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This paper describes the design goals, micro- 
architecture. and implementation of the microprogrammed 
processor for a compact high performance personal com- 

puter. This computer supports a range of high level tang 
uage environments and high bandwidth I/O devices. 

Besides the processor, it has a cache, a memory map, main 
storage, and an instruction fetch unit; these are described 
in other papers. The processor can be shared among 16 
microcoded tasks, performing microcode context switches 
on demand vviih essentially no overhead. Conditional 

branches are done without any lookahead or delay. Micro- 
instructions are fairly tightly encoded, and use an interes- 
ting variant on control lield sharing. The processor imple- 
ments a large number of internal registers, hardware 
stacks, a cyclic shifter/masker, and an arithmetic/logic 

unit, !ogether with external data paths for instruction 

fetching, memory interface, and l/O, in a compact, pipe- 
lined organization. 

The machine has a 50 ns microcyclc. and can execute a 
simple macroinstruction in one cycle: the available I/O 

bandwidth is 640 Mbits/set. The entire machine, including 
disk, display and network interfaces, is implemented with 
approximately 3000 MSI components, mostly ECI, 10K; the 
processor is about 35% of this. In addition there are up to 

-1 storage modules, each with about 300 16K or 64K RhMs 

and 200 ~1% components, for a total of 8 Mbytes. Several 

prototypes are currently running. 

1. Introduction 

The machine described in this paper, called the 
Dorado, was designed by and for the Computer Science 
Laboratory (CSL) of the Xerox Palo Alto Research Center. 
CSL has approximately forty people doing research in most 
areas of computer science, including VLSI design, comm- 
unications, programming systems, graphics and imaging, 
office automation, artificial intelligence, computational lin- 
guistics, and analysis of algorithms. There is a heavy em- 
phasis on building usable prototype systems, and many 

such systems, both hardware and software, have been 
developed over the last seven years. Most are part of a 
personal computing environment which is loosely coupled 
to other such environments, and to service facilities for 
storage and printing, by a high bandwidth communication 
network [8]. . 

The Dorado is intended to provide the hardware base 
for the next generation of system research in CSL. Earlier 
machines have limitations on virtual address size, real 
memory size, memory bandwidth, and processor speed 
that severely hamper our work. The size and speed of the 
Dorado minimize these limitations. 

The paper has seven sections. We begin by sketching 
the history of the machine’s development (5 2). Then we 
discuss the design goals for the Dorado (5 3). and explain 
how these goals and the available technology determine 
the high level processor architecture (!j 4). Next, we pre- 
sent the most important details of the processor 
architecture (9 5) and some interesting aspects of the im- 
plementation (Q 6). Final sections describe the machine’s 
performance and status (§ 7 and 8). 

2. History 

The Dorado is a descendant of a small personal 
computer called the Alto, which was designed and built as 
an experimental machine in CSL during 1973 [8]. The Alto 

was a fairly simple machine, but it had several features 
which turned out to be important: 

. a microprogrammed processor that is efficiently shar- 
ed among all the device controllers as well as the vir- 
tual machine interpreter; 

l a fairly high resolution display system that uses a full 
bitmap resident in the Alto main memory: 

l a device for pointing at images on the display; 
l an interface to a high bandwidth communication net- 

work. 

The microarchitecture allows all the device controllers 
to share the full power of the processor, rather than having 
independent access to the memory. As a result, controllers 
can be small, and yet the II0 interface provided to pro- 
grams can be powerful. This concept of processor sharing 
is fundamental to the Dorado as well, and is more fully 
explained in Section 4. 
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Although there are now hundreds of Altos at work 
within Xerox, and in early 1980 they still form the. hard- 
wart base for CSL, it was clear by 1976 that a large and 
rapidly increasing amount of effort was going into sur- 
mounting the Alto’s limitations of space and speed, rather 
than trying out research ideas in experimental systems. 
CSL therefore began to design a new machine aimed at 
relieving these burdens. During 1976 and 1977, design 
work on the Dorado proceeded in CSL and the System 
Development Department. Requirements and contribu- 
tions from parts of Xerox outside of CSL affected the 
design considerably, as did the tendency toward grandios- 
ity well known in follow-on systems. The memory band- 
width and processor throughput were substantially increas- 
ed. 

In 1977, implementation of the laboratory prototype 
for the Dorado began. The prototype packaging and a 
design automation system had already been implemented, 
and were used for constructing and debugging Dorado 
Model 0. A small team of people worked steadily on all 
aspects of the Dorado system until summer of 1978, when 
the prototype successfully ran all the Alto software. Dur- 
ing the summer and fall of 1978 we used the lessons learn- 
ed in debugging and microcoding the Model 0, together 
with the significant improvements in memory technology 
since the Model 0 design was frozen, to redesign and reim- 
plement nearly every section of the Dorado. We fixed 
some serious design errors and a number of annoyances to 
the microcoder, substantiaily expanded all the memories of 

the machine, and speeded up the basic cycle time, Dorado 
Model 1 came up in the spring of 1979. 

3. Goals 

This section of the paper describes the overall design 
goals for the Dorado. The high level architecture of the 
processor, described in the next section, follows from these 
goals and the characteristics of the avaiiable technology. 

The Dorado is intended to be a powerful but personal 
computing system. It supports a single user within a pro- 
gramming system which may extend from the micro- 
instruction level to a fully integrated programming envi- 
ronment for a high-level language ; programming at all 
levels must be relatively easy. The machine must be 
physically small and quiet enough to occupy space near its 
users in an office or laboratory setting, and inexpensive 
enough to be acquired in considerable numbers. These 
constraints on size, noise, and cost have a major effect on 
the design. 

In order for the Dorado to quickly become useful in 
the existing CSL environment, it must be compatible with 
the Alto software base. High-performance Alto emulation 
is not a requirement, however: since the existing software 
is also obsolescent and due to be replaced. the Dorado on- 
ly needs to run it somewhat faster than the Alto can. 
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Instead, the Dorado is optimized for the execution of 
languages that are compiled into a stream of byte codes; 
this execution is called emulation. Such byte code com- 
pilers exist for Mesa [3, 61, Interlisp [2, 71 and Smalltalk [4]. 
An instruction fetch unit (IFU) in the Dorado fetches bytes 
from such a stream, decodes them as instructions and op- 
erands, and provides the necessary control and data infor- 
mation to the processor; it is described in another paper 
[5]. Further support for this goal comes from a very fast 
microcycle, and a processor powerful enough to handle a 
simple macroinstruction in a single microinstruction. 
There is also a cache which has a latency of two cycles, 
and can deliver a word every cycle. The goal of fast exe- 
cution affects the choices of implementation technology, 
microstore organization, and pipeline organization. It also 
mandates a number of specific features, for example, 
stacks built with high speed memory, and hardware base 
registers for addressing software contexts. 

Another major goal for the Dorado is to support high- 
bandwidth input/output. In particular, color monitors, 
raster scanned printers, and high speed communications 
are all part of the research activities within CSL; one of 
these devices typically has a bandwidth of 20 to 400 
Mbits/second, Fast devices should not slow down the em- 
ulator too much, even though the two functions compete 
for many of the same resources. Relatively slow devices 
must also be supported, without tying up the high band- 
width I/O system. These considerations clearly suggest 
that I/O activity and emulation should proceed in parallel 
as much as possible. Also, it must be possible to integrate 
as yet undefined device controllers into the Dorado system 
in a relatively straightforward way. The memory system 
supports these requirements by allowing cache accesses 
and main storage references to proceed in parallel, and by 
fully segmented pipelining which allows a cache reference 
to start in every cycle, and a storage reference to start in 
every storage cycle; this system is described in another 

paper PI. 
Any system for experimental research should provide 

adequate resources at many levels. For the processor, this 
means plenty of high speed internal storage as well as 
ample speed. Hardware support for handling arbitrary bit 
strings, both large and small, is also necessary. 

4. High level architecture 

We now proceed to consider the major design deci- 
sions which shaped the Dorado processor. For the most 
part these were guided by the goals set out above, the 
available implementation technology, and our past exper- 
ience. In this section we stay at a high level, reserving the 
details of the architecture for the next. 

The Dorado fits into a very compact package, illustra- 
ted in figure la; a high-level block diagram is shown in 
tigure lb. Circuits are mounted on large, high density 
logic boards (288 logic packages/board). The boards slide 



horizontally into zero-insertion-force connectors mounted 
in dual backpanels (“sidepanels”); they are .625 inches 

apart. This density makes it possible to reconcile the goals 
of size and capability. Certain sacrifices are made, how- 
ever. For example, it is not possible to access every signal 
with a scope probe for debugging and maintenance. We 
make up for this by providing sophisticated debugging fa- 
cilities, diagnostics, and the ability to incrementally assem- 
ble and test a Dorado from rhe bottom up. 
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Most data paths are 16 bits wide. The relatively small 
busses, registers. data paths, and memories which result 
help to keep the machine compact. Packaging, however, is 
not the only consideration. CSL has a large class of appli- 
cations where doubling the data path width increases per- 
formance only a little, because some of the bits contain 
type codes, flags or whatever which must be examined 
before an entire datum can be processed. Speed dictates a 
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in the time domain tends to compensate for the lack of 
parallelism in the space domain. Keeping the machine 
physically small also improves the speed, since physical 
distance accounts for a considerable fraction of the basic 
cycle time. Finally, performance is often limited by the 
cache hit rate, which cannot bc improved, and may be re- 
duced, by wider data paths (if the number of bits in the 
cache is fixed). 

Rather than putting processing capability in each I/O 
controller and using a shared bus or a switch to access the 
memory, the Dorado shares the processor among all the 
I/O devices and the emulator. This fundamental concept 
of the architecture, which motivates much of the processor 
design, was first tried in the Alto. It works for two main 
reasons. 

’ Fir%, unless a system has both multiple memory bus- 
ses (i.e., multi-ported memories) and multiple mem- 
ory modules which can cycle independently, the main 
factor governing processor throughput is memory 
contention. Put simply, when l/O interfaces make 
memory references. the emulator ends up waiting for 
the memory. In this situation the processor might as 
well be working for the I/O device. 

’ Second. ichcn the processor is available to each dc- 
vice, complex device interfaces can be implemented 
with relatively little dedicated hardware, since most of 
the control does not have to be duplicated in each in- 
terface. For low bandwidth devices, the force of this 
argument is reduced by the availability of LSI control- 
ler chips, but for data rates above one megabiV 
second no such chips exist as yet, 

Of course, to make this sharing feasible, switching the pro- 
cessor must be nearly free of overhead, and devices must 
be able to make quick use of the processor resources avail- 
able to them. 

Many design decisions are based on the need for 
speed. Raw circuit speed is a beginning. Thus, the Dor- 
ado is implemented using the fastest commercially avail- 
able technology which has a reasonable level of integration 
and is not too hard to package. In 1976, the obvious 
choice was the ECL 10K family of circuits: probably it still 
is. Secondly, the processor is organized around two pipe- 
lines. One allows a microinstruction to be started in each 
cycle, though it takes three cycles to complete execution. 
Another allows a processor context switch in each cycle, 
though it takes two cycles to occur. Thirdly, independent 
busses communicate with the memory, IFU, and I/O sys- 
tems, so that the processor can both control and service 
them with minimal overhead. 

Finally, the design makes the processor both accessible 
and flexible for users at the microcode level, so that when 
new needs arise for fast primitives, they can easily be met 
by new microcode. In particular, the hardware eliminates 
constraints on microcode operations and sequencing often 
found in less powerful designs, e.g., delay in the delivery 
of intermediate results to registers or in calculating and 
using branch conditions, or pipeline delays that require 
padding of microinstruction sequences without useful 
work. We also included an ample supply of resources: 256 
general registers, four hardware stacks, a fast barrel shifter, 
and fully writeable microstore, to make the Dorado rea- 
sonably easy to microcode. 
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Figure 1 h: Dorado block diagram 
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5. Low level architecture 

This section describes in some detail the key ideas of 
the architecture. Implementation techniques and details 
are for the most part deferred to the next section; readers 
may want to jump ahead to see the application of these 
ideas in the processor. Along with each key idea is a ref- 
erencc to the places in the processor where it is used 

5.1 Tasks 

There are 16 priority levels associated with microcode 
execution. These levels are called microrasks. or simply 
tasks. Each task is normally associated with some hard- 
ware and microcode which together implement a device 
controller. The tasks have a fixed priority, from task 0 
(lowest) to task 35 (highest). Device hardware can request 
that the processor be switched to the associated task; such 
a wakeup rcquesr will be honored when no requests of 
higher priority are outstanding. The set of wakeup re- 
quests is arbitrated within the processor, and a task switch 
from one task to another occurs on demand. 

When a device acquires the processor (that is, the pro- 
cessor is running at the requested priority level and execu- 
ting the microcode for that task), the device will presum- 
ably receive service from its microcode. Eventually the 
microcode will block, thus relinquishing the processor to 
lower priority tasks until it next requires service. While a 
given task is running, it has the exclusive attention of the 
processor. This arrangment is similar in many ways to a 
conventional priority interrupt system. An important dif- 
ference is that the tasks are like coroutines or processes. 
rather than subroutines: when a task is awakened, it con- 
tinues execution at the point where it blocked, rqther than 
restarting at a fixed point. This ability to capture part of 
the state in the program counter is very powerful. 

Task 0 is not associated with a device controller; its 
microcode implements the emulators currently resident in 
the Dorado. Task 0 requests service from the processor at 
all times, but with the lowest priority. 

5.2 Task scheduling 

Whenever resources (in this case, the processor) 
multiplexed, context switching must only happen when 
state being temporarily abandoned can be restored. 
most multiplexed microcoded systems, this requires 

iii 
In 

the 

microcode itself to explicitly poll for requests, save and 
restore state, and initiate context switches. A certain 

amount of overhead results. Furthermore, the presence of 
a cache introduces large and unpredictable delays in the 
execution of microcode (because of misses). A polling sys: 
tern would leave the processor idle during these delays, 
even though the work of another task can usually proceed 
in parallel. To avoid these costs, the Dorado does task 

switching on demand of a higher priority device, much 
like a conventional interrupt system. That is, if a lower 
priority task is executing and a higher priority device re- 
quests a wakeup, the lower priority task will bc precmpred; 
the higher priority device will be serviced without the 
knowledge or consent of the currently active task. The 
polling overhead is absorbed by the hardware, which also 
becomes responsible for resuming a preempted task once 
the processor is relinquished by the higher priority device 

A controller will continue to request a wakeup until 
notified by the processor that it is about to receive service; 
it then removes the request, unless it needs more than one 
unit of service. When the microcode is done, it executes 
an operation called BLOCK which releases the processor. 
The effect is that requesting service is done explicitly by 
device controllers, but scheduling of a given task is invis- 
ible to the microcode (and nearly invisible to the device 
hardware). 

5.3 Task spec’ific state 

In order to allow the immediate task switching describ- 
ed above, the processor must be able to save and restore 
state within one microcycle. This is accomplished by kee- 
ping the vital state information throughout the processor 
not in a single rank of registers but in task specific reg 
isters. These are actually implemented with high speed 
memory that is addressed by a task number. Examples of 
task specific registers are the microcode program counter, 
the branch condition register, the microcode subroutine 
link register, the memory data register, and a temporary 
storage register for each task. The number of the task 
which will execute in the nexf microcycle is broadcast 
throughout the processor and used to address the task spe- 
cific registers. Thus, data can be fetched from the high 
speed task specific memories and be available for use in 
the next cycle. 

Not all registers are task specific. For example, 
COUNT and Q (described later) are normally used only by 
task 0. However, they can be used by other tasks if their 
contents are explicitly saved and restored after use. 

5.4 Pipelining 

There are two distinct pipelines in the Dorado 
processor. The main one fetches and executes micro- 
instructions. The other handles task switching, arbitrates 
wakeup requests, and broadcasts the next task number to 
the rest of the Dorado. Each structure is synchronous, and 
there is no waiting between stages. 

The instruction pipeline, illustrated in figure 2, re- 
quires three cycles (divided into six half cycles) to com- 
pletely execute a microinstruction. The first cycle is used 
to fetch it from microstore (time f.2 to f,J. The result of 
the fetch is loaded into the microinstruction register MIR at 
rO. The second cycle is split; in the first half, operand 
fetches (as dictated by the contents of MIR) are performed 
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and the results latched at rI in two registers (A and B) 

which form inputs to the next stage. In the second half 
cycle, the ALU operation is begun. It is completed in the 
first half cycle of cycle three, and the result is latched in 
register INSULT (at f,). The second half of cycle three (+ 
to f4) is used to load results from RESULT into operand 
registers. 

The figure also shows how the pipeline overlapping is 
achieved. A new microinstruction begins at every cycle 
time. The operand registers are used in the first half cycle 
of every cycle to fetch operands for the current instruction 
(during lo-/,). The second half of every cycle is used to 
store results for the previous instruction (during l,-Q. 

Figure 3 shows the task arbitration pipeline. This 
pipeline is two stages long, and also requires one cycle per 
stage. At the beginning of the pipeline (lo), wakeup re- 
quests from device controllers are latched into the 

WAKEUP register. During the first half cycle ($-11), arbi- 
tration is performed and the highest priority task dcterm- 
ined. During the second half cycle (f,-fJ, the micro- 
program address for the highest priority task is fetched 
from the task specific program counter TPC. The task 
number, its TPC, and the command to switch tasks (if the 
highest priority task is higher than the currently executing 
task) are loaded into registers at I?. In the second pipe 
cycle, the TPC is used to fetch the next microinstruction 
from the microstore, the entire processor uses the selected 
task number to fetch the appropriate ta;k specific infor- 
mation, and device controllers are told which task will 
have the processor next. Finally, at I, the task switch is 
complete, and the new task is in control of the processor: 
this time corresponds to lo of the first microinstruction exe- 
cuted by the new task. 
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5.5 i2licroinslrrrcilotl format 

One of the key decisions made in the design of any 
microprogrammed processor is the format and semantics 
of the microinstruction. The Dorado’s demand for com- 
pactness and power are at odds in this case. Compactness 
dictates that an csscntially vertical structure be used, with 
encoded fields specifying many functions in a few bits. 
The details of the microinstruction format appear in 0 6. 
The major features of interest here are the choice of suc- 
cessor instruction encoding, and the specification of a large 
number of functions which may be executed by the proc- 
essor. 

In a classical microprogrammed processor, each in- 
struction carries with it the address of its successor, NcxtPC: 
this address is latched with the rest of the instruction, and 
then used directly to address the microstore for fetching 
the next instruction. NCXPC may be modified by state 
within the processor duling execution, but the basic idea is 
that enough bits must be present in each microword to 
address the whole microstore. This results in a uniform 
structure for addressing, and allowS the next instruction 
fetch to proceed without any delay for decoding: it has the 
disadvantages of increasing the size and cost (and reducing 
the speed) of the microstore. The lack of any decoding 
time also makes it impossible to specify a subroutine re- 
turn or other major change in sequencing, and have it take 
effect immediately (branches can still use the scheme de- 
scribed below). 

The alternative, which we make use of in the Dorado, 
is to divide the microstore into pages, use a few bits to 
specify a next address within the current page, and have a 
rJ!ppe field which can specify branches, calls, returns, trans- 
fers to another page, or whatever. At the start of a micro- 
cycle, the processor decodes the type field and accesses 
other information (such as the current page number or the 
return link) to compute NCXK. In addition, some types 
cause side effects such as loading the return link. The net 
result is substantially fewer bits to control microsequencing 
than a horizontal scheme would require (in. the Dorado, 8 
bits instead of about 16). The disadvantages are, of course, 
the cost and time for decoding this field, and the addi- 
tional complexity of an assembler that can fit instructions 
onto pages appropriately. 

Conditional branching is always a problem with pipe- 
lined instruction execution. Many designs incorporate one 
of the following two schemes: both have drawbacks that 
we have avoided. The first requires that a branch be spe- 
cified one (or more) instructions before it is taken. Al- 
though this simplifies and speeds up the hardware, it 
imposes severe constraints on the microcode organization, 
and often forces extra instructions to be executed. The se- 
cond scheme detects the branch and inserts asynchronous 
delay or an extra cycle to allow time for the new instruc- 
tion to be fetched. This obviously slows down Qe ma- 
chine. 

Conditional branching in the Dorado is handled by 
allowing one of eight branch conditions to modify the low 
order bit of Ncxtl’C. This modification (Boolean or mto the 
low order bit) takes place about half way into the instruc- 
tion fetch cycle. The microstore is organized so that this 
bit does not change the chip address, but instead selects a 
diffcrcnt chip from a set of chips whose outputs are tied 
directly togcthcr. Since access time via the “chip select” is 
considerably faster than from the address, the late arriving 
branch condition does not increase the total cycle time. 
For this to work, the assembler must place each false 
branch target at an even address, and the corresponding 
true branch target at the next higher odd address. An 

annoying conscquencc is that several conditional branches 
cannot have the same target: when this case arises the tar- 
get must be duplicated. Everything has its price. 

Another tradeoff occurs in the mechanism for control- 
ling the functions of the processor at each microcycle. The 
Dorado encodes most of its operations (other than register 
selection, ALU operations, storing results, and memory ref- 
erences) in an tight bit fuac/io/l jXl called ~1.. This is 
quickly decoded at the beginning of e\vry microinstruction 
execution cycle (during tO-ll), and is used to invoke all of 
the less frcqucntly used operations that the processor can 
do: controlling the I/O busses, reading and setting state in 
the memory and IFU, extracting an arbitrary field from a 
word, reading and loading most registers, non-standard 
carry and shift operations, and loading values into small 
registers. FF can also serve as an eight bit constant or as 
part of a full microstore address. This encoding saves 
many bits in the microinstruction, at the expense of allow- 
ing only one FF-specified operation to be done in each 
cycle, even though the data paths exist for doing many 
such operations in parallel. 

5.6 Data bypassing 

Recall that a microinstruction is initiated at the begin- 
ning of every cycle, but takes one cycle for Instruction 
fetch, and two cycles for execution. If an instruction uses 
a result generated by its immediate predecessor, it needs to 
get that result from an operand register before the pre- 
decessor has actually delivered the result to that register. 
Rather than forbidding such use of results, or delaying 
execution until the register has been loaded, we solved this 
problem with a technique called bypassing. The hardware 
detects that an operand specified in the current instruction 
is actually the result of the previous instruction. Rather 
than obtaining the operand from the usual source in a 
RAIM, the processor takes it directly from the input to the 
RAM, which is the result of the previous instruction. Fig- 
ure 4 illustrates the scheme. This costs extra hardware for 
multiplexors and bypass detection logic, but the result is 
much smaller and faster microcode in many common 
cases. In the Model 0 Dorado, we omitted bypassing logic 
in a few places, and required the microcoder to avoid these 
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c‘ases. The result was a number of subtle bugs and a signi- 
ficant loss of performance. 

5.7 Memory delays 

Pipelining and bypassing are effective ways to reduce 
delay and increase tnroughput within the processor. Inter- 
actions with the memory, however, pose different prob- 
lems. Once a memory reference has been made, there 
must be some way to tell when the memory system has de- 
livered the requested data. Two simple techniques are to 
wait a fixed (unfortunately, maximum) amount of time 
before using the data, or to explicitly poll the memory sys- 
tem. Neither is satisfactory for a high performance ma- 
chine. First. the difference between the best case (cache 
hit) and the worst (cache miss plus memory system re- 
source contention) is more than an order of magnitude. 
Second, useful work can often be performed by a given 
task before it uses the requested memory data. Third, 
even if a given task must wait for memory data before it 
can proceed, higher priority tasks may very well be able to 
do useful work in the meantime. 

The Dorado manages this problem by making the 
memory keep track of when data is ready, and allowing 
the processor to continue executing instructions [l]. Only 
instructions which use memory data or start memory refer- 
ences can be affected by the state of the memory. When 
such an instruction is executed, the memory checks to see 
whether it can be allowed to proceed. If so, no action is 
taken. But if the memory is busy, or the data being used is 
not ready, the memory responds by activating the signal 
HOLD. The effect of HOLD is to srop any state changes 
specified by the current instruction. However, all the 
clocks in the system keep running. This is important, be- 
cause task switching must not be inhibited during memory 
delays. In effect, HOLD converts the currently executing 
instruction into a “no operation. jump to self’ instruction. 
If no task switch occurs, the instruction is executed again, 
and a new calculation is made to see whether it can pro- 
ceed. Meanwhile, the memory pipeline is running, and 
sooner or later, the need for HOLD will be gone as the 
pipeline progresses. 

Note that if a task switch occurs while an instruction is 
held, the state is such that the held instruction may simply 
be restarted when the lower priority task is resumed by the 
processor. Cycles which would otherwise be dead time are 
consumed instead by higher priority tasks doing useful 
work. 

5.8 Separare external inrerfaces 

If most macroinstructions (byte codes) are to execute 
in a small number of cycles. hardware must be provided to 
make communication among processor, IFU, and memory 
very quick in the common cases. The Dorado provides a 
number of data paths and control structures for this pur- 
pose, detailed in the block diagrams, figures 5 and 6. All 
the busses are a full word wide and can be accessed in one 
cycle or less. The B input to the ALU is extended to the re- 
mainder of the Dorado (except the I/O devices, which have 
their own busses) for the transfer of status and control be- 
tween the processor and the other subsystems. The mem- 
ory address bus is a copy of the A side ALU input. Mem- 
ory data comes directly inro the processor and is routed to 
a variety of destinations simultaneously, to make such 
operations as field manipulations and indirect addressing 
I&t. The IFU can directly supply operand data to the pro- 
cessor, and any microinstruction can specify that it is the 
last of a macroinstruction. in which case the successor ad- 
dress is supplied by the IFU. This requires a microstore 
address bus and operand data bus directly from the IFU to 
the processor. 

It is also desirable to make I/O transfers through the 
processor. To this end there is an I/O address and a data 
bus for direct access to I/O controllers. The data bus can 
transfer one word per cycle, or 320 hlbits/second, and 
both the memory reference and the I/O transfer can be 
specified in a single instruction, so that it is possible to 
move a sequence of words between the cache and a device 
at this rate. However, this subsystem is called the slow I/O 
system. There is also a more direct memory access I/O sub- 
system, the faw I/O system: it allows data to move directly 
between memory and I/O devices, in blocks of 16 words, 
without polluting the cache memory. Figure lb shows a 
display controller that LISCS both slow and fast I/O systems. 
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5.9 Consrants 

Notice that there is no source for 16 bit conslanfs with- 
in the processor. Such constants are necessary, particularly 
in device controller microcode where they often are used 
as commands. addresses, or literal data. It would be pos- 
sible to include a cotlslnnl box, addressed perhaps with an 
F+ function, as a source for constants. However, such a 
box would have a limited size and. *experience tells us, 
would not hold enough constants to satisfy a growing 
world. 

Fortunately, a large fraction of the constants used in 
microcoding are either small positive or small negative (2’s 
complement) integers, or sparsely populated bit vectors, 
with the property that one of the two eight bit fields in the 
constant is all zeroes or all ones. Thus a useful subset of 
constants can be specified using the eight bits of FF for 
one byte of the constant and two other bits to specify the 
other byte value and position. Using this technique, most 
16 bit constants can be specified in one microinstruction, 
and any constant can be assembled in two microinsuuc- 
tions. (The “other” two bits come from the BSclcct field in 
the microword.) 

6. Implementation 

In this section we describe, at the block diagram level, 
the actual implementation of the Dorado processor. There 
is only space to cover the most interesting points and to 
illustrate the key ideas from 0 5. 

6. I Clocks 

The Dorado has a fully synchronous clock system, with 
a clock rick every 25 nanoseconds (nominal). A cycle con- 
sists of two successive clock ticks: it begins on an even tick, 
which is followed by an odd tick, and completes coincident 
with the beginning of a new cycle on the next even tick. 
Even ticks may be labeled with names like I.,, 6, I,, l4 to 
denote events within a microinstrucrion execution or a 
pipeline, relative to some convenient origin. Odd ticks are 
similarly labeled t.l, 11, t3. 

6.2 The control section 

The processor can be divided into two distinct sections, 
called control and da/a. The control section fetches and 
broadcasts the microinstructions to the data section (and 
the remainder of the Dorado), handles task switching. 
maintains a subroutine link, and regulates the clock 
system. It also has an interface to a console and monitor- 
ing microcomputer which is used for initialization and de- 
bugging of the Dorado. Figure 5 is a block diagram of the 
control section. 

6.2. I Task pipeline 

The task pipeline consists of an assortment of registers 
and a priority encoder. All the registers are loaded on 
even clocks. Wakeup requests are latched at r0 in 
WAKEUP, one bit per task. READY has corresponding bits 
for preempted and explicitly readied tasks: a task can be 
explicitly made ready by a microcode function.. The re- 
quests in WAKEUP and KEAI>Y compete. The priority en- 
coder produces the number of the highest priority task, 
which is loaded into BcstNcxil‘ask and also used to read the 
TPC of this task into BcstNcxtPC; these registers are the 
interface between the two stages in this pipeline. The 
NEXT bus normally gets the larger of BestNextTask and 
Currcnifask. CurrcntTask is loaded from NEXT, and Prcvious- 

Task is loaded from Currcnil’ask. as the pipeline progresses. 
This method of priority scheduling means that once a 

task is initiated, it must explicitly relinquish the processor 
before a lower priority task can run. A bit ii-i the micro- 
word, BLOCK, is used to indicate that NEXT should get 
BestNcxtTask unconditionally (unless the instruction is held). 

Note that it takes a minimum of two cycles from the 
time a wakeup changes to the time this change can affect 
the running task (one for the priority encoding, one to 
5tch the microinstruction). This implies that a task must 
execute at least two microinstructions after its wakeup is 
removed before it blocks; otherwise it will continue to run, 
since the effects of its wakeup will not have been cleared 
from the pipe. The device cannot remove the wakeup un- 
til it knows that the task will run (by seeing its number on 
NEXT). Hence the earliest the wakeup can be removed is 
+, of the first instruction (NEXT has the task number in the 
previous cycle. and the wakeup is latched at fO); thus the 
grain of processor allocation is two cycles for a task waking 
up after a BLOCK. 

Some trouble was taken to keep the grain small, for 
the following reason. Since the memory is heavily pipe- 
lined and contains a cache which does not interact with 
high bandwidth I/O, the I/O microcode often needs to exe- 
cute only two instructions, in which a memory reference is 
started and a count is decremented. The processor can 
then be returned to another task. The maximum rate at 
which storage references can be made is one every eight 
cycles (this is the cycle time of the main storage RAMS). A 
two cycle grain thus allows the full memory bandwidth of 
640 Mbits/second to be delivered to I/O devices using only 
25% of the processor. 

A simpler design would require the microcode to ex- 
plicitly notify its device when the wakeup should be re- 
moved; it would then be unnecessary to broadcast NEXT to 
the devices. Since this notification could not be done ear- 
lier than the first instruction, however, the grain would be 
three cycles rather than two, and 37.5% of the processor 
would be needed to provide the full memory bandwidth. 
Other simplifications in the implementation would result 
from making the pipeline longer; in particular, since 
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squeezing he priority encodtng and reading of TPC into 
one cycle is quite difficult. these two operations could be 
more easily done in separate pipe stages. Again, however, 
this would increase the grain. 

6.2.2 Fetching microinstructions 

Refer to the right hand side of figure 5. At /,, of every 
instruction, the microinstruction register MIR is loaded 
from the outputs of IM, the microinstruction memory, and 
the CurrcntPC register is loaded with IMhddrcss. The NextPC 

is quickly calculated based on the Ncxfonrrol field in MIR, 
which encodes both the instruction type and some bits of 
NextPC: see figure 7 for details. This calculation produces 
Ihis’faskNcxrPC, so called because if a task switch occurs it 
is not used as the next IMAddrcss. Instead, the BcstNextPC 

computed in the task pipeline is used as IMhddress. 

WC is written with the previous value of ‘I‘hisTaskNcxtPC 

every cycle (at /J and read for the task in BcstNcxtTask 
every cycle as well. Thus. TPC is constantly recording the 
program counter value for the current task, and also con- 
stantly preparing the value for the next task in case there is 

a task switch. 

6.2.3 Misccllaneorrs fealures 

There is a task specific subroutine linkage register, 
LINK, shown in figure 5, which is loaded with CurrcntPC+ 1 
on every microcode call or return. Thus each task can 
have its own microcoded coroutines.’ LINK can also be 
loaded from a data bus, so that control can be sent to an 
arbitrary computed address: this allows a microprogram to 
implement a stack of subroutines, for example. In addi- 
tion to conditional branches, which select one of two 
NextPC values, there are also eight-way and 256-way dis- 
parches. which use a value on the B bus to select one of 
eight, or one of 256 NCXLPC values. 

There are data paths for reading and writing micro- 
store. Related paths allow reading and writing TPC. These 
paths (through the register TPIMOut) are folded into al- 
ready existing data paths in the control section and are 
somewhat tortuous, but they are used infrequently and 
hence have been optimized for space. In addition, another 
computer (either a separate microcomputer or an Alto) 
serves as the console processor for the Dorado; it is inter- 
faced via the CPREG and a very small number of control 
signals. 

6.3 The data section 

Figure 6 is a block diagram of the data section, which 
is organized around an arithmetic/logic unit (ALU) in the 

usual way. It implements most of the registers accessible 
to the programmer and the microcode functions for select- 
ing operands, doing operations in the ALU and shifter, and 
storing results. It also calculates branch conditions, de- 

codes hIlIt liclds and broadcasts dccodcd signals to the rest 

of the Dorado. supplies and accepts memory addresses and 

data, and supplies I/O data and addresses. 

6.3. I The microinstruction register 

MIR (which actually belongs to the control section) is 
34 bits wide and is panitioncd into the following fields: 

RAddrcss 4 

AI,UOP 4 

Bsclcc~ 3 

LoadControl 3 

ASclcct 3 

BLOCK 1 

t=F 8 
NcxtConrrol 8 

6.3.2 Busses 

Addresses the register bank RM. 
Selects the ALU operation or controls 
the shifter. 
Selects the source for the B bus, includ- 
ing constants. 
Controls loading of RM and T. 

Sclccts the source for the A bus, and 
starts memory references. 
Blocks an I/O task, selects a stack opera- 
tion for task 0. 
Catchall for specifying functions. 
Specifies how to compute NcxtPC. 

The major busses are A, B (ALU sources), RESULT, 

ExtcrnalB, MemAddrcss, IOAddrcss, lOData, IFUDaq and 
McmData. 

The ALU accepts two inputs (A and B) and produces 
one output (RESULT). The input busses have a variety of 
sources, as shown in the block diagram. RESULT usually 
gets the ALU output, but it is also sourced from seven 
other places, including a one bit shift in either direction of 
the ALU output. A copy of A is used for MemAddrcss; hV0 

copies of B are used for ExternalB and IOData. MemAddress 

provides a 16 bit displacement, which is added to a 28 bit 
base register in the memory system to form a virtual ad- 
dresses. ExrcrnalB is a copy of 1% which goes to the control, 

memory, and 1FU sections, and IOData is another copy 
which goes to the I/O system: the sources of B can thus be 
sent to the entire processor. Both are bidirectional and can 
serve as a source for data as well. lOAddress is driven from 

a task specific register; it specifies the particular device and 
register which should source or receive lOData. 

IFUData and MemData allow the processor to receive 

data from the IFU and memory in parallel with other data 
transfers. MemData has the value of the memory word 
most recently fetched by the current task; if the fetch is 
not complete, the current task is held when it tries to use 
MemData. IFUData has an operand of the current macro- 
instruction: as each operand is used, the IFU presents the 
next one on IFUData. 
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NextControl Instruction type ThisTaskNextPC 

01234567 CPC I CurrenlPC NC i Ne~tConlrol 

1 0 ADDRESS BITS Local Jump/Call CPC[2:9] NC[2:7] 811 15 to lsb 
I I I I I , , 

2345678 0 10 11 12 13 14 15 

1 1 ADDRESS BIT.5 Global Call CPC[2:3] NC(2:7] 000000 

2 3 4 5 6 7 8 9 10 11 I2 13 14 15 

3 0 0 0 ADDRESSBlTS Long Jump/Call CPC(2:3] FF[p:7] NC[4:7) 
I 

2345678 9 10 11 12 13 14 15 

R !I brmch 
3 ADDRESS BITS BRm.!CH Conditional II 1 l I I I I I 

CPC(2:9] NC(1:2] 0 NC[3:4] R 
I II I II cO”dmOn 

XWOX CONDITION Jump/Call 2345678 9 10 11 12 13 14 15 

0 1 RETURN 
FUNCTION 

1 1 1 Return I I8 I I t ,r, j, I ,,,I Link 2:15 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Q 0 I Nzt;ER 1 1 1 IFIJ Jump CPC[2:3] IFUAddre.s[4:13] I I NC[3:4] 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0001x111 undefined 

6.3.3 Registers 

Here is a list and brief description of registers seen by 
the microprogrammer. All are one word (16 bits) wide. 

RM: a bank of 256 general purpose registers: a register 
can be read onto A, B. or the shifter, and loaded from 
RESULT under the control of LoadControl. Normally, 
the same register is both read and loaded in a given 
microinstruction, but loading of a different register 
can be specified by FF. 

STACK: a memory addressed by the StackPtr register. A 
word can be read or written, and StackPtr adjusted up 
or down, in one microinstruction. If STACK is used in 
a microinstruction, it replaces any use of RM, and the 
RAddress field in the microword tells how much to in- 
crement or decrement StackPtr. The 256 word mem- 
ory is divided into four 64 word stacks, with indepen- 
dent underflow and overflow checking. 

T: a task specific register used for working storage; like 
RM, it can be read onto A. B, or the shifter, and load- 
ed from RESULT under the control of LoadControl. 

COUNT: a counter; it can be decremented and tested for 
zero in one microinstruction, using only the Next- 
Control or FF field. It is loaded from B or with small 
constants from FF. 

Q: a hardware aid for multiply and divide instructions: 
it can be read onto A or B, and loaded from n, and is 
automatically shifted in useful ways during multiply 
and divide step microinstructions. 

The registers in the next group vary in width. They 
are used as control or address registers, changed dynam- 
ically but infrequently by microcode. 

RBase: a task specific base register for RM. KM addres- 
sing requires eight bits. Four come from the RAddress 

field in the microword, and the other four are sup- 
plied from RBase. It is loaded from B or FF, and can 
be read onto RESULT. 

StackPtr: an eight-bit register used as a stack pointer. 
Two bits of StackPtr select a stack, and the least signi- 
ficant six bits a word in the stack. The latter bits are 
incremented or decremented under control of the 
RAddress field whenever a stack operation is specified. 

MemBasc: a task specific five-bit register which selects 
one of 32 base registers in the memory to be used for 
virtual address calculation. It is loaded from FF or 

from B, and can be loaded from the IFU at the start of 
a macroinstruction. 

ALUFM: a 16 word memory which maps the four-bit 
ALUOP field into the six bits required to control the 
ALU. 

IOAddress: a task specific register which drives the 
lOAddress bus, and is loaded by I/O microcode to spe- 
cify a device address for subsequent INPUT and 
OUTPUT operations. It may be loaded from B or FF. 
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6.3.4 The shifter 

The Dorado has a 32 bit barrel shifter for handling bit- 
aligned data. It takes 32 bits of input from I<M and ?‘, per- 
forms a left cycle of any number of bit positions, and 
places the result on A. The ALU output may be masked 
during a shift instruction, either with zeroes or with data 
from McmData. 

The shifter is controlled by a register called ShiftControl. 

To perform a shift operation, ShIftControl is loaded (in one 
of a variety of ways) with control information, and then 
one of a group of “shift and mask” micro-operations is ex- 
ecuted. 

6.4 Physical organization 

Once the goal of a physically small but powerful ma- 
chine was established, engineering design and material 
lead times forced us to develop the Dorado package before 
the logic design was completed, and the implementation 
then had to tit the package. The data section is partitioned 
onto two boards, eight bits on each: the boards are about 
70% identical. The control section divides naturally into 
one board consisting of all the IM chips (high speed 1K x 1 
bit ECL RAMS) and their associated address drivers, and a 
second board with the task switch pipeiine. NCXW logic, 
and LINK register. 

The sidepanel pins are distributed in clusters around 
the board edges to form the major busses. The remaining 
edge pins are used for point to point connections between 
two specific boards. The I/O busses go uniformly to all 

the I/O slots, but all the other boards occupy fixed slots 
specifically wired for their needs. Half the pins available 
on the sideplanes are grounded, but wire lengths are not 
controlled except in the clock distribution system, and no 
twisted pair is used in the machine except for distribution 
of one copy of the master clock to each board. 

We were very concerned throughout the design of 
Dorado to balance the pipelines so that no one pipe stage 
is significantly longer than the others. Furthermore, we 
worked hard to make the longest stage (which limits the 
speed of this fully synchronous machine) as short as pos- 
sible. The longest stage in the processor, as one might 
have predicted. is the IMAddrcss calculation and micro- 
instruction fetch in the control section. There is about a 
50 nanosecond limit. There are pipe stages of about the 
same length in the memory and IFU. 

We also worked hard to get the most out of the avaii- 
able real estate by hand tailoring the integrated circuit lay- 
out and component usage, and by incrementally adding 
function until nearly the entire board was in use. We also 
found that performance could be significantly improved by 
careful layout of critical paths for minimum loading and 
wiring delay. Although this was a very labor intensive op- 
eration, we believe it has paid off. 

7. Performance 

Four emulators have been implemented for the Dor- 
ado, interpretmg the Bcpl, Lisp, IMesa, and Smalltalk in- 
struction sets. A typical microinstruction sequence for a 
load or store instruction takes only one or two microin- 
structions in Mesa (or Bcpl), and five in Lisp. The Mesa 
opcode can sand a 16 bit word to or from memory in one 
microinstruction; Lisp deals with 32 bit items and keeps its 
stack in memory, so two loads and two stores are done in a 
basic data transfer operation. rMorc complex operations 
(such as read/write field or array element) take five to ten 
microinstructions in Mesa and ten to twenty in I..isp. Note 
that Lisp does runtime checking of parameters, while in 
Mesa most checking is done at compile time. Function 
calls take about 50 microinstructions for Mesa and 200 for 
Lisp. 

The Dorado supports raster scan displays which are re- 
freshed from a full birmap in main memory; this bitmap 
has one bit for each picture element (dot) on the screen, 
for a total of 5-l Mbits. A special operation called BifBlt 
(bit boundary block transfer) makes it easier to create and 
update bitmaps: for more information about BitBlt consult 
[9], where it is called RasrerOp. BitBlt makes extensive use 
of the shifting/masking capabilities of the processor, and 
attempts to prefetch data so that it will always be in the 
cache when needed. The Dorado’s BitBIt can move dis- 
play objects around in memory at 34 Mbits/set for simple 
cases like erasing or scrolling a screen. Xlore complex 
operations, where the result is a function of the source ob- 
ject, the destination object, and a filter, run at 24 Mbits/ 
sec. 

l/O devices with transfer rates up to 10 Mwords/sec 
are handled by the processor via the lOData and lOAddress 

busses. The microcode for the disk takes three micro- 
instructions to transfer two words in this way; thus the 10 
Mbit/set disk consumes 5% of the processor. Higher 
bandwidth devices use the fast I/O system, which does not 
interact with the cache. The fast I/O microcode for the dis- 
play takes only two instructions to transfer a 16 word block 
of data from memory to the device. This can consume the 
available memory bandwidth for I/O (640 Mbits/se(z) using 
only one quarter of the available microcycles (that is, two 
I/O instructions every eight cycles). 

Recall that the NextPC scheme (5 5.5 and 5 6.2.2) im- 
poses a rather complicated structure on the microstore, be- 
cause of the pages, the odd/even branch addresses, and 
the special subroutine call locations. We were concerned 
about the amount of microstore which might be wasted by 
automatic placement of instructions under all these con- 
straints. In fact, however, the automatic placer can use 
99.9% of the available memory when called upon to place 
an essentially full microstore. 
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The processor for the Model 1 Dorado has been in op- 
cration since winter of 1978-79. Several copies of the com- 
pletcd machine were dclivcred to users in CSI. during the 
summer and fill of 1979. We are converting the manu- 
factcrring technology for Dorado from the stitchweld 
boards used for the prototypes to MultiWire boards. 
Stitchwelding worked very well for jlrototypcs, but is too 
expensive for even modest quantities. Its major advan- 
tages arc.> packaging density and signal propagation charac- 
teristics very similar to those of the production technology, 
very rapid turnaround during development (three days for 
a complete 300~chip board, a few hours for a modest 
change). and complete compatibility with our design auto- 
mation system. 
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