).
The architecture is horizontal, a 64-bit instruction can initiate three
operations, an M-unit operation (M-op), an A-unit operation (A-op),
and a C-unit operation (C-op), through three independent fields in
the instruction. Also part of each instruction is a lookahead tield that
is used to control instruction overlap. The user-specified lookahead
value in an instruction indicates the number of subsequent instruc-
tions that may be issued without waiting for the completion of that
instruction.

M-ops include loads and stores. A load/store architecture was
selected to maximize performance with high-bandwidth register
operations. Shorter instructions, less hardware complexity, and
better reuse of values are additional benefits of a load/store architec-
ture. Arithmetic, logical, control, test, and miscellaneous operations
are performed in the A-unit, C-unit, or both. [S] specifies the com-
plete Horizon Instruction Set.

Synchronization between instruction streams is performed
through memory operations that use the full/empty bit in each
memory cell. An instruction stream can suspend its execution or can
be placed into execution by a single instruction. The allocation of
instruction streams to processors is handled jointly by user code and
the operating system. The operating system allocates instruction
streams in response to a system call. Such a system call requires a
significant amount of operating system code to be executed and is
therefore used relatively infrequently. Thereafter, the user program
activates the allocated instruction streams as they are needed. The
activation of an i-stream is accomplished by a single instruction.

Each of the M-, A-, and C- fields consists of an operation code
(opcode) and the register operands to be used. An instruction may
specify up to 7 register sources and 3 register destinations, or 8
sources and 2 destinations for the execution unit operations. These
registers are referred to symbolically as q. r. s, (M unit operation), t,
u, v, w, (A unit operation), x, y, z. (C unit operation). Register q is
either a source or a destination register for the M-unit operation, t is
the destination register for the A-unit operation, and x is the destina-
tion register for the C-unit operation. The other registers are sources.
The number of register accesses for each instruction is an important
parameter in the design and will be discussed later. The several
dozen program fragments that have been written for Horizon confirm
that the horizontal aspect of the instruction set is well balanced and
not overly aggressive. From l-l/2 to 3 floating point operations per
instruction have been achieved for the various test programs. A
compiler for a small FORTRAN-like language was written to pm-
vide data on the suitability of the Horizon instruction set for code.
generation; this compiler has been successful in achieving high utili-
zation of all three operation fields [6 1.

The data formats supported include integer, floating point, bit
vector, target, and pointer. Integers are signed, 64-bit two’s comple-
ment values. Floating point numbers are also 64-bit quantities with a
non-standard format, chosen for its dynamic range, compatibility
with the integer format for common test and compare operations, and
recoverability of results from operations that produce overflowed or
underflowed results. The definition of the floating point format and
the rules for floating point addition, multiplication, and other opera-
tions are given in [7]. Pointers are 64-bit values containing a base
address and several bits that control the synchronization, indirect
addressing, and trapping properties of memory references,

For each of the 128 possible i-streams in the processor, there
are 32 64-bit general-purpose registers. The general-purpose aegis-
ters can each hold integers, floating-point numbers, portions of bit
vectors, targets, or pointers. There are four 64-bit target registers
and one Instruction-stream Status Word (ISW). Target registers are
used to specify potential branch target addresses. The ISW specifies
the current Program Counter (PC) as well as the trap mask and con-
dition vector. There is also a 1024-word processor constant table, a
read-only table for commonly-used constants such as pi, e, and bit
masks, that is shared among all i-streams in the processor.

3.1 Introduction
3. Processor Architecture

Each Horizon processor has a pipelined architecture capable of
sustaining a performance of 400 MFLOPS. The target machine
cycle time is 4 nanoseconds. To achieve the targeted performance,
Horizon embodies four levels of parallelism. At the top level is the
MIMD model with several hundred processors. The next three levels
are supported within the processor and include: pipelined MIMD
instruction execution, that is concurrent execution of multiple
instruction streams in a round-robin fashion; overlapped and
pipelined execution of instructions within each stream; and horizon-
tal instructions each performing multiple functions. Compilers have
traditionally assumed the burden of managing the last two levels of
parallelism. The targeted high performance is, in general, accom-
plished by effectively managing the parallelism, i.e. rapidly switch-
ing context in order to hide the memory latencies introduced by a
large shared memory, including distance as well as contention and
synchronization delays.

The remainder of this paper describes the architecture of the
Horizon processor and examines how the various levels of parallel-
ism are implemented. An overview of the functional block level
design will be presented, followed by detailed examinations of the
important components of the processor architecture, namely, the
register organization, instruction issue sequence, i-stream selection
policy and mechanism, and memory interface.

3.2 Functional Unit Model
Each processor has seven main functional components: the

three execution units - M. A, and C units; the Instruction Fetch and
Issue unit, the I-stream Selection unit, the Instruction Cache and Pre-
fetch unit, and the register set. Figure 1 shows the internal organiza-
tion of a Horizon processor. The instruction execution logic is corn-
pletely pipelined so that it can begin executing a new instruction
every cycle. Each of the function units is pipelined and requires
multiple cycles to complete each instruction. Pipeline lengths will
be fixed and will appear identical for all instructions, regardless of
their complexity. Fixed-length pipelines allow a simple scheme to
be used for register scheduling. A variable pipeline length that
dcpcnds on the complexity of the instruction being performed is also
possible. This scheme adds complexity to i-stream scheduling and
creates register bandwidth problems for simultaneous completion of
instructions but reduces the number of i-streams needed to keep the
machine busy. Implications of these alternatives will be discussed
later.

Every cycle, the i-stream selection logic selects an i-stream
from which to issue the next instruction. The processor hardware
and the compiler together must guarantee that an i-stream is eligible
for selection only when all the flow and output dependences on pre-
viously issued instructions have been satisfied (there are no control
or antidependence problems with previously issued instructions), and
the instruction has been prefetched into the instruction buffer. To
simplify the instruction issue decision, it is convenient to arrange

36

Figure 1. Horizon Processor Functional Architecture

pipeline lengths so that the earliest possible memory response (to the
M-unit) is guaranteed to be later than responses from the other func-
tion units (A- and C-units). The completion of an instruction is thus
made equivalent to the receipt of a response from memory. If no
memory operation is specified in the instruction, instruction comple-
tion is signaled after the A- and C-units have completed.

After an i-stream has been selected for issue, its next instmc-
tion is issued to the execution units. Register operands are delivered
to the execution units and execution begins. After a fixed delay,
results from the A- and C- units are written back to the registers.
Memory responses are essentially asynchronous events. Writing
these results back to the registers will be discussed in the next sec-
tiOIL

Every cycle the machine context is switched to another i-
stream. This technique hides latencies due to memory and network
response times and full/empty synchronization delays. As long as
there are enough i-streams in the system to fill the pipeline in each
processor, the system utilization will approach unity. The result is
that the pipeline becomes totally invisible to the programmer.
Instructions in a single i-stream seem to complete prior to the issue
of the next instruction. The programmer need not be concerned with
the number of pipeline segments in each function unit. Thus, pipe-
lined MIMD instruction execution uses parallelism to compensate
for lack of locality, and improves the programmability of horizontal
(as well as conventional) processors by concealing the pipeline.

With 32 general-purpose registers, 4 target registers, 4 condi-
tion codes, the i-stream status word, and other miscellaneous state,
the amount of state associated with each i-stream is large. Rather
than saving and restoring the state at each instruction cycle, the pro-
cessor switches context to the appropriate i-stream state. This con-
text switching technique, taken directly from the Denelcor HEP, first
appeared in the Control Data 6600 Peripheral Processor unit as the
“barrel” and also in the Texas Instruments ASC I/O processor. One
set of control logic is time-multiplexed among multiple i-streams.
Each i-stream is served at a rate commensurate with its memory
latency (or some other limiting function) while the control circuitry
and arithmetic pipelines operate at a much higher rate. The max-
imum number of i-streams per processor 128. Technology con-
siderations prevent it from being more than twice as large as this and

64 is too few to ensure that enough i-streams are ready to execute,
given the expected network latency.

Because of the large number of i-streams in a processor,
memory traffic generated by instruction fetch is considerable. There-
fore access to instruction memory is made separate from data
memory which is accessed by the processor through the interconncc-
tion network. Distinct processor ports for data and instruction
memory operations are provided. An additional benefit of a separate
instruction memory, aside from the increased bandwidth available, is
that instruction security (ability to execute but not read or write
instructions) may be enhanced. Depending on the speed of insttuc-
tion access, an instruction cache may or may not be needed. Instruc-
tion cache issues arc addressed in Section 4.

3.3 Register Organization
Each processor has one set of 32 general-purpose registers allo-

cated to each of its i-streams. Because the number of registers per i-
stream multiplied by the number of i-streams is large, it is impracti-
cal to implement the registers with individual latches or flip-flops.
Instead, memory circuits must be used, thereby limiting the cycle
time of the processor to some integral multiple of the register
memory cycle time. This multiple depends on the number of register
accesses in an instruction. Although it is possible to exchange space
for time to some extent by implementing several copies of the regis-
ters behind the scenes, this approach is costly for horizontal instruc-
tions with many register references in each instruction.

The processor can achieve one instruction issue per register
memory cycle while allowing a large number of register accesses per
instruction by partitioning the register memory into banks. All of the
registers for a subset of the processor’s i-streams are resident in a
single bank. In this scheme, an instruction reads and writes its regis-
ters one after another, using several cycles of the register memory
bank. Other instructions that were started in the immediate past are
meanwhile reading and writing their own registers which are located
in other register memory banks. An i-stream becomes a candidate
for execution of its next instruction based not only on whether prior
instructions have finished but also on whether its register bank is
available.

This register banking idea permits the implementation of a sin-
gle register address space for each instruction rather than the frag-
mented register address spaces found in conventional horizontal pro-
cessor designs. In conjunction with pipelined MIMD instruction
execution register banking thus solves a problem traditionally associ-
ated with code generation for horizontal processors, namely the
problem of deciding which registers should hold which values. This
problem, together with the difficulty of managing an exposed pipe-
line with mixed function unit latencies, is largely responsible for
much of the bad reputation horizontal machines have as targets for
compilers.

The number of registers is a compromise stemming from the
number of functional units, the number of source and destination
registers needed by each function unit, the length of the instruction,
and the register read/write bandwidth available. Each instruction
contains up to ten references to registen requiring 50 bits of the 64-
bit instruction to specify register names. The remaining 14 bits are
used for the M-, A-, and C-unit opcodes and for the lookahead
specification. Fewer registers, 16 for example, is not well-balanced
with the number used in each instruction and would have led to
under-utilized function units or worse -- register spills to memory.
More registers, 64 for example, would have required too many bits
(assuming fixed size instructions). Given a larger instruction width.
64 registers might be desirable.

37

Because every Horizon instruction requires either eight register
reads and two register writes or seven register reads and three regis-
ter writes. the sequential register read/write schedule would cause a
long instruction cycle. To ease this problem, an identical copy of
each register bank is maintained. This allows simultaneous reads to
each copy, resulting in two register reads per cycle. A register write
places identical data in both bank copies in one cycle. Trading space
for time in this way reduces the requirement from eight to four
cycles of register reads per instruction. Up to three cycles of register
writes for each instruction are required.

With at most seven register cycles used by an instruction, at
most seven register banks will be busy every cycle. Them should b-e
enough banks compared to the number of register references in an
instruction so that there are always i-streams available to execute. If
there were on the average only one or two free register banks at any
cycle, the number of i-streams needed to keep the processor busy
would have to be fairly large compared to the number of banks, To
ensure there will always be enough free banks with ready i-streams,
the number of register banks currently being considered is 16. Each
bank contains the general-purpose registers for 8 i-streams.

This register organization requires a connection-intensive mul-
tiplexing scheme to route register accesses from the execution units
to the correct register banks. A good implementation of this scheme
is critical in order to achieve reasonably short register access latency.

3.4 Instruction Issue
The instruction issue sequence in the Horizon processor

requires register bank schedule management similar to the pipeline
reservation tables described by [8]. Future register bank cycles are
reserved by issuing instructions for reading and writing operands,
thereby affecting issue eligibility of other i-streams with registers in
the same register bank. This section describes how this scheduling is
performed.

When an instruction issues, four consecutive bank access
cycles will be consumed reading up to eight source registers. During
this time, no other instruction may issue from any i-stream whose
registers are resident in that same bank. As the execution units
receive their operands, their processing begins. There will be a fixed
pipeline delay due to the processing time of the A- and C-units. As
the results from each of the A- and C-units emerge from the pipe,
they are written to the destination registers. Every cycle one instmc-
tion will issue from an i-stream in a different register bank . Instruc-
tion issue from a bank is allowed if the next four consecutive bank
cycles are free (not previously rcservcd for register reads or writes).
The pipeline schedule for a single instruction issue and execution
sequence is illustrated in Figure 2.

The successful completion of a memory rcferencc, unlike
operations in the A- and C-units, is an asynchronous event. Memory
references must traverse the interconnection network to reach the tar-
get address and then return to the source processor. In addition,
some memory references may not be satistied by the first access. For
example, in a “wait-for-full-and-set-empty” load, unsuccessful
attempts to read a full memory location require that the operation to
be retried. Consequently, the register write resulting from a memory
load cannot be scheduled at instruction issue time as are those for the
results of the A- and C-units.

As memory references arc completed, the information about
that memory reference (i-stream number, destination register, 64bit
datum, etc.) is enqueued in the M-unit. The M-unit must then steal a
cycle from the appropriate register bank to write the datum to the
destination register. A bank is considered free for an M-unit result
register write if there is no activity scheduled for that cycle. Free
bank cycles arise in one of two ways: (1) Future reserved cycles
could have prohibited instruction issue from the bank leaving the

next several cycles free. If the bank was eligible for instruction issue
but was not selected, there would be at least one free cycle for a
register write; (2) An issued instruction might not require all its
register read and write slots, thereby leaving free bank cycles.

Experience with the HEP [4] and initial simulation results indi-
cate that a sufficient number of register write cycles are available to
avoid starvation. However, to utilize all unused register slots, some
decoding of the instruction must be done early. The register read
and write cycles that are not needed must be known early enough to
steal the free cycles for register writes. Timing is critical only for the
first few register read cycles, since more than enough time is avail-
able to determine the need for the A- and C-unit write cycles.

3.5 Instruction Stream Selection
The i-stream selection mechanism selects and issues an insttuc-

tion every clock cycle, as long as there are i-streams ready to issue.
This context switching mechanism is performed every cycle and is
fundamental for the processor to achieve high performance in a
shared memory environment. An i-stream is ready to issue if there
are no dcpendences on previously-issued, unfinished instructions.
These depcndences am indicated in the lookahead field of the assem-
bly language instruction. The other factors which determine an i-
stream’s issue eligibility are (1) whether the i-stream’s register bank
is free for an instruction issue (described in the previous section),
and (2) whether the next instruction is available. Every clock cycle,
the selection mechanism chooses from among the instruction streams
that are candidates for issue. A “fair” selection algorithm will help
to ensure that issue starvation does not occur. Other selection
mechanisms are being considered that impose issue priorities on
streams; however, as yet, none have been formally defined.

The mechanism that manages a stream’s dependence informa-
tion is the lookahead logic. The lookahead value associated with an
instruction indicates the number of subsequent instructions that may
bc issued before it must complete. Instruction completion is dellned
to be the completion of the memory operation; an instruction with no
memory operation complctcs after the fixed delay of the pipeline.
The lookahead logic allows instructions to overlap. Consider an
instruction (i) containing a memory reference and a lookahead value
of (L). Before instruction (i)‘s memory reference is complete,
instructions (i+l) through (i+L) may issue. The lookahead field in
an instruction is 3 bits wide; therefore. the maximum lookahead
value is 7. Hence an i-stream may have a maximum of 8 instructions
simultaneously executing.

The maximum lookahead value is related to the instruction
word size, the number of destination register references in an instruc-
tion and to the size of an i-stream’s register set. With 32 registers
and 3 destination registers per instruction, 24 registers would be
reserved for 8 outstanding memory references (maximum lookahead
value of 7). Since a nominal number of registers, say 8, will be live
and unusable, a maximum lookahead of 7 seems reasonable. A max-
imum lookahead of 15, however, would allow all registers to be
reserved for memory reference returns. This change would have a

* **Sk** ** *

I Aunithtmcy I * : instruction issue enabled

I
for the following cycle

c unit latency ’ q’: .hts&forqister
wlitca of rctuming
mcnloty mfucnccs

Figure 2. Instruction Execution Sequence

38

positive effect of reducing the number of i-streams required to keep
the processor busy. since a greater memory latency could be
tolerated by each i-stream. However, it has the negative effect of
doubling the amount of state that must be kept by the M-unit for out-
standiig memory references, as well as increasing the amount of
logic required to manage the additional lookahead and increasing the
instruction width. Perhaps more importantly, a greater maximum
lookahead also tends to increase the statically scheduled parallelism
needed within each instruction stream. Experience with simulation
of application codes has not yet provided insight into the realizable
benefit from an extended lookahead.

The determination of whether an i-stream is a candidate for
issue is performed by the lookahead logic. A functional block
diagram of the lookahead mechanism and ready logic is shown in
Figure 3. There are 8 locks per i-stream, each corresponding to one
of 8 possible instructions awaiting completion. Since there are 128
i-streams per processor, there are a total of 1024 locks in the proces-
sor. This defines the maximum number of outstanding memory
mfercnces allowed from the processor. The value of lock i indicates
for how many previous instructions instruction i is waiting. An
instruction may not issue until its lock is zero. The current instruc-
tion flag counter, flag, points to the lock of the instruction to issue
next.

When an instruction issues, the lock associated with the future
dependent instruction is incremented. The lock number, lllag, is
stored in the M-unit along with the rest of the state describing the
memory reference (M-unit) part of that instruction. Lflag indicates
which lock is to be decremented when the memory reference com-
pletes. Each time an instruction is issued from an i-stream, flag is
incremented mod 8. The i-stream is “mady” to issue if the lock
addressed by flag is zero.

The inputs to the i-stream selection mechanism are the bank-
free signals, the i-stream ready signals described above, and the
instruction-present signals. With its current definition, the selection
mechanism can be implcmcntcd entirely in combinatorial logic, as a
two-level, inverted binary tree. On one side, a register bank from
among the 16 possible banks is selected to issue an instruction. A
register bank is “ready”, i.e., is a candidate for this selection. only if
there is at least one i-stream in the bank that is ready to issue an
instruction and the bank is free. The bank-free bits for each register
bank are generated in parallel from the bank schedules. Similarly,
the ready bits for all the i-streams are produced in parallel by the loo-
kahead logic. Bank readiness is determined for all free banks in

NUW

Pl tag. Itlag (successful memory refcnna)
M unit 1

I

t cl Increment I

I tag (next to is& I I
1

parallel by OR-ing the i-stream ready bits in each bank. Bank selec-
tion is based on a “roving” round-robin algorithm, in which the
highest priority rotates among the banks. The round robin selector
determines the bank with the highest priority for issue each cycle.
With this scheme, the maximum possible delay between iustruction
issues from a bank with ready i-streams is 16 cycles.

The other side of the tree is the selection of an i-stream from a
bank. The same round-robin mechanism as in bank selection is used.
The choice of which i-stream will be issued next from each bank is
generated in parallel for each bank. The worst-case delay between
issues from a particular i-stream (assuming it is ready) is 8 bank
issue cycles; that is, 8 cycles in which some i-stream is selected from
the particular i-stream’s bank. The two sides of the tree are joined
by multiplexing down the tag of the chosen i-stream in the chosen
bank. This selection algorithm guarantees uniform treatment of
banks and of i-streams within a bank. Given the register banking
constraints. i-streams in lightly loaded banks will be favored for exe-
cution over those in heavily loaded banks. This natural priority may
be useful for run time scheduling of multiple priority tasks within a
processor.

3.6 Memorv Interface
The M-unit directs all memory references from the processor

into and out of the interconnection network. Memory requests are
generated from instructions, processed after returning successfully
from the network, reissued if unsuccessful, and rerouted if destined
for another node. (Instruction cache lines are not fetched through the
M-unit, since instructions do not travel through the network.) When
a load or store instruction is issued, the M-unit receives the tag and
flag (Figure 1) of the instruction from the I-stream Selection unit.
This information is saved in the M-unit state table, along with the
information about the request from the instruction.

The M-unit state table holds the following information: the
operation to be performed (opcode), the virtual memory address, the
tag and flag of instruction, destination register number, the 64-bit
datum, a timestamp, and a retry value. The flag of the instruction is
the address of the lock to decrement when the instruction completes.
Because the arrival of a successful response from memory is an
asynchronous event, some of the responses must be retained until the
datum can be written to the registers during a free register bank
cycle. Figure 4 shows a functional block diagram of the M-unit com-
ponents. The 16 queues, one per register bank, are used to buffer
completed memory requests until a register write can be performed.
When the register write occurs, the datum is written to the destina-
tion register of the appropriate i-stream register set (in the case Of a
load). For either a load or a store, the lock addressed by bag is
decremented, indicating completion of the instruction. Assuming

to ttctwork node from network node.

Bank register-
write. queuea

Filter

r Registers I

Figure 3. I-stream Lookahead Logic
M-unit inskuction execution

Figure 4. Memory Unit Network Interface

39

that each M-unit result register write queue is provided a unique data
path to the registers and the i-stream selection logic can support
parallel access to the locks, up to 16 M-unit result register writes
could be performed in any cycle.

If the instruction contains a synchronizing load or store (e.g.
wait-for-full), the M-unit must scheduIe a retry in the event of an
unsuccessful request. Simply re-trying every unsuccessful request
immediately might quickly flood the interconnection network with
requests that would likely be unsuccessful again. (Flow control
would limit the extent to which flooding will occur [3].) In addition
retries would cause interference with issue of newly-generated
requests from issued instructions since there is only a single port to
the network. Hence, some back-off policy will be adopted for retry
scheduling. Each successive unsuccessful attempt at a memory
access will result in a greater delay before another re-try is issued.
The back-off policy is further complicated by the possibility that a
message may be returned without ever having gained access to its
destination memory cell. Such is the case at “hot-spots” where bank
conflicts overflow queues at the memory banks. Randomization pol-
icies reduce the probability of memory bank conflicts; however, hot
spots will inevitably occur, whether because of poor programming
practices, algorithmic constraints, or “bad” statistical epochs. Conse-
quently, several classes of retry messages may be required.

The last responsibility of the M-unit is re-routing messages that
are not addressed to it. A message may be delivered to a processor it
is not intended for if there are no other links available for that mcs-
sage at the node [3]. Such a message is called a misroutcd message.
The M-unit must then turn the message around and re-issue it to the
network. The filters in Figure 4 perform this function.

As indicated in Figure 4. there are essentially two queues from
which messages arc inserted into the network. One queue contains
messages generated by newly issued instructions and the other con-
tains messages to be retried. An alternating scheduling mechanism
of memory references delivered into the network prevents starvation
of either queue. Misrouted messages must have priority over either
queue for injection into the network, since the processor has no
knowledge about nor any resexved storage for such messages. The
size of the issue queue is 1024, the maximum number of outstanding
memory rcfcrences allowed from the processor. To avoid deadlock,
the retry queue must also be length 1024.

4.1 Introduction
4. Unresolved Issues

As the processor architecture evolves, many new (not yet
resolved) issues are idcntilied. Some of these issues are implementa-
tion details which become more important in later stages of develop-
ment. However, there are important architectural topics which have
not been addressed in this paper but are noteworthy, nonetheless.
Instruction stream creation, traps and exceptions, and instruction
memory hierarchy are three such topics. The latter two are
addressed below.

4.2 Traos and Exceotions
It is an objective of the trap mechanism in the Horizon proces-

sor is to be as lightweight as possible, requiting no operating system
intervention. This means that enough information about the machine
state at the time of the trap should be accessible to the user to allow
identification of the cause and appropriate recovery. Moreover, the
integrity of the system must not be compromised by giving
unprivileged programs this level of access.

The proposed traps are listed in Table 1. Two levels of mask-
ing are provided to the user for maskable traps. Summary trap mask
bits are provided in the ISW for the countdown trap, branch trap, all
the floating point traps and access state violation traps so that they

Table 1. Traps

CLASS(‘) 1 TRAP DETECf7NG UN@’
m j Countdown Iselect
” 1 Hal-dwareError AIL
m Single Memory Error E.M
u Double Memory Emx E.M
u Memory Prote.ction Violation F.M
” Unimplemented Me.nory Address F.‘.M
m Access State Violation M
m Floating Point oveJllow AC

(1) m : a user-maskable lrap @ A : A-unit
U: ~JI unmaskable asp C: C-unit

M: M-unit
IF: Insbuction Fetch unit

can be manipulated easily inside target registers. For masking indi-
vidual types of floating point traps, access state violations, and olher
traps listed in Table 1, separate mask registers are accessible as part
of the processor state.

Because of the pipelined nature of the machine, all instructions,
once issued, flow completely through the functional units. When a
trap occurs, further instructions from the same i-stream may be
prcventcd from being issued. Some traps arc dctccted very early,
even before the offending instruction enters the pipeline. In this
case, the instruction(s) already in the pipeline may be completed
correctly. However, some traps are not dctcctcd until the offending
instruction has nearly completed and hence not in time to prevent
one or more a subscqucnt instruction(s) from being issued (if
allowed by lookahead). Depending on the nature of the trap, the
later instruction(s) are either completed correctly or else their sidc-
effects are. inhibited.

Two scenarios were considcrcd for gcncrating traps: trap on
gcneratc and trap on USC. In the latter scenario, if an error occurred
in an operation. the associated destination register would be poisoned
for future references, i.e., given a value that when encountered as an
operand in a subsequent instruction would cause a trap. This
approach has the property that traps are put off as long as possible
and in fact may never occur if the offending value is not re-used.
Such a scheme is useful for handling unsafe loads, where fetching an
operand at the end of a loop for the next iteration causes an invalid
address for the last iteration of the loop. Such an error could be
ignored if the destination rcgistcr is not subsequently read before
being written again with valid data. However, this mechanism is not
suflicicnt for operations that have no destination rcgistcr.
Specifically, a memory protection violation occurring on a store
operation has no destination register value to poison. Another argu-
ment in favor of a trap on generate scheme is that a “fatal” trap may
not be evidenced until much more (wasted) computation has been
done. The potentially large “distance” from the condition which
caused the trap to its detection makes debugging more difficult.
Conscqucntly, the trap on generate scenario was chosen.

40

4.3 Instruction Cache
One possible design for an instruction cache for the Horizon

processor is simply an instruction prefetch buffer. The buffer should
keep at least 6 lines for each active i-stream: one for the PC, one for
the PC incremented, and one for each of the 4 targets. When the PC
increments or a branch instruction is processed, the next instruction
is always ready in the buffer. When an event occurs that changes the
set of lines needed for a particular i-stream, the relevant lock is
incremented in the lookahead logic for that i-stream. The lock is
then decremented when the line is brought into the instruction buffer.
With this instruction prefetch mechanism, instruction issue latency is
only affected if the instruction prefetch time exceeds the minimum
time between successive issues from a single i-stream, which is
determined by the dependence on previous instructions and the
number of i-streams contending for issue slots.

5. Conclusions
The processor architecture described in this paper combines

three levels of parallelism, multiple instruction streams, instruction
lookahead, and horizontal instructions to achieve vector-like perfor-
mance on scalar code. The processor removes the burden of manag-
ing resources, hiding the pipeline and register read/write timing,
from the compiler, thereby greatly simplifying code generation.
Latencies caused by contention or synchronization through the
shared memory, creating serious performance degradation in most
machines, are effectively hidden by the processor. Each instruction
stream is served at at rate commensurate with average operation
latency, while the processor sustains a utilization (instructions issued
per cycle) approaching unity. There are, however, many unresolved
issues to be addressed. From early simulation studies and program-
ming experience on the Horizon simulator, it appears that the under-
lying processor architecture is well balanced and is capable of
achieving the targeted performance.

6. Acknowledgements
The authors gratefully acknowledge the contributions of the

architecture team at the Supercomputing Research Center, all of
whom share primary roles in the conceptual development and design
of Horizon: Paul B. S&neck, Chief Architect of Horizon at the SRC.
and James T. Kuehn, both of whom contributed to and provided con-
sultation for this writing, William E. Holmes, Daniel J. Kopetzky,
Fred A. More, and David L. Smitley. Steven Melvin is recognized
for the origination of the register banking scheme developed origi-
nally for the HEP-3. The authors also recognize all those in industry
and academia who contributed in no small part to the genesis and
evolution of the Horizon processor architecture.

7. References

VI M. Dubois, C. Scheurich. and F. A. Briggs, “Synchroniza-
tion, Coherence, and Event Ordering in Multiprocessors,”
IEEE Computer, Vol. 21, No. 2, February 1988, pp 9-21.

PI J. T. Kuehn and B. J. Smith, “The Horizon Supercomputing
System: Architecture and Software,” Supercomputing ‘88,
submitted for publication, 1988.

PI F. M. Pittelli and D. L. Smitley, “Analysis of a 3-D Toroidal
Network for a Shared Memory Architecture,” Supercomput-
ing ‘88, submitted for publication, 1988.

[41 B. J. Smith, “A Pipeliied Shared Resource MIMD Com-
puter,” 1978 International Conference on Parallel Process-
ing, 1978.

151 B. J. Smith, “The Horizon Instruction Set,” unpublished
note, Supcrcomputing Research Center, 1987.

161 J. Draper, “Compiling on Horizon,” Supercomputing ‘88,
submitted for publication, 1988.

[71 M. R. Thistle, “Floating Point Arithmetic on Horizon,” Inter-
nal Research Note, Supercomputing Research Center, 1988.

PI P. M. Kogge, The Architecture of Pipelined Computers,
McGraw-Hill, NY, 1981.

41

