
h Processor for a High-Performance Personal Computer

Butler W. Lampson nn3 Kenneth A. Pier

Xerox Research Center
3333 Coyote HiN Road

Palo Alto, Calfornia 94304

This paper describes the design goals, micro-
architecture. and implementation of the microprogrammed
processor for a compact high performance personal com-

puter. This computer supports a range of high level tang
uage environments and high bandwidth I/O devices.

Besides the processor, it has a cache, a memory map, main
storage, and an instruction fetch unit; these are described
in other papers. The processor can be shared among 16
microcoded tasks, performing microcode context switches
on demand vviih essentially no overhead. Conditional

branches are done without any lookahead or delay. Micro-
instructions are fairly tightly encoded, and use an interes-
ting variant on control lield sharing. The processor imple-
ments a large number of internal registers, hardware
stacks, a cyclic shifter/masker, and an arithmetic/logic

unit, !ogether with external data paths for instruction

fetching, memory interface, and l/O, in a compact, pipe-
lined organization.

The machine has a 50 ns microcyclc. and can execute a
simple macroinstruction in one cycle: the available I/O

bandwidth is 640 Mbits/set. The entire machine, including
disk, display and network interfaces, is implemented with
approximately 3000 MSI components, mostly ECI, 10K; the
processor is about 35% of this. In addition there are up to

-1 storage modules, each with about 300 16K or 64K RhMs

and 200 ~1% components, for a total of 8 Mbytes. Several

prototypes are currently running.

1. Introduction

The machine described in this paper, called the
Dorado, was designed by and for the Computer Science
Laboratory (CSL) of the Xerox Palo Alto Research Center.
CSL has approximately forty people doing research in most
areas of computer science, including VLSI design, comm-
unications, programming systems, graphics and imaging,
office automation, artificial intelligence, computational lin-
guistics, and analysis of algorithms. There is a heavy em-
phasis on building usable prototype systems, and many

such systems, both hardware and software, have been
developed over the last seven years. Most are part of a
personal computing environment which is loosely coupled
to other such environments, and to service facilities for
storage and printing, by a high bandwidth communication
network [8]. .

The Dorado is intended to provide the hardware base
for the next generation of system research in CSL. Earlier
machines have limitations on virtual address size, real
memory size, memory bandwidth, and processor speed
that severely hamper our work. The size and speed of the
Dorado minimize these limitations.

The paper has seven sections. We begin by sketching
the history of the machine’s development (5 2). Then we
discuss the design goals for the Dorado (5 3). and explain
how these goals and the available technology determine
the high level processor architecture (!j 4). Next, we pre-
sent the most important details of the processor
architecture (9 5) and some interesting aspects of the im-
plementation (Q 6). Final sections describe the machine’s
performance and status (§ 7 and 8).

2. History

The Dorado is a descendant of a small personal
computer called the Alto, which was designed and built as
an experimental machine in CSL during 1973 [8]. The Alto

was a fairly simple machine, but it had several features
which turned out to be important:

. a microprogrammed processor that is efficiently shar-
ed among all the device controllers as well as the vir-
tual machine interpreter;

l a fairly high resolution display system that uses a full
bitmap resident in the Alto main memory:

l a device for pointing at images on the display;
l an interface to a high bandwidth communication net-

work.

The microarchitecture allows all the device controllers
to share the full power of the processor, rather than having
independent access to the memory. As a result, controllers
can be small, and yet the II0 interface provided to pro-
grams can be powerful. This concept of processor sharing
is fundamental to the Dorado as well, and is more fully
explained in Section 4.

CH1494-4/80/0000-0146 $00.75 0 198OlIEEE Produced by scanning and OCR; there are errors.

180

Although there are now hundreds of Altos at work
within Xerox, and in early 1980 they still form the. hard-
wart base for CSL, it was clear by 1976 that a large and
rapidly increasing amount of effort was going into sur-
mounting the Alto’s limitations of space and speed, rather
than trying out research ideas in experimental systems.
CSL therefore began to design a new machine aimed at
relieving these burdens. During 1976 and 1977, design
work on the Dorado proceeded in CSL and the System
Development Department. Requirements and contribu-
tions from parts of Xerox outside of CSL affected the
design considerably, as did the tendency toward grandios-
ity well known in follow-on systems. The memory band-
width and processor throughput were substantially increas-
ed.

In 1977, implementation of the laboratory prototype
for the Dorado began. The prototype packaging and a
design automation system had already been implemented,
and were used for constructing and debugging Dorado
Model 0. A small team of people worked steadily on all
aspects of the Dorado system until summer of 1978, when
the prototype successfully ran all the Alto software. Dur-
ing the summer and fall of 1978 we used the lessons learn-
ed in debugging and microcoding the Model 0, together
with the significant improvements in memory technology
since the Model 0 design was frozen, to redesign and reim-
plement nearly every section of the Dorado. We fixed
some serious design errors and a number of annoyances to
the microcoder, substantiaily expanded all the memories of

the machine, and speeded up the basic cycle time, Dorado
Model 1 came up in the spring of 1979.

3. Goals

This section of the paper describes the overall design
goals for the Dorado. The high level architecture of the
processor, described in the next section, follows from these
goals and the characteristics of the avaiiable technology.

The Dorado is intended to be a powerful but personal
computing system. It supports a single user within a pro-
gramming system which may extend from the micro-
instruction level to a fully integrated programming envi-
ronment for a high-level language ; programming at all
levels must be relatively easy. The machine must be
physically small and quiet enough to occupy space near its
users in an office or laboratory setting, and inexpensive
enough to be acquired in considerable numbers. These
constraints on size, noise, and cost have a major effect on
the design.

In order for the Dorado to quickly become useful in
the existing CSL environment, it must be compatible with
the Alto software base. High-performance Alto emulation
is not a requirement, however: since the existing software
is also obsolescent and due to be replaced. the Dorado on-
ly needs to run it somewhat faster than the Alto can.

181

Instead, the Dorado is optimized for the execution of
languages that are compiled into a stream of byte codes;
this execution is called emulation. Such byte code com-
pilers exist for Mesa [3, 61, Interlisp [2, 71 and Smalltalk [4].
An instruction fetch unit (IFU) in the Dorado fetches bytes
from such a stream, decodes them as instructions and op-
erands, and provides the necessary control and data infor-
mation to the processor; it is described in another paper
[5]. Further support for this goal comes from a very fast
microcycle, and a processor powerful enough to handle a
simple macroinstruction in a single microinstruction.
There is also a cache which has a latency of two cycles,
and can deliver a word every cycle. The goal of fast exe-
cution affects the choices of implementation technology,
microstore organization, and pipeline organization. It also
mandates a number of specific features, for example,
stacks built with high speed memory, and hardware base
registers for addressing software contexts.

Another major goal for the Dorado is to support high-
bandwidth input/output. In particular, color monitors,
raster scanned printers, and high speed communications
are all part of the research activities within CSL; one of
these devices typically has a bandwidth of 20 to 400
Mbits/second, Fast devices should not slow down the em-
ulator too much, even though the two functions compete
for many of the same resources. Relatively slow devices
must also be supported, without tying up the high band-
width I/O system. These considerations clearly suggest
that I/O activity and emulation should proceed in parallel
as much as possible. Also, it must be possible to integrate
as yet undefined device controllers into the Dorado system
in a relatively straightforward way. The memory system
supports these requirements by allowing cache accesses
and main storage references to proceed in parallel, and by
fully segmented pipelining which allows a cache reference
to start in every cycle, and a storage reference to start in
every storage cycle; this system is described in another

paper PI.
Any system for experimental research should provide

adequate resources at many levels. For the processor, this
means plenty of high speed internal storage as well as
ample speed. Hardware support for handling arbitrary bit
strings, both large and small, is also necessary.

4. High level architecture

We now proceed to consider the major design deci-
sions which shaped the Dorado processor. For the most
part these were guided by the goals set out above, the
available implementation technology, and our past exper-
ience. In this section we stay at a high level, reserving the
details of the architecture for the next.

The Dorado fits into a very compact package, illustra-
ted in figure la; a high-level block diagram is shown in
tigure lb. Circuits are mounted on large, high density
logic boards (288 logic packages/board). The boards slide

horizontally into zero-insertion-force connectors mounted
in dual backpanels (“sidepanels”); they are .625 inches

apart. This density makes it possible to reconcile the goals
of size and capability. Certain sacrifices are made, how-
ever. For example, it is not possible to access every signal
with a scope probe for debugging and maintenance. We
make up for this by providing sophisticated debugging fa-
cilities, diagnostics, and the ability to incrementally assem-
ble and test a Dorado from rhe bottom up.

15.5 i in

I/O 1
I/O .625 in

-
-I/O

I/O

I/O

Display controller

Disk/Ethernet controller

Storage

Storage

Storage

Storage

Storage

Storage

Storage

Storage

Cache data, error corr.

Map and storage control

Memory addressing

Instruction fetch unit

Processor, high byte

Processor, low byte

Control section

Microinstruction memory

Baseboard

Power Supplies

-5 V x 250 A
-2 Vx 75 A

+5 Vx 70 A

+12 V x 25 A

I‘

-5

Front View

Most data paths are 16 bits wide. The relatively small
busses, registers. data paths, and memories which result
help to keep the machine compact. Packaging, however, is
not the only consideration. CSL has a large class of appli-
cations where doubling the data path width increases per-
formance only a little, because some of the bits contain
type codes, flags or whatever which must be examined
before an entire datum can be processed. Speed dictates a
heavily pipelined structure in any case, and this parallelism

Fan Fan -2

L
c’

I

Side Side
Panel Panel
Wiring Wiring

‘olt

k- 15 in.

Top View

llt

T
I.5 in.

/

3 in.

1
I.5 in.

L

Volt

Figure 1 a: Dorado chassis

182

in the time domain tends to compensate for the lack of
parallelism in the space domain. Keeping the machine
physically small also improves the speed, since physical
distance accounts for a considerable fraction of the basic
cycle time. Finally, performance is often limited by the
cache hit rate, which cannot bc improved, and may be re-
duced, by wider data paths (if the number of bits in the
cache is fixed).

Rather than putting processing capability in each I/O
controller and using a shared bus or a switch to access the
memory, the Dorado shares the processor among all the
I/O devices and the emulator. This fundamental concept
of the architecture, which motivates much of the processor
design, was first tried in the Alto. It works for two main
reasons.

’ Fir%, unless a system has both multiple memory bus-
ses (i.e., multi-ported memories) and multiple mem-
ory modules which can cycle independently, the main
factor governing processor throughput is memory
contention. Put simply, when l/O interfaces make
memory references. the emulator ends up waiting for
the memory. In this situation the processor might as
well be working for the I/O device.

’ Second. ichcn the processor is available to each dc-
vice, complex device interfaces can be implemented
with relatively little dedicated hardware, since most of
the control does not have to be duplicated in each in-
terface. For low bandwidth devices, the force of this
argument is reduced by the availability of LSI control-
ler chips, but for data rates above one megabiV
second no such chips exist as yet,

Of course, to make this sharing feasible, switching the pro-
cessor must be nearly free of overhead, and devices must
be able to make quick use of the processor resources avail-
able to them.

Many design decisions are based on the need for
speed. Raw circuit speed is a beginning. Thus, the Dor-
ado is implemented using the fastest commercially avail-
able technology which has a reasonable level of integration
and is not too hard to package. In 1976, the obvious
choice was the ECL 10K family of circuits: probably it still
is. Secondly, the processor is organized around two pipe-
lines. One allows a microinstruction to be started in each
cycle, though it takes three cycles to complete execution.
Another allows a processor context switch in each cycle,
though it takes two cycles to occur. Thirdly, independent
busses communicate with the memory, IFU, and I/O sys-
tems, so that the processor can both control and service
them with minimal overhead.

Finally, the design makes the processor both accessible
and flexible for users at the microcode level, so that when
new needs arise for fast primitives, they can easily be met
by new microcode. In particular, the hardware eliminates
constraints on microcode operations and sequencing often
found in less powerful designs, e.g., delay in the delivery
of intermediate results to registers or in calculating and
using branch conditions, or pipeline delays that require
padding of microinstruction sequences without useful
work. We also included an ample supply of resources: 256
general registers, four hardware stacks, a fast barrel shifter,
and fully writeable microstore, to make the Dorado rea-
sonably easy to microcode.

1-1 (320 Mbits/set 1 _ . I
Processor 16 bits150 ns r;acne

,.I, ,....a, I

Slow input/output 3M Mbits/set
16 bits/50 ns

Fast input/output 1.4 us access

Figure 1 h: Dorado block diagram

183

5. Low level architecture

This section describes in some detail the key ideas of
the architecture. Implementation techniques and details
are for the most part deferred to the next section; readers
may want to jump ahead to see the application of these
ideas in the processor. Along with each key idea is a ref-
erencc to the places in the processor where it is used

5.1 Tasks

There are 16 priority levels associated with microcode
execution. These levels are called microrasks. or simply
tasks. Each task is normally associated with some hard-
ware and microcode which together implement a device
controller. The tasks have a fixed priority, from task 0
(lowest) to task 35 (highest). Device hardware can request
that the processor be switched to the associated task; such
a wakeup rcquesr will be honored when no requests of
higher priority are outstanding. The set of wakeup re-
quests is arbitrated within the processor, and a task switch
from one task to another occurs on demand.

When a device acquires the processor (that is, the pro-
cessor is running at the requested priority level and execu-
ting the microcode for that task), the device will presum-
ably receive service from its microcode. Eventually the
microcode will block, thus relinquishing the processor to
lower priority tasks until it next requires service. While a
given task is running, it has the exclusive attention of the
processor. This arrangment is similar in many ways to a
conventional priority interrupt system. An important dif-
ference is that the tasks are like coroutines or processes.
rather than subroutines: when a task is awakened, it con-
tinues execution at the point where it blocked, rqther than
restarting at a fixed point. This ability to capture part of
the state in the program counter is very powerful.

Task 0 is not associated with a device controller; its
microcode implements the emulators currently resident in
the Dorado. Task 0 requests service from the processor at
all times, but with the lowest priority.

5.2 Task scheduling

Whenever resources (in this case, the processor)
multiplexed, context switching must only happen when
state being temporarily abandoned can be restored.
most multiplexed microcoded systems, this requires

iii
In

the

microcode itself to explicitly poll for requests, save and
restore state, and initiate context switches. A certain

amount of overhead results. Furthermore, the presence of
a cache introduces large and unpredictable delays in the
execution of microcode (because of misses). A polling sys:
tern would leave the processor idle during these delays,
even though the work of another task can usually proceed
in parallel. To avoid these costs, the Dorado does task

switching on demand of a higher priority device, much
like a conventional interrupt system. That is, if a lower
priority task is executing and a higher priority device re-
quests a wakeup, the lower priority task will bc precmpred;
the higher priority device will be serviced without the
knowledge or consent of the currently active task. The
polling overhead is absorbed by the hardware, which also
becomes responsible for resuming a preempted task once
the processor is relinquished by the higher priority device

A controller will continue to request a wakeup until
notified by the processor that it is about to receive service;
it then removes the request, unless it needs more than one
unit of service. When the microcode is done, it executes
an operation called BLOCK which releases the processor.
The effect is that requesting service is done explicitly by
device controllers, but scheduling of a given task is invis-
ible to the microcode (and nearly invisible to the device
hardware).

5.3 Task spec’ific state

In order to allow the immediate task switching describ-
ed above, the processor must be able to save and restore
state within one microcycle. This is accomplished by kee-
ping the vital state information throughout the processor
not in a single rank of registers but in task specific reg
isters. These are actually implemented with high speed
memory that is addressed by a task number. Examples of
task specific registers are the microcode program counter,
the branch condition register, the microcode subroutine
link register, the memory data register, and a temporary
storage register for each task. The number of the task
which will execute in the nexf microcycle is broadcast
throughout the processor and used to address the task spe-
cific registers. Thus, data can be fetched from the high
speed task specific memories and be available for use in
the next cycle.

Not all registers are task specific. For example,
COUNT and Q (described later) are normally used only by
task 0. However, they can be used by other tasks if their
contents are explicitly saved and restored after use.

5.4 Pipelining

There are two distinct pipelines in the Dorado
processor. The main one fetches and executes micro-
instructions. The other handles task switching, arbitrates
wakeup requests, and broadcasts the next task number to
the rest of the Dorado. Each structure is synchronous, and
there is no waiting between stages.

The instruction pipeline, illustrated in figure 2, re-
quires three cycles (divided into six half cycles) to com-
pletely execute a microinstruction. The first cycle is used
to fetch it from microstore (time f.2 to f,J. The result of
the fetch is loaded into the microinstruction register MIR at
rO. The second cycle is split; in the first half, operand
fetches (as dictated by the contents of MIR) are performed

184

and the results latched at rI in two registers (A and B)

which form inputs to the next stage. In the second half
cycle, the ALU operation is begun. It is completed in the
first half cycle of cycle three, and the result is latched in
register INSULT (at f,). The second half of cycle three (+
to f4) is used to load results from RESULT into operand
registers.

The figure also shows how the pipeline overlapping is
achieved. A new microinstruction begins at every cycle
time. The operand registers are used in the first half cycle
of every cycle to fetch operands for the current instruction
(during lo-/,). The second half of every cycle is used to
store results for the previous instruction (during l,-Q.

Figure 3 shows the task arbitration pipeline. This
pipeline is two stages long, and also requires one cycle per
stage. At the beginning of the pipeline (lo), wakeup re-
quests from device controllers are latched into the

WAKEUP register. During the first half cycle ($-11), arbi-
tration is performed and the highest priority task dcterm-
ined. During the second half cycle (f,-fJ, the micro-
program address for the highest priority task is fetched
from the task specific program counter TPC. The task
number, its TPC, and the command to switch tasks (if the
highest priority task is higher than the currently executing
task) are loaded into registers at I?. In the second pipe
cycle, the TPC is used to fetch the next microinstruction
from the microstore, the entire processor uses the selected
task number to fetch the appropriate ta;k specific infor-
mation, and device controllers are told which task will
have the processor next. Finally, at I, the task switch is
complete, and the new task is in control of the processor:
this time corresponds to lo of the first microinstruction exe-
cuted by the new task.

t-1

Instruction Pipeline

10 11 12 13 14

I I
--T - Y’

Fetch from

L
M

R
operand * A -* e

fnstruction memory + f -i fetch
operand result

s

R
modification 4 -a store

4-0 -a I”

- - -

fht cycle - second cycle L third cycle -

Timing Overlap

T.2 - T.1 -TO-Tl-T2-T3-14
T-2 - T.1 -TO-Tl-TZ-T3-T4

T.2 - T.1 -TO-Tl-T2-T3-T4
T.2 - T.1 -TO-Tl-TTZ-T3-T4

T-2 - T.1 -TO-Tl-T2-TJ--4
T-2 - T-1 -TO-TT(-T2-T3--4

Figure 2: Instruction pipeline and timing overlap

W Best

;:
fetch -

Next -a
fetch Next task specific state + Current

TPC fetch Next microinstruction State

e -& arbitrate Next

U requests TPC + Switch
Current

P Next Task
y Task + broadcast Next task

-1 -1
I, first cycle b second cycle

Figure 3: Task arbitration pipeline

185

5.5 i2licroinslrrrcilotl format

One of the key decisions made in the design of any
microprogrammed processor is the format and semantics
of the microinstruction. The Dorado’s demand for com-
pactness and power are at odds in this case. Compactness
dictates that an csscntially vertical structure be used, with
encoded fields specifying many functions in a few bits.
The details of the microinstruction format appear in 0 6.
The major features of interest here are the choice of suc-
cessor instruction encoding, and the specification of a large
number of functions which may be executed by the proc-
essor.

In a classical microprogrammed processor, each in-
struction carries with it the address of its successor, NcxtPC:
this address is latched with the rest of the instruction, and
then used directly to address the microstore for fetching
the next instruction. NCXPC may be modified by state
within the processor duling execution, but the basic idea is
that enough bits must be present in each microword to
address the whole microstore. This results in a uniform
structure for addressing, and allowS the next instruction
fetch to proceed without any delay for decoding: it has the
disadvantages of increasing the size and cost (and reducing
the speed) of the microstore. The lack of any decoding
time also makes it impossible to specify a subroutine re-
turn or other major change in sequencing, and have it take
effect immediately (branches can still use the scheme de-
scribed below).

The alternative, which we make use of in the Dorado,
is to divide the microstore into pages, use a few bits to
specify a next address within the current page, and have a
rJ!ppe field which can specify branches, calls, returns, trans-
fers to another page, or whatever. At the start of a micro-
cycle, the processor decodes the type field and accesses
other information (such as the current page number or the
return link) to compute NCXK. In addition, some types
cause side effects such as loading the return link. The net
result is substantially fewer bits to control microsequencing
than a horizontal scheme would require (in. the Dorado, 8
bits instead of about 16). The disadvantages are, of course,
the cost and time for decoding this field, and the addi-
tional complexity of an assembler that can fit instructions
onto pages appropriately.

Conditional branching is always a problem with pipe-
lined instruction execution. Many designs incorporate one
of the following two schemes: both have drawbacks that
we have avoided. The first requires that a branch be spe-
cified one (or more) instructions before it is taken. Al-
though this simplifies and speeds up the hardware, it
imposes severe constraints on the microcode organization,
and often forces extra instructions to be executed. The se-
cond scheme detects the branch and inserts asynchronous
delay or an extra cycle to allow time for the new instruc-
tion to be fetched. This obviously slows down Qe ma-
chine.

Conditional branching in the Dorado is handled by
allowing one of eight branch conditions to modify the low
order bit of Ncxtl’C. This modification (Boolean or mto the
low order bit) takes place about half way into the instruc-
tion fetch cycle. The microstore is organized so that this
bit does not change the chip address, but instead selects a
diffcrcnt chip from a set of chips whose outputs are tied
directly togcthcr. Since access time via the “chip select” is
considerably faster than from the address, the late arriving
branch condition does not increase the total cycle time.
For this to work, the assembler must place each false
branch target at an even address, and the corresponding
true branch target at the next higher odd address. An

annoying conscquencc is that several conditional branches
cannot have the same target: when this case arises the tar-
get must be duplicated. Everything has its price.

Another tradeoff occurs in the mechanism for control-
ling the functions of the processor at each microcycle. The
Dorado encodes most of its operations (other than register
selection, ALU operations, storing results, and memory ref-
erences) in an tight bit fuac/io/l jXl called ~1.. This is
quickly decoded at the beginning of e\vry microinstruction
execution cycle (during tO-ll), and is used to invoke all of
the less frcqucntly used operations that the processor can
do: controlling the I/O busses, reading and setting state in
the memory and IFU, extracting an arbitrary field from a
word, reading and loading most registers, non-standard
carry and shift operations, and loading values into small
registers. FF can also serve as an eight bit constant or as
part of a full microstore address. This encoding saves
many bits in the microinstruction, at the expense of allow-
ing only one FF-specified operation to be done in each
cycle, even though the data paths exist for doing many
such operations in parallel.

5.6 Data bypassing

Recall that a microinstruction is initiated at the begin-
ning of every cycle, but takes one cycle for Instruction
fetch, and two cycles for execution. If an instruction uses
a result generated by its immediate predecessor, it needs to
get that result from an operand register before the pre-
decessor has actually delivered the result to that register.
Rather than forbidding such use of results, or delaying
execution until the register has been loaded, we solved this
problem with a technique called bypassing. The hardware
detects that an operand specified in the current instruction
is actually the result of the previous instruction. Rather
than obtaining the operand from the usual source in a
RAIM, the processor takes it directly from the input to the
RAM, which is the result of the previous instruction. Fig-
ure 4 illustrates the scheme. This costs extra hardware for
multiplexors and bypass detection logic, but the result is
much smaller and faster microcode in many common
cases. In the Model 0 Dorado, we omitted bypassing logic
in a few places, and required the microcoder to avoid these

186

bypass path , operand fetch

>
>

R
e
s

r”
t

result
> store

memory

multlplexor switched if
Current Operand Address =

- Previous Result Address
normal path

Figure 4: Bypassmg example

c‘ases. The result was a number of subtle bugs and a signi-
ficant loss of performance.

5.7 Memory delays

Pipelining and bypassing are effective ways to reduce
delay and increase tnroughput within the processor. Inter-
actions with the memory, however, pose different prob-
lems. Once a memory reference has been made, there
must be some way to tell when the memory system has de-
livered the requested data. Two simple techniques are to
wait a fixed (unfortunately, maximum) amount of time
before using the data, or to explicitly poll the memory sys-
tem. Neither is satisfactory for a high performance ma-
chine. First. the difference between the best case (cache
hit) and the worst (cache miss plus memory system re-
source contention) is more than an order of magnitude.
Second, useful work can often be performed by a given
task before it uses the requested memory data. Third,
even if a given task must wait for memory data before it
can proceed, higher priority tasks may very well be able to
do useful work in the meantime.

The Dorado manages this problem by making the
memory keep track of when data is ready, and allowing
the processor to continue executing instructions [l]. Only
instructions which use memory data or start memory refer-
ences can be affected by the state of the memory. When
such an instruction is executed, the memory checks to see
whether it can be allowed to proceed. If so, no action is
taken. But if the memory is busy, or the data being used is
not ready, the memory responds by activating the signal
HOLD. The effect of HOLD is to srop any state changes
specified by the current instruction. However, all the
clocks in the system keep running. This is important, be-
cause task switching must not be inhibited during memory
delays. In effect, HOLD converts the currently executing
instruction into a “no operation. jump to self’ instruction.
If no task switch occurs, the instruction is executed again,
and a new calculation is made to see whether it can pro-
ceed. Meanwhile, the memory pipeline is running, and
sooner or later, the need for HOLD will be gone as the
pipeline progresses.

Note that if a task switch occurs while an instruction is
held, the state is such that the held instruction may simply
be restarted when the lower priority task is resumed by the
processor. Cycles which would otherwise be dead time are
consumed instead by higher priority tasks doing useful
work.

5.8 Separare external inrerfaces

If most macroinstructions (byte codes) are to execute
in a small number of cycles. hardware must be provided to
make communication among processor, IFU, and memory
very quick in the common cases. The Dorado provides a
number of data paths and control structures for this pur-
pose, detailed in the block diagrams, figures 5 and 6. All
the busses are a full word wide and can be accessed in one
cycle or less. The B input to the ALU is extended to the re-
mainder of the Dorado (except the I/O devices, which have
their own busses) for the transfer of status and control be-
tween the processor and the other subsystems. The mem-
ory address bus is a copy of the A side ALU input. Mem-
ory data comes directly inro the processor and is routed to
a variety of destinations simultaneously, to make such
operations as field manipulations and indirect addressing
I&t. The IFU can directly supply operand data to the pro-
cessor, and any microinstruction can specify that it is the
last of a macroinstruction. in which case the successor ad-
dress is supplied by the IFU. This requires a microstore
address bus and operand data bus directly from the IFU to
the processor.

It is also desirable to make I/O transfers through the
processor. To this end there is an I/O address and a data
bus for direct access to I/O controllers. The data bus can
transfer one word per cycle, or 320 hlbits/second, and
both the memory reference and the I/O transfer can be
specified in a single instruction, so that it is possible to
move a sequence of words between the cache and a device
at this rate. However, this subsystem is called the slow I/O
system. There is also a more direct memory access I/O sub-
system, the faw I/O system: it allows data to move directly
between memory and I/O devices, in blocks of 16 words,
without polluting the cache memory. Figure lb shows a
display controller that LISCS both slow and fast I/O systems.

187

5.9 Consrants

Notice that there is no source for 16 bit conslanfs with-
in the processor. Such constants are necessary, particularly
in device controller microcode where they often are used
as commands. addresses, or literal data. It would be pos-
sible to include a cotlslnnl box, addressed perhaps with an
F+ function, as a source for constants. However, such a
box would have a limited size and. *experience tells us,
would not hold enough constants to satisfy a growing
world.

Fortunately, a large fraction of the constants used in
microcoding are either small positive or small negative (2’s
complement) integers, or sparsely populated bit vectors,
with the property that one of the two eight bit fields in the
constant is all zeroes or all ones. Thus a useful subset of
constants can be specified using the eight bits of FF for
one byte of the constant and two other bits to specify the
other byte value and position. Using this technique, most
16 bit constants can be specified in one microinstruction,
and any constant can be assembled in two microinsuuc-
tions. (The “other” two bits come from the BSclcct field in
the microword.)

6. Implementation

In this section we describe, at the block diagram level,
the actual implementation of the Dorado processor. There
is only space to cover the most interesting points and to
illustrate the key ideas from 0 5.

6. I Clocks

The Dorado has a fully synchronous clock system, with
a clock rick every 25 nanoseconds (nominal). A cycle con-
sists of two successive clock ticks: it begins on an even tick,
which is followed by an odd tick, and completes coincident
with the beginning of a new cycle on the next even tick.
Even ticks may be labeled with names like I.,, 6, I,, l4 to
denote events within a microinstrucrion execution or a
pipeline, relative to some convenient origin. Odd ticks are
similarly labeled t.l, 11, t3.

6.2 The control section

The processor can be divided into two distinct sections,
called control and da/a. The control section fetches and
broadcasts the microinstructions to the data section (and
the remainder of the Dorado), handles task switching.
maintains a subroutine link, and regulates the clock
system. It also has an interface to a console and monitor-
ing microcomputer which is used for initialization and de-
bugging of the Dorado. Figure 5 is a block diagram of the
control section.

6.2. I Task pipeline

The task pipeline consists of an assortment of registers
and a priority encoder. All the registers are loaded on
even clocks. Wakeup requests are latched at r0 in
WAKEUP, one bit per task. READY has corresponding bits
for preempted and explicitly readied tasks: a task can be
explicitly made ready by a microcode function.. The re-
quests in WAKEUP and KEAI>Y compete. The priority en-
coder produces the number of the highest priority task,
which is loaded into BcstNcxil‘ask and also used to read the
TPC of this task into BcstNcxtPC; these registers are the
interface between the two stages in this pipeline. The
NEXT bus normally gets the larger of BestNextTask and
Currcnifask. CurrcntTask is loaded from NEXT, and Prcvious-

Task is loaded from Currcnil’ask. as the pipeline progresses.
This method of priority scheduling means that once a

task is initiated, it must explicitly relinquish the processor
before a lower priority task can run. A bit ii-i the micro-
word, BLOCK, is used to indicate that NEXT should get
BestNcxtTask unconditionally (unless the instruction is held).

Note that it takes a minimum of two cycles from the
time a wakeup changes to the time this change can affect
the running task (one for the priority encoding, one to
5tch the microinstruction). This implies that a task must
execute at least two microinstructions after its wakeup is
removed before it blocks; otherwise it will continue to run,
since the effects of its wakeup will not have been cleared
from the pipe. The device cannot remove the wakeup un-
til it knows that the task will run (by seeing its number on
NEXT). Hence the earliest the wakeup can be removed is
+, of the first instruction (NEXT has the task number in the
previous cycle. and the wakeup is latched at fO); thus the
grain of processor allocation is two cycles for a task waking
up after a BLOCK.

Some trouble was taken to keep the grain small, for
the following reason. Since the memory is heavily pipe-
lined and contains a cache which does not interact with
high bandwidth I/O, the I/O microcode often needs to exe-
cute only two instructions, in which a memory reference is
started and a count is decremented. The processor can
then be returned to another task. The maximum rate at
which storage references can be made is one every eight
cycles (this is the cycle time of the main storage RAMS). A
two cycle grain thus allows the full memory bandwidth of
640 Mbits/second to be delivered to I/O devices using only
25% of the processor.

A simpler design would require the microcode to ex-
plicitly notify its device when the wakeup should be re-
moved; it would then be unnecessary to broadcast NEXT to
the devices. Since this notification could not be done ear-
lier than the first instruction, however, the grain would be
three cycles rather than two, and 37.5% of the processor
would be needed to provide the full memory bandwidth.
Other simplifications in the implementation would result
from making the pipeline longer; in particular, since

188

1 RAddrf

MIR \,

!ss ALUOP BSelect LoadControl ASelect] Block 1 FFI NextContr. Yil
+ Currer

\1 l-i

ThisTaskNextPC

V’EJ
+

PEnc

,s!*
(StartCycl*)

7--

TPCAd

(StmtCycle) - k
4

TLinkAd

Control
Processor-

multiplexor

(1 multiplexor select signal

. task specific

RAddr).

(Readlht)

MAddress

wseCPReg) Y
External8

Figure 5: Control section

189

squeezing he priority encodtng and reading of TPC into
one cycle is quite difficult. these two operations could be
more easily done in separate pipe stages. Again, however,
this would increase the grain.

6.2.2 Fetching microinstructions

Refer to the right hand side of figure 5. At /,, of every
instruction, the microinstruction register MIR is loaded
from the outputs of IM, the microinstruction memory, and
the CurrcntPC register is loaded with IMhddrcss. The NextPC

is quickly calculated based on the Ncxfonrrol field in MIR,
which encodes both the instruction type and some bits of
NextPC: see figure 7 for details. This calculation produces
Ihis’faskNcxrPC, so called because if a task switch occurs it
is not used as the next IMAddrcss. Instead, the BcstNextPC

computed in the task pipeline is used as IMhddress.

WC is written with the previous value of ‘I‘hisTaskNcxtPC

every cycle (at /J and read for the task in BcstNcxtTask
every cycle as well. Thus. TPC is constantly recording the
program counter value for the current task, and also con-
stantly preparing the value for the next task in case there is

a task switch.

6.2.3 Misccllaneorrs fealures

There is a task specific subroutine linkage register,
LINK, shown in figure 5, which is loaded with CurrcntPC+ 1
on every microcode call or return. Thus each task can
have its own microcoded coroutines.’ LINK can also be
loaded from a data bus, so that control can be sent to an
arbitrary computed address: this allows a microprogram to
implement a stack of subroutines, for example. In addi-
tion to conditional branches, which select one of two
NextPC values, there are also eight-way and 256-way dis-
parches. which use a value on the B bus to select one of
eight, or one of 256 NCXLPC values.

There are data paths for reading and writing micro-
store. Related paths allow reading and writing TPC. These
paths (through the register TPIMOut) are folded into al-
ready existing data paths in the control section and are
somewhat tortuous, but they are used infrequently and
hence have been optimized for space. In addition, another
computer (either a separate microcomputer or an Alto)
serves as the console processor for the Dorado; it is inter-
faced via the CPREG and a very small number of control
signals.

6.3 The data section

Figure 6 is a block diagram of the data section, which
is organized around an arithmetic/logic unit (ALU) in the

usual way. It implements most of the registers accessible
to the programmer and the microcode functions for select-
ing operands, doing operations in the ALU and shifter, and
storing results. It also calculates branch conditions, de-

codes hIlIt liclds and broadcasts dccodcd signals to the rest

of the Dorado. supplies and accepts memory addresses and

data, and supplies I/O data and addresses.

6.3. I The microinstruction register

MIR (which actually belongs to the control section) is
34 bits wide and is panitioncd into the following fields:

RAddrcss 4

AI,UOP 4

Bsclcc~ 3

LoadControl 3

ASclcct 3

BLOCK 1

t=F 8
NcxtConrrol 8

6.3.2 Busses

Addresses the register bank RM.
Selects the ALU operation or controls
the shifter.
Selects the source for the B bus, includ-
ing constants.
Controls loading of RM and T.

Sclccts the source for the A bus, and
starts memory references.
Blocks an I/O task, selects a stack opera-
tion for task 0.
Catchall for specifying functions.
Specifies how to compute NcxtPC.

The major busses are A, B (ALU sources), RESULT,

ExtcrnalB, MemAddrcss, IOAddrcss, lOData, IFUDaq and
McmData.

The ALU accepts two inputs (A and B) and produces
one output (RESULT). The input busses have a variety of
sources, as shown in the block diagram. RESULT usually
gets the ALU output, but it is also sourced from seven
other places, including a one bit shift in either direction of
the ALU output. A copy of A is used for MemAddrcss; hV0

copies of B are used for ExternalB and IOData. MemAddress

provides a 16 bit displacement, which is added to a 28 bit
base register in the memory system to form a virtual ad-
dresses. ExrcrnalB is a copy of 1% which goes to the control,

memory, and 1FU sections, and IOData is another copy
which goes to the I/O system: the sources of B can thus be
sent to the entire processor. Both are bidirectional and can
serve as a source for data as well. lOAddress is driven from

a task specific register; it specifies the particular device and
register which should source or receive lOData.

IFUData and MemData allow the processor to receive

data from the IFU and memory in parallel with other data
transfers. MemData has the value of the memory word
most recently fetched by the current task; if the fetch is
not complete, the current task is held when it tries to use
MemData. IFUData has an operand of the current macro-
instruction: as each operand is used, the IFU presents the
next one on IFUData.

190

MemDala (MD) data from I
4 rnec”nr\’ “VU,

Adder.
address to

+ memory

lOAddress

COUNT

FF,n

Ll
small
constant

(FF. mask)

../ MemB

1 SHC L
MO

+- RESULT Al II .
ALU LSll I .

A, II FISH 1 .
h

I ~Co”“o’~~STACK~(bvpass)

ALU

:F t

B

FF .n

u
constant

control,
memory,
IFLJ

RESULT

LLalches lollow tloQlslers Latches IOllOw Oata ready Uala ready
from 12 10 I3 lwd 0113 horn I1 lo 12 Shoruy aller 11 Shortly blare 13

RAMS read
al Il. lOad 8114

--El register or memory =!I multiplexor latch ,- main bus (B, RESULT, MemOata, lOData)

(conlrol) = other 16 bit path

4 latch multiplexor narrower data path

(conm) . task specific

Figure 6: Data section

191

NextControl Instruction type ThisTaskNextPC

01234567 CPC I CurrenlPC NC i Ne~tConlrol

1 0 ADDRESS BITS Local Jump/Call CPC[2:9] NC[2:7] 811 15 to lsb
I I I I I , ,

2345678 0 10 11 12 13 14 15

1 1 ADDRESS BIT.5 Global Call CPC[2:3] NC(2:7] 000000

2 3 4 5 6 7 8 9 10 11 I2 13 14 15

3 0 0 0 ADDRESSBlTS Long Jump/Call CPC(2:3] FF[p:7] NC[4:7)
I

2345678 9 10 11 12 13 14 15

R !I brmch
3 ADDRESS BITS BRm.!CH Conditional II 1 l I I I I I

CPC(2:9] NC(1:2] 0 NC[3:4] R
I II I II cO”dmOn

XWOX CONDITION Jump/Call 2345678 9 10 11 12 13 14 15

0 1 RETURN
FUNCTION

1 1 1 Return I I8 I I t ,r, j, I ,,,I Link 2:15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q 0 I Nzt;ER 1 1 1 IFIJ Jump CPC[2:3] IFUAddre.s[4:13] I I NC[3:4]

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0001x111 undefined

6.3.3 Registers

Here is a list and brief description of registers seen by
the microprogrammer. All are one word (16 bits) wide.

RM: a bank of 256 general purpose registers: a register
can be read onto A, B. or the shifter, and loaded from
RESULT under the control of LoadControl. Normally,
the same register is both read and loaded in a given
microinstruction, but loading of a different register
can be specified by FF.

STACK: a memory addressed by the StackPtr register. A
word can be read or written, and StackPtr adjusted up
or down, in one microinstruction. If STACK is used in
a microinstruction, it replaces any use of RM, and the
RAddress field in the microword tells how much to in-
crement or decrement StackPtr. The 256 word mem-
ory is divided into four 64 word stacks, with indepen-
dent underflow and overflow checking.

T: a task specific register used for working storage; like
RM, it can be read onto A. B, or the shifter, and load-
ed from RESULT under the control of LoadControl.

COUNT: a counter; it can be decremented and tested for
zero in one microinstruction, using only the Next-
Control or FF field. It is loaded from B or with small
constants from FF.

Q: a hardware aid for multiply and divide instructions:
it can be read onto A or B, and loaded from n, and is
automatically shifted in useful ways during multiply
and divide step microinstructions.

The registers in the next group vary in width. They
are used as control or address registers, changed dynam-
ically but infrequently by microcode.

RBase: a task specific base register for RM. KM addres-
sing requires eight bits. Four come from the RAddress

field in the microword, and the other four are sup-
plied from RBase. It is loaded from B or FF, and can
be read onto RESULT.

StackPtr: an eight-bit register used as a stack pointer.
Two bits of StackPtr select a stack, and the least signi-
ficant six bits a word in the stack. The latter bits are
incremented or decremented under control of the
RAddress field whenever a stack operation is specified.

MemBasc: a task specific five-bit register which selects
one of 32 base registers in the memory to be used for
virtual address calculation. It is loaded from FF or

from B, and can be loaded from the IFU at the start of
a macroinstruction.

ALUFM: a 16 word memory which maps the four-bit
ALUOP field into the six bits required to control the
ALU.

IOAddress: a task specific register which drives the
lOAddress bus, and is loaded by I/O microcode to spe-
cify a device address for subsequent INPUT and
OUTPUT operations. It may be loaded from B or FF.

192

6.3.4 The shifter

The Dorado has a 32 bit barrel shifter for handling bit-
aligned data. It takes 32 bits of input from I<M and ?‘, per-
forms a left cycle of any number of bit positions, and
places the result on A. The ALU output may be masked
during a shift instruction, either with zeroes or with data
from McmData.

The shifter is controlled by a register called ShiftControl.

To perform a shift operation, ShIftControl is loaded (in one
of a variety of ways) with control information, and then
one of a group of “shift and mask” micro-operations is ex-
ecuted.

6.4 Physical organization

Once the goal of a physically small but powerful ma-
chine was established, engineering design and material
lead times forced us to develop the Dorado package before
the logic design was completed, and the implementation
then had to tit the package. The data section is partitioned
onto two boards, eight bits on each: the boards are about
70% identical. The control section divides naturally into
one board consisting of all the IM chips (high speed 1K x 1
bit ECL RAMS) and their associated address drivers, and a
second board with the task switch pipeiine. NCXW logic,
and LINK register.

The sidepanel pins are distributed in clusters around
the board edges to form the major busses. The remaining
edge pins are used for point to point connections between
two specific boards. The I/O busses go uniformly to all

the I/O slots, but all the other boards occupy fixed slots
specifically wired for their needs. Half the pins available
on the sideplanes are grounded, but wire lengths are not
controlled except in the clock distribution system, and no
twisted pair is used in the machine except for distribution
of one copy of the master clock to each board.

We were very concerned throughout the design of
Dorado to balance the pipelines so that no one pipe stage
is significantly longer than the others. Furthermore, we
worked hard to make the longest stage (which limits the
speed of this fully synchronous machine) as short as pos-
sible. The longest stage in the processor, as one might
have predicted. is the IMAddrcss calculation and micro-
instruction fetch in the control section. There is about a
50 nanosecond limit. There are pipe stages of about the
same length in the memory and IFU.

We also worked hard to get the most out of the avaii-
able real estate by hand tailoring the integrated circuit lay-
out and component usage, and by incrementally adding
function until nearly the entire board was in use. We also
found that performance could be significantly improved by
careful layout of critical paths for minimum loading and
wiring delay. Although this was a very labor intensive op-
eration, we believe it has paid off.

7. Performance

Four emulators have been implemented for the Dor-
ado, interpretmg the Bcpl, Lisp, IMesa, and Smalltalk in-
struction sets. A typical microinstruction sequence for a
load or store instruction takes only one or two microin-
structions in Mesa (or Bcpl), and five in Lisp. The Mesa
opcode can sand a 16 bit word to or from memory in one
microinstruction; Lisp deals with 32 bit items and keeps its
stack in memory, so two loads and two stores are done in a
basic data transfer operation. rMorc complex operations
(such as read/write field or array element) take five to ten
microinstructions in Mesa and ten to twenty in I..isp. Note
that Lisp does runtime checking of parameters, while in
Mesa most checking is done at compile time. Function
calls take about 50 microinstructions for Mesa and 200 for
Lisp.

The Dorado supports raster scan displays which are re-
freshed from a full birmap in main memory; this bitmap
has one bit for each picture element (dot) on the screen,
for a total of 5-l Mbits. A special operation called BifBlt
(bit boundary block transfer) makes it easier to create and
update bitmaps: for more information about BitBlt consult
[9], where it is called RasrerOp. BitBlt makes extensive use
of the shifting/masking capabilities of the processor, and
attempts to prefetch data so that it will always be in the
cache when needed. The Dorado’s BitBIt can move dis-
play objects around in memory at 34 Mbits/set for simple
cases like erasing or scrolling a screen. Xlore complex
operations, where the result is a function of the source ob-
ject, the destination object, and a filter, run at 24 Mbits/
sec.

l/O devices with transfer rates up to 10 Mwords/sec
are handled by the processor via the lOData and lOAddress

busses. The microcode for the disk takes three micro-
instructions to transfer two words in this way; thus the 10
Mbit/set disk consumes 5% of the processor. Higher
bandwidth devices use the fast I/O system, which does not
interact with the cache. The fast I/O microcode for the dis-
play takes only two instructions to transfer a 16 word block
of data from memory to the device. This can consume the
available memory bandwidth for I/O (640 Mbits/se(z) using
only one quarter of the available microcycles (that is, two
I/O instructions every eight cycles).

Recall that the NextPC scheme (5 5.5 and 5 6.2.2) im-
poses a rather complicated structure on the microstore, be-
cause of the pages, the odd/even branch addresses, and
the special subroutine call locations. We were concerned
about the amount of microstore which might be wasted by
automatic placement of instructions under all these con-
straints. In fact, however, the automatic placer can use
99.9% of the available memory when called upon to place
an essentially full microstore.

I93

The processor for the Model 1 Dorado has been in op-
cration since winter of 1978-79. Several copies of the com-
pletcd machine were dclivcred to users in CSI. during the
summer and fill of 1979. We are converting the manu-
factcrring technology for Dorado from the stitchweld
boards used for the prototypes to MultiWire boards.
Stitchwelding worked very well for jlrototypcs, but is too
expensive for even modest quantities. Its major advan-
tages arc.> packaging density and signal propagation charac-
teristics very similar to those of the production technology,
very rapid turnaround during development (three days for
a complete 300~chip board, a few hours for a modest
change). and complete compatibility with our design auto-
mation system.

Acknorvlcdgcnwnts

The early design of the Dorado processor was done by
Chuck Thackcr and Don Charnley. The data section was
redesigned and debugged by Roger Bates and Ed Fiala.
Willie-Sue Haugeland, Nori Suzuki, Bruce Horn and Gene
McDaniel are responsible for production and diagnostic
microcode.

References
1. Lampson. B. W.. Clark, D.W. and Pier. K.A. The memory system of
a high-performance personal computer. Xerox PARC. in preparation.
2. l~cutsch, 1.P. Expcriencc with a microprogrammed lntcrlisp system.
~CEE Tmrrs. Cwnpurm C-28. 10 (Ott 1979).
3. Geschkc. C.h4., Morris Jr., J.H., and Sattcrthwaitc, E.H. Early
cxpcricncc with Mesa. Colrrv~ ACM 20.8 (Aug 1977). 540-552.
-1. in_~alls. D. The Smallwlk-76 programming system: Design and
implcmcnration. i’ruc 5/h AC.41 Sjvtrp. Principles of hog. Lung..

Tucson. Arizona. Jan 1978,9-16.
5. iampson, B.W.. McDaniel. G. and Ornstein, S. An instruction fetch
unit for a high-pcrformancc personal computer. Xerox PARC, in
preparation.
6. Mitchell. J.G.. Maybury. W. and Sweet, R. Aleso Language 12fonual,
‘~‘echnicnl Report CSL-79-3. Xerox PARC. 1979.

7. ‘l‘eitclman, W. Inferlisp Referettce ~lnnuui. Xerox PARC, 1979.
8. ‘Ihackcr. C.P. ct al. Alto: A personal computer. Conrpufer
S~rucrures: Readings a,ld Examples. Sieworek. Bell and Newell, eds..
McGraw-Hill, 1980.

9. Newman. W.M. and Sproull. R.F. Principles oflntemclive

Cornpum Graphics 2nd Ed. McGraw-Hill, 1979.

194

