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ABSTRACT 
Horizon is a scalable shared-memory Multiple Instruction 

stream - Multiple Data stream (MIMD) computer architecture 
independently under study at the Supercomputing Research Center 
(SRC) and Tera Computer Company. It is composed of a few hun- 
dred identical scalar processors and a comparable number of 
memories, sparsely embedded in a three-dimensional nearest- 
neighbor network Each processor has a horizontal instruction set 
that can issue up to three floating point operations per cycle without 
resorting to vector operations. Processors will each be capable of 
performing several hundred Million Roating Point Operations Per 
Second (PLOPS) in order to achieve an overall system performance 
target of 100 Billion (10”) PLOPS. 

This paper describes the architecture of the processor in the 
Horizon system. In the fashion of the Denelcor HEP. the processor 
maintains a variable number of Single Instruction stream - Single 
Data stream (SISD) processes, which are called instruction streams. 
Memory latency introduced by the large shared memory is hidden by 
switching context (instruction stream) each machine cycle. The pro- 
cessor functional units are pipelined to achieve high computational 
throughput rates; however, pipeline dcpcndcnccs are hidden from 
user code. Hardware mechanisms manage the resources to guarantee 
anonymity and independence of instruction streams. 

1. Introduction 
Over the last decade, supercomputer performance has risen by 

an order of magnitude. Machine cycle times of under 10 
nanoseconds have become commonplace. However, this perfor- 
mances comes with a cost. Maximum performance can only be 
achieved with heavily vectorized codes. In addition, these codes 
must be tuned precisely to the machine on which they will run in 
order to achieve this maximum performance, thereby thwarting any 
effort to generate portable programs. Although non-vectorizable 
problems may benefit from the scalar performance of supercomput- 
ers over that of the more general purpose minisupercomputers, they 
still do not utilize the full potential of the machine. Consequently, 
scalar speed is low. A fundamental limit for scalar performance is 
memory latency for large memories. The problem is exacerbated in 
multiple processor systems by the physical and logical nonlocality of 
memory with respect to a processor. Cacheing techniques have been 
developed to reduce effective memory latency; however, in shared 
memory systems, cache coherence is a significant problem [l]. 

The Horizon supercomputer is a shared memory, Multiple 
Instruction stream, Multiple Data stream (MIMD) system that 
bridges the gap between scalar and vector performance. Each pro- 
cessor in the multiple processor system uses internal multistream 
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parallelism to compensate for the latencies introduced by the large 
shared memory and the pipeline. The architecture of the processor in 
Horizon bears a strong resemblance to that of its predecessor: the 
Denelcor HEP. At the time of this writing, the SRC is completing a 
one-year study to demonstrate the feasibility of the Horizon architec- 
ture, its implementation, and its software approach. This paper 
describes the architecture of the Horizon processor and highlights 
many of the features which support the high performance targeted 
for the machine. Section 2 introduces the programmer’s model of 
the Horizon system and of the individual processors. The details of 
the architecture are discussed in Section 3, with some of the major 
unresolved issues in Section 4. 

2. Programmer Model 

2.1 Global Machine Model 
A Horizon machine consists of P processors, where P is 

currently defined in the range 256 to 1024, that share a memory with 
an address space of 248 bits. Memory is organized into 64-bits 
words and is addressed through 48-bit virtual bit addresses, the most 
significant 42 bits of which form the word address. Loads and stores 
fetch or store the 64-bit word that contains the bit that was 
addressed. Associated with each memory word is a six-bit access 
state composed of a full/empty bit, an indirect bit, and four trap bits 
numbered 0 to 3. These access state bits can modify the behavior of 
memory references to the associated location. All communication 
among processes in the machine is through the shared memory [2]. 
describes the options available for memory access. 

Processors and memory modules are spatially and logically dis- 
tributed throughout a multidimensional, nearest-neighbor, packet- 
switched interconnection network. Each processor is individually 
connected to one node in the network and sends data to or receives 
data from a memory module by via this node. The current design 
calls for a ratio of Ihe number of processors to memory modules 
from 1:l to 1:2. The response time of the memory request is a func- 
tion of the addressed module’s distance from the processor and the 
traflic in the network. Simulation indicates that average response 
times of 50-80 cycles are attainable in a system containing 256 pro- 
cessors and 512 memory modules, with nearly all responses avail- 
able within 128 cycles. Each machine cycle, the network is capable 
of receiving a message from every processor and memory module, 
and delivering a message to every processor and memory module. 
[3] describes the interconnection network for Horizon. 

2.2 Processor Model 
The Horizon processor manages a variable number of 

processes, as in the HEP architecture [4], called instruction streams 
(i-streams), each of which is an autonomous virtual processor with 
its own register set, program counter, and associated processor state. 
Each cycle, the processor issues the next instruction from an i-stream 
chosen from the set of active i-streams. Instructions from any single 
i-stream are executed in sequential order. Pipelining of instruction 
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execution is hidden from the user to avoid the complexity of manag- 
ing exposed pipelines. The maximum number of i-streams per pro- 
cessor is 128. There is no sharing of registers or other processor 
state between i-streams; the processor manages each i-stream’s state 
independently. 

The processor has three major execution units: the Memory 
unit (M-unit), Arithmetic unit (A-unit), and the Control unit (C-unit). 
The architecture is horizontal, a 64-bit instruction can initiate three 
operations, an M-unit operation (M-op), an A-unit operation (A-op), 
and a C-unit operation (C-op), through three independent fields in 
the instruction. Also part of each instruction is a lookahead tield that 
is used to control instruction overlap. The user-specified lookahead 
value in an instruction indicates the number of subsequent instruc- 
tions that may be issued without waiting for the completion of that 
instruction. 

M-ops include loads and stores. A load/store architecture was 
selected to maximize performance with high-bandwidth register 
operations. Shorter instructions, less hardware complexity, and 
better reuse of values are additional benefits of a load/store architec- 
ture. Arithmetic, logical, control, test, and miscellaneous operations 
are performed in the A-unit, C-unit, or both. [S] specifies the com- 
plete Horizon Instruction Set. 

Synchronization between instruction streams is performed 
through memory operations that use the full/empty bit in each 
memory cell. An instruction stream can suspend its execution or can 
be placed into execution by a single instruction. The allocation of 
instruction streams to processors is handled jointly by user code and 
the operating system. The operating system allocates instruction 
streams in response to a system call. Such a system call requires a 
significant amount of operating system code to be executed and is 
therefore used relatively infrequently. Thereafter, the user program 
activates the allocated instruction streams as they are needed. The 
activation of an i-stream is accomplished by a single instruction. 

Each of the M-, A-, and C- fields consists of an operation code 
(opcode) and the register operands to be used. An instruction may 
specify up to 7 register sources and 3 register destinations, or 8 
sources and 2 destinations for the execution unit operations. These 
registers are referred to symbolically as q. r. s, (M unit operation), t, 
u, v, w, (A unit operation), x, y, z. (C unit operation). Register q is 
either a source or a destination register for the M-unit operation, t is 
the destination register for the A-unit operation, and x is the destina- 
tion register for the C-unit operation. The other registers are sources. 
The number of register accesses for each instruction is an important 
parameter in the design and will be discussed later. The several 
dozen program fragments that have been written for Horizon confirm 
that the horizontal aspect of the instruction set is well balanced and 
not overly aggressive. From l-l/2 to 3 floating point operations per 
instruction have been achieved for the various test programs. A 
compiler for a small FORTRAN-like language was written to pm- 
vide data on the suitability of the Horizon instruction set for code. 
generation; this compiler has been successful in achieving high utili- 
zation of all three operation fields [6 1. 

The data formats supported include integer, floating point, bit 
vector, target, and pointer. Integers are signed, 64-bit two’s comple- 
ment values. Floating point numbers are also 64-bit quantities with a 
non-standard format, chosen for its dynamic range, compatibility 
with the integer format for common test and compare operations, and 
recoverability of results from operations that produce overflowed or 
underflowed results. The definition of the floating point format and 
the rules for floating point addition, multiplication, and other opera- 
tions are given in [7]. Pointers are 64-bit values containing a base 
address and several bits that control the synchronization, indirect 
addressing, and trapping properties of memory references, 

For each of the 128 possible i-streams in the processor, there 
are 32 64-bit general-purpose registers. The general-purpose aegis- 
ters can each hold integers, floating-point numbers, portions of bit 
vectors, targets, or pointers. There are four 64-bit target registers 
and one Instruction-stream Status Word (ISW). Target registers are 
used to specify potential branch target addresses. The ISW specifies 
the current Program Counter (PC) as well as the trap mask and con- 
dition vector. There is also a 1024-word processor constant table, a 
read-only table for commonly-used constants such as pi, e, and bit 
masks, that is shared among all i-streams in the processor. 

3.1 Introduction 
3. Processor Architecture 

Each Horizon processor has a pipelined architecture capable of 
sustaining a performance of 400 MFLOPS. The target machine 
cycle time is 4 nanoseconds. To achieve the targeted performance, 
Horizon embodies four levels of parallelism. At the top level is the 
MIMD model with several hundred processors. The next three levels 
are supported within the processor and include: pipelined MIMD 
instruction execution, that is concurrent execution of multiple 
instruction streams in a round-robin fashion; overlapped and 
pipelined execution of instructions within each stream; and horizon- 
tal instructions each performing multiple functions. Compilers have 
traditionally assumed the burden of managing the last two levels of 
parallelism. The targeted high performance is, in general, accom- 
plished by effectively managing the parallelism, i.e. rapidly switch- 
ing context in order to hide the memory latencies introduced by a 
large shared memory, including distance as well as contention and 
synchronization delays. 

The remainder of this paper describes the architecture of the 
Horizon processor and examines how the various levels of parallel- 
ism are implemented. An overview of the functional block level 
design will be presented, followed by detailed examinations of the 
important components of the processor architecture, namely, the 
register organization, instruction issue sequence, i-stream selection 
policy and mechanism, and memory interface. 

3.2 Functional Unit Model 
Each processor has seven main functional components: the 

three execution units - M. A, and C units; the Instruction Fetch and 
Issue unit, the I-stream Selection unit, the Instruction Cache and Pre- 
fetch unit, and the register set. Figure 1 shows the internal organiza- 
tion of a Horizon processor. The instruction execution logic is corn- 
pletely pipelined so that it can begin executing a new instruction 
every cycle. Each of the function units is pipelined and requires 
multiple cycles to complete each instruction. Pipeline lengths will 
be fixed and will appear identical for all instructions, regardless of 
their complexity. Fixed-length pipelines allow a simple scheme to 
be used for register scheduling. A variable pipeline length that 
dcpcnds on the complexity of the instruction being performed is also 
possible. This scheme adds complexity to i-stream scheduling and 
creates register bandwidth problems for simultaneous completion of 
instructions but reduces the number of i-streams needed to keep the 
machine busy. Implications of these alternatives will be discussed 
later. 

Every cycle, the i-stream selection logic selects an i-stream 
from which to issue the next instruction. The processor hardware 
and the compiler together must guarantee that an i-stream is eligible 
for selection only when all the flow and output dependences on pre- 
viously issued instructions have been satisfied (there are no control 
or antidependence problems with previously issued instructions), and 
the instruction has been prefetched into the instruction buffer. To 
simplify the instruction issue decision, it is convenient to arrange 
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Figure 1. Horizon Processor Functional Architecture 

pipeline lengths so that the earliest possible memory response (to the 
M-unit) is guaranteed to be later than responses from the other func- 
tion units (A- and C-units). The completion of an instruction is thus 
made equivalent to the receipt of a response from memory. If no 
memory operation is specified in the instruction, instruction comple- 
tion is signaled after the A- and C-units have completed. 

After an i-stream has been selected for issue, its next instmc- 
tion is issued to the execution units. Register operands are delivered 
to the execution units and execution begins. After a fixed delay, 
results from the A- and C- units are written back to the registers. 
Memory responses are essentially asynchronous events. Writing 
these results back to the registers will be discussed in the next sec- 
tiOIL 

Every cycle the machine context is switched to another i- 
stream. This technique hides latencies due to memory and network 
response times and full/empty synchronization delays. As long as 
there are enough i-streams in the system to fill the pipeline in each 
processor, the system utilization will approach unity. The result is 
that the pipeline becomes totally invisible to the programmer. 
Instructions in a single i-stream seem to complete prior to the issue 
of the next instruction. The programmer need not be concerned with 
the number of pipeline segments in each function unit. Thus, pipe- 
lined MIMD instruction execution uses parallelism to compensate 
for lack of locality, and improves the programmability of horizontal 
(as well as conventional) processors by concealing the pipeline. 

With 32 general-purpose registers, 4 target registers, 4 condi- 
tion codes, the i-stream status word, and other miscellaneous state, 
the amount of state associated with each i-stream is large. Rather 
than saving and restoring the state at each instruction cycle, the pro- 
cessor switches context to the appropriate i-stream state. This con- 
text switching technique, taken directly from the Denelcor HEP, first 
appeared in the Control Data 6600 Peripheral Processor unit as the 
“barrel” and also in the Texas Instruments ASC I/O processor. One 
set of control logic is time-multiplexed among multiple i-streams. 
Each i-stream is served at a rate commensurate with its memory 
latency (or some other limiting function) while the control circuitry 
and arithmetic pipelines operate at a much higher rate. The max- 
imum number of i-streams per processor 128. Technology con- 
siderations prevent it from being more than twice as large as this and 

64 is too few to ensure that enough i-streams are ready to execute, 
given the expected network latency. 

Because of the large number of i-streams in a processor, 
memory traffic generated by instruction fetch is considerable. There- 
fore access to instruction memory is made separate from data 
memory which is accessed by the processor through the interconncc- 
tion network. Distinct processor ports for data and instruction 
memory operations are provided. An additional benefit of a separate 
instruction memory, aside from the increased bandwidth available, is 
that instruction security (ability to execute but not read or write 
instructions) may be enhanced. Depending on the speed of insttuc- 
tion access, an instruction cache may or may not be needed. Instruc- 
tion cache issues arc addressed in Section 4. 

3.3 Register Organization 
Each processor has one set of 32 general-purpose registers allo- 

cated to each of its i-streams. Because the number of registers per i- 
stream multiplied by the number of i-streams is large, it is impracti- 
cal to implement the registers with individual latches or flip-flops. 
Instead, memory circuits must be used, thereby limiting the cycle 
time of the processor to some integral multiple of the register 
memory cycle time. This multiple depends on the number of register 
accesses in an instruction. Although it is possible to exchange space 
for time to some extent by implementing several copies of the regis- 
ters behind the scenes, this approach is costly for horizontal instruc- 
tions with many register references in each instruction. 

The processor can achieve one instruction issue per register 
memory cycle while allowing a large number of register accesses per 
instruction by partitioning the register memory into banks. All of the 
registers for a subset of the processor’s i-streams are resident in a 
single bank. In this scheme, an instruction reads and writes its regis- 
ters one after another, using several cycles of the register memory 
bank. Other instructions that were started in the immediate past are 
meanwhile reading and writing their own registers which are located 
in other register memory banks. An i-stream becomes a candidate 
for execution of its next instruction based not only on whether prior 
instructions have finished but also on whether its register bank is 
available. 

This register banking idea permits the implementation of a sin- 
gle register address space for each instruction rather than the frag- 
mented register address spaces found in conventional horizontal pro- 
cessor designs. In conjunction with pipelined MIMD instruction 
execution register banking thus solves a problem traditionally associ- 
ated with code generation for horizontal processors, namely the 
problem of deciding which registers should hold which values. This 
problem, together with the difficulty of managing an exposed pipe- 
line with mixed function unit latencies, is largely responsible for 
much of the bad reputation horizontal machines have as targets for 
compilers. 

The number of registers is a compromise stemming from the 
number of functional units, the number of source and destination 
registers needed by each function unit, the length of the instruction, 
and the register read/write bandwidth available. Each instruction 
contains up to ten references to registen requiring 50 bits of the 64- 
bit instruction to specify register names. The remaining 14 bits are 
used for the M-, A-, and C-unit opcodes and for the lookahead 
specification. Fewer registers, 16 for example, is not well-balanced 
with the number used in each instruction and would have led to 
under-utilized function units or worse -- register spills to memory. 
More registers, 64 for example, would have required too many bits 
(assuming fixed size instructions). Given a larger instruction width. 
64 registers might be desirable. 
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Because every Horizon instruction requires either eight register 
reads and two register writes or seven register reads and three regis- 
ter writes. the sequential register read/write schedule would cause a 
long instruction cycle. To ease this problem, an identical copy of 
each register bank is maintained. This allows simultaneous reads to 
each copy, resulting in two register reads per cycle. A register write 
places identical data in both bank copies in one cycle. Trading space 
for time in this way reduces the requirement from eight to four 
cycles of register reads per instruction. Up to three cycles of register 
writes for each instruction are required. 

With at most seven register cycles used by an instruction, at 
most seven register banks will be busy every cycle. Them should b-e 
enough banks compared to the number of register references in an 
instruction so that there are always i-streams available to execute. If 
there were on the average only one or two free register banks at any 
cycle, the number of i-streams needed to keep the processor busy 
would have to be fairly large compared to the number of banks, To 
ensure there will always be enough free banks with ready i-streams, 
the number of register banks currently being considered is 16. Each 
bank contains the general-purpose registers for 8 i-streams. 

This register organization requires a connection-intensive mul- 
tiplexing scheme to route register accesses from the execution units 
to the correct register banks. A good implementation of this scheme 
is critical in order to achieve reasonably short register access latency. 

3.4 Instruction Issue 
The instruction issue sequence in the Horizon processor 

requires register bank schedule management similar to the pipeline 
reservation tables described by [8]. Future register bank cycles are 
reserved by issuing instructions for reading and writing operands, 
thereby affecting issue eligibility of other i-streams with registers in 
the same register bank. This section describes how this scheduling is 
performed. 

When an instruction issues, four consecutive bank access 
cycles will be consumed reading up to eight source registers. During 
this time, no other instruction may issue from any i-stream whose 
registers are resident in that same bank. As the execution units 
receive their operands, their processing begins. There will be a fixed 
pipeline delay due to the processing time of the A- and C-units. As 
the results from each of the A- and C-units emerge from the pipe, 
they are written to the destination registers. Every cycle one instmc- 
tion will issue from an i-stream in a different register bank . Instruc- 
tion issue from a bank is allowed if the next four consecutive bank 
cycles are free (not previously rcservcd for register reads or writes). 
The pipeline schedule for a single instruction issue and execution 
sequence is illustrated in Figure 2. 

The successful completion of a memory rcferencc, unlike 
operations in the A- and C-units, is an asynchronous event. Memory 
references must traverse the interconnection network to reach the tar- 
get address and then return to the source processor. In addition, 
some memory references may not be satistied by the first access. For 
example, in a “wait-for-full-and-set-empty” load, unsuccessful 
attempts to read a full memory location require that the operation to 
be retried. Consequently, the register write resulting from a memory 
load cannot be scheduled at instruction issue time as are those for the 
results of the A- and C-units. 

As memory references arc completed, the information about 
that memory reference (i-stream number, destination register, 64bit 
datum, etc.) is enqueued in the M-unit. The M-unit must then steal a 
cycle from the appropriate register bank to write the datum to the 
destination register. A bank is considered free for an M-unit result 
register write if there is no activity scheduled for that cycle. Free 
bank cycles arise in one of two ways: (1) Future reserved cycles 
could have prohibited instruction issue from the bank leaving the 

next several cycles free. If the bank was eligible for instruction issue 
but was not selected, there would be at least one free cycle for a 
register write; (2) An issued instruction might not require all its 
register read and write slots, thereby leaving free bank cycles. 

Experience with the HEP [4] and initial simulation results indi- 
cate that a sufficient number of register write cycles are available to 
avoid starvation. However, to utilize all unused register slots, some 
decoding of the instruction must be done early. The register read 
and write cycles that are not needed must be known early enough to 
steal the free cycles for register writes. Timing is critical only for the 
first few register read cycles, since more than enough time is avail- 
able to determine the need for the A- and C-unit write cycles. 

3.5 Instruction Stream Selection 
The i-stream selection mechanism selects and issues an insttuc- 

tion every clock cycle, as long as there are i-streams ready to issue. 
This context switching mechanism is performed every cycle and is 
fundamental for the processor to achieve high performance in a 
shared memory environment. An i-stream is ready to issue if there 
are no dcpendences on previously-issued, unfinished instructions. 
These depcndences am indicated in the lookahead field of the assem- 
bly language instruction. The other factors which determine an i- 
stream’s issue eligibility are (1) whether the i-stream’s register bank 
is free for an instruction issue (described in the previous section), 
and (2) whether the next instruction is available. Every clock cycle, 
the selection mechanism chooses from among the instruction streams 
that are candidates for issue. A “fair” selection algorithm will help 
to ensure that issue starvation does not occur. Other selection 
mechanisms are being considered that impose issue priorities on 
streams; however, as yet, none have been formally defined. 

The mechanism that manages a stream’s dependence informa- 
tion is the lookahead logic. The lookahead value associated with an 
instruction indicates the number of subsequent instructions that may 
bc issued before it must complete. Instruction completion is dellned 
to be the completion of the memory operation; an instruction with no 
memory operation complctcs after the fixed delay of the pipeline. 
The lookahead logic allows instructions to overlap. Consider an 
instruction (i) containing a memory reference and a lookahead value 
of (L). Before instruction (i)‘s memory reference is complete, 
instructions (i+l) through (i+L) may issue. The lookahead field in 
an instruction is 3 bits wide; therefore. the maximum lookahead 
value is 7. Hence an i-stream may have a maximum of 8 instructions 
simultaneously executing. 

The maximum lookahead value is related to the instruction 
word size, the number of destination register references in an instruc- 
tion and to the size of an i-stream’s register set. With 32 registers 
and 3 destination registers per instruction, 24 registers would be 
reserved for 8 outstanding memory references (maximum lookahead 
value of 7). Since a nominal number of registers, say 8, will be live 
and unusable, a maximum lookahead of 7 seems reasonable. A max- 
imum lookahead of 15, however, would allow all registers to be 
reserved for memory reference returns. This change would have a 
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Figure 2. Instruction Execution Sequence 
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positive effect of reducing the number of i-streams required to keep 
the processor busy. since a greater memory latency could be 
tolerated by each i-stream. However, it has the negative effect of 
doubling the amount of state that must be kept by the M-unit for out- 
standiig memory references, as well as increasing the amount of 
logic required to manage the additional lookahead and increasing the 
instruction width. Perhaps more importantly, a greater maximum 
lookahead also tends to increase the statically scheduled parallelism 
needed within each instruction stream. Experience with simulation 
of application codes has not yet provided insight into the realizable 
benefit from an extended lookahead. 

The determination of whether an i-stream is a candidate for 
issue is performed by the lookahead logic. A functional block 
diagram of the lookahead mechanism and ready logic is shown in 
Figure 3. There are 8 locks per i-stream, each corresponding to one 
of 8 possible instructions awaiting completion. Since there are 128 
i-streams per processor, there are a total of 1024 locks in the proces- 
sor. This defines the maximum number of outstanding memory 
mfercnces allowed from the processor. The value of lock i indicates 
for how many previous instructions instruction i is waiting. An 
instruction may not issue until its lock is zero. The current instruc- 
tion flag counter, flag, points to the lock of the instruction to issue 
next. 

When an instruction issues, the lock associated with the future 
dependent instruction is incremented. The lock number, lllag, is 
stored in the M-unit along with the rest of the state describing the 
memory reference (M-unit) part of that instruction. Lflag indicates 
which lock is to be decremented when the memory reference com- 
pletes. Each time an instruction is issued from an i-stream, flag is 
incremented mod 8. The i-stream is “mady” to issue if the lock 
addressed by flag is zero. 

The inputs to the i-stream selection mechanism are the bank- 
free signals, the i-stream ready signals described above, and the 
instruction-present signals. With its current definition, the selection 
mechanism can be implcmcntcd entirely in combinatorial logic, as a 
two-level, inverted binary tree. On one side, a register bank from 
among the 16 possible banks is selected to issue an instruction. A 
register bank is “ready”, i.e., is a candidate for this selection. only if 
there is at least one i-stream in the bank that is ready to issue an 
instruction and the bank is free. The bank-free bits for each register 
bank are generated in parallel from the bank schedules. Similarly, 
the ready bits for all the i-streams are produced in parallel by the loo- 
kahead logic. Bank readiness is determined for all free banks in 
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parallel by OR-ing the i-stream ready bits in each bank. Bank selec- 
tion is based on a “roving” round-robin algorithm, in which the 
highest priority rotates among the banks. The round robin selector 
determines the bank with the highest priority for issue each cycle. 
With this scheme, the maximum possible delay between iustruction 
issues from a bank with ready i-streams is 16 cycles. 

The other side of the tree is the selection of an i-stream from a 
bank. The same round-robin mechanism as in bank selection is used. 
The choice of which i-stream will be issued next from each bank is 
generated in parallel for each bank. The worst-case delay between 
issues from a particular i-stream (assuming it is ready) is 8 bank 
issue cycles; that is, 8 cycles in which some i-stream is selected from 
the particular i-stream’s bank. The two sides of the tree are joined 
by multiplexing down the tag of the chosen i-stream in the chosen 
bank. This selection algorithm guarantees uniform treatment of 
banks and of i-streams within a bank. Given the register banking 
constraints. i-streams in lightly loaded banks will be favored for exe- 
cution over those in heavily loaded banks. This natural priority may 
be useful for run time scheduling of multiple priority tasks within a 
processor. 

3.6 Memorv Interface 
The M-unit directs all memory references from the processor 

into and out of the interconnection network. Memory requests are 
generated from instructions, processed after returning successfully 
from the network, reissued if unsuccessful, and rerouted if destined 
for another node. (Instruction cache lines are not fetched through the 
M-unit, since instructions do not travel through the network.) When 
a load or store instruction is issued, the M-unit receives the tag and 
flag (Figure 1) of the instruction from the I-stream Selection unit. 
This information is saved in the M-unit state table, along with the 
information about the request from the instruction. 

The M-unit state table holds the following information: the 
operation to be performed (opcode), the virtual memory address, the 
tag and flag of instruction, destination register number, the 64-bit 
datum, a timestamp, and a retry value. The flag of the instruction is 
the address of the lock to decrement when the instruction completes. 
Because the arrival of a successful response from memory is an 
asynchronous event, some of the responses must be retained until the 
datum can be written to the registers during a free register bank 
cycle. Figure 4 shows a functional block diagram of the M-unit com- 
ponents. The 16 queues, one per register bank, are used to buffer 
completed memory requests until a register write can be performed. 
When the register write occurs, the datum is written to the destina- 
tion register of the appropriate i-stream register set (in the case Of a 
load). For either a load or a store, the lock addressed by bag is 
decremented, indicating completion of the instruction. Assuming 
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Figure 3. I-stream Lookahead Logic 
M-unit inskuction execution 

Figure 4. Memory Unit Network Interface 
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that each M-unit result register write queue is provided a unique data 
path to the registers and the i-stream selection logic can support 
parallel access to the locks, up to 16 M-unit result register writes 
could be performed in any cycle. 

If the instruction contains a synchronizing load or store (e.g. 
wait-for-full), the M-unit must scheduIe a retry in the event of an 
unsuccessful request. Simply re-trying every unsuccessful request 
immediately might quickly flood the interconnection network with 
requests that would likely be unsuccessful again. (Flow control 
would limit the extent to which flooding will occur [3].) In addition 
retries would cause interference with issue of newly-generated 
requests from issued instructions since there is only a single port to 
the network. Hence, some back-off policy will be adopted for retry 
scheduling. Each successive unsuccessful attempt at a memory 
access will result in a greater delay before another re-try is issued. 
The back-off policy is further complicated by the possibility that a 
message may be returned without ever having gained access to its 
destination memory cell. Such is the case at “hot-spots” where bank 
conflicts overflow queues at the memory banks. Randomization pol- 
icies reduce the probability of memory bank conflicts; however, hot 
spots will inevitably occur, whether because of poor programming 
practices, algorithmic constraints, or “bad” statistical epochs. Conse- 
quently, several classes of retry messages may be required. 

The last responsibility of the M-unit is re-routing messages that 
are not addressed to it. A message may be delivered to a processor it 
is not intended for if there are no other links available for that mcs- 
sage at the node [3]. Such a message is called a misroutcd message. 
The M-unit must then turn the message around and re-issue it to the 
network. The filters in Figure 4 perform this function. 

As indicated in Figure 4. there are essentially two queues from 
which messages arc inserted into the network. One queue contains 
messages generated by newly issued instructions and the other con- 
tains messages to be retried. An alternating scheduling mechanism 
of memory references delivered into the network prevents starvation 
of either queue. Misrouted messages must have priority over either 
queue for injection into the network, since the processor has no 
knowledge about nor any resexved storage for such messages. The 
size of the issue queue is 1024, the maximum number of outstanding 
memory rcfcrences allowed from the processor. To avoid deadlock, 
the retry queue must also be length 1024. 

4.1 Introduction 
4. Unresolved Issues 

As the processor architecture evolves, many new (not yet 
resolved) issues are idcntilied. Some of these issues are implementa- 
tion details which become more important in later stages of develop- 
ment. However, there are important architectural topics which have 
not been addressed in this paper but are noteworthy, nonetheless. 
Instruction stream creation, traps and exceptions, and instruction 
memory hierarchy are three such topics. The latter two are 
addressed below. 

4.2 Traos and Exceotions 
It is an objective of the trap mechanism in the Horizon proces- 

sor is to be as lightweight as possible, requiting no operating system 
intervention. This means that enough information about the machine 
state at the time of the trap should be accessible to the user to allow 
identification of the cause and appropriate recovery. Moreover, the 
integrity of the system must not be compromised by giving 
unprivileged programs this level of access. 

The proposed traps are listed in Table 1. Two levels of mask- 
ing are provided to the user for maskable traps. Summary trap mask 
bits are provided in the ISW for the countdown trap, branch trap, all 
the floating point traps and access state violation traps so that they 

Table 1. Traps 

CLASS(‘) 1 TRAP DETECf7NG UN@’ 
m j Countdown Iselect 
” 1 Hal-dwareError AIL 
m Single Memory Error E.M 
u Double Memory Emx E.M 
u Memory Prote.ction Violation F.M 
” Unimplemented Me.nory Address F.‘.M 
m Access State Violation M 
m Floating Point oveJllow AC 

(1) m : a user-maskable lrap @ A : A-unit 
U: ~JI unmaskable asp C: C-unit 

M: M-unit 
IF: Insbuction Fetch unit 

can be manipulated easily inside target registers. For masking indi- 
vidual types of floating point traps, access state violations, and olher 
traps listed in Table 1, separate mask registers are accessible as part 
of the processor state. 

Because of the pipelined nature of the machine, all instructions, 
once issued, flow completely through the functional units. When a 
trap occurs, further instructions from the same i-stream may be 
prcventcd from being issued. Some traps arc dctccted very early, 
even before the offending instruction enters the pipeline. In this 
case, the instruction(s) already in the pipeline may be completed 
correctly. However, some traps are not dctcctcd until the offending 
instruction has nearly completed and hence not in time to prevent 
one or more a subscqucnt instruction(s) from being issued (if 
allowed by lookahead). Depending on the nature of the trap, the 
later instruction(s) are either completed correctly or else their sidc- 
effects are. inhibited. 

Two scenarios were considcrcd for gcncrating traps: trap on 
gcneratc and trap on USC. In the latter scenario, if an error occurred 
in an operation. the associated destination register would be poisoned 
for future references, i.e., given a value that when encountered as an 
operand in a subsequent instruction would cause a trap. This 
approach has the property that traps are put off as long as possible 
and in fact may never occur if the offending value is not re-used. 
Such a scheme is useful for handling unsafe loads, where fetching an 
operand at the end of a loop for the next iteration causes an invalid 
address for the last iteration of the loop. Such an error could be 
ignored if the destination rcgistcr is not subsequently read before 
being written again with valid data. However, this mechanism is not 
suflicicnt for operations that have no destination rcgistcr. 
Specifically, a memory protection violation occurring on a store 
operation has no destination register value to poison. Another argu- 
ment in favor of a trap on generate scheme is that a “fatal” trap may 
not be evidenced until much more (wasted) computation has been 
done. The potentially large “distance” from the condition which 
caused the trap to its detection makes debugging more difficult. 
Conscqucntly, the trap on generate scenario was chosen. 
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4.3 Instruction Cache 
One possible design for an instruction cache for the Horizon 

processor is simply an instruction prefetch buffer. The buffer should 
keep at least 6 lines for each active i-stream: one for the PC, one for 
the PC incremented, and one for each of the 4 targets. When the PC 
increments or a branch instruction is processed, the next instruction 
is always ready in the buffer. When an event occurs that changes the 
set of lines needed for a particular i-stream, the relevant lock is 
incremented in the lookahead logic for that i-stream. The lock is 
then decremented when the line is brought into the instruction buffer. 
With this instruction prefetch mechanism, instruction issue latency is 
only affected if the instruction prefetch time exceeds the minimum 
time between successive issues from a single i-stream, which is 
determined by the dependence on previous instructions and the 
number of i-streams contending for issue slots. 

5. Conclusions 
The processor architecture described in this paper combines 

three levels of parallelism, multiple instruction streams, instruction 
lookahead, and horizontal instructions to achieve vector-like perfor- 
mance on scalar code. The processor removes the burden of manag- 
ing resources, hiding the pipeline and register read/write timing, 
from the compiler, thereby greatly simplifying code generation. 
Latencies caused by contention or synchronization through the 
shared memory, creating serious performance degradation in most 
machines, are effectively hidden by the processor. Each instruction 
stream is served at at rate commensurate with average operation 
latency, while the processor sustains a utilization (instructions issued 
per cycle) approaching unity. There are, however, many unresolved 
issues to be addressed. From early simulation studies and program- 
ming experience on the Horizon simulator, it appears that the under- 
lying processor architecture is well balanced and is capable of 
achieving the targeted performance. 
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